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Abstract. Advertising is a crucial revenue source for e-commerce platforms and a vital 
online marketing tool for their sellers. In this paper, we explore dynamic ad allocation 
with limited slots upon each customer’s arrival for an e-commerce platform, where cus-
tomers follow a choice model when clicking the ads. Motivated by the recent advocacy 
for the algorithmic fairness of online ad delivery, we adjust the value from advertising 
by a general fairness metric evaluated with the click-throughs of different ads and cus-
tomer types. The original online ad-allocation problem is intractable, so we propose a 
novel stochastic program framework (called two-stage target-debt) that first decides the 
click-through targets and then devises an ad-allocation policy to satisfy these targets in 
the second stage. We show the asymptotic equivalence between the original problem, 
the relaxed click-through target optimization, and the fluid-approximation (Fluid) con-
vex program. We also design a debt-weighted offer-set algorithm and demonstrate that, 
as long as the problem size scales to infinity, this algorithm is (asymptotically) optimal 
under the optimal first-stage click-through target. Compared with the Fluid heuristic 
and its resolving variants, our approach has better scalability and can deplete the ad 
budgets more smoothly throughout the horizon, which is highly desirable for the online 
advertising business in practice. Finally, our proposed model and algorithm help sub-
stantially improve the fairness of ad allocation for an online e-commerce platform with-
out significantly compromising efficiency.
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1. Introduction
The past 10 years have witnessed the rapid growth of 
internet technology and smartphone penetration, both 
of which have driven online advertising to become an 
unprecedentedly enormous trillion-dollar industry1

that has an enormous impact on the entire economy.
One important online advertising format is 

e-commerce advertising, which is designed to drive 
“top-of-tunnel” traffic to convert into product sales. 
For instance, Amazon Advertising provides “spon-
sored products”2 where advertisers pay Amazon to 
promote their products by listing the ads both within 
shopping results and on product pages (see Figure 1). 

The sponsored-product ads use the cost-per-click 
(CPC) mechanism, under which advertisers pay a fee 
to the platform when customers click their ads. Adver-
tisers choose the campaign budgets and how much to 
bid per click. Amazon also allows advertisers to set the 
keywords and products so that the ad can be more effi-
ciently matched with customer queries. Alternatively, 
advertisers can select automatic targeting to allow 
Amazon to match their ads to relevant search terms. 
This advertising service is an important source of reve-
nue for Amazon; it contributed $14.1 billion (5.02%) to 
its annual net sales in 2019.3 As another example, Face-
book launched its Dynamic Ads service to promote 
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advertisers’ products to people who expressed an 
interest in relevant keywords or similar products.4
Dynamic Ads will automatically choose products from 
the catalog provided by advertisers and display them 
to customers.

Such large-scale e-commerce advertising platforms 
generally run thousands of advertising campaigns for 
different advertisers simultaneously. Each campaign is 
usually associated with (1) a budget that the advertiser 
wishes to spend as much as possible of during the cam-
paign horizon, and (2) a bid per CPC that dictates how 
much ad budget should be deducted upon each user 
click. The advertising platform dynamically allocates its 
ad spaces (i.e., customer impressions) to the ads whose 
campaigns are active. As discussed earlier, advertisers 
may require the platform to target their advertising cam-
paign and ads to specific customer segments (specified 
by such features as location, age, and browsing, search-
ing, and purchasing histories).

It is also not uncommon for advertisers and, thus, the 
platform to set click-through requirements for the ads 
(i.e., the minimal number of click-throughs during the 
entire ad campaign). For instance, Microsoft provides a 
Partner Incentive Cooperative Marketing Fund (Co-op) 
to subsidize its partners in whose website the number 
of click-throughs for Microsoft’s ad is above 250 during 
the promotion events (Microsoft 2020). In addition, the 
number of click-throughs for an ad substantially affects 
the long-term retention of the advertiser, which prompts 
the platform to devise the ad-allocation policy to secure 
a certain number of click-throughs for each ad (see, e.g., 
Ye et al. 2023).

To efficiently allocate its ad spaces, an online adver-
tising platform faces the central operations problem of 
dynamically selecting a set of ads, which we refer to as 
an offer-set, displayed to each arriving customer in 
order to generate the highest total value throughout the 
planning horizon, subject to advertising budgets and 
click-through requirements for different ads.

Solving this problem presents a twofold challenge. 
First, under customer-choice behavior, when an offer-set 
is displayed, the platform has to carefully balance the 
notorious trade-off in assortment optimization between 
expanding the offer-set to enlarge the market share and 
keeping it small enough to reduce cannibalization be-
tween different ads. Second, the click-through require-
ments, budget constraints, and advertisers’ targeting 
rules altogether raise the difficulty of even searching for 
a feasible (but not necessarily optimal) ad allocation. In 
addition, we emphasize that the commonly used fluid- 
approximation (Fluid) approaches also face substantial 
computational challenges because the number of deci-
sion variables increases exponentially with the cardinal-
ity of the offer-set.

In addition to optimizing total advertising value sub-
ject to budget and click-through requirement con-
straints, the online platform also needs to address the 
fairness and discrimination concerns of its advertising/ 
machine learning algorithms. It is well documented in 
the literature and in practice that a common source of 
algorithmic discrimination or bias in online advertising 
is that advertisers can target (or exclude) particular 
groups of users for their ads (e.g., Speicher et al. 2018, 
Dave 2021). The particular groups could be those classes 

Figure 1. (Color online) An Example of Sponsored Products on Amazon 
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harmed from counterfactual disparities, or legally pro-
tected characteristics, such as race and gender (e.g., Nil-
foroshan et al. 2022). Simple controls are insufficient to 
counter this issue because the platform’s underlying 
ad-allocation algorithm for optimizing certain business 
objectives, such as advertising revenue or advertisers’ 
return on investment, may automatically skew ad deliv-
ery to certain user groups (see, e.g., Lambrecht and 
Tucker 2019, Imana et al. 2021).

The main goal of this paper is to explore the 
e-commerce ad allocation of an advertising platform 
under customer choices and concerns for algorithmic 
fairness. Motivated by online e-commerce advertising 
practices, we seek to address the following key research 
question:

Taking into account algorithmic fairness, how should a 
platform dynamically personalize the ad offer-sets of each 
customer impression to maximize the fairness-adjusted value 
(FV) from advertising throughout a planning horizon in the 
presence of budget constraints and click-through require-
ments for different ads?

1.1. Main Contributions
In this paper, we present a general stochastic program 
model to study the complex dynamic ad-allocation 
problem. Our key contribution is proposing a novel 
two-stage target-debt (TTD) framework that yields a sim-
ple, computationally efficient, and asymptotically opti-
mal policy for addressing this otherwise intractable 
online ad-allocation problem for an e-commerce plat-
form. This TTD framework carefully combines three 
ideas: click-through target optimization, compact refor-
mulation, and a debt-weighted offer-set algorithm.

Click-Through Target Optimization. In the first stage, 
we approximate the original problem as an (auxiliary) 
click-through target optimization in which the platform 
decides the click-through goal (targets) for each 
ad-customer pair to maximize the expected FV. Such a 
reduction to a deterministic convex program is not 
only tractable but also provides a new upper bound for 
the original (intractable) stochastic program for 
ad-allocation optimization.

Compact Reformulation. We characterize the neces-
sary and sufficient condition under which the click- 
through targets are feasible. The characterization is 
surprisingly simple for most commonly used choice 
models such as multinomial logit (MNL), indepen-
dent, and generalized attraction choices. In these cases, 
we can efficiently solve the click-through target opti-
mization using the first-stage convex program because 
the scale of our reformulation increases linearly (rather 
than exponentially) with the number of ads.

Debt-Weighted Offer-Set Algorithm. In the second 
stage, an ad offer-set is displayed to each user upon 
arrival in order to satisfy the optimal click-through tar-
gets set in the first stage. We propose a simple and effec-
tive algorithm, referred to as the debt-weighted offer-set 
(DWO) policy. This policy dynamically assigns a “debt” 
to each click-through target that measures the difference 
between the realized total click-throughs and the endog-
enous target set in the first-stage convex program. Then, 
a standard offer-set/assortment optimization problem is 
solved to maximize a debt-weighted value function 
upon the arrival of each customer.

We prove that our TTD framework yields an asymp-
totic optimal policy (i.e., the DWO algorithm initialized 
with the optimal click-through targets) for the online 
ad-allocation problem. Consistent with most existing 
debt-weighted algorithms (e.g., Zhong et al. 2017, 
Jiang et al. 2023), our DWO algorithm satisfies the feasi-
bility and approachability of click-through targets. 
Our refined analysis also provides the optimality guar-
antee of the TTD framework. Leveraging the exact 
approachability of the DWO algorithm to exactly meet the 
(feasible) target set in the first stage, we establish new 
intrinsic connections and asymptotic equivalence of 
the original ad-allocation problem, the first-stage con-
vex program, and an auxiliary Fluid convex program, 
implying that the theoretical upper bound of FV char-
acterized by the first-stage convex program can be 
achieved. If the first-stage click-through target vector 
is only feasible, but not optimal, the associated DWO 
policy will not incur any additional optimality loss on 
top of that from the suboptimal target in the asymp-
totic regime.

The TTD framework we propose in this paper is com-
putationally scalable if customer choices follow com-
monly adopted models such as MNL, independent, 
and generalized attraction choices. Through numerical 
experiments, we demonstrate that our algorithm out-
performs the commonly adopted Fluid-based algo-
rithms (e.g., Liu and Van Ryzin 2008, Jasin and Kumar 
2012, Bumpensanti and Wang 2020, Balseiro et al. 2023) 
in terms of performance, robustness, and computa-
tional efficiency for most problem instances. Our num-
erical experiments also demonstrate that the proposed 
policy depletes the budgets much more smoothly than 
the benchmarks over the entire planning horizon. This 
highlights the practical applicability of our approach 
because smooth budget depletion is a desirable prop-
erty for the real-world online advertising business. 
In addition, our approach helps substantially improve 
the algorithmic fairness of ad allocation for an online 
e-commerce platform without compromising its effi-
ciency much, achieving high FV with low variance. 
Hence, our computationally light TTD framework well 
handles the notorious bias and discrimination issues in 
online ad allocation.
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In summary, the key takeaway from this paper is 
that the proposed TTD framework, which induces a 
two-stage stochastic program reformulation combin-
ing click-through target optimization and the debt- 
weighted off-set algorithm, can efficiently address the 
ad-allocation problem for e-commerce platforms to 
improve the FV from advertising. Our approach is sim-
ple, efficient, and scalable, with a provable optimality 
guarantee and strong numerical performance.

The rest of this paper is organized as follows. We 
review the related literature in Section 2. We introduce 
the model in Section 3, and we propose the two-stage 
stochastic program reformulation in Section 4. We 
study the optimal ad-allocation policy in Section 5, and 
we present the numerical studies in Section 6. Section 7
concludes. All proofs are relegated to the online appen-
dices. Throughout this paper, we use boldface to repre-
sent vectors and matrices. For notational conciseness, 
we do not differentiate a random variable and its reali-
zation whenever there is no ambiguity.

2. Literature Review
This paper proposes a general framework and an effi-
cient algorithm to study optimal online ad allocation for 
an e-commerce platform under algorithmic fairness con-
cerns. Our paper is primarily related to four streams of 
research in the literature: (1) ad allocation for online 
advertising platforms, (2) algorithmic discrimination/ 
bias in online allocation, (3) resource allocation with indi-
vidualized service-level constraints, and (4) (dynamic) 
personalized assortment optimization. Papers in the lit-
erature generally focus on one or more of the four topics 
given, whereas our work contributes to all four streams 
of literature jointly.

Ad allocation is a central challenge for online adver-
tising platforms. For example, Nakamura and Abe 
(2005) propose an ad-targeting approach based on lin-
ear programming that achieves high click-through rates 
by optimizing ad-display probabilities. For maximizing 
the reach of customers and minimizing the variance of 
the outcome simultaneously in targeted advertising, 
Turner (2012) formulates an ad-planning problem with 
a quadratic objective to spread ads across all targeted 
customer types. Balseiro et al. (2014) formalize an 
ad-exchange problem as a multiobjective stochastic 
control problem considering both the revenue from 
exchange and click-through rates, and they derive an 
efficient policy for online ad allocation with uncertainty. 
For dealing with uncertainty, Shen et al. (2021a) propose 
an integrated planning model with a distributionally 
robust chance-constrained program in online ad alloca-
tion. Hojjat et al. (2017) consider a new contract to allow 
advertisers to specify the number of unique individuals 
who should see their ad and the minimum number of 
times each individual should be exposed. Shen et al. 

(2021b) deal with customers’ ad-clicking behavior by an 
arbitrary point-inflated Poisson regression model, and 
they solve a mixed-integer nonlinear program (non-LP) 
for optimal ad allocation. We refer interested readers to 
Choi et al. (2020) for a comprehensive review of this lit-
erature. The key modeling difference of our paper from 
this literature is that using choice models, we clearly 
model the click-through behaviors of a customer in the 
presence of multiple ads.

As mentioned earlier, algorithmic discrimination/ 
bias in online allocation has received increased scru-
tiny in recent literature. To mitigate the algorithmic 
discrimination/bias in online advertising, Lejeune and 
Turner (2019) derive a Gini index–based metric to 
measure how well dispersed the impressions are allo-
cated across audience segments, and they formulate 
an optimization problem to maximize the spread of 
impressions across targeted audience segments while 
minimizing demand shortfalls. Balseiro et al. (2021) 
use a nonlinear regularizer as a fairness measure, and 
they design an online resource-allocation algorithm 
to maximize the weighted objective of efficiency and 
fairness subject to the resource constraints. Bateni et al. 
(2022) adopt a weighted proportional fairness metric 
under the setting that a platform dynamically allo-
cates to budgeted buyers a collection of goods that 
arrive to the platform online. Ma et al. (2020) consider 
an online matching problem with concerns of agent- 
group fairness by defining two different service-level 
objectives as the metrics for long-run and short-run 
fairness. In this paper, we offer a new slant on mitigat-
ing algorithmic discrimination/bias in online adver-
tising by considering different fairness metrics in the 
literature and disparate impact, which identifies unin-
tentional bias of an algorithm (see, e.g., Feldman et al. 
2015).

The resource-allocation problem of meeting service- 
target constraints in the face of uncertain demand has 
been extensively studied in the inventory literature (see, 
e.g., Alptekinoğlu et al. 2013). Leveraging Blackwell’s 
approachability theorem, Zhong et al. (2017) character-
ize the optimal safety-stock level with individual type-II 
service-level constraints. Lyu et al. (2019) and Lyu et al. 
(2022), respectively, extend both the approach and the 
results to the context of type-I service-level constraints 
and process flexibility. Utilizing a semi-infinite linear 
program formulation, Jiang et al. (2023) generalize and 
unify models in this literature and propose a simple ran-
domized rationing policy to meet general service-level 
constraints, including type-I and type-II constraints, and 
beyond. We contribute to this strand of the literature by 
generalizing the concept of service-level constraints to 
incorporate customer choice uncertainty and ad alloca-
tion through assortment planning.

We also propose a debt-weighted offer-set algorithm 
and demonstrate its optimality for meeting the endogenous 
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service targets and for generating the total payoff for 
the platform. Our debt-weighted offer-set policy and 
other existing debt-weighted policies are closely re-
lated to the well-known max-weight policy proposed 
in the queueing literature (see, e.g, Stolyar 2004), which 
is also commonly used in the resource-allocation and 
capacity-planning literature. Dai and Lin (2005) pro-
pose a max-weight policy for dynamically allocating 
service capacities in a stochastic processing network. 
By applying a max-weight policy with good perfor-
mance, Shi et al. (2019) analyze the design of sparse 
flexibility structures in a multiperiod make-to-order 
production system. Xu and Zhong (2020) formulate a 
generalized version of max-weight policy to study the 
impact of information constraints and memories on 
dynamic resource allocation. In this paper, we adopt 
target-based weight updating, which utilizes both the 
targets optimized in the first-stage program and the 
realized click-throughs—rather than just the current 
states, as shown in this literature—to adjust the weights 
in each period.

Over the past 10 years, online e-commerce plat-
forms have typically provided numerous products 
for customers to choose from (Feldman et al. 2022). 
Manufacturing firms have also expanded their prod-
uct lines because of business trends (e.g., fast fashion 
(Caro et al. 2014)) or technology revolution (e.g., 3D 
printing (Dong et al. 2022)). The ever-expanding prod-
uct pool makes personalized assortments more attrac-
tive. Therefore, personalized-assortment optimization 
has also been receiving increased attention in the 
literature.

Leveraging the competitive-ratio framework, Golre-
zaei et al. (2014) propose inventory-balancing algorithms 
that guarantee the worst-case revenue performance 
without any forecast of the customer-type distribution. 
Bernstein et al. (2019) combine dynamic assortment 
planning, demand learning, and customer-type cluster-
ing in a Bayesian framework, and they propose a pre-
scriptive assortment-personalization approach for online 
retailing. Meanwhile, Kallus and Udell (2020) consider a 
dynamic assortment-personalization problem in high 
dimensions as a discrete contextual bandit problem. 
Chen et al. (2023) propose an inventory-protection algo-
rithm with a bounded competitive ratio for a new 
checkout-recommender system. Gallego et al. (2015b) 
study a general personalized resource-allocation model 
with customer choices, and they introduce algorithms 
for solving a choice-based linear program. Considering 
the uncertainty in estimating the MNL choice model, 
Cheung and Simchi-Levi (2017) propose a Thompson 
sampling–based policy to estimate the latent parameters 
by offering a personalized assortment. We contribute to 
this literature by proposing a new, two-stage stochastic 
program framework (i.e., TTD) to study the ad allocation 
problem. Moreover, we design a novel DWO policy that 

proves to be asymptotically optimal and generates 
values with lower variance than the Fluid benchmarks 
commonly adopted in the literature.

3. Model
3.1. Model Setup
The Platform and Its Customers. We consider an 
e-commerce platform such as Amazon or Facebook 
Marketplace that matches its user traffic with product 
advertisements. Our model, however, can be straight-
forwardly applied to the setting of product recom-
mendation. Throughout the planning horizon, there 
are T customer impressions (also called users or view-
ers) arriving at the platform sequentially. Therefore, 
we say customer t arrives in time t. Without loss of 
generality, we assume T is deterministic and known to 
the platform. Customers are segmented into m types 
based on their demographic information (e.g., age, 
gender, location) and behavior on the platform (e.g., 
average spending per year, product preferences, aver-
age time spent on the platform per year). We denote 
M :� {1, 2, : : : , m} as the set of all customer segments. 
For each customer t, type j(t) is i:i:d: and follows a dis-
crete distribution on M, with P(j(t) � j) � pj > 0, where 
j ∈M and 

P
j∈Mpj � 1.

Advertisements. At the beginning of the horizon, ad-
vertisers launch a set of ad campaigns, which we de-
note as N :� {1, 2, : : : , n}. For each ad campaign i ∈N , 
its advertiser sets Bi > 0 as the total budget and bi > 0 as 
the bid price, which is a proxy for the ex-post price per 
click paid by the advertiser to the platform, with the 
exact auction setting abstracted away from our model.5
Specifically, Bi is the maximum advertising fee the 
advertiser will pay the platform throughout the ad 
campaign’s life, and the budget will be depleted by bi 
upon each click by a customer. That is, the platform 
adopts the CPC mechanism, which is commonly used 
in online advertising. Furthermore, the ads are placed 
in specific slots exclusively allocated to advertising.

Offer-Sets. Upon the arrival of user t, the platform 
observes its type j(t) and decides a (possibly random-
ized) set of ads/sponsored products displayed to this 
user (which we call an offer-set), denoted by 
S(t) ∈Sj(t) ⊂ 2N , where Sj is the set of all feasible offer- 
sets to type-j customers, and 2N is the power set of 
N . Throughout our analysis, we make the following 
assumption on the structure of Sj.

Assumption 1. If S ∈Sj, then for any subset S′ ⊂ S, we 
also have S′ ∈Sj.

Assumption 1 implies that ∅ ∈Sj; that is, the plat-
form may not display any ad to a customer of type j. 
We may impose additional structural constraints on Sj. 
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Of particular importance is the cardinality constraint 
(i.e., the total number of ads displayed to customers 
cannot exceed K; see, e.g., Rusmevichientong et al. 
2010, Wang 2012, Sumida et al. 2021), which is preva-
lent in the online advertising setting where the plat-
form cannot allocate more ads to a customer than the 
number of available ad-impression slots. We will dem-
onstrate how to handle this cardinality constraint in 
our theoretical and numerical analyses.

Click-Throughs. For user t, if an offer-set S(t) is dis-
played (see Figure 1), the user may or may not click 
some ads in the set S(t). We denote y j

i(t) as the indicator 
of one click received by ad i from a type-j customer in 
time t. Therefore, y j

i(t) � 1 only if j(t)� j, i ∈ S(t), and 
customer t clicks ad i. Otherwise, y j

i(t) � 0. We denote 
the click-through matrix in time t as y(t) :� (y j

i(t) : i ∈
N , j ∈M). We do not specify any structure of the 
customer click-through behavior. For each customer 
type j, each offer-set S, and each ad i ∈ S, we denote the 
expected click-throughs of ad i in an offer-set S from a 
type-j customer as φj

i(S) :� EDy[y
j
i(t) | j(t) � j, S(t) � S], 

where Dy is the click-through distribution. We denote 
D(j, y) as the joint customer type and click-through 
distribution.

We assume customers exhibit (conditionally) inde-
pendent and stationary click-through behaviors. Speci-
fically, conditioned on the realized offer-sets {S(τ) : 1 
≤ τ ≤ T}, the click-throughs, y(t)’s, are independent 
across time t. Furthermore, conditioned on the same 
offer-set, y(t)’s are identically distributed with respect 
to the time t, that is, for any set of click-through out-
comes Y, any realized customer type j, any offer-set S, 
and any t ≠ τ, P[y(t) ∈ Y | j(t) � j, S(t) � S] � P[y(τ) ∈ Y |

j(τ) � j, S(τ) � S]. By stationarity, the function φj
i(·) is 

independent of t. If i ∉ S, φj
i(S) � 0 by definition.

Ad Targeting and Click-Through Requirement. From 
the advertisers’ perspective, they target ads to the rele-
vant customer segments based on their demographic 
information, past behavioral patterns, and potential 
interests (see, e.g., Choi et al. 2020). Furthermore, con-
sistent with advertising practices (e.g., Microsoft 2020), 
the advertiser may require that ad i receives at least ηCi 
click-throughs throughout the planning horizon for 
targeting a set of customer types C ∈ Ki, where Ki ⊂ 2M 

denote the set of all customer segment subsets C on 
which the advertiser sets a positive click-through 
requirement ηCi > 0 of ad i. Mathematically, the target-
ing and click-through requirement of ad i can be for-
malized as 

PT
t�1
P

j∈C
y j

i(t) ≥ ηCi for any i ∈N and C ∈ Ki. 
In practice, Ki often only contains either M (i.e., the 
requirement of total click-throughs) or some nonover-
lapping subsets of M. For example, Pampers may 
additionally ask the platform to target its diaper ads to 

new parents and babysitters. Note that because of the 
randomness in the customer types and choices, the tar-
geting and click-through requirements given may not 
be satisfied with probability one. Hence, we model the 
click-through requirements in the expected sense, that 
is, E[

PT
t�1
P

j∈Cy j
i(t)] ≥ ηCi , which is a common modeling 

approach in the literature on resource allocation to meet 
service target constraints (e.g., Zhong et al. 2017, Jiang 
et al. 2023). We will also show in Theorem 2 that our 
proposed policy can indeed satisfy the click-through 
requirements almost surely in the asymptotic regime 
where the problem size scales to infinity. In Online 
Appendix B, we illustrate how to incorporate the click- 
through requirements as soft constraints, that is, by 
adding a penalty term �(ηCi �

PT
t�1 
P

j∈Cy j
i(t))

+ into the 
objective function.

Moreover, large-scale online advertising platforms 
(e.g., Facebook and Google) have recently tightened 
their controls to prevent advertisers from excluding 
some user segments in their target in order to reduce 
lawsuits and regulatory probes into discrimination. 
Thus, in most cases, the total number of click-through 
requirement constraints |Ki | is at most linear (instead 
of exponential) in the total number of customer seg-
ments m, making our model and solution approach 
scalable. In many scenarios, the advertising contract 
specifies the minimal click-through requirement. For 
instance, Microsoft (as an advertiser) requires its part-
ners (i.e., the advertising platforms where Microsoft 
runs its advertising campaigns) to earn at least 250 
click-throughs during one ad campaign to be qualified 
to receive the support through its co-op.

Advertising Value and Fairness. The total value of 
online advertising generated throughout the planning 
horizon depends on matching the n ads with T custo-
mers. Specifically, each click of ad i by a type-j customer 
generates a value of r j

i ≥ 0, which is allowed to be both 
ad and customer type specific. The interpretation of r j

i, 
which can be quite general, includes the following sce-
narios as special cases. For the case where the value is 
the total advertising revenue of the platform, r j

i � bi for 
each i ∈N . For the case where the value is the total 
advertising return of the advertisers (see, e.g., Hao et al. 
2020), r j

i is interpreted as the value of one click-through 
for ad i by a type-j customer to its advertiser. Therefore, 
the total value of online advertising is given 
by 
PT

t�1
P

i∈N

P

j∈M
r j

iy
j
i(t).

A salient feature of our model is that, in addition to 
total advertising value, the platform may also be con-
cerned about the fairness of the system. For example, 
the recent advocacy on machine learning/algorithmic 
fairness postulates that customers who are considered 
minorities should have sufficient click-throughs/conver-
sions in a recommender/advertising system; otherwise, 
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their needs cannot be well taken care of because of 
data sparsity (see, e.g., Lambrecht and Tucker 2019). 
In a similar vein, advertisers generally prefer receiv-
ing impressions that are evenly spread across their 
targeted customer types (see, e.g., Lejeune and Turner 
2019). To account for such algorithmic fairness, we 
introduce a general fairness metric F(·) : Rnm ⊢→ R, 
which is a function of the per-customer-impression 
click-through matrix y :� (yj

i : i ∈N , j ∈M), where yj
i 

:� 1
T
PT

t�1y j
i(t) is the per-customer-impression click- 

through of ad i by type-j customers. Throughout our 
analysis, we make the following assumption on the 
concavity of F(·).

Assumption 2. The fairness metric F(·) : Rnm ⊢→ R is a 
concave function.

We remark that the concavity of F(·) is a mild 
assumption, which can be satisfied by most of the com-
monly adopted fairness metrics in the literature, as 
detailed in Online Appendix C. For example, F(·) can 
be modeled as allocative fairness measures, for example, 
max-min fairness (see, e.g., Young 1995, Kumar and 
Kleinberg 2000, and Bertsimas et al. 2012), Gini mean 
difference (GMD) fairness (see, e.g., Atkinson 1970) to 
keep the advertisers from exclusively targeting a small 
subset of user groups, disparate impact measures (see, 
e.g., Rubin 1978, Feldman et al. 2015) to reduce algo-
rithmic discrimination, and so on (see, e.g., Balseiro 
et al. 2021). Therefore, we measure the fairness in a per- 
customer-impression sense and evaluate the per-cus-
tomer-impression FV from advertising as

1
T
XT

t�1

X

i∈N

X

j∈M
r j

iy
j
i(t) +λF(y)

where λ ≥ 0 parameterizes the trade-off between effi-
ciency and fairness. The smaller (respectively, larger) the 
λ, the higher weight the platform puts on efficiency 
(respectively, fairness). In the extreme case where λ→ 0 
(respectively, λ→+∞), the system is purely efficiency 
driven (respectively, fairness driven).

3.2. Stochastic Program Formulation
We consider the (randomized) policies Π. First, we 
define the realized history until time t as Ht�1 :� {(j(τ), 
S(τ), y(τ)) : 1 ≤ τ ≤ t� 1}. By convention, H0 � ∅. In 
time t, a policy π ∈Π�maps the realized customer type 
j(t) and the realized history Ht�1 to a distribution on all 
feasible offer-sets to a type-j(t) customer, Sj(t), that is, 
S(t) � π(j(t),Ht�1). Note that deterministic policies are 
special cases of Π, which map (j(t),Ht�1) to a determin-
istic offer-set in Sj(t). Sometimes, it is useful to spell out 
the dependence of the click-through outcomes in time 
t, y(t), on the history Ht�1 and the policy π. We use 
y j

i(t |π) as the number of click-throughs for ad i by a 
type-j customer in time t, given that the history is Ht�1 

and the offer-set displayed to a type-j(t) customer is 
S(t) � π(j(t),Ht�1). Likewise, we define yj

i(π) :�
1
T
PT

t�1 
y j

i(t |π) as the per-customer click-throughs of ad i by 
type-j customers in the entire horizon under policy π. We 
denote y(π) :� (yj

i(π) : i ∈N , j ∈M) as the per-customer- 
impression click-through matrix under policy π.

Of particular importance are the (randomized) 
static policies, the set of which we denote as Πstatic 

⊂Π. Specifically, if π ∈Πstatic, the offer-set displayed 
in time t, S(t) � π(j(t),Ht�1) is independent of (i) time t 
and (ii) the history Ht�1, solely conditioned on the 
realized customer type j(t). Hence, for π ∈Πstatic, we 
can drop the history Ht�1 to write π(j(t),Ht�1) as 
π(j(t)). The word “static” also refers to that the distribu-
tion of S(t) is stationary with respect to time t for each 
customer type j. Therefore, we denote πstatic as a static 
policy to distinguish it from an arbitrary policy π ∈Π.

We are now ready to formulate the platform’s 
ad-allocation problem as a multiperiod stochastic pro-
gram. Specifically, the platform seeks to optimize the 
total expected FV of online advertising throughout the 
planning horizon

max
π∈Π

E
1
T
XT

t�1

X

i∈N

X

j∈M
r j

iy
j
i(t |π) + λF(y(π))

2

4

3

5

s:t: 1
T
XT

t�1

X

j∈M
biy

j
i(t |π) ≤

Bi

T
,

almost surely for each i ∈ N ,

E
1
T
XT

t�1

X

j∈C
y j

i(t |π)

2

4

3

5 ≥
ηCi
T

,

for each i ∈ N and C ∈ Ki 

(OP)

where the first term in the objective is the total per- 
customer-impression value from advertising, which 
we call the efficiency of policy π�denoted by E(π) :� E[1T PT

t�1
P

i∈N
P

j∈Mr j
iy

j
i(t |π)], the second term is the fair-

ness of policy π�denoted by λ ·F (π) :� λ ·E[F(y(π))], 
and all the expectations, including the following ones, 
are taken with respect to π�and D(j, y) unless otherwise 
stated. Hence, the total FV under policy π�is given by 
V(π) :� E(π) +λ ·F (π). We also remark that the first 
constraint of (OP) refers to the budget constraint of 
each ad, and the second refers to the click-through 
requirement for each ad with respect to different sets of 
customer types in the expected sense. We denote the 
optimal FV of (OP) as V∗ � lim supπ∈ΠV(π) and the 
optimal policy (if it exists) as π∗ � arg maxπ∈ΠV(π).

Roadmap to Solve (OP). For the rest of this paper, our 
goal is to design a two-stage ad-allocation framework 
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(i.e., TTD) to find a policy π�that achieves the optimal FV, 
V∗, while satisfying the budget- and click-through- 
requirement constraints. As detailed here, our TTD 
framework to solve (OP) can be decomposed into the 
following two stages: 
• First-stage click-through target optimization, where 

we solve a deterministic (but nonequivalent) convex pro-
gram to obtain the optimal click-through target of the ads 
and customer types (Section 4).
• Second-stage offer-set allocation, where we adap-

tively decide the offer-set displayed to each customer 
based on how far away the click-throughs are from the 
optimal targets obtained in the first stage by a debt- 
weighted offer-set policy (Section 5.1).

We demonstrate that the TTD framework is asymp-
totically optimal (Section 5.2) and enjoys impressive 
performance in the nonasymptotic regime compared 
with the commonly adopted benchmarks in the exist-
ing literature (Section 6).

4. Reformulation and 
Feasibility Conditions

In this section, we propose a novel reformulation of 
the original intractable ad-allocation program (OP) to 
maximize the expected FV as a much simpler, two- 
stage convex optimization. The core of our reformula-
tion is to introduce the auxiliary click-through targets 
of the ads by different customer types and then to 
design an online debt-based ad-allocation algorithm to 
achieve these targets.

4.1. Problem Reformulation with Click- 
Through Targets

To solve the dynamic ad-allocation problem (OP), 
a commonly adopted approach in the literature is 
to consider a fluid approximation of this problem 
and solve the Fluid problem by linear programming 
(choice-based linear programming (CDLP); see, for 
example, Liu and Van Ryzin 2008; in our case, the Fluid 
problem is a convex program). The Fluid-based for-
mulation of (OP) is provided by (OPFluid) in Section 
5.3 as an auxiliary problem to demonstrate the opti-
mality of our proposed algorithm. With the cardinal-
ity constraint on the feasible offer-sets, one difficulty 
using (the analogs of) CDLP is that the number of 
variables (i.e., the probability of each offer-set for all 
customer types) quickly explodes as the number of 
advertisements increases, even when the choice 
model is as simple as the independent choice or MNL 
model.

To tackle the aforementioned challenges of the stan-
dard Fluid approach, we develop a novel reformulation 
of (OP) that transforms the original problem as a 
two-stage convex optimization by introducing click- 

through targets associated with each ad-customer pair 
as auxiliary decision variables. Such reformulation also 
proves useful in designing our asymptotically optimal 
ad-allocation algorithm. Specifically, we define a :�

(αj
i, i ∈N , j ∈M) ∈ Rnm

+ , where αj
i refers to the (virtual) 

target for the per-customer-impression number of 
click-throughs for ad i by type-j customers. Therefore, 
the platform operationalizes its ad-allocation algo-
rithm such that the total number of click-throughs for 
ad i by type-j customers exceeds Tαj

i. We define the 
concave per-customer-impression FV associated with 
click-through target vector a as

VCT(a) :�
X

i∈N

X

j∈M
r j

iα
j
i +λF(a), (1) 

where the first term captures efficiency, the second cap-
tures fairness with respect to the click-through target 
vector a, and the subscript “CT” stands for click-through 
target. We transform (OP) into the following (nonequi-
valent) optimization problem:

max
π∈Π,a≥0

VCT(a)

s:t: E 1
T
XT

t�1
y j

i(t |π)

" #

≥ αj
i, for each i ∈N , j ∈M,

bi
X

j∈M
αj

i ≤
Bi

T , for each i ∈N ,

X

j∈C
αj

i ≥
ηCi
T

, for each i ∈N and C ∈ Ki

(2) 

Comparing (2) with (OP) reveals that our reformula-
tion relaxes the sample path–based objective function 
and constraints in the original problem with their coun-
terparts characterized by the per-customer-impression 
click-through target vector a. To ensure that the refor-
mulation is close enough to the original problem and 
that the click-through targets are achievable, we intro-
duce an additional constraint: the expected click- 
throughs per customer should meet the click-through 
targets, as specified by the first constraint of (2), that is, 
E[1T

PT
t�1 y j

i(t |π)] ≥ α
j
i. It is still challenging to character-

ize when this constraint can be satisfied. Therefore, we 
further modify (2) by replacing this constraint with one 
for the expected number of click-throughs under static 
policies Πstatic. Specifically, we replace the first con-
straint of (2) with

E[y j
i(t |πstatic)] ≥ α

j
i, for each i ∈N , j ∈M: (3) 

One should note that the expected Click-Through Tar-
get Constraint (3) is independent of time t. Hence, we 
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reformulate (2) by further modifying the click-through 
target constraint as follows:

max
π∈Πstatic, a≥0

VCT(a)

s:t: E[y j
i(t |π)] ≥ α

j
i, for each i ∈ N , j ∈M,

bi
X

j∈M
αj

i ≤
Bi

T , for each i ∈ N ,

X

j∈C
αj

i ≥
ηCi
T , for each i ∈ N and C ∈ Ki:

(2SSP)

It is clear from (2SSP) that the original problem is 
reformulated as a two-stage stochastic program. In the 
first stage, the platform selects the click-through targets 
a to maximize a variant of the FV, VCT(a); in the second 
stage, it selects a static policy πstatic to meet a. Com-
pared with (2), (2SSP) has a more stringent Constraint 
(3) given that Πstatic ⊂Π. In other words, (2SSP) pro-
vides a lower bound of (2). However, we demonstrate 
their equivalence in the following lemma.

Lemma 1. A click-through target vector a is feasible to 
(2SSP) if and only if it is feasible to (2). Furthermore, any 
optimal vector a of (2SSP) is also optimal for (2), and vice 
versa.

Lemma 1 suggests that to find the optimal click- 
through targets of (2), it suffices to solve (2SSP). 
Indeed, we show in Section 5 that there is an algorithm 
based on the solution to (2), that is, the DWO policy, and 
a randomized static policy for (2SSP), that is, the Fluid 
policy, achieving the optimal FV of (OP) in the asymp-
totic regime where the problem size scales to infinity. 
This helps us establish the asymptotic equivalence of 
these two reformulations and the original ad-allocation 
problem.

We call a click-through target vector a single-period 
feasible if there exists a static policy πstatic ∈Πstatic such 
that (3) holds. The single-period feasibility condition 
for a click-through target vector a is central to the 
design and analysis of our algorithm to solving both 
(2SSP) and, eventually, (OP). The rest of this section 
will be devoted to characterizing the necessary and suf-
ficient condition for an a to be single-period feasible.

Sometimes it is more convenient to rewrite this ex-
pected click-through target condition (3) as a periodic- 
review infinite-horizon sample average-feasibility con-
dition, which will prove useful to establish the optimal 
dynamic ad-allocation policy, that is, to find a (random-
ized) policy π�such that

lim inf
T↑+∞

1
T
XT

t�1
y j

i(t |π) ≥ α
j
i, for each i ∈ N , j ∈M: (4) 

Note that a similar periodic-review reformulation of 
service-level constraints has also been adopted in the 
literature on resource allocation (e.g., Zhong et al. 2017, 
Jiang et al. 2023).

4.2. Necessary and Sufficient Condition for 
Single-Period Feasibility

To obtain the optimal click-through targets that solve 
(2SSP), we first characterize the necessary and suffi-
cient condition under which the first-stage click-through 
target vector a is single-period feasible; that is, (3) holds. 
We consider the following formulation with a constant 
objective function:

max
π∈Πstatic

0

s:t: E[y j
i(t |π)] ≥ α

j
i, for each i ∈N , j ∈M (5) 

Note that because of stationarity, (5) is regardless of 
time t. We now characterize when (5) has a feasible 
solution. We first reformulate (5) as a linear program. 
Note that the set of deterministic static policies Πd are 
all the mappings that take a type-j customer to an 
offer-set in Sj, which is finite with cardinality |Πd | �Q

j∈M |S
j | . Hence, a randomized static policy πstatic is 

defined by a probability measure µ(·) on the finite set 
Πd, which is essentially a probability simplex in the 
space R |Πd | .

Under a deterministic static policy π ∈Πd, if a type-j 
customer arrives, the platform displays an offer-set S �
π(j) (because of stationarity, we drop the time index t). 
Thus, the average per-customer-impression number of 
click-throughs for ad i by type-j customers is given by 
pjφj

i(π(j)). Therefore, (5) can be reformulated as the fol-
lowing LP, the solution to which we denote as µ∗(·):

max
µ(·)≥0

0

s:t:
X

π∈Πd

µ(π)pjφj
i(π(j)) ≥ α

j
i, for each i ∈N and j ∈M

X

π∈Πd

µ(π) � 1: (6) 

Taking the dual of the LP (6), we obtain that

min
θ0,θj

i≥0
θ0 �

X

i∈N , j∈M
αj

iθ
j
i

8
<

:

9
=

;

s:t:
X

i∈N , j∈M
pjφj

i(π(j))θ
j
i � θ0 ≤ 0, for all π ∈ Πd:

(7) 

Note that, in (7), θj
i ≥ 0 is the shadow price for the click- 

through target αj
i, whereas θ0 is the dual variable for 

the normalization constraint 
P
π∈Πd

µ(π) � 1. We also 
define u :� (θj

i : i ∈N , j ∈M).
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We note that the objective function of the primal for-
mulation (6) is a constant zero, and there exists a feasi-
ble solution θ0 � 0 and θj

i � 0 (for all i and j) to the dual 
formulation (7) with an objective value equal to zero. 
By strong duality, (6) has a feasible solution if and only 
if the optimal objective function value of (7) is nonnega-
tive. By (7), the minimal objective function value of (7) 
can be obtained at the smallest feasible θ0, that is, 
maxπ∈Πd

P
i∈N , j∈Mpjφj

i(π(j))θ
j
i based on the first set of 

constraints in (7). Combining the aforementioned two 
observations, (6) is feasible if and only if

min
θj

i≥0
max
π∈Πd

X

i∈N , j∈M
pjφj

i(π(j))θ
j
i�

X

i∈N , j∈M
αj

iθ
j
i

8
<

:

9
=

;
≥ 0, 

which is equivalent to

max
π∈Πd

X

i∈N , j∈M
pjφj

i(π(j))θ
j
i ≥

X

i∈N , j∈M
αj

iθ
j
i

for all θj
i ≥ 0, i ∈N , j ∈M: (8) 

The following theorem summarizes the argument, and 
it establishes the necessary and sufficient condition for 
the click-through target vector a.

Theorem 1. (Necessary and Sufficient Condition). A click- 
through target vector a is single-period feasible; that is, 
there exists a static policy πstatic such that (3) holds if and 
only if (8) holds.

Indeed, when a satisfies (8), an optimal dual-vector 
u∗ that solves (7) helps characterize the set of determinis-
tic static policies over which a primal policy µ∗(·) (feasi-
ble to (6)) randomizes. Specifically, strong duality and 
the complementary slackness condition imply that for a 
deterministic policy π ∈Πd to have a positive weight in 
a feasible primal policy µ∗(·), that is, µ∗(π) > 0, it must 
hold that the first constraint of Dual Problem (7) is 
binding for π, that is,

π(j) ∈ arg max
S∈Sj

X

i∈S
pjθj

iφ
j
i(S) � arg max

S∈Sj
pj
X

i∈S
θj

iφ
j
i(S)

� arg max
S∈Sj

X

i∈S
θj

iφ
j
i(S):

Note that the left-hand side of Inequality (8) can be 
viewed as a personalized offer-set optimization problem. 
Specifically, for each customer type j, we seek to provide 
an offer-set that maximizes the total revenue from this 
customer type with the customer’s per-click revenue of 
ad i set to θj

i; that is,

S∗(u | j) � arg max
S∈Sj

X

i∈S
θj

iφ
j
i(S) (9) 

For tied solutions, an arbitrary offer-set that solves (9) 
with the smallest cardinality is displayed to the type-j 

customer so that S∗(u | j) is uniquely determined for a 
given u. Given a vector u, we denote the deterministic 
policy generated by (9) as πu (hence, πu(j) � S∗(u | j)).

We define g(u) :�
P

i∈N , j∈Mpjθj
iφ

j
i(S∗(u | j)), which is 

the left-hand side of (8). Hence, we obtain an equivalent 
necessary and sufficient condition for the feasibility of 
click-through targets a:

h(a) ≥ 0

where h(a) :�min
u≥0

(

g(u)�
X

i∈N , j∈M
αj

iθ
j
i : θj

i ≥ 0,

for each i ∈N , j ∈M

)

:

(10) 

Because g(u) is the maximum of a family of linear func-
tions, it is jointly convex in u. Therefore, checking the 
feasibility of the two-stage stochastic program (2SSP)

is reduced to minimizing a convex function g(u)�
P

i∈N , j∈Mα
j
iθ

j
i over the quadrant {θj

i ≥ 0 : i ∈N , j ∈M}. 
Hence, as long as Personalized Offer-Set Optimiza-
tion Problem (9) is tractable (i.e., the customer click- 
throughs follow independent, MNL, nested-MNL, or 
generalized attraction choice models), one could num-
erically check the feasibility of the click-through tar-
gets a. By (10), h(a) is the minimum of a family of 
linear functions (in a), so it is jointly concave in a.

With the characterization of the necessary and suffi-
cient Condition (10) for the feasibility of click-through 
targets a in the second stage, we are now ready to 
reformulate (2SSP) as the following single-stage (deter-
ministic) convex program to obtain the optimal target 
vector:

max
a≥0

VCT(a)

s:t: h(a) ≥ 0,

bi
X

j∈M
αj

i ≤
Bi

T , for each i ∈N ,

X

j∈C
αj

i ≥
ηCi
T

, for each i ∈N and C ∈ Ki:

(OT P)

Of particular importance is a special case of (OT P), 
where customer click-throughs follow the MNL choice 
model; that is, for any i ∈ S,

φj
i(S) �

vj
i

1+
P

i′∈Svj
i′

, (11) 

where vj
i > 0 is the attractiveness of ad i to type-j custo-

mers. We demonstrate in the following proposition 
that if customer click-throughs follow the MNL Choice 
Model (11) with the cardinality constraint for any 
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offer-set displayed to a customer (i.e., |S(t) | ≤ K for 
some K), Optimal Target Problem (OT P) can be sim-
plified to a compact convex program with a few linear 
constraints.6

Proposition 1. If customer click-throughs follow the MNL 
choice model (11) and the set of all feasible offer-sets is Sj �

{S ⊂N : |S | ≤ K} for each j ∈M, the first-stage convex 
program (OT P) can be simplified to the following one:

max
a≥0

VCT(a)

s:t:
X

i′∈N
αj

i′ +
αj

i

vj
i
≤ pj, for each i ∈N , j ∈M,

X

i∈N
αj

i +
1
K
X

i∈N

αj
i

vj
i
≤ pj, for each j ∈M,

bi
X

j∈M
αj

i ≤
Bi

T
, for each i ∈N ,

X

j∈C
αj

i ≥
ηCi
T , for each i ∈N and C ∈ Ki:

(OT P�MNL)

Proposition 1 shows that the number of linear con-
straints for the convex program (OT P�MNL) is 
O(mn) (instead of exponential in m and n), which 
ensures its tractability.

Definition 1. We say that a vector a ∈ Rnm
+ is feasible if 

it is a feasible solution to (OT P).
By definition, if a is feasible, then it is single-period 

feasible. Throughout this paper, we assume the feasible 
region is nonempty, so an optimal solution to (OT P)

exists, which we denote as a∗. Also, we denote V∗CT :�

VCT(a
∗) as the optimal objective function value of 

(OT P). Thus, a∗ is the “optimal” click-through target 
vector for our reformulated ad-allocation problem. 
According to Theorem 1, h(a), defined by (10) as 
being nonnegative, provides a necessary and suffi-
cient condition for the click-through targets, a, to be 
obtainable in the expected sense V∗CT, which proves to 
be an upper bound of the optimal FV for the original 
problem, V∗ (see Theorem 3). Convex Program Formu-
lation (OT P), therefore, characterizes the optimal 
click-through target vector a∗ and the associated opti-
mal (relaxed) per-customer-impression FV in the 
expected sense. However, the following two critical 
questions remain to be addressed. 
• Achieving a∗: How should we display the offer- 

sets upon the arrival of each customer to achieve the 
optimal click-through targets a∗?
• Optimality of achieving a∗: Will the offer-set dis-

play strategy achieving a∗ suffice to obtain the true 
(unrelaxed) optimal value of Original Problem (OP), 
that is, V∗?

5. Algorithms for Advertisement 
Allocation Optimization

In this section, we develop an offer-set allocation algorithm 
under the TTD framework to address Ad-Allocation Prob-
lem (OP) based on the solution to the click-through tar-
get model, a∗. Specifically, we propose an adaptive 
offer-set policy that meets the optimal click-through tar-
gets a∗, and we demonstrate that our proposed algo-
rithm is asymptotically optimal as the problem size 
scales to infinity. If only a compromised solution can be 
obtained for the optimal target problem (OT P), the 
algorithm will achieve the same (asymptotic) optimality 
gap as that in the optimal target problem, suggesting the 
robustness of our approach.

5.1. Debt-Weighted Advertisement 
Allocation Policy

By our two-stage stochastic program (re)formulation of 
the ad-allocation problem, (2SSP), once we solve the 
optimal click-through target vector a∗, the problem is 
reduced to devising a randomized offer-set algorithm 
to achieve a∗. To this end, one may solve Primal-Dual 
Problems (5) and (7) with a � a∗ to obtain a feasible 
randomized policy that achieves a∗. This approach, 
though intuitive, may be computationally prohibitive 
because Primal LP (6) has O(m2n) decision variables 
and O(mn) constraints. Therefore, we resort to a data- 
driven algorithm to generate the random dual-vector 
u(t) upon the arrival of each customer t, based on which 
we adaptively customize the appropriate ad offer-set 
S∗(u(t) | j(t)). Algorithm 1 presents our policy. We refer 
to the DWO policy (Algorithm 1) initialized with the 
click-through target vector a as the DWO-a policy, 
denoted by πDWO(a). Of particular importance is the 
DWO-a∗ policy, where the platform solves Optimal Tar-
get Problem (OT P) offline to obtain the optimal click- 
through target vector a∗ and then implements πDWO(a

∗)

online to adaptively display a personalized offer-set to 
each customer.

Algorithm 1 (Debt-Weighted Offer-Set Policy πDWO(a))
Initialize: The click-through target vector a and the 

initial debts dj
i(1) ← 0 for all i ∈N and j ∈M.

For each customer t � 1, 2, ⋯ T: 
1: Observe the customer type j(t).
2: Display the offer-set

S∗(d(t) | j(t)) :� arg max
S∈Sj

X

i∈S
(dj(t)

i (t))
+φj(t)

i (S) (12) 

to customer t, where d(t) � (dj
i(t) : i ∈N , j ∈M) is 

the realized debt vector upon the arrival of cus-
tomer t. For tied solutions, an arbitrary offer-set 
that solves (12) with the smallest cardinality is dis-
played to the type-j customer.
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3: Observe the customer click-throughs (y j
i(t) : i ∈

N , j ∈M) and collect the advertising value 
P

i∈N 

rj(t)
i y j(t)

i . Remove any offer-set containing ad i with 
(
P

j
P
τ≤ ty

j
i(τ))bi ≥ Bi (i.e., the budget of ad i has 

already been depleted) from Sj for all j hereafter.
4: Update the debt dj

i(t+ 1) ← dj
i(t) + α

j
i� y j

i(t) for all 
i ∈N and j ∈M.

A few remarks are in order with respect to Algo-
rithm 1. First, the DWO policy displays the offer-set to 
each customer based on Offer-Set Optimization Prob-
lem (9). This standard personalized offer-set optimiza-
tion problem is tractable so the offer-set S∗(d(t) | j(t))
can be efficiently obtained for a broad class of choice 
models: independent, MNL, nested MNL, and gener-
alized attraction. For example, Feldman et al. (2022) 
demonstrate that, for the MNL choice model, the 
single-period assortment optimization problem can be 
solved with the running time O(n2) (where n is the 
number of products) and have successfully deployed 
their algorithm on one of Alibaba’s large-scale online 
retailing platforms (Tmall).

Second, we call Algorithm 1 the DWO policy because 
the offer-set optimization is weighted by the “debt” of 
each customer-advertisement pair for customers {1, 2, : : : , 
t� 1}. Note that (t� 1)αj

i is the total click-through target 
of ad i by type-j customers until the start of time t, whereas 
Pt�1
τ�1y j

i(τ) is the total realized click-throughs by then. 
Therefore, (dj

i(t))
+
�max((t� 1)αj

i�
Pt�1
τ�1y j

i(τ), 0) is the 
total “debt” owed by the platform to the click-through tar-
get associated with ad i and customer type j when decid-
ing the offer-set displayed to customer t. The debts d(t)
only depend on Ht�1 and are independent of any infor-
mation revealed on or after time t. For a feasible click- 
through target vector a, we can also view the debt process 
{d(t) : t ≥ 1} as a data-driven adaptive way to generate 
the random dual-vector u, which prescribes a feasible ran-
domized policy π � πu.

Finally, for tied solutions, an arbitrary offer-set that 
solves (12) with the smallest cardinality is displayed to 
the type-j customer so that S∗(d(t) | j(t)) is uniquely 
defined. Hence, any ad i with dj

i(t) ≤ 0 will not be 
offered to customer t with type j.

5.2. Asymptotic Analysis
In this subsection, we will establish that the DWO-a∗
policy can achieve the optimal FV for Original 
Ad-Allocation Problem (OP) asymptotically. Before de-
monstrating the optimality of the DWO-a∗ policy, we 
first introduce the asymptotic regime where the problem 
size scales up to infinity. Specifically, we denote a family 
of ad-allocation problems with the budget for each ad 
i, Bi(γ) :� Biγ, the click-through requirement for ad i 
and customer-type set C ∈ Ki, ηCi (γ) � ηCi γ, and the plan-
ning horizon length T(γ) :� Tγ, as OP(γ), where γ > 0 is 
a scaling parameter of problem size. Hence, Original 

Problem (OP) is equivalent to OP(1). For the problem 
OP(γ) and a policy π ∈Π, we denote E(π |γ) as the 
expected efficiency, F (π |γ) as the expected fairness, 
and V(π |γ) � E(π |γ) +λF (π |γ) as the expected FV gen-
erated by π�in OP(γ). Furthermore, V∗(γ) :�maxπ∈Π�
V(π |γ) denotes the optimal expected FV for OP(γ). 
Note that the market-size scaling factor γ�does not affect 
the feasibility of a click-through target vector a, nor does 
it change Two-Stage Stochastic Program Reformulation 
(2SSP) or Target Problem Reformulation (OT P).

We first establish that for any feasible click-through 
target vector a, the DWO-a policy exactly achieves a in 
OP(γ) as the problem size γ�scales to infinity.

Theorem 2. If a is feasible, that is, all constraints of 
(OT P) are satisfied, then we have

lim
γ↑+∞

1
T(γ)

XT(γ)

t�1
y j

i(t |πDWO(a)) � α
j
i almost surely

for all i ∈N and j ∈M: (13) 

Theorem 2 is the central technical result of this paper— 
it is an important stepping stone on the way to proving 
the asymptotic optimality of the DWO-a∗ policy. Inter-
estingly, as long as this policy is initiated with a feasible 
click-through target vector a, it will not only achieve 
click-through levels at least as high as these targets (i.e., 
(4)) but also exactly approach them (i.e., (13)). Adopting a 
coupling argument, Proof of Theorem 2 (see Online 
Appendix D for details) demonstrates that if the prob-
lem size γ�scales up to infinity, the DWO-a policy will 
not exhaust the budget of any ad and, thus, will secure 
the click-through targets a. Therefore, under our pro-
posed DWO policy, the click-through requirements 
{ηCi (γ) : i ∈N ,C ∈ Ki} can be satisfied almost surely, 
instead of in expectation, in the asymptotic regime.

Based on Theorem 2, one may conjecture that if the 
click-through target vector a is optimally chosen (i.e., 
as the solution to Optimal Target Problem (OT P), a∗), 
the DWO-a∗ policy could achieve the optimal FV for the 
original ad-allocation problem, V∗. The main result of 
this section is that the following theorem validates this 
conjecture in the asymptotic regime and quantifies the 
nonasymptotic optimality gap of the policy.

Theorem 3. The DWO-a∗ policy is asymptotically optimal; 
that is,

lim
γ↑+∞

V(πDWO(a
∗) |γ) � lim

γ↑+∞
V∗(γ) � V∗CT: (14) 

Furthermore, the optimal objective function value of First- 
Stage Click-Through Target Optimization (OT P) is an upper 
bound for Original Problem (OP) in the nonasymptotic 
regime; that is, for any γ > 0,

V∗CT ≥ V∗(γ), (15) 

and the optimality gap the DWO-a∗ policy is of order O(γ�1
2); 
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that is, there exists a constant C > 0, such that for any 
γ > 0,

V∗(γ)�V(πDWO(a
∗) |γ) ≤

C
ffiffiffi
γ
√ : (16) 

Theorem 3 proves that the DWO-a∗ policy generated by 
our TTD framework is asymptotically optimal when the 
ad budgets, the click-through requirements, and the 
time-horizon length all scale up to infinity at the same 
rate. In particular, the optimal expected FV of OP(γ) is 
identical to the optimal FV of (OT P) asymptotically, 
and the former is upper bounded by the latter in the 
nonasymptotic regime. Such equivalence suggests that 
our reformulation in Section 4.1 is an asymptotically 
equivalent relaxation of the original problem. Moreover, 
we show that the DWO-a∗ policy can achieve the 
optimal expected FV at a convergence rate of O(γ�1

2). 
Proof of Theorem 3 relies on a delicate application of 
Theorem 2, which shows that the DWO-a∗ policy gener-
ated by our TTD framework achieves the optimal FV 
of the click-through target optimization (i.e., limγ↑+∞
V(πDWO (a

∗) |γ) � V∗CT). Another critical step to establish 
Theorem 3 is to find an asymptotically optimal static 
policy for the original problem OP(γ), which can be 
constructed with the auxiliary Fluid convex program 
(OPFluid), that is, Proposition 2. We relegate the detailed 
discussions to Section 5.3.

5.3. Discussions
Fluid Benchmark. To prove Theorem 3, one needs to 
construct an asymptotically optimal static policy for 
Original Problem (OP). To find such a policy, we con-
sider an auxiliary Fluid Convex Program (OPFluid) and 
establish its intrinsic connections and, therefore, 
asymptotic equivalence to Original Problem (OP). We 
also note that the convex program is a generalization 
of the standard CDLP approach (Liu and Van Ryzin 
2008). Specifically, the auxiliary Fluid problem is 
defined as Convex Program (OPFluid) as follows:

max
z≥0

VFluid(z) :�
X

i∈N , j∈M,S∈Sj

r j
ip

jφj
i(S)z

j(S) +λF(z)

s:t:
X

j∈M,S∈Sj

bipjφj
i(S)z

j(S) ≤ Bi

T
for each i ∈N

X

j∈C,S∈Sj

pjφj
i(S)z

j(S) ≥
ηCi
T for each i ∈N and C ∈ Ki

X

S∈Sj

zj(S) ≤ 1 for each j ∈M

z ∈ Rnm, with ζj
i �
X

S∈Sj

pjzj(S)φj
i(S)

(OPFluid)

We denote the solution to (OPFluid) as z∗ and the asso-
ciated optimal objective function value as V∗Fluid �

VFluid(z∗). It is self-evident from the formulation of 
(OPFluid) that zj(S) is the probability of displaying offer- 
set S to a type-j customer upon arrival, whereas ζj

i �P
S∈Sj pjzj(S)φj

i(S) is the expected per-customer- 
impression click-throughs of ad i by type-j customers. 
A vector z � (zj(S) : j ∈M, S ∈Sj) feasible for (OPFluid)

naturally induces a randomized static policy for Origi-
nal Problem (OP), which displays offer-set S ∈Sj to a 
customer of type j ∈M with probability zj(S). When-
ever at least one ad runs out of budget, the policy offers 
nothing to each arriving customer afterward. We refer 
to this policy as the Fluid-z policy, denoted by πFluid(z). 
Note that policy πFluid(z) does not fully utilize the 
remaining budgets of nondepleted ads. To strengthen 
the performance of this policy, we will slightly adjust 
its implementation in our numerical experiments. The 
detailed discussions of the adjustment are deferred to 
Section 6.

Indeed, there are intrinsic connections between 
Optimal Target Problem (OT P) and Fluid Convex Pro-
gram (OPFluid). We can always construct a feasible 
(respectively, optimal) click-through target vector in 
(OT P) from any feasible (respectively, optimal) offer- 
set assignment probabilities in (OPFluid). For any z fea-
sible to (OPFluid), we define â(z) ∈ Rnm, where α̂j

i(z) �P
S∈Sj pjzj(S)φj

i(S).

Lemma 2. Assume that z is feasible for (OPFluid). We have 
that â(z) is first-stage feasible and can be achieved by policy 
πFluid(z); that is, E[y j

i(t |πFluid(z))] � α̂
j
i(z). Furthermore, 

VCT(â(z)) � VFluid(z). In particular, â(z∗) is an optimal 
solution to (OT P) with E[y j

i(t |πFluid(z∗))] � α̂
j
i(z∗).

We are now ready to demonstrate that as the prob-
lem size γ�scales to infinity, both the original problem 
OP(γ) and Fluid Convex Program (OPFluid) have the 
same optimal (expected) per-customer-impression FV, 
which is also identical to the one generated by the Fluid- 
z∗ policy in OP(γ). Formally, the following proposition 
establishes these equivalences and implies the asymp-
totic optimality of a static policy πFluid(z∗).

Proposition 2. The following inequalities hold:

lim
γ↑+∞

V∗(γ) ≥ lim
γ↑+∞

V(πFluid(z∗) |γ) � V∗Fluid ≥ lim
γ↑+∞

V∗(γ):

(17) 

Therefore, all inequalities in (17) hold as equalities.

As a stepping stone to prove Theorem 3, Proposi-
tion 2 shows that the static Fluid-z∗ policy generated by 
(OPFluid) is asymptotically optimal for the original 
problem OP(γ). Hence, we will also use this policy and 
its resolving variants as the benchmarks in our numeri-
cal experiments to evaluate our proposed DWO-a∗
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policy in Section 6. Note that the equivalences in (17) 
generalize Proposition 1 of Liu and Van Ryzin (2008) 
to our setting with algorithmic fairness, personalized 
offer-sets, and click-through requirements.

Computational Efficiency. Our proposed DWO-a∗ pol-
icy generated by our TTD framework involves two 
steps. The first step solves Optimal Target Problem 
(OT P) to obtain the optimal click-through target vector 
a∗ offline, and the second step implements the second- 
stage DWO display procedure online. We now discuss 
the computational efficiency of the two steps separately, 
starting from the second-stage online implementation.

Second-Stage Online Implementation. To implement 
Algorithm 1 online, given any click-through target 
vector a, the bottleneck is to solve Single-Period Offer- 
Set Optimization Problem (9) upon the arrival of 
each customer t. Standard results in the assortment- 
optimization literature suggest that if customers follow 
a wide range of commonly used choice models—such 
as the independent choice (Feldman et al. 2022), MNL 
(Rusmevichientong et al. 2010, Sumida et al. 2021), 
nested MNL (Davis et al. 2014), and generalized attrac-
tion (Luce 2012, Gallego et al. 2015a) choice models— 
the personalized Offer-Set Optimization (9) can be 
solved efficiently. Therefore, the second-stage online 
implementation of the DWO-a is computationally effi-
cient as long as the single-period offer-set optimization 
is tractable, which is generally the case for choice mod-
els commonly used in practice.

First-Stage Convex Program. Section 4.2 and Online 
Appendix F show that if the customer choices follow 
the MNL, independent, and generalized attraction 
choice models, Optimal Target Problem (OT P) can be 
greatly simplified to a convex program with a few lin-
ear constraints, which can be solved efficiently in gen-
eral. We emphasize that the MNL, independent, and 
generalized attraction choice models are all widely 
used in practice. If customers follow a general choice 
model, Lemma 2 implies that (OT P) shares the same 
computational complexity as Fluid Convex Program 
(OPFluid). To see this, note that for any solution to 
(OPFluid), z∗, we can construct a click-through target 
vector â(z∗) that is feasible and optimal for (OT P). 
Therefore, as long as auxiliary Fluid Convex Program 
(OPFluid) is computationally tractable, we can efficiently 
obtain an optimal solution to (OT P) as well. In general, 
the DWO-a∗ policy solves (OT P) offline only once at 
the beginning of the planning horizon, which is gener-
ally tractable in most applications. Indeed, Table 1 in 
Section 6 shows that our DWO-a∗ policy is much more 
scalable than the Fluid-based benchmarks commonly 
adopted in the literature.

If the auxiliary Fluid Convex Program (OPFluid) is 
intractable, obtaining an optimal click-through target 
vector a∗ may be prohibitive. However, we can still 
identify a feasible click-through target vector a by 
applying Theorem 1. Once a feasible a is found, as 
long as Single-Period Offer-Set Optimization (9) is 
tractable, the second-stage online implementation of 
the DWO-a policy should be tractable as well. Further-
more, the DWO-a policy achieves the same asymptotic 
FV as VCT(a), as shown in the following proposition.

Proposition 3. If a is first-stage feasible, that is, it is a fea-
sible solution to (OT P), then we have

lim
γ↑+∞

V(πDWO(a) |γ) � VCT(a): (18) 

The key implication from Proposition 3 is that in the 
asymptotic regime where the problem size γ�scales to infin-
ity, the second-stage online implementation of the DWO- 
a policy will not incur any additional optimality loss on 
top of that from a feasible suboptimal click-through target 
vector a for the first-stage target optimization; that is, 
limγ↑+∞V∗(γ)� limγ↑+∞V(πDWO(a) |γ) � V∗CT�VCT(a).

Comparison with Existing Algorithms. It is useful to 
compare the DWO-a∗ policy with relevant algorithms 
in the existing literature.

Debt-weighted resource-allocation algorithms. As dis-
cussed earlier, the objective of existing debt-weighted 
algorithms (e.g., Zhong et al. 2017, Lyu et al. 2019, Jiang 
et al. 2023) is to allocate a centralized resource to satisfy 
some feasible and exogenous service-level constraints. 
The goal of the DWO-a∗ policy, however, is to maximize 
the FV of an online advertising system so that the click- 
through target vector, which is the counterpart of the 
service-level constraints in our setting, is endogenized in 
the first stage of the algorithm. Because we have such a 
different objective for our policy, we develop a two- 
stage reformulation to implement the algorithm and 
take a different path for its analysis, which relies on 
establishing the (asymptotic) equivalence of different 
formulations of the problem. Another key difference 
between our DWO-a∗ policy and other debt-weighted 
resource-allocation algorithms is that whereas those 
algorithms can freely control the allocation and con-
sumption of the resources, our policy has to handle the 
additional complexity of customers’ stochastic choice 
behaviors, which introduces another layer of challenge 
to controlling the debt process. Furthermore, to our best 

Table 1. Comparison of Average Solving Times

Policy K � 1 K � 2 K � 3 K � 4 K � 5

DWO 0.0054 0.0067 0.0095 0.0099 0.0064
Fluid 0.0080 0.0918 2.5454 60.1610 Out of memory

Note. Data are given in seconds unless marked otherwise.
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knowledge, we are also the first in the literature to 
study the dynamic assortment/offer-set optimization 
problem through the lens of a debt-weighted algorithm. 
Moreover, we show that our DWO-a∗ policy can work 
for general resource allocation and other ad-allocation 
problems, such as Ad Display and AdWords (see, e.g., 
Mehta 2013) in Online Appendix G.

Fluid convex program heuristics. In our setting with a 
nonlinear fairness term, the standard LP-based heuris-
tics with or without resolving (e.g., Liu and Van Ryzin 
2008, Jasin and Kumar 2012, Bumpensanti and Wang 
2020, Balseiro et al. 2023) applied to linear rewards can 
be extended to similar heuristics based on Fluid convex 
programs (e.g., (OPFluid)). A core advantage of the 
DWO-a∗ policy over the family of Fluid heuristics is that, 
by the nature of the algorithm to assign a higher weight 
to an ad-customer pair with a larger debt, the click- 
through and, thus, the reward process will follow a 
mean-reverting pattern. Therefore, compared with the 
Fluid or Fluid-resolving heuristics, our DWO-a∗ algo-
rithm can deplete the budget of each ad more smoothly 
throughout the horizon, which is highly desirable for 
the advertising business in practice.

For example, Google recommends a “standard” 
ad-delivery scheme for its advertisers, especially those 
with a low budget, to avoid exhausting their budgets 
early.7 Under this standard delivery scheme, each 
advertisement can reach customers evenly throughout 
the day. Furthermore, with the cardinality constraint 
on the displayed offer-sets, one difficulty of using Fluid 
or its resolving variants is that the number of variables 
(i.e., the probability of each offer-set for all customer 
types) quickly explodes as the number of products 
increases, even when the choice model is restricted to 
MNL. The DWO-a∗ policy has a better scalability than 
those Fluid-based heuristics. These advantages of our 
policy are also confirmed by our numerical compari-
sons in Section 6.

Inventory-balancing policy. Inventory balancing is 
another family of algorithms to address the personalized- 
assortment optimization problem with inventory con-
straints (see, e.g., Golrezaei et al. 2014). This policy uses 
the remaining inventory to reweight the value of each 
product. The inventory-balancing policy is difficult, if not 
impossible, to adapt to our setting because, on one hand, 
it is challenging for this policy to handle the click-through 
requirements {ηCi : i ∈N ,C ∈ Ki}, and on the other hand, 
it is hard to incorporate the nonlinear fairness metric into 
the inventory-balanced offer-set optimization problem 
upon the arrival of each customer. Our DWO-a∗ policy 
circumvents these two challenges under our two-stage 
framework within which the personalized offer-set opti-
mization problem is reduced to a standard, single-period 
problem with a reward linear in the number of click- 
throughs (9). For completeness, in Online Appendix L, 
we numerically compare our DWO-a∗ policy with the 

inventory-balancing benchmark in the setting without 
click-through requirements (i.e., Ki � ∅ for all i) and fair-
ness concerns (i.e., λ�0). The numerical results de-
monstrate that our policy outperforms the inventory- 
balancing benchmark for all the problem instances 
examined when the demand-to-supply ratio is not too 
large. When the demand-to-supply ratio is large, our 
policy performs fairly well, achieving an average of 
more than 99% of the theoretical upper bound in all 
problem instances.

6. Numerical Experiments
In this section, we numerically evaluate our DWO-a∗
policy (simply DWO in this section) generated by our 
TTD framework for ad-allocation optimization, bench-
marked against four Fluid-based heuristics. The first 
benchmark is the static policy induced by the optimal 
solution z∗ to (OPFluid) (see also, Liu and Van Ryzin 
2008), denoted as the fluid-approximation policy or the 
Fluid-z∗ policy.8 In each period, we randomly display 
offer-set S to a customer of type j with probability 
zj∗(S), which is a solution to Fluid Convex Program 
(OPFluid). Once the budget of an ad is depleted, it is 
automatically deleted in any offer-set generated by the 
Fluid policy. In this case, all the remaining ads in the 
offer-set will continue to be displayed. This adjust-
ment of the Fluid policy is to enhance budget utiliza-
tion and, consequently, the performance of the policy. 
The second benchmark is a resolving variant of the Fluid 
policy, denoted as the Fluid resolving policy or the Fluid-R 
policy, which resolves the Fluid convex program at 
evenly spaced time epochs based on the remaining 
budgets and click-through requirements (see, e.g., 
Jasin and Kumar 2012). The third benchmark is a 
refined version of the Fluid-R policy, denoted as the 
Fluid infrequent resolving policy or the Fluid-I-R policy, 
under which the resolving time epochs are more care-
fully designed and are infrequent/sparse at the begin-
ning of the ad campaign (see, e.g., Bumpensanti and 
Wang 2020). Finally, the fourth benchmark resolves 
the Fluid convex program at every period (see, e.g., Bal-
seiro et al. 2023), denoted as the Fluid every-period 
resolving policy or the Fluid-E-R policy. See Online 
Appendix H for the implementation details of the 
Fluid-R, Fluid-I-R, and Fluid-E-R policies. The settings of 
our numerical studies and parameters varied for gen-
erating problem instances, concentration parameter 
(CP) and loading factor (LF), are introduced in Online 
Appendix I.9

We generate 30 sample paths for each problem in-
stance to evaluate the following performance metrics 
of interest: (1) the ratio between the expected FV and 
its theoretical upper bound characterized by the solu-
tion to the first-stage convex program, V∗CT, (2) the ratio 
between the standard deviation of FV and V∗CT, and 
(3) the average proportion of unfilled click-through 
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requirements compared with η{j}i . We use the relative 
ratios (instead of the absolute values) to make the com-
parisons clear.

We report the numerical findings as box plots with 
respect to all problem instances in Figure 2, which 
clearly illustrates the advantages of our algorithm over 
the benchmarks in various dimensions. Figure 2(a)
demonstrates that our DWO algorithm consistently out-
performs all the Fluid-based benchmarks by delivering 
higher values in the total objective. Figure 2(b) shows 
that the variability of FV is much lower under our pol-
icy than it is under the benchmarks. Finally, Figure 2(c)
shows that the DWO algorithm significantly reduces the 
proportion of unfilled click-through requirements com-
pared with Fluid, Fluid-R, and Fluid-I-R policies but has 
more unfilled click-throughs than Fluid-E-R. In short, 
our proposed DWO algorithm not only generates higher 
FV than the Fluid-based benchmarks do but also 
reduces the variability of FV. Note that the resolving 
policies can achieve an optimality gap of order O(γ�1)

under certain regularity conditions (see, e.g., Balseiro 
et al. 2023), whereas our DWO policy has a larger prov-
able optimality gap of order O(γ�

1
2). However, our 

DWO algorithm outperforms all the Fluid-based bench-
marks in numerical results. We propose providing 
more in-depth analyses of the DWO policy in future 
research.

To understand why our DWO algorithm enjoys the 
great performance illustrated in Figure 2, we also plot 
the 0.1, 0.5 (i.e., median), and 0.9 quantiles of the click- 
through sample paths of an ad (see details in Online 
Appendix I) for the five approaches (under the problem 
instance LF� 1 and CP� 100) we studied in Figure 3. 
Our numerical experiments make clear that although all 
five policies deplete the ad’s entire budget for more than 
50% of sample paths, the variability of the click-through 
sample paths (equivalently, the budget-depleting pro-
cess) through the entire time horizons under the Fluid, 
Fluid-R, Fluid-I-R, and Fluid-E-R algorithms are much 
higher than our DWO policy. Furthermore, the Fluid- 

based approaches all run out of budget long before the 
end of the ad campaign, whereas our DWO policy 
exhausts the budget only toward the very end.

We highlight that such smooth budget depletion of 
our proposed algorithm should be credited to their 
mean-reverting pattern driven by the fact that the offer- 
set displayed in each period is prescribed in accordance 
with the “debts” owed by the algorithm to the optimal 
click-through targets. In particular, the ads farther from 
(respectively, closer to) their optimal targets will receive 
higher (respectively, lower) weights when the algo-
rithm is deciding which assortment to display upon the 
arrival of each user. Thus, such intertemporal pooling 
leads to the mean-reverting phenomenon of our pro-
posed approach. Note that the Fluid-based policies also 
exhibit certain mean-reverting properties weaker than 
our DWO policy.10 Smooth budget depletion is, in prac-
tice, a highly desirable property for advertisers that use 
online advertising platforms—Facebook has even built 
some API tools that help its clients pace their ad deliv-
ery and smooth their budget depletion.11 Therefore, 
from a practical perspective, our DWO algorithm may, 
appealingly, help advertisers and advertising platforms 
achieve smoother budget depletion.

In addition to obtaining better performance in most 
of the cases we examine and much smoother depletion 
of ad budgets, our DWO policy is more scalable and effi-
cient in both time and space complexities. We carried 
out our numerical studies by varying the offer-set size 
constraint K from two to five and generating 30 sam-
ples randomly for each K (under the problem instance 
LF� 1 and CP� 100) with other model primitives iden-
tical to those of the experiments in Section 6. We con-
ducted the experiment by using Gurobi 10.0.0 within 
MATLAB R2022b on a 2.10 GHz Intel Core i7-1260P 
CPU with 32 GB of RAM. Table 1 shows that the aver-
age computation time of finding optimal click-through 
targets (i.e., solving Convex Program (OT P)) is ap-
proximately 0.01seconds regardless of the value of K, 
but solving Fluid Convex Program (OPFluid) is much 

Figure 2. (Color online) Comparison Between DWO-Based and Fluid-Based Policies 
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more time-consuming (Fluid-R, Fluid-I-R, and Fluid-E-R 
are, of course, even slower). In addition, increasing K 
means exponentially more possible offer-sets for the 
Fluid, Fluid-R, Fluid-I-R, and Fluid-E-R policies, so much 
more memory and computational time are needed in 
this case. Table 1 shows that the case of K�5 may even 
incur an “out of memory” error for the Fluid bench-
mark. In short, our algorithms enjoy higher scalability 
than the Fluid-based benchmarks. As a final remark, our 
numerical results also reveal that introducing the fair-
ness term in the objective function could substantially 
reduce the algorithmic bias without compromising the 
advertising efficiency much (see Online Appendix K 
for details).

7. Conclusion
The allocation of customer traffic to different ads is a 
crucial operations decision for online e-commerce plat-
forms to optimize their advertising business. The 
emerging advocacy for algorithmic fairness of online ad 
delivery has posed additional challenges for the design 
of ad-allocation policies. In this paper, we propose a 
TTD framework comprising a general model and an 
associated efficient algorithm to study optimal ad allo-
cation under customer choices and algorithmic fairness. 
Although the original online ad-allocation problem is 

intractable, we develop an asymptotically equivalent 
two-stage stochastic program as a surrogate. Further-
more, we propose a simple but effective algorithm—the 
DWO-a∗ policy—which is provably optimal for achiev-
ing the maximum FV from advertising in the asymp-
totic regime. Furthermore, the proposed algorithm 
gives rise to the mean-reverting pattern of the budget 
consumption process and therefore achieves smoother 
budget depletion, which is highly desirable from a prac-
tical perspective. Our algorithm also helps substantially 
improve the fairness of ad allocation for a platform 
without compromising its efficiency much.
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Endnotes
1 Interactive Advertising Bureau report. See https://www.iab.com/ 
insights/internet-advertising-revenue-fy2019-q12020/.
2 For an explanation, see https://advertising.amazon.com/solutions/ 
products/sponsored-products.

Figure 3. (Color online) The 0.1 Quantiles and Medians and 0.9 Quantiles in 30 Sample Paths over Time of Click-Numbers of an 
Ad with LF � 1, and CP � 100 
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Notes. (a) Fluid. (b) Fluid-R. (c) Fluid-I-R. (d) Fluid-E-R. (e) DWO.
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3 See Amazon’s 2019 financial report at https://www.sec.gov/ 
ix?doc=/Archives/edgar/data/1018724/000101872420000004/amzn- 
20191231x10k.htm.
4 See https://www.facebook.com/business/help/397103717129942? 
id=1913105122334058.
5 For ease of exposition, we consider the same bid price of advertiser i 
across all customer types (i.e., bi). In practice, an advertiser may set 
different bids for different targeted groups. If we allow viewer-type- 
dependent bid price bj

i, our analysis and results will not be affected.
6 In Online Appendix E, we refer to additional insights on the feasible 
region of the click-through targets. In Online Appendix F, we show 
that if customer click-throughs follow the independent choice model 
(which is widely adopted in practice; see, e.g., Feldman et al. 2022) or 
the generalized attraction choice model (which is more general than 
MNL; see, e.g., Luce 2012, Gallego et al. 2015a), Optimal Target Prob-
lem (OT P) can also be simplified to tractable convex programs.
7 See https://support.google.com/google-ads/answer/2404248?hl=en.
8 When there is no confusion in the context, we drop z∗ and abbrevi-
ate it as the Fluid policy.
9 See the GitHub repository at https://github.com/xlli878/Online_ 
Advertisement_Allocation for the code of our simulations.
10 In Online Appendix J, we regress the click-through on the per- 
period debt for all five algorithms. A high per-period debt of an 
ad-customer pair has a much stronger impact on the potential click- 
throughs under our DWO policy compared with the Fluid, Fluid-R, 
Fluid-I-R, and Fluid-E-R algorithms.
11 See https://developers.facebook.com/docs/marketing-api/bidding/ 
overview/pacing-and-scheduling.
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