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Online Appendices

A. Summary of Notations

Notation Description
TTD Two-stage target-debt framework
DWO Debt-weighted offer-set policy
Fluid Fluid-approximation approach
FV Fairness-adjusted value
T Total number of customers
N Set of ad campaigns
n Number of ad campaigns
Bi Total budget of ad campaign i
bi Bid price of ad campaign i per click-through
j(t) Type of customer t
M Set of customer types
m Number of customer types
pj Probability of a customer being type j
S(t) Offer-set displayed to customer t
Sj Collection of all possible offer-sets for type-j customers including ad targeting info
yj
i (t) Number of click-throughs by a type-j customer on ad i in time t
ȳj
i Per-customer click-throughs of ad i by type-j customers

ϕj
i (S) Expected value of yj

i (t) conditioned on S(t) = S
D(j,y) Joint customer type and click-through distribution
ηC
i Required click-throughs for customer-type set C on ad campaign i
Ki Set of all C with ηC

i > 0 of ad i
rji Value of each click of ad campaign i by a type-j customer

F (y) Fairness metric
Ht−1 Realized history until the start of time t
Π Set of policies

Πstatic Set of static policies
Πd Set of deterministic static policies

(OP) Original stochastic program
V∗ Optimal FV of the original stochastic program
αi

j Target for the per-period number of click-throughs of ad i from type-j customers
VCT(α) FV of the click-through target vector α
(2SSP) Two-stage stochastic program

θji Dual variable associated with satisfying the click-through target ad i from type-j customers
(OT P) Reformulated optimal target problem
α∗ Solution to (OT P)
K Maximum size of an offer-set

DWO-α DWO policy with click-through target vector α
dji (t) Debt of the click-throughs from type-j customers on ad i in time t
OP(γ) Family of ad-allocation problems with scaling parameter γ
V(π|γ) Expected FV generated by policy π in OP(γ)
(OPFluid) Fluid convex program
VFluid(z) Objective value function of (OPFluid)

Table 2 Summary of Notations
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B. Soft-constraint Formulation

In this section, we consider the original stochastic program with soft constraints as follows:

max
π∈Π

E

 1

T

T∑
t=1

∑
i∈N

∑
j∈M

rji y
j
i (t|π)+λF (ȳ(π))− ν

∑
i∈N

∑
C∈Ki

(
ηC
i

T
−
∑
j∈C

ȳj
i (π)

)+


s.t.
1

T

T∑
t=1

∑
j∈M

biy
j
i (t|π)≤

Bi

T
, almost surely for each i∈N ,

(OPSoft)

where the first term in the objective is the total per-customer-impression value from advertising, which

we call the efficiency of policy π denoted by E(π) := E
[

1
T

T∑
t=1

∑
i∈N

∑
j∈M

rji y
j
i (t|π)

]
, the second term is the

fairness of policy π denoted by λ · F(π) := λ · E [F (ȳ(π))], and the third term in the objective is the soft

constraints of the click-through requirements denoted by ν · G(π) := −ν · E

[∑
i∈N

∑
C∈Ki

(
ηC
i

T
−
∑
j∈C

ȳj
i (π)

)+
]

with a parameter ν > 0. Hence, the total objective value denoted by FVSoft under policy π is given by

VSoft(π) := E(π)+λ · F(π)+ ν · G(π), and we denote the optimal FVSoft as V∗
Soft = limsup

π∈Π
VSoft(π) and the

optimal policy (if it exists) as π∗ = argmax
π∈Π

VSoft(π). We also remark that the constraint of (OPSoft) refers

to the budget constraint of each ad.

We formulate the original stochastic program (OPSoft) as a dynamic program (DP). Specifically, we define

Y j
i (t) :=

t−1∑
τ=1

yj
i (τ) as the accumulative number of click-throughs until the start of time t, and

Vt(Y (t)) :=max
π∈Π

E

 T∑
τ=t

∑
i∈N

∑
j∈M

rji y
j
i (t|π)+TλF (ȳ(π))− ν

∑
i∈N

∑
C∈Ki

(
ηC
i −

T∑
t=1

∑
j∈C

yj
i (t)

)+ ∣∣∣∣∣Y (t)


s.t.

T∑
τ=t

∑
j∈M

biy
j
i (t|π)≤Bi−

∑
j∈M

biY
j
i (t), almost surely for each i∈N .

(19)

Hence, Vt(Y (t)) is the maximum expected FVSoft given that the number of accumulative click-throughs

at the beginning of time t is Y (t) := (Y j
i (t) : i∈N , j ∈M).

To formulate the DP, we first specify the boundary/terminal value function VT+1(Y (T +1)). To this end,

we define

Y :=

{
Y (T +1)∈Rnm

+ : bi
∑
j∈M

Y j
i (T +1)≤Bi for each i∈N

}
as the feasible region for the accumulative number of click-throughs for the entire planning horizon, Y (T +1).

The boundary value function is defined as follows:

VT+1(Y (T +1)) =

TλF
(

Y (T+1)

T

)
− ν

∑
i∈N

∑
C∈Ki

(
ηC
i −

∑
j∈C

Y j
i (T +1)

)+

, if Y (T +1)∈Y,

−M̄, otherwise,

(20)

where M̄ is a sufficiently large positive number that is far bigger than V∗
Soft (e.g., M̄ := C ·max{V∗

Soft,1},
where C > 0 is a very large positive number).

By the standard backward induction argument, we are now ready to write the Bellman equation to evaluate

Vt(Y (t)) in (19):

Vt(Y (t)) =
∑
j∈M

pj max
S(t)∈Sj

Ey(t)

[∑
i∈N

rji y
j
i +Vt+1(Y (t)+y(t))

∣∣∣∣S(t), j(t) = j

]
. (21)
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Therefore, the optimal FVSoft for the original problem (OPSoft) is

V∗
Soft =

V1(0)

T
, where 0 := (0,0, ...,0)′ ∈Rnm.

Due to the curse of dimensionality, the above DP formulation of (OPSoft) is intractable even when m and

n are just moderately large. Therefore, we resort to our TTD framework and the induced DWO algorithm to

solve the ad-allocation optimization problem. We can construct a related optimal target problem as follows:

max
α≥0

VSoft−CT(α)

s.t. h(α)≥ 0,

bi
∑
j∈M

αj
i ≤

Bi

T
, for each i∈N ,

(OT PSoft)

where VSoft−CT(α) :=
∑
i∈N

∑
j∈M

rjiα
j
i + λF (α) + νG(α) and G(α) :=−

∑
i∈N

∑
C∈Ki

(
ηC
i

T
−
∑
j∈C

αj
i

)+

. It is straight-

forward to check that VSoft−CT(·) is concave in α and the constraint h(α)≥ 0 is equivalent to (3). Solving

the convex program (OT PSoft) obtains the optimal targets α∗
Soft. Then, we apply the DWO-α∗

Soft policy to

dynamically display the offer-set to each arriving customer. Following the same analysis as our main model

with the expected click-through requirements, we can show that the DWO-α∗
Soft policy is also asymptotically

optimal for (OPSoft). To avoid repetition, we omit the proof details.

C. Metrics of Fairness

In this section, we describe a few commonly adopted metrics of fairness F (·), all of which are concave and

can be coherently incorporated into our framework.

Max-min fairness. The recent trend of machine-learning fairness has promoted that minority cus-

tomers should have sufficient click-throughs in a recommender/advertising system; otherwise, their needs

cannot be well taken care of due to data scarcity. A natural choice to accommodate such fairness concern is

the max-min fairness metric, which has been extensively studied in the literature of economics (e.g., Young

and Isaac 1995), computer science (e.g., Kumar and Kleinberg 2000), and operations research (e.g., Bertsimas

et al. 2012). Specifically, we define function F (·) as follows:

F (ȳ) =min
j∈M

{∑
i∈N

ȳj
i

}
. (22)

Max-min fairness drives the platform to maximize the minimum per-customer-impression click-throughs from

all customer types, ensuring that no customer type has too few click-throughs. We also note that max-min

fairness can also be evaluated with respect to advertisers, i.e., F (ȳ) =min
i∈N

{ ∑
j∈M

ȳj
i

}
, so as to ensure that no

advertiser receives too few click-throughs. One may also generalize max-min fairness to the α−fairness metric

(see, e.g., Bertsimas et al. 2012), i.e., F (ȳ) =
∑

j∈M

1
1−α

(∑
i∈N

ȳj
i

)1−α

if α ̸= 1 and F (ȳ) =
∑

j∈M
log

(∑
i∈N

ȳj
i

)
if

α= 1, which is reduced to the max-min fairness metric if we take α→+∞.
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Gini mean difference fairness. Advertisers generally prefer receiving impressions/click-

throughs/conversions that are evenly spread across their targeted customer types (e.g., Lejeune and Turner

2019). One way to capture such preference is through Gini mean difference (GMD) fairness. The Gini coeffi-

cient/index has long been a canonical measure of income inequality in economics (e.g., Atkinson 1970), and

it has recently been studied in the advertising literature to maximize the spreading of impressions across

targeted user types (e.g., Lejeune and Turner 2019). Following Lejeune and Turner (2019), given the average

click-through vector ȳi = (ȳ1i , ȳ
2
i , ..., ȳ

m
i )′ of ad i, we first define the GMD fairness for each ad i:

GMDi(ȳi) =
2

(
∑

j∈M
pj)2

∑
j,j′∈M

pjpj′
∣∣∣∣ ȳj

i

pj
− ȳj′

i

pj′

∣∣∣∣, (23)

where pj is the proportion of type-j customers, and
ȳ
j
i

pj
=

∑T
t=1 y

j
i
(t)

pjT
is the per-type-j customer click-throughs

of ad i. Hence, the Gini coefficient of ad i is defined as follows:

Gi(ȳi) =

( ∑
j∈M

pj

)
GMDi(ȳi)

2
∑

j∈M
ȳj
i

.

We are now ready to define the GMD fairness as a weighted sum of the negative Gini coefficient of each ad:

F (ȳ) =−
∑
i∈N

kiGi(ȳi) =−
∑
i∈N

ki( ∑
j∈M

ȳj
i

)( ∑
j∈M

pj

) ∑
j,j′∈M

|pj′ ȳj
i − pj ȳj′

i |,

where ki ≥ 0 is the weight of ad i according to its importance in the GMD fairness metric. Following Lejeune

and Turner (2019), we choose ki =
∑

j∈M
ȳj
i which gives rise to our GMD fairness metric as (24):

F (ȳ) =−
∑
i∈N

1∑
j∈M

pj

∑
j,j′∈M

|pj′ ȳj
i − pj ȳj′

i |. (24)

It is clear from (24) that the GMD fairness metric prompts the platform to induce click-throughs from each

targeted customer type j proportional to its traffic pj .

Disparate impact. Disparate impact is a widely discussed algorithmic discrimination measure (e.g.

Feldman et al. 2015). We show that this measure can be adopted in F (·). Following Feldman et al. (2015),

we call there exists disparate impact for type-j customers if

ȳj
i /p

j

ȳj′
i /p

j′
≤ τ for some i and j′ ̸= j,

where τ is a parameter in [0,1]. In practice, τ is usually set as 0.8 given the prevailing 80%− 20% rule (see,

e.g. Rubin 1978). Hence, we can define the fairness metric F (·) for eliminating disparate impact as follows:

F (ȳ) = min
i∈N ,j∈Ji

{
ȳj
i

pj
− τ ·max

j′∈J ′
i

ȳj′

i

pj′

}
, (25)

where Ji and J ′
i (Ji,J ′

i ∈M) denote the sets of minority and majority types, respectively. It is straight-

forward to check that (25) is concave, which measures the disparate impact attributed to the ad allocation

algorithm.
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D. Proof of Statements

We provide the proof of all the technical results in this section.

Proof of Lemma 1

It is evident that any feasible click-through target vector α to (2SSP) must also be feasible to (2), because

the feasible region of (2SSP) is a subset of that of (2).

We now show that any feasible click-through target vector α to (2) is also feasible to (2SSP). Consider

a feasible α to (2). We have, there exists a feasible policy π ∈Π,

E

[
1

T

T∑
t=1

yj
i (t|π)

]
≥ αj

i , for each i∈N , j ∈M.

We define the following probability measure induced by π, zstatic(S|π): For any j ∈M and S ∈Sj ,

zj
static(S|π) := P[πt̃(j(t̃),Ht̃−1) = S|j(t̃) = j],

where t̃ is a random variable uniformly distributed on {1,2, ..., T} and independent of everything else. Based

on zstatic(·|π), we construct a static policy πstatic, which selects offer-set S given each customer type j with

probability zj
static(S|π). Straightforward algebraic manipulations and the law of iterated expectations together

yield that

E
[
yj
i (t|πstatic)

]
=
∑
S∈Sj

pjϕ(j|S)zj
static(S|π) =E

[
1

T

T∑
t=1

yj
i (t|π)

]
≥ αj

i , , for each i∈N , j ∈M.

Hence, πstatic and α are feasible to (2SSP). Moreover, because these two problems have the same objective

function, any optimal click-through target vector for one problem must be also optimal for another. This

completes the proof of Lemma 1. □

Proof of Theorem 1

The proof follows from the discussions before (8). □

Proof of Proposition 1

Before proving Proposition 1, we first state and prove a few auxiliary results. It is sometimes more convenient

to use a binary variable representation of a deterministic static offer-set policy π ∈ Πd. More specifically,

π ∈Πd can be equivalently represented by an nm-dimensional binary vector x= (xj
i ∈ {0,1} : i∈N , j ∈M),

where xj
i = 1 means that i∈ π(j), i.e., ad i is included in the offer-set displayed to a type-j customer. With

a slight abuse of notation, we denote ϕj
i (x) as the expected click-throughs of a type-j customer for ad i if

the offer-set displayed to this customer is Sj = {i∈N : xj
i = 1}. Under the MNL model, we have

ϕj
i (x) =

vj
ix

j
i

1+
∑

i′∈N
vj
i′x

j
i′
, (26)

where vj
i > 0 is the attractiveness of ad i to type-j customers (see, also, (11)). Denote the set of all plausible

offer-set representation vectors as X ⊂ {0,1}nm, and the set of plausible offer-set representation vectors

displayed to a type-j customer as X j ⊂ {0,1}n. Applying Theorems 1 to the MNL choice model (26), we

have the following corollary.
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Corollary 1. If customers follow the MNL click-through model (26), a click-through target vector α is

single-period feasible if and only if

max
x∈X

∑
i∈N ,j∈M

pjvj
i θ

j
ix

j
i

1+
∑

i′∈N
vj
i′x

j
i′
≥

∑
i∈N ,j∈M

αj
iθ

j
i for all θji ≥ 0 (i∈N , j ∈M). (27)

Furthermore, (27) is equivalent to, for each j ∈M

max
xj∈Xj

∑
i∈N

pjvj
i θ

j
ix

j
i

1+
∑

i′∈N
vj
i′x

j
i′
≥
∑
i∈N

αj
iθ

j
i for all θji ≥ 0 (i∈N ). (28)

Proof of Corollary 1

Directly applying Theorem 1 to the MNL choice model implies that α is feasible if and only if inequality

(27) holds.

We now show that (27) implies (28). If (27) holds for any θ ≥ 0, then it also holds for any θ ≥ 0 with

θj
′

i = 0 (for j′ ̸= j and all i∈N ). Therefore, (28) holds.

Finally, we show that if (28) holds for all j ∈M, (27) holds as well. Note that the left-hand side of (27)

can be decomposed into independent parts as follows:

max
x∈X

∑
i∈N ,j∈M

pjvj
i θ

j
ix

j
i

1+
∑

i′∈N
vj
i′x

j
i′
=max

x∈X

∑
j∈M

∑
i∈N

pjvj
i θ

j
ix

j
i

1+
∑

i′∈N
vj
i′x

j
i′
=
∑
j∈M

max
xj∈Xj

∑
i∈N

pjvj
i θ

j
ix

j
i

1+
∑

i′∈N
vj
i′x

j
i′
≥
∑
j∈M

∑
i∈N

αj
iθ

j
i =

∑
i∈N ,j∈M

αj
iθ

j
i ,

for any θ ≥ 0, where the inequality follows from (28). Therefore, that (27) holds is equivalent to that (28)

holds for all j ∈M. This completes the proof of Corollary 1. □

Leveraging the structural properties of the MNL model, we can give a sharper and simpler characterization

for the feasibility condition (as the solution to a linear program). The following lemma characterizes the

feasibility condition for a click-through target vector α, taking into account the cardinality constraint that

the size of an offer-set displayed to any customer is upper bounded by K, i.e., |S(t)| ≤K for any customer t.

Lemma 3. If customers follow the MNL click-through model (26) and the set of all feasible offer-sets

is Sj = {S ⊂ N : |S| ≤ K} for each j ∈M, we have α is single-period feasible if and only if there exist

w := (wj
i : i∈N , j ∈M) and z := (zj : j ∈M) that satisfy the following linear constraints

pjvj
iw

j
i ≥ αj

i , wj
i ≤ zj , wj

i ≥ 0, for each i∈N , j ∈M,∑
i∈N

vj
iw

j
i + zj = 1,

∑
i∈N

wj
i ≤Kzj , for each j ∈M,

(29)

where zj := 1

1+
∑

i′∈N
v
j

i′
x
j

i′
and wj

i := xj
iz

j =
x
j
i

1+
∑

i′∈N
v
j

i′
x
j

i′
.

Proof of Lemma 3

A standard result in fractional programming postulates that the left-hand side of (28) is quasi-convex in xj

for all j ∈M, so there always exists a maximizer on the boundary of the feasible region. Thus, we can relax

the binary constraint xj
i ∈ {0,1} to xj

i ∈ [0,1] in (28), which is therefore equivalent to

max
xj∈[0,1]n,

∑
i∈N

x
j
i
≤K

∑
i∈N

pjvj
i θ

j
ix

j
i

1+
∑

i′∈N vj
i′x

j
i′
≥
∑
i∈N

αj
iθ

j
i for all θj ≥ 0 and j ∈M. (30)



Li, Rong, Zhang and Zheng: Online Ad Allocation
Management Science 00(0), pp. 000–000, © 0000 INFORMS 7

We change the decision variable and define, for all j ∈M,

zj :=
1

1+
∑

i′∈N
vj
i′x

j
i′

and wj
i := xj

iz
j =

xj
i

1+
∑

i′∈N
vj
i′x

j
i′
.

Then, we can rewrite (30) as, for any j ∈M,

min
θj≥0

(
max
w

j
i
,zj

∑
i∈N

pjvj
iw

j
i θ

j
i −
∑
i∈N

αj
iθ

j
i

)
≥ 0

s.t.
∑
i∈N

vj
iw

j
i + zj = 1,∑

i∈N

wj
i ≤Kzj ,

0≤wj
i ≤ zj , for each i∈N .

(31)

By Sion’s minimax theorem, we can exchange the maximization and minimization operators so that (31) is

equivalent to, for any j ∈M:

max
wj ,zj

min
θj≥0

∑
i∈N

θji (p
jvj

iw
j
i −αj

i )≥ 0,

s.t.
∑
i∈N

vj
iw

j
i + zj = 1,∑

i∈N

wj
i ≤Kzj ,

0≤wj
i ≤ zj , for each i∈N .

(32)

Therefore, (32) holds if and only if there exist wj and zj such that all the constraints in (32) hold and∑
i∈N

θji (p
jvj

iw
j
i −αj

i )≥ 0 holds for all θj ≥ 0, which is equivalent to pjvj
iw

j
i −αj

i ≥ 0 for all i ∈N . Therefore,

(32) is equivalent to that, for any j ∈M,

pjvj
iw

j
i −αj

i ≥ 0, for each i∈N ,∑
i∈N

vj
iw

j
i + zj = 1,∑

i∈N

wj
i ≤Kzj ,

0≤wj
i ≤ zj , for each i∈N .

(33)

That (33) holds for all j ∈M is equivalent to that (29) holds. This completes the proof of Lemma 3. □

We now prove Proposition 1 itself. It suffices to show that, taking into account the cardinality constraint

|S| ≤ K, the (first-stage) feasible region for the first-stage click-through target vector α is given by the

following linear constraints:

AMNL :=
{
α∈Rnm

+ :
∑
i′∈N

αj
i′+

αj
i

vj
i

≤ pj , for each i∈N , j ∈M, and
∑
i∈N

αj
i +

1

K

∑
i∈N

αj
i

vj
i

≤ pj , for each j ∈M
}
.

(34)

We first show that if (29) holds, then α ∈AMNL. By the first inequality of (29), we have vj
iw

j
i ≥

α
j
i

pj
for

all i∈N and j ∈M. Plugging this into the first equality of (29), we have

1− zj =
∑
i∈N

vj
iw

j
i ≥

∑
i∈N

αj
i

pj
, for each j ∈M.
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Thus, by the first and second inequalities of (29), we have∑
i′∈N

αj
i′

pj
≤ 1− zj ≤ 1−wj

i ≤ 1− αj
i

pjvj
i

for each i∈N , j ∈M.

Rearranging the terms, we have

pj ≥
∑
i′∈N

αj
i′ +

αj
i

vj
i

for each i∈N , j ∈M.

The first, second, and fourth inequalities and the first equality of (29) imply that

∑
i∈N

αj
i

pjvj
i

≤
∑
i∈N

wj
i ≤Kzj =K(1−

∑
i∈N

vj
iw

j
i )≤K

(
1−

∑
i∈N

αj
i

pj

)
for each j ∈M.

Rearranging the terms, we have

pj ≥
∑
i∈N

αj
i +

1

K

∑
i∈N

αj
i

vj
i

for each j ∈M.

Therefore, if (29) holds, we have α∈AMNL.

Next, we show that if α∈AMNL, (29) holds. Given α∈AMNL, define

wj
i =

αj
i

pjvj
i

for each i∈N and j ∈M, and zj = 1−
∑
i∈N

αj
i

pj
for each j ∈M.

To show (29), it suffices to show the first, second and fourth inequalities hold because the rest of the

constraints hold trivially.

Since pj ≥
∑
i∈N

αj
i +

1
K

∑
i∈N

α
j
i

v
j
i

for each j ∈M, we have

∑
i∈N

wj
i =

∑
i∈N

αj
i

pjvj
i

=
1

pj

∑
i∈N

αj
i

vj
i

≤K

(
1−

∑
i∈N

αj
i

pj

)
=Kzj for each j ∈M.

Hence, the second inequality of (29) holds. Since pj ≥
∑

i′∈N
αj

i′ +
α
j
i

v
j
i

for each i∈N , j ∈M, we have

wj
i =

αj
i

pjvj
i

≤ 1−
∑
i′∈N

αj
i′

pj
= zj for each i∈N , j ∈M.

Therefore, (29) holds. Hence, the first-stage feasible region of α is characterized by (34). This completes the

proof of Proposition 1. □

Proof of Theorem 2

Let us consider a problem identical to OP(γ) but without budget constraints (i.e., Bi(γ) = +∞ for all

i ∈ N and γ > 0), which we denote as OP∗(γ). By definition, in OP∗(γ), any ad i will not run out of

budget throughout the planning horizon. Throughout the proof of Theorem 2, we write yj
i (t) = yj

i (t|πDWO(α))

whenever there is no confusion.

� Step 1. For problem OP∗(γ), if α is single-period feasible, it holds that

lim inf
γ↑+∞

1

T (γ)

T (γ)∑
t=1

yj
i (t)≥ αj

i for all i∈N and j ∈M. (35)
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Under the DWO-α algorithm, we have that

tαj
i −

t∑
τ=1

yj
i (τ) = dj

i (t+1)≤
(
dj
i (t+1)

)+
.

Therefore, it suffices to show that, if (8) holds,

limsup
t→+∞

1

t
· dj

i (t+1)≤ 0, almost surely in problem OP∗(+∞).

For a vector x ∈ Rn, we use x+ to denote the component-wise positive part of x. Also note that, for any

A,B ∈R, ((A+B)+)2 ≤ (A+ +B)2. We have

E||
(
d(t+1)

)+||22 =E||
(
d(t)+α−y(t)

)+||22 ≤E||(d(t))+ +α−y(t)||22

=E||(d(t))+||22 +E||α−y(t)||22 +2E

[∑
i∈N

∑
j∈M

(dj
i (t))

+ ·αj
i −
∑
i∈N

∑
j∈M

(dj
i (t))

+ · yj
i (t)

]
,

where || · ||2 denotes the ℓ2−norm in a Euclidean space. Since (dj
i (t))

+ ≥ 0 for all i∈N and j ∈M, inequality

(8) implies that

E

[∑
i∈N

∑
j∈M

(dj
i (t))

+ ·αj
i −
∑
i∈N

∑
j∈M

(dj
i (t))

+ · yj
i (t)

]
≤ 0.

Furthermore,

E||α−y(t)||22 ≤ n ·m · max
i∈N ,j∈M

{
E[(yj

i (t))
2] + (αj

i )
2
}
≤ n ·m ·C, where C := max

i∈N ,j∈M
(αj

i )
2 +1≤ 2.

Therefore,

E||(d(t+1))+||22 ≤ ||(d(1))+||22 + tnmC for all t≥ 1. (36)

By Jensen’s inequality and that || · ||22 is convex,

||E[(d(t+1))+]||22 ≤E||(d(t+1))+||22 ≤ tnmC for all t≥ 1. (37)

Therefore,

0≤ 1

t
||E[(d(t+1))+]||2 ≤

√
nmC

t
, which implies that limsup

t→+∞

1

t
||E[(d(t+1))+]||2 = 0.

Hence

limsup
t→+∞

1

t
· (dj

i (t+1))+ = 0, almost surely for each i∈N and j ∈M.

Inequality (35) then follows immediately.

� Step 2. For problem OP∗(γ), if α is single-period feasible, it holds that

limsup
γ↑+∞

1

T (γ)

T (γ)∑
t=1

yj
i (t)≤ αj

i almost surely for all i∈N and j ∈M. (38)

Assume that, to the contrary, there exists (i0, j0) such that

limsup
γ↑+∞

1

T (γ)

T (γ)∑
t=1

yj0
i0
(t)>αj0

i0
.

Hence, there exists some ∆> 0, such that

1

T (γ)

T (γ)∑
t=1

yj0
i0
(t)>αj0

i0
+∆ for infinitely many γ. (39)
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Denote the set of γ’s that satisfy (39) as Γ. Note that 1
T (γ)

(
s∑

t=1

yj0
i0
(t)) increases by at most 1/(T (γ)) as s

increases by 1. Hence, for all γ ∈ Γ and γ > 3/(T∆), 1
T (γ)

(
s∑

t=1

yj0
i0
(t)) increases by no more than ∆/3 if s

increases by 1. Therefore, for all γ ∈ Γ and γ > 3/(T∆), there exists a s(γ)<T (γ), such that

αj0
i0
+

∆

3
<

1

T (γ)

s(γ)∑
t=1

yj0
i0
(t)<αj0

i0
+

2∆

3
(40)

By (40), we have that, for infinitely many γ,

s(γ)∑
t=1

yj0
i0
(t)>T (γ)

(
αj0

i0
+

∆

3

)
.

Hence, for infinitely many γ,

(dj0
i0
(t))+ =

(
(t− 1)αj0

i0
−

t−1∑
τ=1

yj0
i0
(τ)

)+

= 0 for all t≥ s(γ)+ 1,

where the equality follows from

t−1∑
τ=1

yj0
i0
(τ)≥

s(γ)∑
τ=1

yj0
i0
(τ)>T (γ)αj0

i0
> (t− 1)αj0

i0
.

Therefore, ad i0 will not be offered to customer type j0 for all t≥ s(γ)+1. Hence, yj0
i0
(t) = 0 for all t≥ s(γ)+1

and t≤ T (γ). By (40), we have

T (γ)∑
t=1

yj0
i0
(t)

T (γ)
=

s(γ)∑
t=1

yj0
i0
(t)

T (γ)
<αj0

i0
+

2∆

3
for γ ∈ Γ and γ >

3

T∆
,

which contradicts inequality (39). Therefore, for the system of OP∗(γ), we have inequality (38) holds.

� Step 3. For problem OP(γ), if α is first-stage feasible, then (13) holds.

Inequalities (35) and (38) together imply that (13) holds for problem OP∗(γ). In particular, for problem

OP∗(γ), we have no stock-out occurs for any ad asymptotically, i.e.,

lim
γ↑+∞

1

T (γ)

∑
j∈M

T (γ)∑
t=1

yj
i (t) =

∑
j∈M

αj
i ≤

Bi(γ)

biT (γ)
=

Bi

biT
for all i∈N . (41)

Furthermore, by construction, the click-through process of OP∗(γ) is identical to that of OP(γ) before

stock-out occurs in OP(γ).
We now show that the stock-out probability of any ad’s budget converges to 0 for OP(γ) as γ ↑+∞. If

stock-out occurs in OP(γ), there exists some i∈N , such that bi
∑

j∈M

T (γ)∑
t=1

yj
i (t)>Bi(γ) for OP∗(γ). We have

1
T (γ)

∑
j∈M

T (γ)∑
t=1

yj
i (t)>

Bi(γ)

biT (γ)
= Bi

biT
≥
∑

j∈M
αj

i by the feasibility of α. Hence, for OP∗(γ),

P

{
limsup
γ↑+∞

1

T (γ)

∑
j∈M

T (γ)∑
t=1

yj
i (t)>

Bi

biT

}
≤ P

{
limsup
γ↑+∞

1

T (γ)

∑
j∈M

T (γ)∑
t=1

yj
i (t)>

∑
j∈M

αj
i

}
= 0, (42)

where the equality follows from (41). Because OP∗(γ) and OP(γ) are equivalent before stock-out occurs,

(42) implies that stock-out occurs with probability 0 as γ ↑+∞ for OP(γ). Therefore, OP∗(γ) and OP(γ)
are equivalent with probability 1 as γ ↑ +∞. Since (13) holds for problem OP∗(γ), a standard coupling

argument implies that (13) holds for OP(γ) as well. This completes the proof of Theorem 2. □

Before the proof of Theorem 3, we prove Lemma 2 and Proposition 2 first.
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Proof of Lemma 2

We first check the feasibility of α̂(z) by directly plugging α̂j
i (z) into the constraints of (OT P). Since z is

feasible to (OPFluid), we have, for all i∈N ,

bi
∑
j∈M

α̂j
i (z) = bi

∑
j∈M,S∈Sj

pjϕj
i (S)z

j(S)≤ Bi

T
;

and, for all i∈N and C ∈Ki, ∑
j∈C

α̂j
i (z) =

∑
j∈C,S∈Sj

pjϕj
i (S)z

j(S)≥ ηC
i

T
.

In addition,

VCT(α̂(z)) =
∑
i∈N

∑
j∈M

rji
∑
S∈Sj

α̂j
i (z)+λF (α̂(z)) =

∑
i∈N ,j∈M,S∈Sj

rji p
jϕj

i (S)z
j(S)+λF (α̂(z)) = VFluid(z).

Therefore, it remains to show that

E[yj
i (t|πFluid(z))] = α̂j

i (z). (43)

Applying the law of total probability, we directly evaluate that

E[yj
i (t|πFluid(z))] =P[j(t) = j]

∑
S∈Sj

P[πFluid(j) = S|j(t) = j]E[yj
i (t)|πFluid(j) = S, j(t) = j]

=P[j(t) = j]
∑
S∈Sj

P[πFluid(j) = S]E[yj
i (t)|πFluid(j) = S, j(t) = j]

=pj
∑
S∈Sj

zj(S)ϕj
i (S)

=α̂j
i (z),

i.e., (43) holds. Therefore, the click-through target vector α̂(z) is first-stage feasible. In particular, α̂(z∗) is

first-stage feasible with E[yj
i (t|πFluid(z

∗))] = α̂j
i (z

∗). We defer the proof of α̂(z∗)’s optimality for (OT P) to

the proof of Theorem 3. □

Before proving Theorem 3, we present the proof of Proposition 2 first.

Proof of Proposition 2

We prove (17) by showing each individual equality or inequality thereof.

� Step 1. The FV generated by πFluid(z
∗) in OP(γ) is asymptotically identical to the optimal FV in

(OPFluid), i.e.,

lim
γ↑+∞

V(πFluid(z
∗)|γ) = V∗

Fluid. (44)

We first show that πFluid(z
∗) is asymptotically feasible for OP(γ). As γ ↑+∞, we have

lim
γ↑+∞

1

T (γ)

T (γ)∑
t=1

∑
j∈M

biy
j
i (t|πFluid(z

∗)) =E

[∑
j∈M

biy
j
i (t|πFluid(z

∗))

]
=

∑
j∈M,S∈Sj

bip
jϕj

i (S)z
j∗(S)≤ Bi(γ)

T (γ)
, (45)

where the first equality follows from the strong law of large numbers, the second from the definition of

πFluid(z
∗), and the inequality follows from z∗ is feasible for (OPFluid). Similarly, we have, under the policy

πFluid(z
∗),

lim
γ↑+∞

E

[
1

T (γ)

T (γ)∑
t=1

∑
j∈C

yj
i (t|πFluid(z

∗))

]
=

∑
j∈C,S∈Sj

pjϕj
i (S)z

j(S)≥ ηC
i (γ)

T (γ)
, (46)
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where the equality follows from the definition of πFluid(z
∗), and the inequality follows from z∗ is feasible for

(OPFluid). Inequalities (45) and (46) together imply that πFluid(z
∗) is asymptotically feasible for OP(γ) as

γ ↑+∞.

Then, we evaluate the FV of the Fluid-z∗ policy as follows:

lim
γ↑+∞

V(πFluid(z
∗)|γ) = lim

γ↑+∞
E

[
1

T (γ)

T (γ)∑
t=1

∑
i∈N

∑
j∈M

rji y
j
i (t|πFluid(z

∗))+λF (ȳ(πFluid(z
∗)))

]
=

∑
i∈N ,j∈M,S∈Sj

rji p
jϕj

i (S)z
j∗(S)+λF (α̂(z∗))

=VFluid(z∗)

=V∗
Fluid,

(47)

where the second equality follows from the law of large numbers and the dominated convergence theorem.

Therefore, (44) follows from (47).

� Step 2. The following inequality holds:

lim
γ↑+∞

V∗(γ)≥ lim
γ↑+∞

V(πFluid(z
∗)|γ). (48)

Since πFluid(z
∗) is asymptotically feasible, the optimality of V∗(γ) implies that lim

γ↑+∞
V∗(γ) ≥

lim
γ↑+∞

V(πFluid(z
∗)|γ).

� Step 3. The optimal FV of (OPFluid) dominates that of OP(γ), i.e.,

V∗
Fluid ≥V∗(γ) for any γ > 0. (49)

Consider an arbitrary policy π ∈ Π feasible for OP(γ). We first define the following probability measure

induced by π, zFluid(π) for (OPFluid): For j ∈M and S ∈Sj ,

zj
Fluid(S|π) := P

[
πt̃(j(t̃),Ht̃−1) = S|j(t̃) = j

]
, (50)

where t̃ is a random variable uniformly distributed on {1,2, ..., T (γ)} and independent of everything else.

Because π is feasible for OP(γ), all the constraints of OP(γ) will also be satisfied in the expected sense as

well, i.e.,

1

T (γ)
E

[
T (γ)∑
t=1

∑
j∈M

biy
j
i (t|π)

]
≤ Bi(γ)

T (γ)
, for each i∈N ,

and
1

T (γ)
E

[
T∑

t=1

∑
j∈C

yj
i (t|π)

]
≥ ηC

i (γ)

T (γ)
, for each i∈N and C ∈Ki,

where the expectations are taken with respect to j(t), π, and y. By (50), straightforward algebraic manipu-

lation and the law of iterated expectations together yield that

E[ȳj
i ] =E

[
1

T (γ)

T (γ)∑
t=1

yj
i (t|π)

]
=
∑
S∈Sj

pjϕj
i (S)z

j
Fluid(S|π) = α̂j

i (zFluid(S|π)).

Plugging this identity into the constraints of (OPFluid), we have∑
j∈M,S∈Sj

bip
jϕj

i (S)z
j
Fluid(S|π)≤

Bi(γ)

T (γ)
for each i∈N
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and that ∑
j∈C,S∈Sj

pjϕj
i (S)z

j
Fluid(S|π)≥

ηC
i (γ)

T (γ)
for each i∈N and C ∈Ki.

Therefore, zFluid(π) is feasible for (OPFluid) and, hence,

V∗
Fluid ≥VFluid(zFluid(π)). (51)

By Jensen’s inequality and the concavity of the fairness metric F (·),

VFluid(zFluid(π)) =
∑
i∈N

∑
j∈M

∑
S∈Sj

rji p
jϕj

i (S)z
j
Fluid(S|π)+λF (α̂(zFluid(S|π)))

≥ E

[
1

T (γ)

T (γ)∑
t=1

∑
i∈N

∑
j∈M

rji y
j
i (t|π)+λF (ȳ(π))

]
(52)

= V(π|γ)

Since π is arbitrary, inequalities (51) and (52) together imply that (49) holds.

Therefore, putting the (in)equalities (44), (48), and (49) together, we have (17) holds, which completes

the proof of Proposition 2. □

We are now ready to prove Theorem 3.

Proof of Theorem 3

We prove (14) by the following three steps.

� Step 1. The following inequality holds:

V∗
CT ≥ lim

γ↑+∞
V∗(γ). (53)

By Proposition 2, there exists one optimal static policy πFluid(z
∗) of (OP) in the asymptotic regime. By

Lemma 2, we have

α̂(z∗) = (α̂j
i (z

∗), i∈N , j ∈M)∈R(nm)
+ .

Therefore, there exists a static policy πFluid(z
∗), such that

E[yj
i (t|πFluid(z

∗))]≥ α̂(z∗), for each i∈N , j ∈M,

bi
∑
j∈M

α̂j
i (z

∗)≤ Bi

T
, for each i∈N ,

∑
j∈C

α̂j
i (z

∗)≥ ηC
i

T
, for each i∈N and C ∈Ki,

hence α̂(z∗) is a feasible solution of the first-stage click-through target optimization problem (OT P). By
the law of large numbers and the dominated convergence theorem, we obtain V∗

CT ≥ lim
γ↑+∞

V(πFluid(z
∗)|γ) as

follows:
V∗
CT ≥VCT(α̂(z∗))

=
∑

i∈N ,j∈M

rji α̂
j
i (z

∗)+λF (α̂(z∗))

= lim
γ↑+∞

E

[
1

T (γ)

T (γ)∑
t=1

∑
i∈N

∑
j∈M

rji y
j
i (t|πFluid(z

∗))

]
+λF (E [ȳ(πFluid(z

∗))])

= lim
γ↑+∞

E

[
1

T (γ)

T (γ)∑
t=1

∑
i∈N

∑
j∈M

rji y
j
i (t|πFluid(z

∗))+λF (ȳ(πFluid(z
∗)))

]
= lim

γ↑+∞
V(πFluid(z

∗)|γ).

(54)
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Since lim
γ↑+∞

V(πFluid(z
∗)|γ) = lim

γ↑+∞
V∗(γ) by Proposition 2, (53) follows.

� Step 2. The following inequality holds:

lim
γ↑+∞

V∗(γ)≥ lim
γ↑+∞

V(πDWO(α
∗)|γ). (55)

The optimality of V∗(γ) implies that V∗(γ)≥V(πDWO(α
∗)|γ) for all γ > 0.

� Step 3. The DWO-α∗ policy generates the same asymptotic FV in (OP) as the optimal FV in (OT P),
i.e.,

lim
γ↑+∞

V(πDWO(α
∗)|γ) = V∗

CT (56)

By Theorem 2, the DWO-α∗ policy is asymptotically feasible for the original problem (OP) with (13) holding

true. We now evaluate V(πDWO(α
∗)|γ) in the asymptotic regime:

lim
γ↑+∞

V(πDWO(α
∗)|γ) = lim

γ↑+∞
E

[
1

T (γ)

T (γ)∑
t=1

∑
i∈N

∑
j∈M

rji y
j
i (t|πDWO(α

∗))+λF (ȳ(πDWO(α
∗)))

]
=

∑
i∈N ,j∈M

rjiα
j∗
i +λF (α∗)

=VCT(α∗)

=V∗
CT,

(57)

where the second equality follows from equality (13) and the dominated convergence theorem. Hence, equality

(56) follows from equality (57). Therefore, putting the (in)equalities (53), (55), and (56) together, we have

(14) holds. As a by-product of the proof, (14) also implies

V∗
CT = lim

γ↑+∞
V∗(γ) = V∗

Fluid = VCT(α̂(z∗)).

By (49) in the proof of Proposition 2, we have

V∗
CT = V∗

Fluid ≥V∗(γ) for any γ > 0.

Hence, we have (15) holds. Moreover, α̂(z∗) is optimal for (OT P), which completes the proof of Lemma 2.

To complete the proof, we now show (16). Because (15) holds for any γ > 0, we have

V∗(γ)−V(πDWO(α
∗)|γ)≤V∗

CT−V(πDWO(α
∗)|γ)

=

[ ∑
i∈N ,j∈M

rjiα
j∗
i +λF (α∗)

]
−E

[
1

T (γ)

T (γ)∑
t=1

∑
i∈N

∑
j∈M

rji y
j
i (t|πDWO(α

∗))+λF (ȳ(πDWO(α
∗)))

]

=
∑

i∈N ,j∈M

rjiE

[
αj∗

i −
1

T (γ)

T (γ)∑
t=1

yj
i (t|πDWO(α

∗))

]
+λ (F (α∗)−E[F (ȳ(πDWO(α

∗)))])

(58)

By the definition of the debt vector d(t), we can bound the first term of (58) as follows∑
i∈N ,j∈M

rjiE

[
αj∗

i −
1

T (γ)

T (γ)∑
t=1

yj
i (t|πDWO(α

∗))

]
=

1

T (γ)

∑
i∈N ,j∈M

rjiE
[
dj
i (T (γ)+ 1)

]
≤ 1

T (γ)

∑
i∈N ,j∈M

rjiE
[
(dj

i (T (γ)+ 1))+
]

≤ 1

T (γ)
||r||2 · ||E

[
(d(T (γ)+ 1))+

]
||2

≤ C1√
γ

(59)
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where the constant C1 := ||r||2 ·
√

2mn
T

, the second inequality follows from the Cauchy–Schwarz inequality,

and the last from (37).

Since F (·) is a concave function, it has subgradient f(·) := (f j
i (·) : i ∈ N , j ∈M) ∈ Rnm. Define fmax :=

max
i∈N ,j∈M,y∈[0,1]nm

|f j
i (y)| and Fmax := max

α∈∈[0,1]nm
|F (α)|. We have

F (α∗)≤ F (ȳ(πDWO(α
∗)))+f(ȳ(πDWO(α

∗)))⊺(α∗− ȳ(πDWO(α
∗))).

Hence, we can bound the second term of (58) as follows, for γ ≥ 1,

F (α∗)−E[F (ȳ(πDWO(α
∗)))]≤E[f(ȳ(πDWO(α

∗)))⊺(α∗− ȳ(πDWO(α
∗)))]

≤ 1

T (γ)

√
E||f(ȳ(πDWO(α∗)))||22 ·

√
E||d(T (γ)+ 1)||22

≤ 1

T (γ)

√
E||f(ȳ(πDWO(α∗)))||22 ·

√
E||(d(T (γ)+ 1))+||22 +mn

≤
√
nm · fmax

T (γ)
·
√
2nmT (γ)+mn

≤ C2√
γ
,

(60)

where the constant C2 := max{
√
nm·fmax

T
·
√
2nmT +mn,Fmax}, the second inequality follows from the

Cauchy–Schwarz inequality, the third from the fact that

dj
i (T (γ)+ 1))− =

(
T (γ)αj∗

i −
T (γ)∑
t=1

yj
i (t|πDWO(α

∗))

)−

≤ 1, (61)

and the fourth from (36). Inequality (61) holds because, under the DWO-α∗ policy, once
s∑

t=1

yj
i (t|πDWO(α

∗))≥

T (γ)αj∗
i for some s≤ T (γ), ad i will not be offered to type j customer for all t≥ s+1. For γ < 1, it holds

that

F (α∗)−E[F (ȳ(πDWO(α
∗)))]≤ Fmax√

γ
≤ C2√

γ
. (62)

Combining (59), (60), and (62) yields that

V∗(γ)−V(πDWO(α
∗)|γ)≤ C1 +λ · C2√

γ
.

Hence, we have (16) holds with C := C1 +λ · C2 > 0. This completes the proof of Theorem 3. □

Proof of Proposition 3

The proof follows from the same argument as Step 3 in the proof of Theorem 3 by replacing α∗ with any

feasible α. To avoid repetition, we omit the proof details. □

E. Feasible Click-Through Targets Under the MNL Choice Model

Proposition 1 characterizes the feasible region of the click-through targets AMNL if customers follow the

MNL choice model. This section seeks to deliver additional insights on when the click-through targets are

feasible. We observe that (34) is equivalent to

pj ≥
∑
i∈N

αj
i +max

{
1

K

∑
i∈N

αj
i

vj
i

,max
i∈N

{
αj

i

vj
i

}}
, for each j ∈M.
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Here, pj is the expected (per-user) traffic of type-j customers in each period. Clearly,
∑
i∈N

αj
i is the total

required traffic for type-j customers if a customer will click one of the ad in the offer set with probability 1.

In practice, however, a customer may end up not choosing any ad from the offer set, so we need some buffer

traffic for type-j customers that accounts for the non-click circumstance.

More specifically, let Si denote the collection of all offer sets containing ad i. Since the offer-set policy

may be random, we define µj(S) as the probability of displaying offer-set S ⊆N to type-j customers. Thus,

the desired click-through goal for ad i and type-j customer is∑
S∈Si

µj(S) ·
vj
i

1+
∑
i′∈S

vj
i′
≥ αj

i .

Thus, the non-click probability of the ads for a type-j customer when ad i (i∈N ) is offered satisfies that

αj
i (o) :=

∑
S∈Si

µj(S) ·
1

1+
∑
i′∈S

vj
i′
≥ αj

i

vj
i

.

Therefore, to ensure the click-through goal of type-j customers and ad i, the traffic of customer type j must

satisfy pj ≥
∑

i′∈N
αj

i′ +αj
i (o)≥

∑
i′∈N

αj
i′ +

α
j
i

v
j
i

for all i∈N .

The cardinality constraint for the offer set size would impose an additional bound on the non-click prob-

ability of type-j customers. Specifically, let S :=
⋃n

i=1Si be the set of all offer sets displayed to a customer.

Because |S| ≤K for any S ∈S, |{i∈N : S ∈Si}| ≤K for all S. We have, given customer type j,

K
∑
S∈S

µj(S) ·
1

1+
∑
i∈S

vj
i

≥
∑
i∈N

∑
S∈Si

µj(S) ·
1

1+
∑
i∈S

vj
i

≥
∑
i∈N

αj
i

vj
i

.

Thus, the non-click probability of all ads for type-j customer satisfies that

αj
o :=

∑
S∈S

µj(S) ·
1

1+
∑
i∈S

vj
i

≥ 1

K

∑
i∈N

αj
i

vj
i

.

Therefore, given the cardinality constraint of an offer set, to ensure the click-through targets of type-j

customers with respect to all ads, the traffic of customer type j must satisfy pj ≥
∑
i∈N

αj
i + αj

o ≥
∑
i∈N

αj
i +

1
K

∑
i∈N

α
j
i

v
j
i

. In summary, the characterization for the feasibility of α demonstrates that, to meet the click-

through targets, we should also account for the non-click cases.

F. Optimal Target Convex Program Formulation for Specific Choice
Models

In this section, we introduce the characterization of first-stage feasible region A := {α ∈ [0,1]nm : h(α)≥ 0}
for independent and generalized attraction choice models. Similar to the characterization ofA if the customers

follow the MNL model, we use a binary variable representation of a deterministic static offer-set policy

π ∈Πd (see, also, the proof of Proposition 1). More specifically, π ∈Πd can be equivalently represented by an

nm−dimensional binary vector x= (xj
i ∈ {0,1} : i∈N , j ∈M), where xj

i = 1 means that i∈ π(j), i.e., ad i is

included in the offer-set displayed to a type-j customer. We denote ϕj
i (x) as the expected click-throughs of a

type-j customer for ad i if the offer-set displayed to this customer is Sj = {i∈N : xj
i = 1}. Denote the set of

all plausible offer-set representation vectors as X ⊂ {0,1}nm, and the set of plausible offer-set representation

vectors displayed to a type-j customer as X j ⊂ {0,1}n.
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F.1. Independent Choice Model

If customers follow the independent choice model, the click-throughs only depend on the customer type j

and ad i, but not on the offer-set Sj displayed to the customer. This is actually the most commonly adopted

choice models in practical advertising (see, e.g., Feldman et al. 2022), where the click-through rate (CTR)

prediction algorithm of the platform outputs:

ϕj
i (x) = cjix

j
i , (63)

where cji > 0 is the CTR of ad i with respect to a type-j customer. It is evident from (63) that the number

of click-throughs is independent of the ads in Sj other than ad i. The following proposition is a counterpart

of Proposition 1 with the independent choice model.

Proposition 4. If customers follow the independent click-through model (63), the first-stage feasible

region AIND is given by the following linear constraints:

AIND =
{
α∈ [0,1]nm : pjcji ≥ αj

i , for each i∈N , j ∈M
}
. (64)

It is expected that, under the independent choice model, we have an independent feasibility condition for

each ad-customer type pair. With Proposition 4, we we can simplify the optimal target problem (OT P)

under the independent choice model as the following convex program with linear constraints only:

max
α≥0

VCT(α)

s.t. pjcji ≥ αj
i , for each i∈N , j ∈M

bi
∑
j∈M

αj
i ≤

Bi

T
, for each i∈N ,

∑
j∈C

αj
i ≥

ηC
i

T
, for each i∈N and C ∈Ki.

(OT P −IND)

F.2. Generalized Attraction Model

The generalized attraction model (GAM) is a generalization of MNL accounts for the possibility that a

customer may look for a product outside the offer-set (see, e.g., Gallego et al. 2015). Under the GAM, the

expected number of click-throughs of ad i by a type-j customer is given by

ϕj
i (x) =

vj
ix

j
i

1+
∑

i′∈N
ωj

i′(1−xj
i′)+

∑
i∈N

vj
i′x

j
i′
, (65)

where vj
i > 0 is the attraction value of ad i to a type-j customer, and wj

i ∈ [0, vj
i ] is the shadow attraction

value of ad i to a type-j customer, capturing the customer’s looking for a product outside the offer-set.

Hence, by defining ṽj := 1+
∑
i∈N

ωj
i > 0 and ṽj

i := vj
i −ωj

i ≥ 0, we have, under the GAM,

ϕj
i (x) =

vj
ix

j
i

ṽj +
∑

i′∈N
ṽj
i′x

j
i′
. (66)

As Corollary 1, we first rewrite the necessary and sufficient condition for α under the GAM.
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Corollary 2. If customers follow the GAM click-through model (66), a click-through target vector α is

single-period feasible if and only if, for each j ∈M

max
xj∈Xj

∑
i∈N

pjvj
i θ

j
ix

j
i

ṽj +
∑

i′∈N
ṽj
i′x

j
i′
≥
∑
i∈N

αj
iθ

j
i for any θji ≥ 0 (i∈N ). (67)

Similar to Proposition 1, we can characterize the first-stage feasible region of the click-through target

vector under the GAM, AGAM := {α : (67) holds for each j ∈M}, using linear constraints. The following

proposition characterizes AGAM and accounts for the offer-set cardinality constraint.

Proposition 5. If customers follow the GAM (66) and the set of all feasible offer-sets is Sj = {S ⊂N :

|S| ≤K} for each j ∈M, the first-stage feasible region AGAM is given by the following linear constraints:

AGAM :=
{
α∈Rnm

+ :
∑
i′∈N

ṽj
i′α

j
i′

vj
i′

+
ṽjαj

i

vj
i

≤ pj , for each i∈N , j ∈M, and
∑
i∈N

ṽj
iα

j
i

vj
i

+
ṽj

K

∑
i∈N

αj
i

vj
i

≤ pj , for each j ∈M
}
.

(68)

With Proposition 5, we can simplify the optimal target problem (OT P) under the generalized attraction

model as the following convex program with linear constraints only:

max
α≥0

VCT(α)

s.t.
∑
i′∈N

ṽj
i′α

j
i′

vj
i′

+
ṽjαj

i

vj
i

≤ pj , for each i∈N , j ∈M,

∑
i∈N

ṽj
iα

j
i

vj
i

+
ṽj

K

∑
i∈N

αj
i

vj
i

≤ pj , for each j

bi
∑
j∈M

αj
i ≤

Bi

T
, for each i∈N ,

∑
j∈C

αj
i ≥

ηC
i

T
, for each i∈N and C ∈Ki.

(OT P −GAM)

F.3. Proofs

In this subsection, we give proofs of the technical results presented in Appendix F.

Proof of Proposition 4

Directly applying Theorem 1 to the independent choice model implies that α is feasible if and only if the

following inequality holds.

max
x∈X

∑
i∈N ,j∈M

pjcjiθ
j
ix

j
i ≥

∑
i∈N ,j∈M

αj
iθ

j
i for any θ≥ 0. (69)

Setting θji = 1 and all other θ’s equal to zero in (69) immediately implies that if α is single-period feasible,

then (64) holds. Reversely, if (64) holds, then for any θ≥ 0, we have

max
x∈X

∑
i∈N ,j∈M

pjcjiθ
j
ix

j
i =

∑
i∈N ,j∈M

pjcjiθ
j
i ≥

∑
i∈N ,j∈M

αj
iθ

j
i ,

i.e., (69) holds and, therefore, α is single-period feasible. This concludes the proof of Proposition 4. □
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Proof of Corollary 2

The proof follows from exactly the same argument as that of Corollary 1. We omit the details to avoid

repetition. □

Proof of Proposition 5

As in the proof of Proposition 1, we first state and prove the following auxiliary lemma.

Lemma 4. If customers follow the GAM click-through model (66) and the set of all feasible offer-sets

is Sj = {S ⊂ N : |S| ≤ K} for each j ∈M, we have α is single-period feasible if and only if there exist

w := (wj
i : i∈N , j ∈M) and z := (zj : j ∈M) that satisfy the following linear constraints

pjvj
iw

j
i ≥ αj

i , wj
i ≤ zj , wj

i ≥ 0, for each i∈N , j ∈M,∑
i∈N

ṽj
iw

j
i + ṽjzj = 1,

∑
i∈N

wj
i ≤Kzj , for each j ∈M,

(70)

where zj := 1

ṽj+
∑

i′∈N
ṽ
j

i′
x
j

i′
and wj

i := xj
iz

j =
x
j
i

ṽj+
∑

i′∈N
ṽ
j

i′
x
j

i′
.

Proof of Lemma 4 Similar to the proof of Lemma 3, it is straightforward to check that the left-hand

side of (67) is quasi-convex in xj for all j, so there always exists a maximizer on the boundary of the feasible

region. Thus, we can relax the binary constraint xj
i ∈ {0,1} to xj

i ∈ [0,1] in (67), which is therefore equivalent

to

max
xj∈[0,1]n,

∑
i∈N

x
j
i
≤K

∑
i∈N

pjvj
i θ

j
ix

j
i

ṽj +
∑

i′∈N
ṽj
i′x

j
i′
≥
∑
i∈N

αj
iθ

j
i for all θj ≥ 0 and j ∈M. (71)

We change the decision variable and define, for all j ∈M,

zj :=
1

ṽj +
∑

i′∈N
ṽj
i′x

j
i′

and wj
i := xj

iz
j =

xj
i

ṽj +
∑

i′∈N
ṽj
i′x

j
i′
.

Then, we can rewrite (71) as, for any j,

min
θj≥0

(
max
w

j
i
,zj

∑
i∈N

pjvj
iw

j
i θ

j
i −
∑
i∈N

αj
iθ

j
i

)
≥ 0

s.t.
∑
i∈N

ṽj
iw

j
i + ṽjzj = 1,∑

i∈N

wj
i ≤Kzj ,

0≤wj
i ≤ zj for each i∈N .

(72)

By Sion’s minimax theorem, we can exchange the maximization and minimization operators so that (72) is

equivalent to, for any j ∈M:

max
wj ,zj

min
θj≥0

∑
i∈N

θji (p
jvj

iw
j
i −αj

i )≥ 0,

s.t.
∑
i∈N

ṽj
iw

j
i + ṽjzj = 1,∑

i∈N

wj
i ≤Kzj ,

0≤wj
i ≤ zj , for each i∈N .

(73)
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Therefore, (73) holds if and only if there exist wj and zj such that all the constraints in (73) hold and∑
i∈N

θji (p
jvj

iw
j
i −αj

i )≥ 0 holds for all θj ≥ 0, which is equivalent to pjvj
iw

j
i −αj

i ≥ 0 for all i ∈N . Therefore,

(73) is equivalent to that, for any j ∈M,

pjvj
iw

j
i −αj

i ≥ 0, for each i∈N ,∑
i∈N

ṽj
iw

j
i + ṽjzj = 1,∑

i∈N

wj
i ≤Kzj ,

0≤wj
i ≤ zj , for each i∈N .

(74)

That (74) holds for all j ∈M is equivalent to that (70) holds. This completes the proof of Lemma 4. □

We now prove Proposition 5 itself. We first show that if (70) holds, then α∈AGAM . By the first inequality

of (70), we have wj
i ≥

α
j
i

pjv
j
i

for all i∈N and j ∈M. Plugging this into the first equality of (70), we have

1− ṽjzj =
∑
i∈N

ṽj
iw

j
i ≥

∑
i∈N

ṽj
iα

j
i

pjvj
i

for each j ∈M.

Thus, by the first and second inequalities of (70), we have∑
i′∈N

ṽj
i′α

j
i′

pjvj
i′
≤ 1− ṽjzj ≤ 1− ṽjwj

i ≤ 1− ṽjαj
i

pjvj
i

for each i∈N , j ∈M.

Rearranging the terms, we have

pj ≥
∑
i′∈N

ṽj
i′α

j
i′

vj
i′

+
ṽjαj

i

vj
i

for each i∈N , j ∈M.

The first, second, and fourth inequalities and the first equality of (70) imply that∑
i∈N

αj
i

pjvj
i

≤
∑
i∈N

wj
i ≤Kzj =K

1−
∑

i∈N ṽj
iw

j
i

ṽj
≤ K

ṽj

(
1−

∑
i∈N

ṽj
iα

j
i

pjvj
i

)
for each j ∈M.

Rearranging the terms, we have

pj ≥
∑
i∈N

ṽj
iα

j
i

vj
i

+
ṽj

K

∑
i∈N

αj
i

vj
i

for each j ∈M.

Therefore, if (70) holds, we have α∈AGAM .

Next, we show that if α∈AGAM , then (70) holds. Given α∈AGAM , define

wj
i =

αj
i

pjvj
i

for each i∈N and j ∈M, and zj =
1

ṽj

(
1−

∑
i∈N

ṽj
iα

j
i

pjvj
i

)
, for each j ∈M.

To show (70), it suffices to show the first, second and fourth inequalities hold because the rest of the

constraints hold trivially.

Since pj ≥
∑
i∈N

ṽ
j
i
α
j
i

v
j
i

+ ṽj

K

∑
i∈N

α
j
i

v
j
i

for all j ∈M, we have

∑
i∈N

wj
i =

∑
i∈N

αj
i

pjvj
i

=
1

pj

∑
i∈N

αj
i

vj
i

≤ K

ṽj

(
1−

∑
i∈N

ṽj
iα

j
i

pjvj
i

)
=Kzj for each j ∈M.

Hence, the second inequality of (70) holds. Since pj ≥
∑

i′∈N

ṽ
j

i′
α
j

i′

v
j

i′
+

ṽjα
j
i

v
j
i

for each i∈N , j ∈M, we have

wj
i =

αj
i

pjvj
i

≤ 1

ṽj

(
1−

∑
i∈N

ṽj
iα

j
i

pjvj
i

)
= zj for each i∈N , j ∈M.

Therefore, (70) holds. Hence, the feasible region of α is characterized by (68). This completes the proof. □
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G. Resource Allocation and Other Ad-Allocation Problems

For an arbitrary resource-allocation problem, we can reformulate the program (OT P) by setting the cardi-

nality of offer set to 1, and the choice probability ϕj
i to 1 when i is offered, otherwise 0, and changing bi to

bji , as follows:

max
α≥0

VCT(α)

s.t.
∑
j∈M

pj max
i∈N

θji −
∑

i∈N ,j∈M

αj
iθ

j
i ≥ 0, for each θ≥ 0

∑
j∈M

bjiα
j
i ≤

Bi

T
, for each i∈N .

(75)

Setting θji = 1 for some j and all other θ’s equal to zero in the first group of constraints of (75), immediately

implies that if α is single-period feasible, we have∑
i∈N

αj
i ≤ pj , for each j ∈M. (76)

Reversely, if (76) holds, then for any θ≥ 0, we have∑
j∈M

pj max
i∈N

θji ≥
∑

i∈N ,j∈M

αj
i max

i∈N
θji ≥

∑
i∈N ,j∈M

αj
iθ

j
i ,

i.e. the first group of constraints of (75) holds and it is equivalent (76).

Especially, for the AdWords problem, each vertex i∈N has budget Bi, and edge (i, j) has a bid bji . When

a vertex j ∈M arrivals, we have to match it to a vertex i ∈N who has not yet spent all its budget. After

the matching, bji is depleted from Bi. The goal is to maximize the total bid spent. So the formulation is as

follows:

max
α≥0

∑
i∈N ,j∈M

bjiα
j
i

s.t.
∑
i∈N

αj
i ≤ pj , for each j ∈M,

∑
j∈M

bjiα
j
i ≤

Bi

T
, for each i∈N ,

(77)

and the Display Ads problem, each edge (i, j) has a weight wj
i , and each vertex i∈N has capacity ci. When

a vertex j ∈M arrivals, we have to match it to a vertex i ∈N who can be matched at most ci times. The

goal is to maximize the total weight of the matched edges. So the formulation is as follows:

max
α≥0

∑
i∈N ,j∈M

wj
iα

j
i

s.t.
∑
i∈N

αj
i ≤ pj , for each j ∈M,∑

j∈M

αj
i ≤

ci
T
, for each i∈N .

(78)

After solving the above problems and then obtaining the optimal α, we can apply the DWO policy to get

the allocation. Hence, our DWO policy can be applied to these resource-allocation problems.
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H. Implementation Details of the Re-Solving Benchmarks

In this section, we provide the implementation details of the re-solving benchmarks: the Fluid-R, Fluid-I-R,

and Fluid-E-R policies. For all policies, we preset a set of re-solving epochs T := {tu : u= 0,1,2, ...,U} in which

the algorithm re-solves the Fluid convex program with updated ad budgets and click-through requirements,

where t0 = 1 refers to solving (OPFluid) at the beginning of the planning horizon. At each re-solving epoch

tu (1 ≤ u ≤ U), an Fluid-R, Fluid-I-R, or Fluid-E-R policy will re-solve the following convex program with

budget and click-through requirement updates (similar to Appendix B, we define Y j
i (t) :=

t−1∑
τ=1

yj
i (τ) as the

cumulative click-throughs until the beginning of time t):

max
z
VFluid(z|u) :=

∑
i∈N ,j∈M,S∈Sj

rji p
jϕj

i (S)z
j(S)+λF (ζ)

s.t.
∑

j∈M,S∈Sj

bip
jϕj

i (S)z
j(S)≤

Bi− bi
∑

j∈M
Y j
i (tu)

T − tu +1
for each i∈N

∑
j∈C,S∈Sj

pjϕj
i (S)z

j(S)≥
ηC
i −

∑
j∈C

Y j
i (tu)

T − tu +1
for each i∈N and C ∈Ki∑

S∈Sj

zj(S)≤ 1 for each j ∈M

zj(S)≥ 0 for each j ∈M, S ∈Sj

ζ ∈Rnm, with ζj
i =

1

T
·Y j

i (tu)+
T − tu +1

T
·
∑
S∈Sj

pjzj(S)ϕj
i (S).

(79)

It is clear from the formulation that (79) is reduced to (OPFluid) with u= 0. We denote the solution to (79)

in re-solving epoch u as z∗(u). Therefore, the Fluid-R, Fluid-I-R, and Fluid-E-R policies re-solve (79) for U

times at the re-solving epochs T , and follows the static policy πFluid(z
∗(u)) from time tu to time tu+1− 1 for

u= 1,2, ...,U , where we adopt the convention tU+1 = T +1.

The only difference between the Fluid-R, Fluid-I-R, and Fluid-E-R policies is the pattern of the re-solving

epochs T . More specifically, for the Fluid-R policy (see, also, Jasin and Kumar 2012), T is evenly spread

across all time, i.e., tu = ⌈Tu
U
⌉, where ⌈·⌉ refers to the ceiling function. For the Fluid-I-R policy (see, also,

Bumpensanti and Wang 2020), T is sparser at the beginning of the planning horizon and denser at the end.

Specifically, following Bumpensanti and Wang (2020), we set the re-solving epoch tu = ⌈T −T (5/6)u⌉+1 for all

u∈ {1,2, ...,U}, where U = ⌈ log(log(T ))

log(6/5)
⌉ (in which the logarithm base is 10). We remark that, in our numerical

experiments, we set T = 1,000 and, therefore, U = 7 for the Fluid-I-R policy. To make the benchmark policies

more comparable, we set U = 7 for the Fluid-R policy as well. Finally, for the Fluid-E-R policy, it re-solves

(79) in each period, i.e., U = 999 and tu = u+1 for each u (see, also, Balseiro et al. 2023).

I. Settings and Parameters in Numerical Experiments

We consider an ad-allocation problem with T = 1,000 customers of five types and 50 ads. The customer-

type distribution (p1, p2, ..., p5), where P[j(t) = j] = pj and
5∑

j=1

pj = 1, is generated from a five-dimensional

Dirichlet distribution. We sample the per-click value rji for each ad i by type j independently from a uniform

distribution on the interval [10,50]. We model the click-through behavior of the customers using MNL, i.e.,
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for each i∈ S and j ∈M, ϕj
i (S) is given by (11). Each ad/customer-type pair is associated with an attraction

index vj
i . For ad i and customer type j, let vj

i := exp(uj
i ), where uj

i is independently sampled from the

uniform distribution on the interval [0,5]. We set the cardinality constraint such that the maximum size of

an offer-set is 2, i.e., |S(t)| ≤ 2 for each customer t. The fairness metric we use in the numerical studies is

the GMD fairness (24) (in Appendix C) with λ= 10.

Our first set of numerical studies is based on problem instances generated by systematically varying two

focal parameters: (a) the concentration parameter (CP ) associated with the proportion of each customer type,

and (b) the loading factor (LF ), defined as the ratio of total expected demand to total supply. Specifically,

the concentration parameters are determined by the parameters of the Dirichlet distribution that we use

to generate (p1, p2, · · · , p5). We vary CP to change the uniformness of proportions p1, ..., pm of m customer

types, which are generated by a m-dimension Dirichlet distribution. The m-dimension Dirichlet distribution

has m concentration parameters β1, ..., βm. In our experiments, we set CP := β0 = β1 = β2 = ...= βm. Note

that, for all j, E[pj ] = βj/
m∑

k=1

βk = 1
m

and V ar(pj) = m−1
m2(mβ0+1)

, which is decreasing in β0. For j ̸= k, the

covariance between pj and pk is − 1
m2(mβ0+1)

, which is increasing in β0. Hence, if β0 is larger, the sampled

customer type distribution will be close to the uniform distribution on {1,2, ...,m}. In contrast, if CP = β0

is small, the customer type distribution is more likely to be concentrated on a subset of {1,2, ...,m}. In

other words, the higher the CP , the more uniform the generated distribution of customer types. The loading

factor is the ratio of total user traffic to total affordable traffic with the budgets of the advertisers, namely

LF = T/
∑
i∈N

Bi

bi
. In our experiments, we set bi = 1 and Bi equal to the value of rounded T/(n×LF ) for all i.

As is clear from their definitions, CP measures the uniformity of the customer-type distribution, while LF

measures the tightness of the ad budget. The higher the CP , the more uniform the distribution of customer

types; the higher the LF , the tighter the budget constraints for the ad campaigns.

In our experiments, we vary CP in the set {0.1,1,10,100} and LF in the set {0.5,0.75,1,1.25,1.5}. For

each problem instance, we solve the problem (OT P −MNL) with different per-click values sampled from

the same distribution as rji ’s and without click-through requirements to obtain the solution-optimal targets

α∗. A click-through requirement η{j}
i , where {j} is a singleton set of customer type j, is generated by the

product of αj∗
i and a random number independently sampled from the [0,1] uniform distribution for each ad

i and each customer type j.

In Figure 2, we pick an ad with index i= 1 from 50 ads to show the quantiles of the click-through sample-

paths for the five approaches. Because both the per-click value rji and the attraction index vj
i for each ad

i by type j are generated independently from two distributions respectively, the case of the ad with index

i= 1 is typical as well as any other ads. Hence, the smooth budget depletion of our proposed algorithm could

happen to all ads generally.

J. Mean-Reverting Behavior of the DWO Policy

To highlight the mean-reverting property of our proposed DWO algorithm, we examine the intertemporal

correlation between of the click-through yj
i (t) of ad i by type-j customers in period t and the per-period

debt, defined as ∆j
i (t) := dj

i (t)/t where dj
i (t) is the debt of ad i for customer segment j at the beginning of
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time t (as defined in Algorithm 1). Recall that debt measures the gap between the click-through target set

by the algorithm and the realized click-throughs. Therefore, if the correlation between yj
i (t) and ∆j

i (t) is

larger, it implies that the algorithm “pays back” the “debt” faster and, therefore, the mean-reversion of the

click-through process is stronger.

For each of the 5 algorithms studied in our numerical experiments, we regress the click-through on the

per-period debt using the following model specification with 30 million randomly drawn samples for each

policy studied:

yj
i (t) = a0 + a1∆

j
i (t)+ ϵ

The regression results are reported in Table 3. If we instead regress the click-through on the total debt dj
i (t),

the results will be similar because the per-period debt is a constant multiplication of the total debt.

Policy Coefficient Estimation Standard Error t-statistics p-value

Fluid
a0 0.0036905 1.1071e-05 333.35 0
a1 -0.00042435 0.0015441 -0.27481 0.78346

Fluid-R
a0 0.0037289 1.1128e-05 335.09 0
a1 0.044064 0.0016192 27.213 4.505e-163

Fluid-I-R
a0 0.0037046 1.1092e-05 334 0
a1 -0.0051239 0.0015941 -3.2144 0.0013071

Fluid-E-R
a0 0.0036979 1.1084e-05 333.63 0
a1 0.061641 0.0016548 37.25 1.0702e-303

DWO
a0 0.0038891 1.1218e-05 346.67 0
a1 0.48795 0.0020018 243.76 0

Table 3 The Regression Results of the Intertemporal Correlations Between Click-Throughs and Per-Period

Debts

Table 3 shows that our DWO algorithm clearly drives the mean-reverting pattern for the click-through

process, captured by the fact that the estimate â1 = 0.48795 is positive, large and statistically significant. This

is expected given that the DWO policy gives a higher weight for the ad/customer pair with a larger debt at

each time t. An important observation from our regression results is that, the estimated coefficient â1 of our

DWO algorithm (0.48795) is about one order of magnitude larger than that of the Fluid-based benchmarks.

Such an observation delivers an intriguing insight that our debt-based algorithm drives the click-through

process toward its mean (i.e., the target set by the first-stage optimization) and, as a consequence, result in a

more stable budget depletion process for the ads. Finally, we remark that, because of the budget constraints

of the ads, the Fluid-based benchmarks also exhibit certain mean-reverting property weaker than our DWO

algorithm.

K. Efficiency-Fairness Trade-off

We demonstrate the efficiency-fairness trade-off by varying the parameter λ in our setting. Specifically,

we consider the problem instance with λ ∈ {10iλ : iλ = −1 + 0.1× (i− 1), i = 1,2, ...,31} ∪ {0} (under the
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problem instance LF = 1 and CP = 100). We plot the relationship between the efficiency and Gini fairness in

Figure 4 for different values of λ, where the x-axis (resp. y-axis) is the ratio between the expected efficiency

(resp. expected GMD fairness) with respect to λ and that with respect to λ= 0 (i.e., the system is purely

efficiency-driven). Our numerical results reveal the trade-off between efficiency and fairness. Importantly, we

find that introducing the fairness term in the objective function could substantially reduce the algorithmic

bias without much compromising the advertising efficiency. For example, a 1% (resp. 5%) optimality gap in

efficiency could reduce about 50% (resp. 90%) of the algorithmic bias.
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Figure 4 The Trade-Off Between Optimal Efficiency and Gini Fairness

L. Comparison With the Inventory-Balancing Policies

In this section, we compare our DWO algorithm against another family of benchmarks called the inventory

balancing (IB) policies. Specifically, Golrezaei et al. (2014) propose two IB algorithms which implement

real-time personalized offer-set optimization with an exponential penalty function (the EIB policy) and a

linear penalty function (the LIB policy), respectively, to reweight the value of each ad. Upon the arrival

of customer t, the IB policies solve a single-period offer-set optimization problem with a discounted value

riΦ(Bi(t− 1)/Bi), where Φ(·) is an increasing discount function and Bi(t− 1) is the budget of ad i at the

end of time t−1. The discount function is Φ(x) = (e/(e−1)) · (1− e−x) under the EIB policy and is Φ(x) = x

under the LIB policy. It is hard, if not impossible, to incorporate the non linear fairness metric and the

click-through requirements into the IB policies. To account for both the budget constraints and the click-

through requirements, one needs to design weight functions handling them jointly. In a case where one ad

has little remaining budget, but also falls behind the schedule of its click-through requirements, it is unclear

how we should design the weight functions to adjust the weight of this ad. Even worse, the click-through

requirements are imposed at the ad by subset of customer types level, which may not be compatible with the

ad level budget constraints. Therefore, even without incorporating the fairness metric, it is highly nontrivial

to extend the IB algorithm that embeds the click-through requirements. So we remove these modeling features

in the comparison between DWO and IB policies. We consider the same numerical setup as Section 6 with

the click-through requirements and the fairness metric removed, and the identical per-click value ri of each

ad i across all customer types, sampled from a uniform distribution on the interval [10,50].
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CP LF EIB LIB DWO

0.1

1.5 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%)
1.25 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%)
1.00 99.44% (0.18%) 99.44% (0.25%) 99.20% (0.48%)
0.75 91.79% (0.21%) 90.66% (0.28%) 99.00% (0.63%)
0.5 89.19% (0.31%) 86.72% (0.32%) 98.96% (0.49%)

1

1.5 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%)
1.25 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%)
1.00 99.43% (0.31%) 99.45% (0.24%) 99.40% (0.39%)
0.75 91.75% (0.17%) 90.60% (0.24%) 98.81% (0.63%)
0.5 89.23% (0.29%) 86.86% (0.24%) 98.67% (0.64%)

10

1.5 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%)
1.25 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%)
1.00 99.54% (0.21%) 99.52% (0.27%) 99.37% (0.39%)
0.75 91.64% (0.17%) 90.53% (0.25%) 99.19% (0.41%)
0.5 89.20% (0.23%) 86.76% (0.24%) 98.75% (0.51%)

100

1.5 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%)
1.25 100.00% (0.00%) 100.00% (0.00%) 100.00% (0.00%)
1.00 99.59% (0.25%) 99.56% (0.20%) 99.35% (0.40%)
0.75 91.68% (0.19%) 90.53% (0.21%) 99.29% (0.29%)
0.5 89.20% (0.18%) 86.71% (0.23%) 98.93% (0.62%)

Table 4 Numerical Results (Standard Error Relative to the Theoretical Upper Bound in Parentheses)

We report the results on the comparison between our DWO policy and the EIB and LIB algorithms in Table

4, with the ratio between the standard error of the total advertising revenue for each policy examined to the

theoretical upper-bound of advertising revenue included in the parenthesis. The most important takeaway

from our experiments is that the DWO policy outperforms the EIB and LIB algorithms when LF is low,

especially when LF < 1. In this case, the budget constraints are not binding, so discounting the ad value when

the budget is low is not helpful. On the other hand, when the loading factor is high, the budgets are more

likely to be exhausted, so the discount functions of the EIB and LIB algorithms can help smoothly allocate

the ad budgets, thus giving rise to higher efficiency performance than the DWO algorithm. To conclude this

section, we remark that, because of the difficulty to incorporate the nonlinear fairness metric into the IB

policies, this family of algorithms are not amenable to address the algorithmic fairness issue, which can be

well handled by our DWO policy.
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