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Online Appendix to “Carpool Services for Ride-sharing Platforms: Price and
Welfare Implications”

The following lemma establishes the convexity of the cost function C(·) and is, therefore, useful throughout

the proof of our technical statements.

Lemma 3. Assume that G(·) satisfies the log-concave property. Then C(y) := yG−1(y) is convexly increas-

ing in 0≤ y≤ 1.

Proof. Let h(x) := logG(x). Since h(x) is concave, we have h′′(x) = G′′(x)·G(x)−(G′(x))2

(G(x))2
≤ 0, which implies

G′′(x) ·G(x)≤ (G′(x))2 (13)

To show C(y) is convexly increasing in y, it suffices to show that C ′(y) ≥ 0 and C ′′(y) ≥ 0. Since G(·) is

non-decreasing and by the inverse function theorem, we have C ′(y) = G−1(y) + y · (G−1)′(y) = G−1(y) +

y

G′(G−1(y))
≥ 0. It then follows that

C ′′(y) = (G−1)′(y) +
G′(G−1(y))− y · [G′′(G−1(y)) · (G−1)′(y)]

(G′(G−1(y)))2

=
1

G′(G−1(y))
+
G′(G−1(y))− y · G

′′(G−1(y))

G′(G−1(y))

(G′(G−1(y)))2
=

2(G′(G−1(y)))2− y ·G′′(G−1(y))

(G′(G−1(y)))3
≥ 0

where the last inequality follows from y=G(x) and (13). Q.E.D.

Proof of Proposition 1.

We write Πn(s, k) = λ̄vn(1− sn)sn −KC(k/K). Clearly, Πn(s, k) is decreasing in k, so λ̄Tns̃
∗
n = ρmaxk̃

∗
n.

Plugging this into Πn(s, k), we have that it suffices to solve the optimization problem:

s̃∗n = arg max
s

f(s) := λ̄vn(1− s)s−KC
(
λ̄Tns

ρmaxK

)
subject to the constraints s∈ [0,1] and λ̄Tns

ρmax
≤K.

When λ̄ increases: 1(a) s̃∗n is decreasing in λ̄: We have f ′(s) = λ̄vn(1− 2s)− λ̄Tn
ρmax

C ′
(

λ̄Tns

ρmaxK

)
. Let s∗

satisfy f ′(s∗) = 0, which is unique. We have s̃∗n = min{s∗, (Kρmax)/(λ̄Tn)}. It is easy to check that s∗ and

(Kρmax)/(λ̄Tn) are both decreasing in λ̄. Hence, s̃∗n is decreasing in λ̄.

1(b) λ̄s̃∗n is increasing in λ̄: Let λ̄s := λ. We have f(s) = g(λ) = vn
(
1− λ

λ̄

)
λ − KC

(
λTn
ρmaxK

)
. Thus, we

have g′(λ) = vn
(
1− 2λ

λ̄

)
− Tn

ρmax
C ′
(

Tnλ

ρmaxK

)
. Let λ∗ satisfies g′(λ∗) = 0, so λ̄s̃∗n = min{λ∗, (Kρmax)/Tn}. Since

g′(λ∗) = 0 implies that λ∗ ≤ 0.5λ̄, λ∗ is increasing in λ̄. Thus, λ̄s̃∗n is also increasing in λ̄.

1(c) p̃∗n is increasing in λ̄: It follows immediately that p̃∗n = (1− s̃∗n)vn/dn is increasing in λ̄.

1(d) k̃∗n is increasing in λ̄: Note that k̃∗n = λ̄s̃∗nTn/ρmax. By (b), k̃∗n is increasing in λ̄.

1(e) w̃∗n is increasing in λ̄: Note that w̃∗n = k̃∗n/(λ̄s̃
∗
ndn)G−1(

k̃∗n
K

) = Tn/(ρmaxdn)G−1(k̃∗n/K). Since k̃∗n is

increasing in λ̄, w̃∗n is also increasing in λ̄.

1(f) Π̃∗n is increasing in λ̄: By the envelope theorem, Π̃∗n = maxΠn(s, k) is continuously differentiable in λ̄

with
∂Π̃∗n
∂λ̄

= vn(1− s∗b)s∗b > 0. Thus, Π̃∗n is increasing in λ̄.

When K increases: 2(a) s̃∗n is increasing in K: As shown in part 1(a), s̃∗n = min{s∗, (Kρmax)/(λ̄Tn)},
where s∗ satisfies f ′(s∗) = 0. It is easy to check that s∗ and (Kρmax)/(λ̄Tn) are both increasing in K. Hence,

s̃∗n is also increasing in K.
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2(b) p̃∗n is decreasing in K: By part 2(a), it follows immediately that p̃∗n = (1− s̃∗n)vn/dn decreases in K.

2(c) k̃∗n is increasing in K: Note that k̃∗n = λ̄s̃∗nTn/ρmax. By part 2(a), k̃∗n is increasing in K.

2(d) k̃∗n/K is decreasing in K: Let z := k/K. We have f(s) = h(z) = λ̄vn

(
1− ρmaxKz

λ̄Tn

)
ρmaxKz

λ̄Tn
−KC(z).

Thus, we have h′(z) = λ̄vn

(
ρmaxK

λ̄Tn
− 2

(
ρmaxK

λ̄Tn

)2

z

)
−KC ′(z). Let z∗ satisfies h′(z∗) = 0. By

k̃∗n
K

=
λ̄Tns̃

∗
n

ρmaxK
and

s̃∗n ≤ 1, we then have k̃∗n/K = min{z∗,1, λ̄Tn
ρmaxK

}. It is easy to check that if K increases, z∗ will decrease. Since

λ̄Tn
ρmaxK

is also decreasing in K, k̃∗n/K is decreasing in K.

2(e) w̃∗n is decreasing in K. Note that w̃∗n = k̃∗n/(λ̄s̃
∗
ndn)G−1(

k̃∗n
K

) = Tn/(ρmaxdn)G−1(k̃∗n/K). Since k̃∗n/K is

decreasing in K, w̃∗n is also decreasing in K.

2(f) Π̃∗n is increasing in K. Since G−1
(
k
K

)
is decreasing K, Πn(s, k) = λ̄vn(1−s)s−kG−1

(
k
K

)
is increasing

in K. Furthermore, the constraint k≤K is less tight as K increases. Thus, Π̃∗n = max Πn(s, k) is increasing

in K as well. Q.E.D.

Proof of Lemma 2. We prove joint concavity by showing that the Hessian matrix of fp(·) is negative

semidefinite, or alternatively, its leading principal minors have alternate signs. Taking derivatives and by

vn = vp + ∆, we have

∂fp(sn, sp)

∂sn
= λ̄[−2vnsn− 2spvp + vn]− λ̄Tn

ρmax

C ′
(
λ̄( 1

m
spTp + snTn)

ρmaxK

)
,

∂fp(sn, sp)

∂sp
= λ̄[−2vpsn− 2spvp + vp]−

λ̄Tp
mρmax

C ′
(
λ̄( 1

m
spTp + snTn)

ρmaxK

)
.

It then follows that
∂2fp(sn,sp)

∂s2n
=−2vnλ̄− λ̄2T2

n

ρ2maxK
C ′′
(
λ̄( 1
m
spTp+snTn)

ρmaxK

)
≤ 0 because C(·) is convexly increasing.

Similarly, we have
∂2fp(sn,sp)

∂s2p
=−2vpλ̄−

λ̄2T2
p

m2ρ2maxK
C ′′
(
λ̄( 1
m
spTp+snTn)

ρmaxK

)
≤ 0. It remains to show

∂2fp(sn, sp)

∂s2
n

· ∂
2fp(sn, sp)

∂s2
p

≥
(
∂2fp(sn, sp)

∂sp∂sn

)2

. (14)

It is straightforward to check that (14) holds if and only if

2λ̄2vpvn +
λ̄3T 2

p αvn

m2ρ2
maxK

+
λ̄3T 2

nαvp
ρ2

maxK
≥ 2λ̄2v2

p +
2λ̄3TpTnαvp
mρ2

maxK
, (15)

where α := C ′′
(
λ̄( 1
m
spTp+snTn)

ρmaxK

)
. Since vn ≥ vp and α≥ 0, a sufficient condition for (15) to hold is T 2

p vn +

m2T 2
nvp ≥ 2mTpTnvp, which is clearly true since vn ≥ vp and (Tp−mTn)2 ≥ 0. Q.E.D.

Proof of Proposition 2. We first show that if ∆ = 0, s∗n = 0. If ∆ = 0,

fp(sn, sp) = λ̄ [(1− sn− sp)(sn + sp)vn]−KC
(
λ̄( 1

m
spTp + snTn)

ρmaxK

)
.

Assume to the contrary that s∗n > 0. Let ε > 0 be small enough such that s′n = s∗n− ε≥ 0, s′p = s∗p + ε. Since

Tn >
Tp

m
, we have

λ̄( 1
m
s′pTp + s′nTn)

ρmaxK
=
λ̄( 1

m
(s∗p + ε)Tp + (s∗n− ε)Tn)

ρmaxK
=
λ̄( 1

m
s∗pTp + s∗nTn)

ρmaxK
+
λ̄( 1

m
Tp−Tn)ε

ρmaxK
<
λ̄( 1

m
s∗pTp + s∗nTn)

ρmaxK
.

Thus,

C

(
λ̄( 1

m
s′pTp + s′nTn)

ρmaxK

)
<C

(
λ̄( 1

m
s∗pTp + s∗nTn)

ρmaxK

)
.
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In addition, (1− s′n− s′p)(s′n + s′p)vn = (1− s∗n− s∗p)(s∗n + s∗p)vn. Hence,

fp(s
′
n, s
′
p) =λ̄

[
(1− s′n− s′p)(s′n + s′p)vn

]
−KC

(
λ̄( 1

m
s′pTp + s′nTn)

ρmaxK

)

>λ̄
[
(1− s∗n− s∗p)(s∗n + s∗p)vn

]
−KC

(
λ̄( 1

m
s∗pTp + s∗nTn)

ρmaxK

)
= fp(s

∗
n, s
∗
p).

Therefore, s∗n = 0 if ∆ = 0.

We now show that if ∆ = vn, s∗p = 0. If ∆ = vn, we have fp(sn, sp) := λ̄ [(1− sn)vnsn] −
KC

(
λ̄( 1
m
spTp+snTn)

ρmaxK

)
. Since C(·) is convexly increasing, fp(sn, sp) is decreasing in sp for all sn. Therefore,

s∗p = 0 if ∆ = vn.

Next, we show that s∗n is increasing in ∆. Assume ∆̂>∆, f̂p(·, ·) is the profit function associated with ∆̂,

and (ŝ∗n, ŝ
∗
p) is the maximizer of f̂p(·, ·). Assume to the contrary that ŝ∗n < s∗n. Then we have ∂sn f̂p(ŝ

∗
n, ŝ
∗
p)≤

0≤ ∂snfp(s∗n, s∗p). Therefore,

−2λ̄vns
∗
n−2λ̄(vn−∆)s∗p+λ̄vn−

λ̄Tn

ρmax

C′

(
λ̄( 1

m
s∗pTp + s∗nTn)

ρmaxK

)
≥−2λ̄vnŝ

∗
n−2λ̄(vn−∆̂)ŝ∗p+λ̄vn−

λ̄Tn

ρmax

C′

(
λ̄( 1

m
ŝ∗pTp + ŝ∗nTn)

ρmaxK

)
,

which implies that

y∗− ŷ∗ ≤ 2vn(ŝ∗n− s∗n) + 2(vn− ∆̂)ŝ∗p− 2(vn−∆)s∗p, (16)

where

y∗ :=
Tn
ρmax

C ′

(
λ̄( 1

m
s∗pTp + s∗nTn)

ρmaxK

)
and ŷ∗ :=

Tn
ρmax

C ′

(
λ̄( 1

m
ŝ∗pTp + ŝ∗nTn)

ρmaxK

)
.

If ŝ∗p ≤ s∗p, the convexity of C(·) suggests that y∗ − ŷ∗ > 0. Since ŝ∗n < s∗n, ∆̂ > ∆, and ŝ∗p ≤ s∗p, we have

2vn(ŝ∗n − s∗n) + 2(vn − ∆̂)ŝ∗p − 2(vn −∆)s∗p < 0. This forms a contradiction. Thus, we have ŝ∗p > s∗p. It then

follows that ∂sp f̂p(ŝ
∗
n, ŝ
∗
p) ≥ 0 ≥ ∂spfp(s∗n, s∗p). Therefore, we have (vn − ∆̂)(1− 2ŝ∗n − 2ŝ∗p)−

Tp

mTn
ŷ∗ ≥ (vn −

∆)(1− 2s∗n− 2s∗p)−
Tp

mTn
y∗. It then follows that

y∗− ŷ∗ ≥mTn
Tp

((vn−∆)(1− 2s∗n− 2s∗p)− (vn− ∆̂)(1− 2ŝ∗n− 2ŝ∗p))

≥(vn−∆)(1− 2s∗n− 2s∗p)− (vn− ∆̂)(1− 2ŝ∗n− 2ŝ∗p)

=(∆̂−∆) + 2(vn− ∆̂)ŝ∗n− 2(vn−∆)s∗n + 2(vn− ∆̂)ŝ∗p− 2(vn−∆)s∗p

>2(vn−∆)(ŝ∗n− s∗n) + 2(vn− ∆̂)ŝ∗p− 2(vn−∆)s∗p

>2vn(ŝ∗n− s∗n) + 2(vn− ∆̂)ŝ∗p− 2(vn−∆)s∗p,

(17)

where the second inequality follows from Tn >
1
m
Tp and s∗n + s∗p ≤ 0.5 (which will be shown later in (19)),

the third inequality follows from ŝ∗n < s∗n, and the last inequality follows from the assumption that ŝ∗n < s∗n.

Inequality (16) contradicts with inequality (17). Therefore, ŝ∗n ≥ s∗n if ∆̂>∆.

Next, we show that ŝ∗p ≤ s∗p if ∆̂>∆. Assume to the contrary that ŝ∗p > s∗p. Then we have ∂sp f̂p(ŝ
∗
n, ŝ
∗
p)≥

0≥ ∂spfp(s∗n, s∗p), and therefore

(vn− ∆̂)(1− 2ŝ∗n− 2ŝ∗p)−
Tp
mTn

ŷ∗ ≥ (vn−∆)(1− 2s∗n− 2s∗p)−
Tp
mTn

y∗. (18)

We have shown that ŝ∗n ≥ s∗n. Thus, ŝ∗n + ŝ∗p > s
∗
n + s∗p, (vn− ∆̂)(1− 2ŝ∗n− 2ŝ∗p)< (vn−∆)(1− 2s∗n− 2s∗p), and

ŷ∗ =
λ̄Tn
ρmax

C ′

(
λ̄( 1

m
ŝ∗pTp + ŝ∗nTn)

ρmaxK

)
>
λ̄Tn
ρmax

C ′

(
λ̄( 1

m
s∗pTp + s∗nTn)

ρmaxK

)
= y∗.
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Therefore,

(vn− ∆̂)(1− 2ŝ∗n− 2ŝ∗p)−
Tp
mTn

ŷ∗ < (vn−∆)(1− 2s∗n− 2s∗p)−
Tp
mTn

y∗.

The above inequality contradicts with (18) and hence implies that ŝ∗p ≤ s∗p if ∆̂>∆.

Next, we show the existence of ∆ and ∆̄. Note that if ∆ = 0 we have s∗p > 0, and if ∆ = vn we have s∗n > 0.

Since fp(sn, sp|∆) is continuously differentiable with respect to (sn, sp,∆), by the maximum theorem, the

maximizer (s∗n(∆), s∗p(∆)) is continuous in ∆. Therefore, the monotonicity and continuity of s∗n and s∗p with

respect to ∆ yields that there exists ∆ and ∆̄ such that

s∗n

{
= 0, if ∆∈ [0,∆],

> 0, if ∆∈ (∆, vn];
and s∗p

{
> 0, if ∆∈ [0, ∆̄),

= 0, if ∆∈ [∆̄, vn].

To show ∆̄>∆, observe that s∗n = s∗p = 0 is never optimal for any ∆∈ [0, vn], which immediately implies that

∆< ∆̄. In the remainder of the proof, we show that

s∗p + s∗n ≤ 0.5, and (19)

∆̄ = vn

(
1− Tp

mTn

)
. (20)

We first show (19). Assume to the contrary that s∗p + s∗n > 0.5. We have

∂spfp(s
∗
n, s
∗
p) = λ̄

[
(vn−∆)(1− 2s∗n− s∗p)−

Tp
mρmax

C ′

(
λ̄( 1

m
s∗pTp + s∗nTn)

ρmaxK

)]
< 0,

so we must have s∗p = 0, and thus s∗n > 0.5. Therefore,

∂snfp(s
∗
n, s
∗
p) = λ̄

[
vn(1− 2s∗n)− Tn

ρmax

C ′

(
λ̄( 1

m
s∗pTp + s∗nTn)

ρmaxK

)]
< 0,

which implies that s∗n = 0, contradicting with s∗n > 0.5. We next show (20). It suffices to show that if ∆>

vn(1− Tp

mTn
) (resp. ∆< vn(1− Tp

mTn
)), s∗p = 0 (resp. s∗p > 0). If ∆> vn(1− Tp

mTn
) and s∗p > 0, the First Order

Condition (FOC) with respect to sp implies that

(vn−∆)(1− 2s∗n− 2s∗p)−
Tp

mρmax

C ′

(
λ̄( 1

m
s∗pTp + s∗nTn)

ρmaxK

)
=
Tp
m
µ∗2,

where µ∗2 is the Lagrangian multiplier with respect to the constraint λ̄( 1
m
s∗pTp + s∗nTn) ≤ ρmaxK. By ∆ >

vn(1− Tp

mTn
), we have vn−∆

vn
<

Tp

mTn
. It then follows that

∂snfp(s
∗
n, s
∗
p) =λ̄

(
−2vns

∗
n− 2(vn−∆)s∗p + vn−

Tn
ρmax

C ′

(
λ̄( 1

m
s∗pTp + s∗nTn)

ρmaxK

))

=λ̄

(
−2vns

∗
n− 2(vn−∆)s∗p + vn−

m(vn−∆)(1− 2s∗n− 2s∗p)Tn

Tp
+Tnµ

∗
2

)
>λ̄
(
−2vns

∗
n− 2(vn−∆)s∗p + vn− vn(1− 2s∗n− 2s∗p) +Tnµ

∗
2

)
= 2λ̄∆s∗p + λ̄Tnµ

∗
2 > λ̄Tnµ

∗
2,

where the first inequality follows from vn−∆
vn

<
Tp

mTn
. Therefore we have ∂snfp(s

∗
n, s
∗
p) − λ̄Tnµ∗2 > 0, which

contradicts the FOC that ∂snfp(s
∗
n, s
∗
p)− λ̄Tnµ∗2 = 0. If then follows that s∗p = 0 if ∆> vn(1− Tp

mTn
).

If ∆< vn(1− Tp

mTn
) and s∗p = 0, we have that s∗n > 0 since both of s∗n and s∗p being equal to zero is clearly

suboptimal. The FOC with respect to sn implies that

vn− 2vns
∗
n−

Tn
ρmax

C ′
(
λ̄s∗nTn
ρmaxK

)
= Tnµ

∗
2,
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and by ∆< vn(1− Tp

mTn
) we have vn−∆

vn
>

Tp

mTn
. It then follows that

∂spfp(s
∗
n, s
∗
p) =λ̄

(
(vn−∆)(1− 2s∗n− 2s∗p)−

Tp
mρmax

C ′

(
λ̄( 1

m
s∗pTp + s∗nTn)

ρmaxK

))

>λ̄

(
vn(1− 2s∗n)

Tp
mTn

− Tp
mρmax

C ′

(
λ̄( 1

m
s∗pTp + s∗nTn)

ρmaxK

))

=
λ̄Tp
mTn

(
vn(1− 2s∗n)− Tn

ρmax

C ′

(
λ̄( 1

2
s∗pTp + s∗nTn)

ρmaxK

))
=
λ̄Tp
m

µ∗2,

where the inequality follows from vn−∆
vn

>
Tp

mTn
and the assumption s∗p = 0. Thus, ∂spfp(s

∗
n, s
∗
p)−

λ̄Tp

m
µ∗2 > 0,

which contradicts with ∂spfp(s
∗
n, s
∗
p)−

λ̄Tp

m
µ∗2 = 0. Therefore, we have s∗p > 0 if ∆< vn(1− Tp

mTn
). Q.E.D.

Proof of Theorem 1. Let ∆̂>∆. We need to show that ŝ∗ = ŝ∗n+ ŝ∗p ≤ s∗ = s∗n+s∗p. Notice that ŝ∗n ≥ s∗n by

Proposition 2. If ŝ∗n = s∗n, then we have ŝ∗ = ŝ∗n + ŝ∗p ≤ s∗ = s∗n + s∗p since ŝ∗p ≤ s∗p by Proposition 2. Therefore,

it remains to consider the case where ŝ∗n > s
∗
n.

If ŝ∗n > s
∗
n, we have ∂sn f̂p(ŝ

∗
n, ŝ
∗
p)≥ 0≥ ∂snfp(s∗n, s∗p), i.e.,

−2vnŝ
∗
n− 2(vn− ∆̂)ŝ∗p− ŷ∗ ≥−2vns

∗
n− 2(vn−∆)s∗p− y∗,

where y∗ = Tn
ρmax

C ′
(
λ̄( 1
m
s∗pTp+s∗nTn)

ρmaxK

)
and ŷ∗ = Tn

ρmax
C ′
(
λ̄( 1
m
ŝ∗pTp+ŝ∗nTn)

ρmaxK

)
. It then follows that

2(vn− ∆̂)(ŝ∗− s∗)≤ 2∆̂(s∗n− ŝ∗n) + 2(∆− ∆̂)s∗p + y∗− ŷ∗.

If y∗ ≤ ŷ∗, then s∗ > ŝ∗ immediately follows from s∗n < ŝ
∗
n and ∆< ∆̂. If y∗ > ŷ∗, the convexity of C(·) implies

that 1
m
s∗pTp+s∗nTn >

1
m
ŝ∗pTp+ ŝ∗nTn. Since (Tp/m)<Tn, it then follows that s∗p− ŝ∗p > ŝ∗n−s∗n, or equivalently,

s∗ = s∗n + s∗p > ŝ
∗
n + ŝ∗p = ŝ∗. Q.E.D.

Proof of Theorem 2. We first show p∗p ≤ p̃∗n for all ∆∈ [0, vn]. Note that p∗p = (1−s∗p−s∗n)(vn−∆)/dp and

p̃∗n = (1− s̃∗n)vn/dn. By Theorem 1, we have s̃∗n ≤ s∗p + s∗n (s̃∗n corresponds to s∗n + s∗p in the case with ∆ = vn),

and p∗p ≤ p̃∗n follows immediately from ∆≥ 0 and dp ≥ dn. Next, we show that p∗n ≤ p̃∗n for all ∆∈ [0, ∆̄). We

proceed in two steps. First, we show that p∗n ≤ p̃∗n when ∆ ∈ [∆, ∆̄). Then we show that p∗n is increasing in

∆ on ∆∈ [0,∆], which would complete the proof.

First, consider the case where ∆∈ (∆, ∆̄) (i.e., s∗n > 0 and s∗p > 0). Assume, to the contrary, that p∗n > p̃
∗
n,

i.e., (1− s∗n)vn− s∗p(vn−∆)> (1− s̃∗n)vn. Rearranging terms, we get

s̃∗n > s
∗
n +

vn−∆

vn
s∗p > s

∗
n +

Tp
mTn

s∗p,

where the second inequality holds because ∆< ∆̄ implies vn−∆
vn

>
Tp

mTn
. Note that

∂snfp(s
∗
n, s
∗
p) =λ̄

(
vn− 2vns

∗
n− 2(vn−∆)s∗p−

Tn
ρmax

C ′

(
λ̄( 1

m
s∗pTp + s∗nTn)

ρmaxK

))

>λ̄

(
vn− 2vns

∗
n− 2(vn−∆)s∗p−

Tn
ρmax

C ′
(
λ̄s̃∗nTn
ρmaxK

))
>λ̄

(
vn− 2vns

∗
n− 2vn(s̃∗n− s∗n)− Tn

ρmax

C ′
(
λ̄s̃∗nTn
ρmaxK

))
=λ̄

(
vn− 2vns̃

∗
n−

Tn
ρmax

C ′
(
λ̄s̃∗nTn
ρmaxK

))
= f ′n(s̃∗n)≥ 0,

(21)
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where fn(s̃n) := λ̄vn(1 − s̃n)s̃n −KC
(
λ̄s̃nTn
ρmaxK

)
is the profit of the platform which only offers the normal

service. In (21), the first inequality follows from s̃∗n > s∗n +
Tp

mTn
s∗p, the second inequality follows from s̃∗n >

s∗n + vn−∆
vn

s∗p, and the last inequality follows from s̃∗n > 0. In addition, it is straightforward to check that

s̃∗n > s
∗
n+

Tp

mTn
s∗p implies

λ̄( 1
m
s∗pTp+s∗nTn)

ρmaxK
< 1. It then follows from (21) that ∂snfp(s

∗
n, s
∗
p)> 0, which contradicts

with (s∗n, s
∗
p) being the optimal solution. Therefore, we have p∗n ≤ p̃∗n when ∆ ∈ (∆, ∆̄). Finally, we show

p∗n is increasing in ∆ on ∆∈ [0,∆]. When ∆∈ [0,∆], we have s∗n = 0 and

p∗n = ((1− s∗n)∆ + (1− s∗n− s∗p)(vn−∆))/dn = (∆ + (1− s∗p)(vn−∆))/dn = (vn− (vn−∆)s∗p)/dn.

By Proposition 2, s∗p is decreasing in ∆. Therefore, (vn −∆)s∗p is decreasing in ∆ and it follows that p∗n is

increasing in ∆ on ∆∈ [0,∆].

Proof of Proposition 3. First, it follows immediately from

Π∗p = max

{
λ̄[((1− sn− sp)(vn−∆) + (1− sn)∆)sn + (1− sn− sp)(vn−∆)sp]−KC

(
λ̄(

sp

γ
+ snTn)

ρmaxK

)}
that Π∗p is increasing in γ (as C(·) is decreasing in y). If ∆≤∆, as shown in Proposition 2, s∗n = 0. It can

be easily checked that ∂spfp(0, sp) = (vn −∆)(1 − 2sp) − λ̄
ρmaxγ

C ′
(
λ̄sp

γ

)
is increasing in sp, so fp(0, sp) is

supermodular in (sp, γ). Hence, s∗p is increasing in γ. Since s∗n = 0, s∗ = s∗n+s∗p = s∗p is increasing in γ, whereas

p∗n = ((1− s∗)vp + (1− s∗n)∆)/dn = ((1− s∗)vp + ∆)/dn and p∗p = (1− s∗)vp/dp are decreasing in s∗ and thus

in γ as well.

We now consider the case ∆>∆, in which case s∗p > 0 and s∗n > 0. Assume that γ̂ > γ, f̂p(·, ·) is the profit

function associated with γ̂, and (ŝ∗n, ŝ
∗
n) is the optimizer of f̂p(·, ·). We first show ŝ∗p ≥ s∗p. Assume to the

contrary that ŝ∗p < s∗p. Then we have ∂sp f̂p(ŝ
∗
p, ŝ
∗
n) ≤ 0 ≤ ∂spfp(s∗n, s∗p), or alternatively, (vn −∆)(1− 2ŝ∗n −

2ŝ∗p)− ŷ∗

γ̂Tn
≤ (vn−∆)(1−2s∗n−2s∗p)− y∗

γTn
, where ŷ∗ := Tn

ρmax
C ′

(
λ̄(
ŝ∗p
γ̂

+ŝ∗nTn)

ρmaxK

)
and y∗ := Tn

ρmax
C ′

(
λ̄(
s∗p
γ

+s∗nTn)

ρmaxK

)
.

Equivalently,
ŷ∗

γ̂Tn
− y∗

γTn
≥ 2(vn−∆)(s∗n− ŝ∗n) + 2(vn−∆)(s∗p− ŝ∗p). (22)

If in addition we have ŝ∗n ≤ s∗n, the convexity of C(·) suggests that ŷ∗ < y∗. However, (22) implies that

ŷ∗ > y∗, which forms a contradiction. Hence, we must have ŝ∗n > s∗n. Thus, ∂sn f̂p(ŝ
∗
p, ŝ
∗
n)≥ 0≥ ∂snfp(s∗n, s∗p),

or alternatively, −2(vn−∆)ŝ∗p + vn(1− 2ŝ∗n)− ŷ∗ ≥−2(vn−∆)s∗p + vn(1− 2s∗n)− y∗. Equivalently,

ŷ∗− y∗ ≤ 2(vn−∆)(s∗p− ŝ∗p) + 2vn(s∗n− ŝ∗n). (23)

By (22) and γ̂Tn > γTn > 1, ŷ∗ − y∗ > 2(vn −∆)(s∗p − ŝ∗p) + 2vn(s∗n − ŝ∗n), which contradicts (23). We have

thus shown that ŝ∗p ≥ s∗p.

Next, we show that ŝ∗p + ŝ∗n ≥ s∗p + s∗n. If ŝ∗p = s∗p, then
ŝ∗p
γ̂
≤ s∗p

γ
. We have

∂sn f̂p(s
∗
n, ŝ
∗
p) = λ̄(vn− 2vns

∗
n− 2(vn−∆)ŝ∗p)−

λ̄Tn
ρmax

C ′

 λ̄(
ŝ∗p
γ̂

+ s∗nTn)

ρmaxK


≥ λ̄(vn− 2vns

∗
n− 2(vn−∆)ŝ∗p)−

λ̄Tn
ρmax

C ′

 λ̄(
s∗p
γ

+ s∗nTn)

ρmaxK

= ∂snfp(s
∗
n, s
∗
p)≥ 0.

Wiley

Naval Research Logistics



Wang and Zhang: Carpool Services for Ride-sharing Platforms
37

Therefore, we have ŝ∗n ≥ s∗n and hence, ŝ∗p + ŝ∗n ≥ s∗p + s∗n.

Now we consider the case ŝ∗p > s∗p. If ŝ∗n + ŝ∗p ≤ s∗n + s∗p, we must have ŝ∗n < s∗n. Thus, ∂sn f̂p(ŝ
∗
p, ŝ
∗
n)≤ 0≤

∂snfp(s
∗
n, s
∗
p), i.e., −2(vn−∆)ŝ∗p + vn(1− 2ŝ∗n)− ŷ∗ ≤−2(vn−∆)s∗p + vn(1− 2s∗n)− y∗. Equivalently,

ŷ∗− y∗ ≥ 2(vn−∆)(s∗p− ŝ∗p) + 2vn(s∗n− ŝ∗n)> 0, (24)

where the last inequality follows from ŝ∗n + ŝ∗p ≤ s∗n + s∗p. Since C(·) is convex, (24) implies that
ŝ∗p
γ̂

+Tnŝ
∗
n >

s∗p
γ

+ Tns
∗
n, which is equivalent to that s∗n − ŝ∗n <

ŝ∗p
γ̂Tn
− s∗p

γTn
< ŝ∗p − s∗p, where the inequality follows from

that γ̂Tn > γTn > 1. Thus, ŝ∗n + ŝ∗p > s∗n + s∗p, contradicting with ŝ∗n + ŝ∗p ≤ s∗n + s∗p. Therefore, we must have

ŝ∗n + ŝ∗p ≥ s∗n + s∗p.

Next, we show that p̂∗p ≤ p∗p. Note that p̂∗p = (vn −∆)(1− ŝ∗n − ŝ∗p)/dp and p∗p = (vn −∆)(1− ŝ∗n − ŝ∗p)/dp,

p̂∗p ≤ p∗p follows immediately from ŝ∗n + ŝ∗p ≥ s∗n + s∗p.

Finally, we show that p̂∗n ≤ p∗n. Assume to the contrary that p̂∗n > p∗n, i.e., (vn −∆)(1− ŝ∗n − ŝ∗p) + ∆(1−

ŝ∗n) > (vn − ∆)(1 − s∗n − s∗p) + ∆(1 − s∗n). Hence, vn(s∗n − ŝ∗n) > (vn − ∆)(ŝ∗p − s∗p) > 0, where the second

inequality follows from that ŝ∗p > s∗p. The inequality ŝ∗n < s∗n implies that ∂sn f̂p(ŝ
∗
p, ŝ
∗
n) ≤ 0 ≤ ∂snfp(s∗n, s∗p),

i.e., −2(vn−∆)ŝ∗p + vn(1− 2ŝ∗n)− ŷ∗ ≤−2(vn−∆)s∗p + vn(1− 2s∗n)− y∗. Equivalently,

ŷ∗− y∗ ≥ 2(vn−∆)(s∗p− ŝ∗p) + 2vn(s∗n− ŝ∗n)> 0, (25)

where the last inequality follows from vn(s∗n− ŝ∗n)> (vn−∆)(ŝ∗p− s∗p)> 0. Since C(·) is convex, (25) implies

that
ŝ∗p
γ̂

+ Tnŝ
∗
n >

s∗p
γ

+ Tns
∗
n, which is equivalent to that s∗n − ŝ∗n <

ŝ∗p
γ̂Tn
− s∗p

γTn
<

ŝ∗p−s
∗
p

γ̂Tn
, where the inequality

follows from that γ̂Tn >γTn. Since ∆< ∆̄, (vn−∆)/vn > 1/(γ̂Tn). So we have
(vn−∆)(ŝ∗p−s

∗
p)

vn
>

ŝ∗p−s
∗
p

γ̂Tn
> s∗n− ŝ∗n.

This inequality contradicts that vn(s∗n− ŝ∗n)> (vn−∆)(ŝ∗p− s∗p). Therefore, we must have p̂∗n ≤ p∗n. Q.E.D.

Proof of Proposition 4. We use λ∗p := λ̄s∗p and λ∗n := λ̄s∗n. Notice that when (vn−∆)/vn >Tp/(mTn), we

have ∆< ∆̄ and hence s∗p > 0. By the KKT condition (which is both necessary and sufficient for optimality

by the joint concavity of fp(·) and compactness of the feasible region of (sn, sp)), we have

λ̄
[
−2vps

∗
n− 2∆s∗n− 2s∗pvp + vp + ∆

]
− λ̄Tn
ρmax

C ′

(
λ̄( 1

m
s∗pTp + s∗nTn)

ρmaxK

)
= µ∗1 + λ̄Tnµ

∗
2− η∗1, (26)

λ̄
[
−2vps

∗
n− 2s∗pvp + vp

]
− λ̄Tp
mρmax

C ′

(
λ̄( 1

m
s∗pTp + s∗nTn)

ρmaxK

)
= µ∗1 +

1

m
λ̄Tpµ

∗
2− η∗2, (27)

µ∗1(1− s∗n− s∗p) = 0, (28)

µ∗2

(
ρmaxK − λ̄

(
1

m
s∗pTp + s∗nTn

))
= 0, (29)

η∗1s
∗
n = 0, η∗2s

∗
p = 0, (30)

µ∗1, µ
∗
2, η
∗
1, η
∗
2 ≥ 0, (31)

where µ∗1, µ
∗
2, η
∗
1, and η∗2 are the Lagrangian multipliers with respect to the constraints s∗n+s∗p ≤ 1, λ̄( 1

m
s∗nTn+

s∗pTp)≤ ρmaxK, s∗n ≥ 0 and s∗p ≥ 0, respectively. Notice that by (19), s∗n+s∗p < 1 and hence by complementary

slackness condition, we have µ∗1 = 0.
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(a) s∗n is decreasing in λ̄. Consider ˆ̄λ and λ̄ with ˆ̄λ > λ̄. Notice that (vn −∆)/vn > Tp/(mTn) and hence

∆ < ∆̄, we have s∗p > 0 and ŝ∗p > 0. By (30), η∗2 = η̂2 = 0. We first consider the case where ŝ∗n, s
∗
n > 0, and

therefore η∗1 = η̂1 = 0. Then the KKT conditions (26) and (27) imply that:

vn− 2vns
∗
n− 2(vn−∆)s∗p− y∗−µ∗2Tn = 0,

(vn−∆)(1− 2s∗n− 2s∗p)−
Tp
mTn

y∗−µ∗2
Tp
m

= 0,

vn− 2vnŝ
∗
n− 2(vn−∆)ŝ∗p− ŷ∗− µ̂∗2Tn = 0,

(vn−∆)(1− 2ŝ∗n− 2ŝ∗p)−
Tp
mTn

ŷ∗− µ̂∗2
Tp
m

= 0,

(32)

where y∗ := Tn
ρmax

C ′
(
λ̄( 1
m
s∗pTp+s∗nTn)

ρmaxK

)
and ŷ∗ := Tn

ρmax
C ′
(

ˆ̄λ( 1
m
ŝ∗pTp+ŝ∗nTn)

ρmaxK

)
. Observe that both (s∗n, s

∗
p) and

(ŝ∗n, ŝ
∗
p) are located on the line

vn− 2vnsn− 2(vn−∆)sp
(vn−∆)(1− 2sn− 2sp)

=
mTn
Tp

. (33)

If ŝ∗n − s∗n = δ > 0, then it is easy to check by (33) that s∗p > ŝ∗p and s∗p − ŝ∗p < δ. Thus, we have ŝ∗n + ŝ∗p >

s∗n+ s∗p and ˆ̄λ(ŝ∗nTn+ 1
m
Tpŝ

∗
p)> λ̄(s∗nTn+ 1

m
s∗pTp). Hence, ŷ∗ > y∗. Moreover, by the complementary slackness

condition (29), µ̂∗2 ≥ µ∗2. Therefore,

(vn−∆)(1− 2ŝ∗n− 2ŝ∗p)−
Tp
mTn

ŷ∗− µ̂∗2
Tp
m
< (vn−∆)(1− 2s∗n− 2s∗p)−

Tp
mTn

y∗−µ∗2
Tp
m
,

which contradicts with (32). Hence, in the range of s∗n > 0, s∗n is decreasing in λ̄. By the continuity of s∗n, it

is clear that s∗n is decreasing in λ̄ for all λ̄.
(b) There exists a λ0 such that s∗n = 0 for λ̄≥ λ0. Note that ∆< ∆̄ is equivalent to vn−∆

vn
>

Tp

mTn
. We use

λp := λ̄sp and λn := λ̄sn as the decision variables. The platform is then to maximize

fp(λn, λp) =

((
1−

λp

λ̄
−
λn

λ̄

)
(vn−∆) +

(
1−

λn

λ̄

)
∆

)
λn +

(
1−

λn

λ̄
−
λp

λ̄

)
(vn−∆)λp−KC

(
1

m
λpTp +λnTn

ρmaxK

)
, (34)

subject to the constraint 0≤ λn +λp ≤ λ̄ and λnTn +λp
Tp

m
≤ ρmaxK. We have

∂λnfp(λ
∗
n, λ

∗
p) =vn− 2vn

λ∗n
λ̄
− 2(vn−∆)

λ∗p
λ̄
− Tn
ρmax

C ′
( 1
m
λ∗pTp +λ∗nTn

ρmaxK

)
=vn− 2vns

∗
n− 2(vn−∆)s∗p−

Tn
ρmax

C ′
( 1
m
λ∗pTp +λ∗nTn

ρmaxK

)
,

and

∂λpfp(λ
∗
n, λ

∗
p) =(vn−∆)

(
1− 2λ∗n

λ̄
−

2λ∗p
λ̄

)
− Tp
mρmax

C ′
( 1
m
λ∗pTp +λ∗nTn

ρmaxK

)
=(vn−∆)(1− 2s∗n− 2s∗p)−

Tp
mρmax

C ′
( 1
m
λ∗pTp +λ∗nTn

ρmaxK

)
.

Since λ∗nTn + λ∗p
Tp

m
≤ ρmaxK, it follows that s∗n =

λ∗n
λ̄
≤ ρmaxK

Tnλ̄
and s∗p =

λ∗p
λ̄
≤ mρmaxK

Tnλ̄
. Therefore, we have

s∗n→ 0 and s∗p→ 0 as λ̄→+∞. Because ∆< vn

(
1− Tp

mTn

)
, we have

vn−∆− Tp
mρmax

C ′
( 1
m
λ∗pTp +λ∗nTn

ρmaxK

)
>

Tp
mTn

(
vn−

Tn
ρmax

C ′
( 1
m
λ∗pTp +λ∗nTn

ρmaxK

))
.

Therefore, when λ̄ is sufficiently large (where s∗n→ 0 and s∗p→ 0), we have

∂λpfp(λ
∗
n, λ

∗
p)−

Tp
m
µ∗2 =(vn−∆)(1− 2s∗n− 2s∗p)−

Tp
mρmax

C ′
( 1
m
λ∗pTp +λ∗nTn

ρmaxK

)
− Tp
m
µ∗2

>
Tp
mTn

(
vn− 2vns

∗
n− 2(vn−∆)s∗p−

Tn
ρmax

C ′
( 1
m
λ∗pTp +λ∗nTn

ρmaxK

)
−Tnµ∗2

)
=

Tp
mTn

(∂λnfp(λ
∗
n, λ

∗
p)−Tnµ∗2),

(35)
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where µ∗2 is the Lagrangian multiplier with respect to the constraint λnTn +λp
Tp

m
≤ ρmaxK. Since s∗p > 0 and

thus λ∗p > 0, the first-order condition ∂λpfp(λ
∗
n, λ

∗
p)−

Tp

m
µ∗2 = 0 when λ̄ is sufficiently large. In this case, (35)

implies that ∂λnfn(λ∗n, λ
∗
p)−Tnµ∗2 < mTn

Tp

(
∂λpfp(λ

∗
n, λ

∗
p)−

Tp

m

)
= 0. It is straightforward to check that by the

KKT condition of optimization problem (34), ∂λnfn(λ∗n, λ
∗
p)− Tnµ∗2 < 0 implies that λ∗n = 0. It then follows

that s∗n = 0 when λ̄ is sufficiently large, or, there exists a threshold λ0, such that s∗n = 0 for λ̄≥ λ0.

(c) s∗p is increasing (resp. decreasing) in λ̄ for λ̄ < λ0 (resp. λ̄ > λ0). Recall that λ0 := min{λ̄ : s∗n = 0}. If

λ̄ < λ0, (s∗n, s
∗
p) satisfies (33). Since s∗n is decreasing in λ̄, it is straightforward to check that s∗p is decreasing

in s∗n, thus increasing in λ̄ as well. If λ̄ > λ0, then we have s∗n = 0. By Proposition 1, s∗p is decreasing in λ̄.

(d) p∗n and p∗p are increasing in λ̄, and p∗ndn− p∗pdp is increasing in λ̄. Note that p∗p = (vn − ∆)(1 − s∗n −

s∗p)/dp. If λ̄ < λ0, s∗n > 0 and (s∗n, s
∗
p) satisfies (33). Since s∗n is decreasing in λ̄, it is easy to check, by

(33), that s∗n + s∗p is decreasing in λ̄. Thus, p∗p = (vn −∆)(1− s∗n − s∗p)/dp is increasing in λ̄. Furthermore,

p∗ndn − p∗pdp = (1− s∗n)∆ is decreasing in s∗n, thus increasing λ̄. Hence, p∗n = (p∗pdp + (1− s∗n)∆)/dn is also

increasing in λ̄. Q.E.D.

Proof of Proposition 5. It follows from (10) that if ∆ = 0, RS∗p = 1
2
λ̄(s∗p)

2. R̃S
∗
n = RS∗p(∆̄) = 1

2
λ̄(s∗n)2.

We now show that s∗p(0)> s∗n(∆̄). By Theorem 1, s∗p(0) + s∗n(0)> s∗p(∆̄) + s∗n(∆̄). By Proposition 2, s∗n(0) =

s∗p(∆̄) = 0, we have s∗p(0)> s∗n(∆̄), which implies that RS∗p(0)>RS∗p(∆̄). The existence of ∆r then follows

directly from RS∗p(∆) being continuous in ∆.

For the ease of exposition, we normalize K = 1, Tn = 1, and vn = 1. We also define γ =m/Tp and η= vn−∆.

Then, we have the constraints γ > 1, η < 1, and ηγ > 1. If G(r) = r, we first compare RS∗p(∆) with R̃S
∗
n for

∆∈ (∆, ∆̄). In this case, s∗n(∆)> 0. Then, It is straightforward to calculate that
s∗n(∆) = 1

2

(
1− ηλ̄(1/γ−1)

−ηλ̄+(η−1)ηρ2max+2ηλ̄/γ−λ/γ2

)
s∗p(∆) = λ̄(1/γ−η)

−2ηλ̄+2(η−1)ηρ2max+4ηλ̄/γ−2λ̄/γ2

s̃∗n =
ρ2max

2(λ̄+ρ2max)

Then, we can calculate the difference between the setting with carpool services and that without:

RS∗p(∆)− R̃S∗n =− λ̄
2(η− 1/γ)2(η(−λ̄2 + 2(η− 2)λ̄ρ2

max + 3(η− 1)ρ4
max) + 2ηλ̄(λ̄+ 2ρ2

max)/γ−λ(λ+ 2ρ2
max)/γ2)

4(λ+ ρ2
max)2(ηλ− (η− 1)ηρ2

max− 2ηλ̄/γ+ λ̄/γ2)2

Hence, it suffices to show that

η(−λ̄2 + 2(η− 2)λ̄ρ2
max + 3(η− 1)ρ4

max) + 2ηλ̄(λ̄+ 2ρ2
max)/γ−λ(λ+ 2ρ2

max)/γ2 < 0.

Rearranging the terms, it suffices to show that

λ̄2(η− 2η/γ+ 1/γ2)> 0, (36)

2λ̄ρ2
max((2− η)η− 2η/γ+ 1/γ2)> 0, (37)

3(1− η)ηρ4
max > 0. (38)

To show (36), observe that λ̄2(η− 2η/γ + 1/γ2)> λ̄2(η2 − 2η/γ + 1/γ2) = λ̄2(η− 1/γ)2 > 0, where the first

inequality follows from η < 1 and the second from ηγ > 1. To show (37), observe that 2λ̄ρ2
max((2− η)η −

2η/γ + 1/γ2) > 2λ̄ρ2
max(η2 − 2η/γ + 1/γ2) = 2λ̄ρ2

max(η − 1/γ)2 > 0, where the first inequality follows from

Wiley

Naval Research Logistics



Wang and Zhang: Carpool Services for Ride-sharing Platforms
40

(2− η)η > η2 for η ∈ (0,1), and the second from η > 1/γ. This proves that if ∆ ∈ (∆, ∆̄), RS∗p(∆) > R̃S
∗
n.

Inequality (38) follows immediately from 0< η < 1. Putting everything together, we have that RS∗p(∆)> R̃S
∗
p

for ∆∈ [∆, ∆̄).

Finally we show that for the case ∆≤∆, RS∗p(∆)> R̃S
∗
n. By continuity, if ∆ = ∆, RS∗p(∆)> R̃S

∗
n. Fur-

thermore, s∗p(∆) is decreasing in ∆ (by Proposition 2). Therefore, RS∗p(∆) = 1
2
(vn−∆)(s∗p(∆))2 is decreasing

in ∆. Hence, RS∗p(∆)>RS∗p(∆) for all ∆<∆. This concludes the proof of Proposition 5. Q.E.D.

Proof of Proposition 6. It is clear from (11) and (12) that the driver surplus is strictly increasing in

the number of active drivers k∗ in equilibrium, and hence it boils down to analyzing the impact of carpool

services on k∗ (which is also equivalent to analyzing the impact of carpool services on the per-unit-time wage

for the drivers in equilibrium, since w∗ = k∗G−1(k∗/K) and G−1 is a monotonically increasing function).

When ∆ ∈ (∆, ∆̄), it follows from Proposition 2 that s∗n > 0 and s∗p > 0. Then by first order conditions

∂snfp(s
∗
n, s
∗
p) = 0 and ∂spfp(s

∗
n, s
∗
p) = 0, it is straightforward to derive that

s∗n =
(∆2Km2ρ2

max + λ̄(mTn−Tp)Tpvn−∆m(λ̄TnTp +Kmρ2
maxvn))

(2∆m(∆Kmρ2
max + λ̄Tn(mTn− 2Tp))− 2(∆Km2ρ2

max + λ̄(mTn−Tp)2)vn)
,

s∗p =
λ̄mTn(∆mTn− (mTn−Tp)vn)

2∆m(∆Kmρ2
max + λ̄Tn(mTn− 2Tp))− 2(∆Km2ρ2

max + λ̄(mTn−Tp)2)vn
.

Similarly, the first order condition ∂s̃nfb(s̃
∗
n|λ̄) = 0 implies that

s̃∗n =
Kρ2

maxvn
2λ̄T 2

n + 2Kρ2
maxvn

.

Note that

k̃∗n− k∗ =
λ̄Tn(s̃∗n− s∗n− (Tps

∗
p)/(mTn))

ρmax

.

Therefore, k̃∗n >k
∗ is equivalent to s̃∗n > s

∗
n +

Tps
∗
p

mTn
. We next compute s̃∗n−

(
s∗n +

Tps
∗
p

mTn

)
as follows:

s̃∗n−
(
s∗n +

Tps
∗
p

mTn

)
=

Kλ̄ρ2
max(∆mTn− (mTn−Tp)vn)2

2(λ̄T 2
n +Kρ2

maxvn)(−∆m(∆Kmρ2
max + λ̄Tn(mTn− 2Tp)) + (∆Km2ρ2

max + λ̄(mTn−Tp)2)vn)

=
Kλ̄ρ2

max(∆mTn− (mTn−Tp)vn)2

2(λ̄T 2
n +Kρ2

maxvn)[∆(vn−∆)Km2ρ2
max + λ̄((mTn−Tp)2(vn−∆) +T 2

p ∆))]

>0,

where the inequality follows from vn >∆≥ 0. Therefore, s̃∗n > s
∗
n +

Tps
∗
p

mTn
. It then follows that k̃∗n > k

∗, which

implies DS∗p < D̃S
∗
n in view of (11) and (12).

Finally, we show w∗ < w̃∗. Note that w∗ = k∗G−1(k∗/K) and w̃∗ = k̃∗nG
−1(k̃∗n/K). It then immediately

follows from k̃∗n >k
∗ that w̃∗ >w∗. Q.E.D.
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