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Appendix A: Summary of Notations

Table 1 Summary of Notations

Ri : Retailer i (i= 1,2)
pi : Price of Retailer i
qi : Inventory stocking quantity of Retailer i
αi : Market share/size of Retailer i
Πi : Expected profit of Retailer i
D : Market aggregate demand
s : Unit search cost
c : Procurement cost
v : Product valuation

F (·) : Cumulative distribution function of demand; F̄ (x) := 1−F (x)
f(·) : Density function of demand distribution

x : Customer location on the Hotelling line; x∈M and M= [0,1]
E[·] : Expectation operation

x∧ y : Minimum operation
θi : Customers’ (rational) expectation of Ri’s inventory availability probability

Appendix B: Deterministic Hotelling Model Benchmark

In this section, we introduce the classic Hotelling competition model with deterministic demand as the bench-

mark. The comparison between our base model and the deterministic benchmark could help us crystallize

the impact of demand uncertainty and customers’ availability concern.

We consider the same Hotelling line setup as the base model presented in Section 3.1 but with deterministic

total market size. Specifically, we assume the aggregate market demand D is deterministic and known to

everyone in the market. Without loss of generality, we normalizeD= µ. In the absence of demand uncertainty,

the retailers will order exactly the amount of their respective market share, so every customer will be able

to obtain her requested product. The two retailers R1 and R2 determine their respective prices p1 and p2 to

maximize their own profits, whereas each retailer choose whether and where to visit. As in the base model,

we focus on the equilibrium under competition. Let (p∗
d, q

∗
d) be the equilibrium outcomes, where p∗

d is the

equilibrium price and q∗d is the equilibrium order quantity of each retailer. Similar to the base model in the

main paper, it is straightforward to show that if s is small, R1 and R2 can serve the entire market, each

covering 50% of the customers. If, otherwise, s is too large, there is essentially no competition between the

two retailers and the market is not completely covered. Formally, we characterize the equilibrium prices (with

competition) of the deterministic benchmark in the following lemma, which shows that the equilibrium price

is increasing in s.

Lemma 3. Assume that D = µ with certainty. If s < 2(v−c)

3
, p∗

d = s+ c and q∗d = µ

2
. Each retailer covers

50% of the market.
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Proof of Lemma 3

In a deterministic Hotelling model, the retailers compete on market share by charging their prices. Demand

is determined and public knowledge to all players in the market, so there is no issue of product availability.

Without loss of generality, we shall use retailer R1 as an example in the analysis.

When the search cost s is small, the two retailers cover the entire market. Given price p1 and p2, consumers

located at x ∈ [0,1] visit the retailer R1 if v− p1 − sx≥ v− p2 − s(1− x)≥ 0. Thus, the retailer R1 earns a

market share −p1+p2+s

2s
, and accordingly a profit π1(p1) = (p1 − c)−p1+p2+s

2s
µ. Taking the first derivative of

the profit function yields the retailer’s best response function: p∗
1(p2) =

p2+s+c

2
. Since the two retailers are

symmetric, retailer R2 asks the same optimal price p∗
2(p1) =

p1+s+c

2
to maximize his own profit. Note that

the best response function, p∗
i (p3−i), is increasing in price p3−i, where i ∈ {1,2}, so there exists a unique

equilibrium. In particular, the two retailers have the same optimal solutions in the equilibrium: p∗
d = s+ c,

q∗d =
µ

2
, and each covers half of the market. Finally, to guarantee v− p∗

d − s
2
> 0, we obtain s < 2(v−c)

3
. □

Appendix C: A Two-Stage Model with Customer Switching

In this section, we introduce a two-stage model with customer switching behavior upon stockout (i.e., without

Assumption 1). There are two customer segments in the market: the switching customers (with proportion γ)

and the non-switching customers (with proportion 1−γ). In the first stage, both switching and non-switching

customers visit their focal retailers and purchase the product if it is in stock. In the second stage, if the focal

retailer is out of stock, the non-switching customers will directly leave the market, whereas the switching

customers will switch to the other retailer for substitutes.

Customers’ Problem. We first analyze the customers’ problem in the second stage. Since the non-

switching customers leave the market in the second stage, we only need to analyze the switching customers’

decision problem. Consider a representative switching customer (at location x) who finds the product out of

stock at her focal retailer, R1 (resp. R2). The customer would then switch to R2 (resp. R1) for a substitute

in the second stage or leave the market. To avoid trivial analysis, we assume that the search cost, s, is

small enough such that all switching customers will search for substitutes upon stockout (i.e., the switching

customers earn a non-negative expected utility if switch to the competing retailers for substitutes). Therefore,

the expected net surplus for the customer from switching to R2 (resp. R1) upon stockout at R1 (resp. R2) is:

U12(x) = (v− p2)θ̂2(p1, p2)− s(1− x) (resp. U21(x) = (v− p1)θ̂1(p1, p2)− sx), where θ̂i(p1, p2) is customers’

belief on retailer Ri’s inventory availability in the second stage.

We next examine the switching customers’ choice of visiting the focal retailers by evaluating her expected

utility in the first stage. For a switching customer at location x, her utility to visit R1 (resp. R2) with

the product being available is v − p1 − sx (resp. v − p2 − s(1− x)). Instead, if the product is out of stock,

the customer switches to R2 (resp. R1) with an expected surplus −sx+U12(x) (resp. −s(1− x) +U21(x)).

Hence, the expected total utility of a switching customer located at x to visit R1 (resp. R2) in the first

stage is U1(x) = (v − p1)θ1(p1, p2) − sx + (1 − θ1(p1, p2))U12(x) (resp. U2(x) = (v − p2)θ2(p1, p2) − s(1 −

x) + (1 − θ2(p1, p2))U21(x)), where θi(p1, p2) is customers’ belief on retailer Ri’s inventory availability in

the first stage. The customer chooses to first visit a focal retailer from which she can earn a higher total

expected utility, i.e., Ui(x)≥U3−i(x), and then switches to the competing retailer upon stockout. It is worth
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noting that the consumers’ beliefs on retailer’s inventory availability probabilities in two stages are different,

θi(p1, p2) ̸= θ̂i(p1, p2), as the switching customers can update their beliefs upon stockout.

Finally, we examine the non-switching customer’s choice of visiting the focal retailers. Similar to the base

model, for a non-switching customer at location x, her expected utility to visit R1 (resp. R2) is U1(x) =

(v − p1)θ1(p1, p2)− sx (resp. U2(x) = (v − p2)θ2(p1, p2)− s(1− x)), where θi(p1, p2) is customers’ belief on

retailer Ri’s inventory availability in the first stage. Note that the non-switching and switching customers’

beliefs on retailer’s inventory availability probability are the same in the first stage, as they arrive at the

focal retailers at the same time.

To summarize, there exists a threshold for the switching customers:

xs(p1, p2) =
θ1(p1, p2)

θ1(p1, p2)+ θ2(p1, p2)

(
1+

(v− p1)
[
θ1(p1, p2)− (1− θ2(p1, p2))θ̂1(p1, p2)

]
s

−
(v− p2)

[
θ2(p1, p2)− (1− θ1(p1, p2))θ̂2(p1, p2)

]
s

)
,

such that a switching customer with location x will first patronize R1 (resp. R2) if x ≤ xs(p1, p2) (resp.

x> xs(p1, p2)) and then switch to the other retailer upon stockout. Moreover, there exists another threshold

for the non-switching customers:

x(p1, p2) =
1

2
+

(v− p1)θ1(p1, p2)− (v− p2)θ2(p1, p2)

2s
,

such that a non-switching customer with location x will patronize R1 (resp. R2) only if x≤ x(p1, p2) (resp.

x> x(p1, p2)). The total market size for retailer R1 (resp. R2) is α1(p1, p2) = γ(xs(p1, p2)+(1−θ2(p1, p2))(1−
xs(p1, p2))) + (1 − γ)x(p1, p2) (resp. α2(p1, p2) = γ(1 − xs(p1, p2) + (1 − θ1(p1, p2))xs(p1, p2)) + (1 − γ)(1 −
x(p1, p2))).

Retailer’s Problem. We next analyze the retailer’s pricing and inventory problem. The retailer satisfies

demands from non-switching and switch customers in the first stage. In the second stage, the retailer satisfies

the switching customers’ demand via the remaining on-hand stock. Given market size αi(p1, p2) defined

above, retailer Ri’s profit maximization problem is:

max
(pi,qi)

{piE(αi(p1, p2)D∧ qi)− cqi}.

Therefore, given a price pi, the retailer Ri’s optimal ordering strategy is the newsvendor solution: qi =

αi(p1, p2)F
−1
(

pi−c

pi

)
.

Consumers’ Belief on Inventory Availability Probability. Next, we model the customers’ beliefs

on retailer’s inventory availability probability, staring from the first stage. Similar to the analysis of the

base model, conditioned on the existence of a customer, her belief about retailer Ri’s demand yi in the

first stage is a random variable with probability density function gi(yi|p1, p2) := y

α̃i(p1,p2)µ
f
(

y

α̃i(p1,p2)

)
, where

α̃1(p1, p2) = γxs(p1, p2)+(1−γ)x(p1, p2) and α̃2(p1, p2) = γ(1−xs(p1, p2))+(1−γ)(1−x(p1, p2)). Note that

α̃i(p1, p2) represents retailer Ri’s market size in the first stage (i.e., customers who choose retailer Ri as their

focal retailer). Each customer holds an identical belief about the inventory availability for Ri so we have:

θi(p1, p2) =

∫
y

min{qi, α̃iy}
α̃iy

gi(y|p1, p2)dy.
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In the second stage, switching customers switch for substitutes if their focal retailers are out of stock. The

competing retailers satisfy demand from the switching customers using the stock left from the first stage. For

example, the demand for retailer Ri is [α̃3−i(p1, p2)D− q3−i]
+ and his remaining stock is [qi − α̃i(p1, p2)D]+

in the second stage. Therefore, the customers’ belief about retailer’s inventory availability probability is

θ̂i(p1, p2) =

∫
y

min{(α̃3−i(p1, p2)y− q3−i)
+, (qi − α̃i(p1, p2)y)

+}
(α̃3−i(p1, p2)y− q3−i)+

g(y|p1, p2)dy.

Now, we are ready to characterize the symmetric equilibrium price and inventory decisions of the retailers.

The equilibrium price can be obtained through the following maximization problem:

max
0≤p≤v

Π(p, p∗) = pE [α(p, p∗)D∧ q(p, p∗)]− cq(p, p∗)

s.t. q(p, p∗) = α(p, p∗)F−1

(
p− c

p

)
,

α(p, p∗) = γα1(p, p
∗)+ (1− γ)α2(p, p

∗),

α1(p, p
∗) = xs(p, p

∗)+ (1− θ(p, p∗))(1−xs(p, p
∗)),

α2(p, p
∗) = x(p, p∗),

where α1(p, p
∗) and α2(p, p

∗) represent market size from switching and non-switching customers, respectively.

Appendix D: Proof of Statements

Proof of Proposition 1

Given the equilibrium retailer decisions (p∗, q∗), a customer located at x has an expected payoff of (v −
p∗)θ∗(p∗)− sx, where x ∈ [0,1]. Note that, if the search cost s is small, the retailers compete on both price

and inventory availability and the market M is fully covered under equilibrium. If the search cost s is large,

M is not fully covered in equilibrium and, thus, the retailers do not directly compete with each other. In this

case, the equilibrium outcome satisfies (v− p∗)θ∗(p∗)− sα∗ = 0, where α∗ is the equilibrium market share of

a retailer. Hence, the expected payoff of the customers located at x= α∗ and x= 1−α∗ should be 0. Finally,

when the search cost s is in a medium range, M is fully covered but the two retailers do not compete with

each other. In this case, each retailer covers half of the market share under equilibrium. Thus, we have that

(v− p∗)θ∗(p∗)− 1
2
s= 0. For the rest of our proof, we use R1 as the focal retailer and we shall focus on the

first case where the two retailers compete with each other.

Let p be the price charged by retailer R1 (the focal retailer), p′ be the price charged by retailer R2, α be

the market share of R1, and α′ be the market share of R2. Since the two retailers cover the entire market, a

customer at the intersection of their respective market segments should be indifferent between visiting either

retailer, i.e., (v − p)θ∗(p)− sα = (v − p′)θ∗(p′)− s(1− α′) ≥ 0. Recall that retailer R2 charges price p′, we

next analyze R1’s best response function given price p′, which will be denoted as p∗(p′). We write R1’s profit

as Π(p, p′) := pE(α(p, p′)D ∧ q∗(p, p′))− cq∗(p, p′), where q∗(p, p′) = α(p, p′)F−1( p−c

p
), and its market share

α(p, p′) satisfies the following equilibrium condition (the expected payoff to visit R1 is the same as that to

visit R2): (v− p)θ∗(p)− sα(p, p′) = (v− p′)θ∗(p′)− s(1−α(p, p′)). For simplicity, we rewrite the equilibrium

condition as U(p)− sα(p, p′) = U(p′)− s(1− α(p, p′)), where U(p) = (v − p)θ∗(p). Therefore, for any given

price p′ from retailer R2, the focal retailer’s best price response satisfies p∗(p′), i.e.,

p∗(p′) : = argmax
0≤p≤v

Π(p, p′)

= argmax
0≤p≤v

(
1

2
+

(v− p)θ∗(p)− (v− p′)θ∗(p′)

2s

){
pE
[
D∧F−1

(
p− c

p

)]
− cF−1

(
p− c

p

)}
.
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To find R1’s best response p∗(p′), we take derivative of the profit function Π(p, p′) with respect to price p,

which yields
∂Π(p, p′)

∂p
=

1

2s
U ′(p)π(p)+

(
1

2
+

U(p)−U(p′)

2s

)
π′(p),

where π(p) := pE
(
D∧F−1

(
p−c

p

))
− cF−1

(
p−c

p

)
.

According to Lemma 2, we know that U(p) is decreasing and concave in p for p∈ [p̂, v), where p̂ maximizes

U(p). Moreover, we know that U ′(p) = 0 at p= p̂; U ′(p)< 0 and U(p) = 0 at p= v. Since π(p) is increasing in

p, we have Π′(p)> 0 at p= p̂ and Π′(p)< 0 at p= v. Hence, the first-order condition, Π′(p) = 0, results in a

unique optimal price p∗(p)∈ [p̂, v) when the search cost is sufficiently small. Furthermore, if the two retailers

charge the same equilibrium price p∗, the equilibrium price satisfies the condition U ′(p∗)π(p∗)+ sπ′(p∗) = 0.

Next, we prove the existence and uniqueness of the equilibrium. The implicit function theorem and the

envelope theorem together yield d2p∗(p′)
d(p′)2

= {− ∂
∂p

∂2Π(p,p′)
∂p2

· ∂2Π(p,p′)
∂p∂p′

+ ∂2Π(p,p′)
∂p2

· ∂
∂p′

∂2Π(p,p′)
∂p∂p′

}/( ∂2Π(p,p′)
∂p∂p′

)2. Thus,

it can be easily verified that dp∗(p′)
dp′

> 0 and d2p∗(p′)
d(p′)2

< 0, i.e., p∗(p′) is concavely increasing in p′. In addition,

observe that lim
p′→v

p∗(p′) < v and lim
p′→p̂

p∗(p′) ≥ p̂. Thus, the function p∗(p′)− p′ has a unique root on [p̂, v),

which implies that the best-response function p∗(p′) has a unique fixed point on the interval [p̂, v). In other

words, the equilibrium price p∗ satisfies the equation p∗(p∗)−p∗ = 0, which also implies that the equilibrium

is symmetric. This proves the existence, uniqueness, and symmetry of the equilibrium. By the symmetry of

the equilibrium outcome, we have α∗ = 1
2
and q∗ = 1

2
F
(

p∗−c

p∗

)
under equilibrium. Finally, to complete the

proof, we need to guarantee that the two retailers compete on market share under the equilibrium price p∗.

That is, U(p∗)≥ s
2
, where p∗ is the equilibrium price characterized above. □

Proof of Proposition 2

For the Hotelling model with deterministic demand, the retailer’s market share function is
−p+p∗d+s

2s
(see the

proof of Lemma 3). Hence, the equilibrium price p∗
d can be obtained by the following first-order condition:

− 1

2s
(p− c)µ+

1

2
µ= 0.

Therefore, we obtain the equilibrium price p∗
d = c+ s.

In our base model with demand uncertainty, we have θ(p) = 1
µ

∫∞
0

(
y ∧F−1

(
p−c

p

))
dF (y) and π(p) =

pE
(
D∧F−1

(
p−c

p

))
− cF−1

(
p−c

p

)
= pµθ(p)− cF−1

(
p−c

p

)
. Therefore, under equilibrium, the price satisfies

the following first-order condition (also see the proof of Proposition 1):

−θ(p)+ (v− p)θ′(p)

2s
π(p)+

1

2
µθ(p) = 0. (5)

Clearly, we have θ(p)< 1 and θ′(p)> 0 for any p ∈ [c, v). Moreover, we have π(p)≤ (p− c)µ. The first-order

condition (5) gives the equilibrium price p∗.

Next, we show p∗ > p∗
d = c+ s. Define

g(p) :=
−θ(p)+ (v− p)θ′(p)

2s
(p− c)µ+

1

2
µθ(p) and g(p̂∗) = 0.

Hence, p̂∗ = c+ s θ(p̂∗)
θ(p̂∗)−(v−p̂∗)θ′(p̂∗)

> c+ s= p∗
d. Recall that π(p)≤ (p− c)µ, so (5) implies that p∗ > p̂∗ > p∗

d,

which concludes the proof. □
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Proof of Proposition 3

We first examine the case when γ = 1 (i.e., all customers are switching customers). Assuming that the

competing retailer charges the equilibrium price p∗
s, we know the focal retailer’s (i.e., retailer R1) market

size is:

α(p1, p
∗
s) =

θ∗(p1)θ
∗(p∗

s)

θ∗(p1)+ θ∗(p∗
s)

(
1+

(p∗
s − p1)θ

∗(p∗
s)

s

)
+min

(
(v− p1)θ

∗(p1)

s
,1

)
(1− θ∗(p∗

s)).

Let ϕ1(p1, p
∗
s) :=

θ∗(p1)θ
∗(p∗s)

θ∗(p1)+θ∗(p∗s)
and ϕ2(p1, p

∗
s) :=

(
1+

(p∗s−p1)θ
∗(p∗s)

s

)
, we have

dϕ1(p1, p
∗
s)

dp1

(θ∗(p∗
s))

2

(θ∗(p1)+ θ∗(p∗
s))

2

dθ∗(p1)

dp1
> 0

d2ϕ1(p1, p
∗
s)

dp21
=

(θ∗(p∗
s))

2

(θ∗(p1)+ θ∗(p∗
s))

3

{
d2θ∗(p1)

dp21
[θ∗(p∗

s)+ θ∗(p1)]− 2

(
dθ∗(p1)

dp1

)2
}

< 0,

as d2θ∗(p1)
dp21

< 0. Similarly, we can also obtain
dϕ2(p1,p

∗
s)

dp1
< 0 and

d2ϕ2(p1,p
∗
s)

dp21
= 0. Therefore, the term

ϕ1(p1, p
∗
s)ϕ2(p1, p

∗
s) is concave in p1.

Now, we study the second term of the market size function. Let ϕ3(p1) =
(v−p1)θ

∗(p1)
s

. As shown in Propo-

sition 1, ϕ3(p1) is concave in p1. Hence, the retailer’s market size:

α(p1, p
∗
s) = ϕ1(p1, p

∗
s)ϕ2(p1, p

∗
s)+min(1, ϕ3(p1))(1− θ∗(p∗

s)),

is concave in price p1.

Next, we examine a more general case when a fraction γ of the customers are switching customers and

the rest, 1− γ, are no-switching customers. Note that R1’s market size from the non-switch customers

α(p1, p
∗
s) = (1− γ)

{
1

2
+

(v− p)θ(p)− (v− p∗
s)θ

∗(p∗
s)

2s

}
is convex in price p1. Thus, the retailer’s total market size from the switching customers and non-switching

customers is convex in price p1. Similar to the proof of Proposition 1, the retailer’s profit function can be

written as

Π(p1, p
∗
s) = α(p1, p

∗
s)

{
pE
[
D∧F−1

(
p− c

p

)]
− cF−1

(
p− c

p

)}
,

where α1(p1, p
∗
s) represents the total market size in the presence of both switching customers and non-

switching customers.

Since s is sufficiently small so that all switching customers will switch upon stockout, we have (v −

p∗
s)θ

∗(p∗
s)> s. In this case, the equilibrium price satisfies the first-order condition as follows:{

γ

(
1

4

dθ∗(p∗
s)

dp∗
s

− (θ∗(p∗
s))

2

2s

)
+

(1− γ)U ′(p∗
s)

2s

}
π(p∗

s)+

{
γ

(
1− θ∗(p∗

s)

2

)
+

1− γ

2

}
π′(p∗

s) = 0.

Similar to the proof of Proposition 1, when the search cost s is sufficiently small, the symmetric equilibrium

price p∗
s will the unique root of the above first-order conditions. This concludes the proof. □



Lei, Zhang, Zhang, and Yu: Inventory Commitment and Monetary Compensation under Competition
7

Proof of Proposition 4

Similar to the other proofs, we set R1 as the focal retailer and focus on the case where s is sufficiently small

so that all switching customers will switch to the other retailer for substitutes upon stockout.

Assume that retailer R2 charges the equilibrium price p∗
v and stocks the equilibrium inventory quantity

q∗v . The focal retailer R1 maximizes his profit Π(p, q) := pE(α(p, q)D ∧ q) − cq. First of all, we drive the

equilibrium condition of the market size given that all switching customers will switch upon stocks out.

Recall that R1’s market size is

α(p, q) = γ {xs(p, q)+ [1−xs(p, q)] (1− θv)}+(1− γ)x(p, q),

where xs(p, q) =
θ

θ+θv

{
(p∗v−p)θv

s
+1
}
, x(p, q) = 1

2
+

(v−p)θ−(v−p∗v)θv
2s

, θ = 1
µ

∫∞
y=0

(
y ∧ q

α(p,q)

)
dF (y), θv(p, q) =

1
µ

∫∞
y=0

(
y ∧ q∗

αv

)
f(y)dy, and α(p, q)+αv(p, q) = 1+γ[1−θv+xs(p, q)(θv−θ)]. Clearly, the market size function

is decreasing in price p, i.e., dα(p,q)

dp
< 0, and increasing in quantity q, i.e., dα(p,q)

dq
> 0.

Then, we take the derivative of the profit function, Πv(p, q), with respect to q. The first-order condition

implies that

q∗v(p) = α(p, q∗v(p))F
−1

p− c

p
+

dα(p, q)

dq

∣∣∣∣
q=q∗v(p)

∫ q∗v(p)

α(p,q∗v(p))

0

xdF (x)

 .

Under equilibrium, we have p = p∗
v, q = q∗v(p

∗) = α(p∗
v, q

∗
v)F

−1

(
p∗v−c

p∗v
+

dα(p∗v,q
∗
v)

dq∗v

∫ q∗v
α(p∗v,q∗v)

0 xdF (x)

)
, where

α(p∗
v, q

∗
v) = γ

{
1− 1

2
θ∗
(

q∗v
α(p∗v,q

∗
v)

)}
+ 1−γ

2
.

Comparing the equilibrium order quantity in the focal model, q∗(p)/α(p) = F−1( p−c

p
), and

the equilibrium order quantity in the model with inventory commitment, q∗(p)/α(p, q∗(p)) =

F−1

(
p−c

p
+ dα(p,q)

dq

∣∣
q=q∗(p)

∫ q∗(p)
α(p,q∗(p))

0 xdF (x)

)
:= gv(p), we find that gv(p) shares the same functional prop-

erties as F−1( p−c

p
), which is concavely increasing in p. Moreover, given the same price as in the focal model,

the retailer in the inventory commitment model has a tendency to increase inventory stock.

Next, we examine the equilibrium price given the optimal quantity decision q∗(p) following the path of

symmetric equilibrium. Given R2’s decision, (p, q
∗(p)), R1 maximizes his expected profit:

Π(p) = pE[(α(p)D)∧ q∗(p)]− cq∗(p),

subject to:

α(p) = γ

{
xs(p)+ (1−xs(p))

(
1− θ

(
q∗(p)

αv(p)

))}
+(1− γ)x(p),

xs(p) =
θ
(

q∗(p)
α(p)

)
θ
(

q∗(p)
α(p)

)
+ θ
(

q∗(p)
αv(p)

) (p∗ − p

s
θ

(
q∗(p)

αv(p)

)
+1

)
+

(
1− θ

(
q∗(p)

αv(p)

))
,

x(p) =
1

2
+

1

2s

(
(v− p)θ

(
q∗(p)

α(p)

)
− (v− p∗)θ

(
q∗(p)

αv(p)

))
,

αv(p) = 1−α(p)+ γ

{
1− θ

(
q∗(p)

αv(p)

)
+xs(p)

(
θ

(
q∗(p)

αv(p)

)
− θ

(
q∗(p)

α(p)

))}
.
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To conclude this proof, we need to argue the uniqueness of the symmetric equilibrium price p∗ when the

search cost s is sufficiently small. Due to the complexity of the problem, we examine the first-order condition

that determines the equilibrium price as follows:

Π′(p) = α′(p)π(p)+α(p)π′(p) = 0,

where π(p) = pE
(
D∧ q∗(p)

α(p)

)
− c q∗(p)

α(p)
. Following the same argument as in the proof of Proposition 1, we have

π′(p)> 0, α′(p)∝ 1
s
, and α′′ ∝ 1

s
. As a result, when the search cost s is sufficiently small, there is a unique

solution of the first-order condition and we denote the equilibrium price as p∗
v. Putting everything together,

we know there is a unique symmetric equilibrium (p∗
v, q

∗
v , α

∗
v). □

Proof of Lemma 1

To compare the profit of R1 under different strategies, we first calculate his profit in different circumstances.

We first examine the case where R2 does not reveal his inventory information. In this case, a customer at the

purchasing threshold forms a belief θ2 = θ∗(p2) =
1
µ

∫∞
y=0

(
y ∧F−1( p2−c

p2
)
)
f(y)dy of the inventory availability

probability at R2. A customer will visit R1 first if and only if her expected utility of visiting R1 dominates

that of visiting R2. Therefore, if R1 also does not reveal its inventory information to the market, his market

size α1 is given by

α1(p1) =γ

{
θ∗1(p1)θ

∗
2(p2)

θ∗1(p1)+ θ∗2(p2)

(
1+

θ∗2(p2)(p2 − p1)

s

)
+(1− θ∗2(p2))

}
+(1− γ)

{
1

2
+

(v− p1)θ
∗(p1)− (v− p2)θ

∗(p2)

2s

}
.

(6)

Thus, the maximum profit of R1 if he does not adopt the inventory commitment strategy is

Πd,d := max
0≤p1≤v

{
α1(p1) ·

{
p1E

[
D∧F−1

(
p1 − c

p1

)]
− cF−1

(
p1 − c

p1

)]}
.

Similarly, if R1 adopts the inventory commitment strategy, his market share α1 satisfies the following equa-

tion:

α1(p1, q1) =γ

{
θ∗1(p1, q1)θ

∗
2(p2)

θ∗1(p1, q1)+ θ∗2(p2)

(
1+

θ∗2(p2)(p2 − p1)

s

)
+(1− θ∗2(p2))

}
+(1− γ)

{
1

2
+

(v− p1)θ
∗
1(p1, q1)− (v− p2)θ

∗
2(p2)

2s

}
,

(7)

where θ∗1(p1, q1) =
1
µ

∫∞
y=0

(
y ∧ q1

α1

)
f(y)dy and θ∗2(p2) =

1
µ

∫∞
y=0

(
y ∧F−1( p2−c

p2
)
)
f(y)dy. Therefore, the maxi-

mum profit of R1 if he adopts the inventory commitment strategy is

Πv,d := max
0≤p1≤v,q1≥0

{p1E[α1(p1, q1)D∧ q1]− cq1} ,

where α1 satisfies equation (7).

We now turn our attention to the case where R2 adopts the inventory commitment strategy. If

R1 does not reveal his inventory information to the market, customers form a belief θ1 = θ∗(p1) =

1
µ

∫∞
y=0

(
y ∧F−1( p1−c

p1
)
)
f(y)dy about the inventory availability probability of the retailer. Therefore, the

market size α1 is

α1(p1) =γ

{
θ∗1(p1)θ

∗
2(p2, q2)

θ∗1(p1)+ θ∗2(p2, q2)

(
1+

θ∗2(p2, q2)(p2 − p1)

s

)
+(1− θ∗2(p2, q2))

}
+(1− γ)

{
1

2
+

(v− p1)θ
∗
1(p1)− (v− p2)θ

∗
2(p2, q2)

2s

}
,

(8)
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where θ∗2(p2, q2) =
1
µ

∫∞
y=0

(
y ∧ q2

α2

)
f(y)dy. The maximum profit of R1 is

Πd,v := max
0≤p1≤v

{
α1(p1) ·

{
p1E

[
D∧F−1

(
p1 − c

p1

)]
− cF̄−1

(
c

p1

)]}
.

If R1 adopts the inventory commitment strategy, his market share α1 satisfies the following equation:

α1(p1, q1) =γ

{
θ∗1(p1, q1)θ

∗
2(p2, q2)

θ∗1(p1, q1)+ θ∗2(p2, q2)

(
1+

θ∗2(p2, q2)(p2 − p1)

s

)
+(1− θ∗2(p2, q2))

}
+(1− γ)

{
1

2
+

(v− p1)θ
∗
1(p1, q1)− (v− p2)θ

∗
2(p2, q2)

2s

}
,

(9)

where θ∗1(p1, q1) =
1
µ

∫∞
y=0

(
y ∧ q1

α1

)
f(y)dy and θ∗2(p2, q2) =

1
µ

∫∞
y=0

(
y ∧ q2

α2

)
f(y)dy. The maximum profit of

R1 if he adopts the inventory commitment strategy is

Πv,v := max
0≤p1≤v,q1≥0

{p1E[α1(p1, q1)D∧ q1]− cq1} .

By comparing the profit functions of R1 under different strategy profiles, it is straightforward to observe

that the equilibrium market share of R1 is larger if he commits to an inventory order quantity, regardless

of whether R2 reveals his inventory information. Hence, the profit of R1 will be higher under the inventory

commitment strategy if the retailer commits to an inventory level that leads to the same in-stock probability.

Therefore, regardless of the price and order quantity decisions for R2 and regardless of whether R2 adopts the

inventory commitment strategy, the profit of R1 is higher if he adopts the inventory commitment strategy,

i.e., Πv,d >Πd,d and Πv,v >Πd,v. □

Proof of Proposition 5

First, we prove Π∗
v ≥Π∗ when there is no competition (i.e., s is sufficiently large). In the monopoly model

(without commitment), a retailer’s profit function is

Π(p) = pE(α(p)D∧ q∗(p))− cq∗(p),

where q∗(p) = α(p)F−1( p−c

p
), α(p) = v−p

s
θ∗(p) and θ∗(p) = 1

µ

∫∞
y=0

(
y ∧F−1

(
p−c

p

))
f(y)dy. In the model with

inventory commitment, a retailer’s profit function is

Πv(p, q) = pE(α(p, q)D∧ q)− cq,

where α(p, q) = v−p

s
θ(p, q) and θ(p, q) = 1

µ

∫∞
y=0

(
y ∧ q

α(p,q)

)
f(y)dy. It is clear from the profit functions that,

the two models have the same profit functions but the model without inventory commitment has an additional

constraint q = α(p)F−1( p−c

p
). Hence, Π∗

v =max(p,q)Πv(p, q)≥max
v

Π(p, q(p)) = maxΠ(p) = Π∗. Therefore, if

the search cost s is large such that the market is partially covered by the two retailers, we have Π∗
v ≥Π∗.

Now we turn to the case of full market coverage with customer switching. To begin with, we analyze the

equilibrium pricing policies of both models when s = 0, starting with the focal model. First, we examine

the purchase decision of non-switching customers. When s= 0, R1 attracts demand from all non-switching

customers if

(v− p1)θ
∗(p1)≥ (v− p2)θ

∗(p2).
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Since the expected utility function, (v − p)θ∗(p), is concave in price p, to attract demand from all non-

switching customers, the two retailers compete on offering lower prices when p > p̂ and on offering higher

prices when p≤ p̂, where p̂=max
p

(v− p)θ∗(p).

Next, we examine the purchase decision of switching customers when s= 0. Consider a switching customer

located at x, he will visit R1 first if

(v− p1)θ
∗(p1)+ (v− p2)(1− θ∗(p1))θ

∗(p2)≥ (v− p2)θ
∗(p2)+ (v− p1)(1− θ∗(p2))θ

∗(p1).

Simplifying the above condition, we obtain p1 ≤ p2. That is, if p1 < p2, R1’s market size from the switching

customers is 1; otherwise, if p1 > p2, R1’s market size from the switching customers is 1− θ(p2). Hence, to

compete for the switching customers, the retailers will compete on offering lower prices until p= c.

Now, we analyze the equilibrium price, p∗, for the general case where the market consists of γ portion of

switching customers and 1− γ non-switching customers. First, the equilibrium price should be no greater

than p̂ (p∗ ≤ p̂), as a lower price signals a higher market size thus a higher profit (for example, the retailers

will compete on offering lower prices). Second, given that R2 charges the price p̂, R1’s market size is α(p̂, p̂) =

γ
(
1
2
+ 1

2
(1− θ(p̂))

)
+ (1− γ) 1

2
if he charges the price p= p̂. However, if R1 decreases price to p= p̂− ϵ, his

market size will be α(p̂− ϵ, p̂) = γ (all the switching customers will visit R1, while all the non-switching

customers will vist R2.). Therefore, the equilibrium price will be p̃∗ = p̂ when α(p̂, p̂) ≥ α(p̂− ϵ, p̂), which

gives the condition p̂≤ θ−1
(

1−γ

γ

)
. Finally, we examine the region where R2 charges a price p2 < p̂. Similarly,

R1’s market size is α(p2, p2) = γ
(
1
2
+ 1

2
(1− θ(p2))

)
+(1− γ) 1

2
if he charges the same price p= p2. However,

if R1 decreases price to p2 − ϵ, R1’s the market size is α(p2 − ϵ, p2) = γ. Clearly, the equilibrium price is the

one that gives a zero marginal increase in market size. Hence, we have p∗ = θ−1
(

1−γ

γ

)
. Combining all the

cases above, we have

p̃∗ =min

{
p̂, (θ∗)−1

(
1− γ

γ

)}
,

where p̂=max
p

(v− p)θ∗(p). Since p̃∗ > c, we have Π∗ > 0 in the focal model when s= 0.

We now consider the model with inventory commitment given s = 0. According to the first-order

condition with respect to q, the retailer’s optimal order quantity q∗v(p) satisfies the equation q∗v(p) =

α∗
vF

−1

(
p−c

p
+ dα(p,q)

dq
|q=q∗v(p)

∫ q∗v(p)

α∗
v

0 xf(x)dx

)
. Since we have dα(p,q)

dq
|q=q∗v(p)

> 0, for any given price p, the

retailer tends to stock more under inventory commitment, i.e., q∗v(p)≥ q∗(p).

Similar to the analysis of the equilibrium price in the focal model when s= 0, we have:

p∗
v =min

{
p̂v, (θ

∗
v)

−1

(
1− γ

γ

)}
,

where p̂v =max
p

(v−p)θ∗v(p, q
∗(p)). Clearly, we have p∗

v ≤ p∗ since the same price in the model with inventory

commitment signals a higher quantity and thus a higher inventory availability in the equilibrium. Further,
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note that if c→ 0, the optimal inventory availability in the model of inventory commitment is no less than

that in the base model, θ∗v ≥ θ∗. Therefore, we have

Π∗ = p∗E (α∗D∧ q∗)− cq∗

= α∗
{
p∗E

(
D∧F−1

(
p∗ − c

p∗

))
− cF−1

(
p∗ − c

p∗

)}
≥ α∗

v

{
p∗E

(
D∧F−1

(
p∗ − c

p∗

))
− cF−1

(
p∗ − c

p∗

)}
≥ α∗

v

{
p∗
vE
(
D∧F−1

(
p∗
v − c

p∗
v

))
− cF−1

(
p∗
v − c

p∗
v

)}
≥ p∗

vE (α∗
vD∧ q∗v)− cq∗v =Π∗

v.

The first inequality follows that α∗ = γ

(
1

2
+

1

2
(1− θ∗)

)
+(1− γ)

1

2
≥ γ

(
1

2
+

1

2
(1− θ∗v)

)
+(1− γ)

1

2
= α∗

v as

θ∗ ≤ θ∗v . The second inequality follows from p∗ ≥ p∗
v. The third inequality follows from q∗v ̸= α∗

vF
−1
(

p∗v−c

p∗v

)
(where the quantity q∗v = α∗

vF
−1
(

p∗v−c

p∗v

)
is the optimal quantity that maximizes the profit function given the

price p∗
v). Therefore, the inventory commitment strategy results in a lower profit when s= 0 and c→ 0.

Finally, the two equilibrium profits, Π∗ and Π∗
v, are both continuous in s and c. Moreover, we have just

shown that lim
s,c→0

Π∗ > lim
s,c→0

Π∗
v. Thus, there exist two thresholds s̄v (for s) and c̄v (for c), such that Π∗

v <Π∗

if s < s̄v and c < c̄v. □

Proof of Proposition 6

We continue to use retailer R1 as the focal retailer. Analogous to the proof of Proposition 1, we will focus

on the case when the unit travel cost s is small such that the retailers compete with each other with full

customer switching in equilibrium.

Given the equilibrium price p∗ and equilibrium compensation m∗, the expected profit of retailer R1 is

Π(p1,m1) = (p1 +m1)E(α1D∧ q∗(p1 +m1))− cq∗(p+m1)−α1m1µ,

where q∗(p1 +m1) = α1F
−1( p1+m1−c

p1+m1
) and µ=E(D). The market size is

α1 =γ

{
θ1θ

∗

θ1 + θ∗

(
(p∗ +m∗)− (p1 +m1)

s
θ∗ +1

)
+

θ∗(m1θ
∗ −m∗θ1)

s(θ1 + θ∗)
+ (1− θ∗)

}
+(1− γ)

{
1

2
+

[v− (p1 +m1)]θ1 − [v− (p∗ +m∗)]θ∗ +(m1 −m∗)

2s

}
,

where θ = 1
µ

∫∞
y=0

(
y ∧F−1

(
p+m−c

p+m

))
dF (y). For ease of exposition, we define t1 = p1 +m1, which refers to

the effective marginal revenue of the product. Hence, the problem can be rewritten as

Π(t1,m1) = α1

{
t1E

(
D∧F−1

(
t1 − c

t1

))
− cF−1

(
t1 − c

t1

)
−m1µ

}
s.t. α1(t1,m1) =γ

{
θ1θ

∗

θ1 + θ∗

(
t∗ − t1

s
θ∗ +1

)
+

θ∗(m1θ
∗ −m∗θ1)

s(θ1 + θ∗)
+ (1− θ∗)

}
+(1− γ)

{
1

2
+

(v− t1)θ1 − (v− t∗)θ∗ +(m1 −m∗)

2s

}
,

where θ= 1
µ

∫∞
y=0

(
y ∧F−1

(
t−c
t

))
dF (y). It can be shown that the market size function is concave in t1. Let

π(t1,m1) = t1E
(
D∧F−1

(
t1−c

t1

))
− cF−1

(
t1−c

t1

)
−m1µ. Following the path of symmetric equilibrium and

the same argument in the proof of Proposition 1, when the search cost is sufficiently small, we can show
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that the expected profit of R1 is concave in t1, which further implies a unique equilibrium t∗. Given t∗, we

next examine the retailer’s best compensation response. Since π(t∗,m1) is linearly decreasing in m1 and the

market size is linearly increasing in m1, the expected profit of R1 is concave in m1. Hence, we have a unique

best compensation response m∗(t∗). Therefore, we obtain a unique symmetric equilibrium (p∗
c ,m

∗
c). □

Proof of Proposition 7

We start the proof by verifying two extreme cases. We first consider the case when the search cost is zero

(i.e., s = 0). In this case, the two retailers compete on offering higher consumer expected payoff, because

α′(p,m)→−∞. For example, the expected payoff is U(p1 +m1) +m1 − sx for a non-switching customer

located at x ∈ [0,1] who chooses to visit R1. The first term, U(p1 + m1), is concave with its maximum

value, U(p̂), at p1 +m1 = p̂. The second term is linearly increasing in m1. Similarly, the expected payoff is

U(p1 +m1) +m1 − sx+ (U(p2 +m2) +m2 − s(1− x))(1− θ1) for a switching customer located at x ∈ [0,1]

who visits R1 first. According to the expected utility of customers (switching customers and non-switching

customers), retailers can always capture the entire market by continuously increasing compensation m.

However, each retailer’s profit function is strictly decreasing in compensation m, so the retailers have to

stop raising compensation at zero profit. Therefore, each retailer obtains zero profit under equilibrium when

s= 0. In contrast, each retailer charges price p= p∗ in the base model, as shown in the proof of Proposition

5. Since we always have p∗ > c, each retailer must have a positive profit in the base model. Therefore, we

have Π∗ >Π∗
c when s= 0.

We next examine the case when the search cost is large. In this case, the two retailers have no direct compe-

tition (i.e., partial market coverage). In the model with monetary compensation, each retailer maximizes his

profit α(p+m)
{
(p+m)E(D∧F−1( p+m−c

p+m
)))− cF−1( p+m−c

p+m
)−mE(D)

}
, where α(p+m) = U(p+m)

s
. In the

base model, each retailer maximizes its profit α(p)
{
(p)E(D∧F−1( p−c

p
))− cF−1( p−c

p
)
}
, where α(p) = U(p)

s
.

The profit function in the model of monetary compensation restores to the profit function in the base model

when m= 0. Since m is a free variable, the base model is a special case of the monetary compensation model

when s= 0. In other words,

Π∗
c =max

(p,m)
Πc(p,m)≥max

p
Πc(p,0) =max

p
Π(p) =Π∗.

Therefore, we have Π∗
c ≥Π∗ when s→∞.

Finally, recall that Π∗ and Π∗
c are continuous in s. We have already obtained that Π∗ > Π∗

c when s= 0;

and that Π∗
c ≥Π∗ when s→∞. Therefore, there exists a threshold s̄c such that Π∗

c <Π∗ if s < s̄c. □

Proof of Lemma 2

We first show that the customer’s expected payoff function is concave in price p. We start by exam-

ining the average surplus for non-switching customers, CS1(p) = (v − p)θ∗(p) − s
4
, where θ∗(p) =

1
µ

∫∞
y=0

(
y ∧F−1

(
p−c

p

))
f(y)dy. We have d2CS1(p)

dp2
= −2 dθ∗(p)

dp
+ (v − p) d2θ∗(p)

dp2
. Clearly, if d2θ∗(p)

dp2
< 0, then

CS1(p) is concave in price p. Note that

µ
dθ∗(p)

dp
=

c
p

f
(
F−1

(
pi−c

pi

)) c

p2
=

1−F
(
F−1

(
pi−c

pi

))
f
(
F−1

(
pi−c

pi

)) c

p2
,
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which is strictly decreasing in p given that D follows a distribution with an increasing failure rate. Hence,

θ∗(p) is concave in p and thus, the average surplus for non-switching customers is also concave in p.

Next, we examine the average surplus for switching customers, CS2(p) = (v − p)(2− θ∗(p))θ∗(p)− s(1−
3
4
θ∗(p)). Clearly, the second term, −s[1 − (1 − x)θ∗(p)], is concave in p. Hence, the concavity of surplus

function CS2(p) boils down to the concavity of term (v− p)(2− θ∗(p))θ∗(p). Taking the second derivative of

the term yields:

d2

dp2
[(v− p)(2− θ∗(p))θ∗(p)] =−2p

dg(θ∗)

dθ∗
dθ∗(p)

dp
+(v− p)

(
d2g(θ∗)

d(θ∗)2
dθ∗(p)

dp
+

dθ∗(p)

dp

d2θ∗(p)

dp2

)
,

where g(θ∗) = (2− θ∗(p))θ∗(p) and θ∗(p)∈ [0,1]. Since dg(θ∗)
dθ∗

> 0 and d2g(θ∗)
d(θ∗)2

< 0, the first term is concave in

price p. Thus, the average surplus for switching customers is also concave in price p. Finally, recall that the

total average customers’ surplus is a weighted summation of the average surplus functions of the two customer

segments, therefore, the total average customers’ surplus, CS(p), is concave in price p. From CS′(p) = 0, the

expected payoff function CS(p) is maximized at p= p̂.

Next, we show that the equilibrium price in the focal model falls into the interval [p̂, v). First, we prove

that Π(p̂) > Π(p′) for any p′ < p̂. Without loss of generality, we use retailer R1 for illustration. Suppose

retailer R1 decreases the price from p̂ to p′, his market size will decrease, because the expected payoff of

the customers is maximized at the price p= p̂. As a result, by decreasing price from p̂ to p′, the retailer will

induce a lower demand and a strictly lower profit margin. This implies that Π(p̂)>Π(p′). Thus, the retailer

should charge a price p≥ p̂. Next, we show that the equilibrium price cannot exceed v. If the price is greater

than or equal to the product valuation, i.e., p≥ v, no customer can afford the product, which further implies

that the demand is zero and the retailer earns zero profit. Therefore, the retailer’s optimal price must be

within the range of [p̂, v).

Finally, we show that the social welfare function is concave in price p. Similar to the proof of the average

customers’ surplus, we fist examine the social welfare from non-switching customers. We have SW1(p) =

vµθ(p∗)− cF−1
(

p∗−c

p∗

)
− µs

4
and

dSW1(p)

dp
=

c2

p2

(
v− p

p

)
1

f
(
F−1

(
p∗−c

p∗

)) =
c

p

(
v− p

p

) 1−F
(
F−1

(
p∗−c

p∗

))
f
(
F−1

(
p∗−c

p∗

)) > 0.

Since the demand, D, has an increasing failure rate, SW1(p) is increasing and concave in p. Now, we examine

the social welfare function from switching customers: SW2 = (2− θ(p))
[
vµθ(p)− cF−1

(
p−c

p

)]
− µs

4
− (1−

θ(p)) 3µs
4
. We have

dSW2(p)

dp
=

c2

µp3
1

f
(
F−1

(
p∗−c

p∗

)) {(2− θ∗(p))(v− p)µ−
(
vµθ∗(p)− cF−1

(
p− c

p

))
+

3µs

4

}

=
c

µp2

1−F
(
F−1

(
p∗−c

p∗

))
f
(
F−1

(
p∗−c

p∗

)) {
(2− θ∗(p))(v− p)µ−

(
vµθ∗(p)− cF−1

(
p− c

p

))
+

3µs

4

}
.

Note that the term in the bracket, (2−θ∗(p))(v−p)µ−
(
vµθ∗(p)− cF−1

(
p−c

p

))
+ 3µs

4
, is decreasing in price

p. Since the term
1−F

(
F−1

(
p∗−c
p∗

))
f(F−1( p∗−c

p∗ ))
is decreasing in p due to the increasing failure rate of the demand, the

social welfare function is concave in p. Finally, since the total social welfare function is a weighted summation

of the social welfare functions from the two customer segments, the total social welfare function SW (p) is

concave in price p. □
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Proof of Proposition 8

We first compare the two social welfare functions. Clearly, we have p∗ ≤ p∗
b because p∗

b is the maximum price

that allows full market coverage and customer switching. Recall that the average consumer surplus function

is decreasing in price p∈ [p̂, v) and p∗ ∈ [p̂, v), thus we have CS∗ ≥CS∗
b .

Now, we compare the two social welfare functions. We start by examining the social welfare when the

market has non-switching customers only (i.e., γ = 0). According to the proof of lemma 2, we have

dSW (p)

dp
=

c2

p2

(
v− p

p

)
1

f
(
F−1

(
p∗−c

p∗

)) .
Clearly, we have dSW (p)

dp
> 0. Therefore, the social welfare function is strictly increasing in p. Recall that we

have p∗ ≤ p∗
d, SW

∗ ≤ SW ∗
b when γ = 0.

Next, we examine the case when the market has switching customers only (i.e., γ = 1). As shown in the

proof of Proposition 5, the switching customers will always visit the retailer with lower price first, so the

retailer who charges a lower price attract more demand. As a result, the retailers compete on offering lower

prices when γ = 1. In equilibrium, we have p∗ = c, so the retailers stock zero inventory and thus we have

SW ∗ = 0. In contrast, the social welfare in the benchmark model is SW ∗
b > 0 as θ(p∗

b)> 0. Hence, we have

SW ∗ ≤ SW ∗
b when γ = 1.

Finally, when the market consists of both customer types, the equilibrium price will be lower than the

equilibrium price when γ = 0 and higher than that when γ = 1. Since we have proved that the market

competition will lead to a lower social welfare when the market has non-switching customers and switching

customers, respectively, we have SW ∗ ≤ SW ∗
b . □

Proof of Proposition 9

First, we show SC∗
c ≥ SC∗. Suppose the market follows the equilibrium path of the model without monetary

compensation and achieves equilibrium solutions (p∗, q∗). In this case, the monetary compensation m∗ = 0.

Now, we allow the retailers to pay compensation to consumers. Accordingly, the equilibrium compensation

switches from m∗ = 0 to m∗
c ≥ 0. A higher compensation rate increases consumer surplus and thus helps

retailers earn more market share (but decreases its marginal revenue). If m∗
c = 0, the retailers have no

incentives to compete more in market share, so the two models result in the same consumer surplus. Ifm∗
c > 0,

the two retailers have incentives to compete more in market share, so a positive compensation rate raises

consumer surplus. In short, since we always have m∗
c ≥m∗ = 0, offering non-negative monetary compensation

to customers upon stock can always increases the equilibrium average customer surplus, i.e., SC∗
c ≥ SC∗.

Next, we show SC∗
v ≥ SC∗. Similarly, suppose the market follows the equilibrium path of the base model

and achieves equilibrium solution (p∗, q∗). Now, we allow the retailers to announce quantity information to

the market. As a result, the market switches to a new equilibrium path (p∗
v, q

∗
v) under inventory commitment.

In the case of inventory commitment, the retailers are motivated to increase quantity and decrease price.

First, the retailers have incentives to increase quantity. Assume the equilibrium price p∗ is unchanged.

Once the retailers commit inventory to the market, the inventory quantity must not decrease. The argument

is as follows. On one side, decreasing quantity decreases consumer surplus and thus decreases market share.
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One the other side, deviating from the critical fractile quantity (q= αF−1( p−c

p
)) decreases marginal revenue.

As a result, by decreasing inventory quantity, the retailers must earn less profit, so the inventory quantity

must not be decreased. However, the retailers may increase quantity. Although increasing stock quantity also

deviates from the critical fractile quantity and thus decreases the marginal revenue, it raises market share by

offering higher product availability. Thus, the retailers may earn a higher profit by increasing stock quantity.

Therefore, given the equilibrium price, the retailers may choose to increase quantity.

Second, the retailers have incentives to decrease price. Similarly, assume the equilibrium quantity q∗ is

unchanged, the retailers have no incentives to increase retail price. The argument is as follows. On one side,

increasing price decreases consumer surplus and thus decreases market share. One the other side, deviating

from the critical fractile price (p= c/(1−F ( q

α
))) decreases marginal revenue. As a result, by increasing price,

the retailers must earn less profit, so the retail price must not be increased. However, retailers may decrease

price. Although decreasing price also deviates from the critical fractile price and thus reduces the marginal

revenue, it raises market share. In other words, the retailers may earn a higher profit by decreasing price.

Therefore, given the equilibrium quantity, the retailers may choose to decrease price.

In sum, once the retailers adopt the inventory commitment strategy, we have q∗v ≥ q∗ and(or) p∗
v ≤ p∗. Since

increasing quantity and decreasing price are both beneficial to the consumers’ surplus, we have SC∗
v ≥ SC∗.

□

Proof of Proposition 10

We focus on analyzing two extreme cases.

Case I. A sufficiently small search cost (i.e., s ↓ 0). In this case, the entire market is fully covered with

customer switching. As shown in the proof of Proposition 5, the equilibrium profit and quantity are positive

in the focal model, so SW ∗ > 0. However, the retailer’s profit under the inventory commitment and monetary

compensation strategies are close to zero as s ↓ 0, so the retailer will stock zero quantity, provide zero product

availability, which leads to zero social welfare. Therefore, we have SW ∗
v <SW ∗ and SW ∗

c <SW ∗.

Case II. A large search cost. In this case, the entire market has no competition (i.e., the customer at the

border has a surplus exactly equal to 0 to patronage the focal retailer) and customer switching. Moreover,

each retailer can be viewed as a monopolist that serves a separate market (with a market size α< 1
2
). Su and

Zhang (2008) have proved that the inventory commitment and monetary compensation strategies provide a

higher order quantity in the monopoly setting, so we have θ∗(p∗
v) > θ∗(p∗) and θ∗(p∗

c) > θ∗(p∗). Recall the

social fare function is increasing in product availability without customer switching, so SW ∗
v > SW ∗ and

SW ∗
c >SW ∗.

Finally, recall that the social welfare functions are continuous in equilibrium price p∗ and the equilibrium

price p∗ is continuous in s, we conclude that: (1) there exists a threshold svw and we have SW ∗
v < SW ∗ if

s < svw; and (2) there exists a threshold scw and we have SW ∗
c <SW ∗ if s < scw. □


