Online Appendix to "Carpool Services for Ride-sharing Platforms: Price and Welfare Implications"

The following lemma establishes the convexity of the cost function $C(\cdot)$ and is, therefore, useful throughout the proof of our technical statements.

Lemma 3. Assume that $G(\cdot)$ satisfies the log-concave property. Then $C(y):=y G^{-1}(y)$ is convexly increasing in $0 \leq y \leq 1$.

Proof. Let $h(x):=\log G(x)$. Since $h(x)$ is concave, we have $h^{\prime \prime}(x)=\frac{G^{\prime \prime}(x) \cdot G(x)-\left(G^{\prime}(x)\right)^{2}}{(G(x))^{2}} \leq 0$, which implies

$$
\begin{equation*}
G^{\prime \prime}(x) \cdot G(x) \leq\left(G^{\prime}(x)\right)^{2} \tag{13}
\end{equation*}
$$

To show $C(y)$ is convexly increasing in y, it suffices to show that $C^{\prime}(y) \geq 0$ and $C^{\prime \prime}(y) \geq 0$. Since $G(\cdot)$ is non-decreasing and by the inverse function theorem, we have $C^{\prime}(y)=G^{-1}(y)+y \cdot\left(G^{-1}\right)^{\prime}(y)=G^{-1}(y)+$ $\frac{y}{G^{\prime}\left(G^{-1}(y)\right)} \geq 0$. It then follows that

$$
\begin{aligned}
C^{\prime \prime}(y) & =\left(G^{-1}\right)^{\prime}(y)+\frac{G^{\prime}\left(G^{-1}(y)\right)-y \cdot\left[G^{\prime \prime}\left(G^{-1}(y)\right) \cdot\left(G^{-1}\right)^{\prime}(y)\right]}{\left(G^{\prime}\left(G^{-1}(y)\right)\right)^{2}} \\
& =\frac{1}{G^{\prime}\left(G^{-1}(y)\right)}+\frac{G^{\prime}\left(G^{-1}(y)\right)-y \cdot \frac{G^{\prime \prime}\left(G^{-1}(y)\right)}{G^{\prime}\left(G^{-1}(y)\right)}}{\left(G^{\prime}\left(G^{-1}(y)\right)\right)^{2}}=\frac{2\left(G^{\prime}\left(G^{-1}(y)\right)\right)^{2}-y \cdot G^{\prime \prime}\left(G^{-1}(y)\right)}{\left(G^{\prime}\left(G^{-1}(y)\right)\right)^{3}} \geq 0
\end{aligned}
$$

where the last inequality follows from $y=G(x)$ and (13). Q.E.D.

Proof of Proposition 1.

We write $\Pi_{n}(s, k)=\bar{\lambda} v_{n}\left(1-s_{n}\right) s_{n}-K C(k / K)$. Clearly, $\Pi_{n}(s, k)$ is decreasing in k, so $\bar{\lambda} T_{n} \tilde{s}_{n}^{*}=\rho_{\max } \tilde{k}_{n}^{*}$. Plugging this into $\Pi_{n}(s, k)$, we have that it suffices to solve the optimization problem:

$$
\tilde{s}_{n}^{*}=\underset{s}{\arg \max } f(s):=\bar{\lambda} v_{n}(1-s) s-K C\left(\frac{\bar{\lambda} T_{n} s}{\rho_{\max } K}\right)
$$

subject to the constraints $s \in[0,1]$ and $\frac{\overline{\bar{\lambda}} T_{n} s}{\rho_{\text {max }}} \leq K$.
 satisfy $f^{\prime}\left(s^{*}\right)=0$, which is unique. We have $\tilde{s}_{n}^{*}=\min \left\{s^{*},\left(K \rho_{\max }\right) /\left(\bar{\lambda} T_{n}\right)\right\}$. It is easy to check that s^{*} and $\left(K \rho_{\max }\right) /\left(\bar{\lambda} T_{n}\right)$ are both decreasing in $\bar{\lambda}$. Hence, \tilde{s}_{n}^{*} is decreasing in $\bar{\lambda}$.
$\underline{1(\mathrm{~b})} \overline{\bar{s}} \tilde{s}_{n}^{*}$ is increasing in $\bar{\lambda}$: Let $\bar{\lambda} s:=\lambda$. We have $f(s)=g(\lambda)=v_{n}\left(1-\frac{\lambda}{\lambda}\right) \lambda-K C\left(\frac{\lambda T_{n}}{\rho_{\text {max }} K}\right)$. Thus, we have $g^{\prime}(\lambda)=v_{n}\left(1-\frac{2 \lambda}{\lambda}\right)-\frac{T_{n}}{\rho_{\text {max }}} C^{\prime}\left(\frac{T_{n} \lambda}{\rho_{\text {max }} K}\right)$. Let λ^{*} satisfies $g^{\prime}\left(\lambda^{*}\right)=0$, so $\bar{\lambda} \tilde{s}_{n}^{*}=\min \left\{\lambda^{*},\left(K \rho_{\max }\right) / T_{n}\right\}$. Since $g^{\prime}\left(\lambda^{*}\right)=0$ implies that $\lambda^{*} \leq 0.5 \bar{\lambda}, \lambda^{*}$ is increasing in $\bar{\lambda}$. Thus, $\bar{\lambda} \tilde{s}_{n}^{*}$ is also increasing in $\bar{\lambda}$.

1(c) \tilde{p}_{n}^{*} is increasing in $\bar{\lambda}$: It follows immediately that $\tilde{p}_{n}^{*}=\left(1-\tilde{s}_{n}^{*}\right) v_{n} / d_{n}$ is increasing in $\bar{\lambda}$.
1(d) \tilde{k}_{n}^{*} is increasing in $\bar{\lambda}$: Note that $\tilde{k}_{n}^{*}=\bar{\lambda} \tilde{s}_{n}^{*} T_{n} / \rho_{\max }$. By (b), \tilde{k}_{n}^{*} is increasing in $\bar{\lambda}$.
$\underline{1(\mathrm{e})} \tilde{w}_{n}^{*}$ is increasing in $\bar{\lambda}$: Note that $\tilde{w}_{n}^{*}=\tilde{k}_{n}^{*} /\left(\bar{\lambda} \tilde{s}_{n}^{*} d_{n}\right) G^{-1}\left(\frac{\tilde{k}_{n}^{*}}{K}\right)=T_{n} /\left(\rho_{\max } d_{n}\right) G^{-1}\left(\tilde{k}_{n}^{*} / K\right)$. Since \tilde{k}_{n}^{*} is increasing in $\bar{\lambda}, \tilde{w}_{n}^{*}$ is also increasing in $\bar{\lambda}$.

1(f) $\tilde{\Pi}_{n}^{*}$ is increasing in $\bar{\lambda}$: By the envelope theorem, $\tilde{\Pi}_{n}^{*}=\max \Pi_{n}(s, k)$ is continuously differentiable in $\bar{\lambda}$ with $\frac{\partial \tilde{\Pi}_{n}^{*}}{\partial \bar{\lambda}}=v_{n}\left(1-s_{b}^{*}\right) s_{b}^{*}>0$. Thus, $\tilde{\Pi}_{n}^{*}$ is increasing in $\bar{\lambda}$.

When K increases: 2(a) \tilde{s}_{n}^{*} is increasing in K : As shown in part $1(\mathrm{a}), \tilde{s}_{n}^{*}=\min \left\{s^{*},\left(K \rho_{\max }\right) /\left(\bar{\lambda} T_{n}\right)\right\}$, where s^{*} satisfies $f^{\prime}\left(s^{*}\right)=0$. It is easy to check that s^{*} and $\left(K \rho_{\max }\right) /\left(\bar{\lambda} T_{n}\right)$ are both increasing in K. Hence, \tilde{s}_{n}^{*} is also increasing in K.

2(b) \tilde{p}_{n}^{*} is decreasing in K : By part 2(a), it follows immediately that $\tilde{p}_{n}^{*}=\left(1-\tilde{s}_{n}^{*}\right) v_{n} / d_{n}$ decreases in K. 2(c) \tilde{k}_{n}^{*} is increasing in K : Note that $\tilde{k}_{n}^{*}=\bar{\lambda} \tilde{s}_{n}^{*} T_{n} / \rho_{\max }$. By part 2(a), \tilde{k}_{n}^{*} is increasing in K.
$\underline{2(\mathrm{~d})} \tilde{k}_{n}^{*} / K$ is decreasing in K : Let $z:=k / K$. We have $f(s)=h(z)=\bar{\lambda} v_{n}\left(1-\frac{\rho_{\max } K z}{\bar{\lambda} T_{n}}\right) \frac{\rho_{\max } K z}{\bar{\lambda} T_{n}}-K C(z)$. Thus, we have $h^{\prime}(z)=\bar{\lambda} v_{n}\left(\frac{\rho_{\max } K}{\bar{\lambda} T_{n}}-2\left(\frac{\rho_{\max } K}{\bar{\lambda} T_{n}}\right)^{2} z\right)-K C^{\prime}(z)$. Let z^{*} satisfies $h^{\prime}\left(z^{*}\right)=0$. By $\frac{\tilde{k}_{n}^{*}}{K}=\frac{\bar{\lambda} T_{n} \tilde{s}_{n}^{*}}{\rho_{\max } K}$ and $\tilde{s}_{n}^{*} \leq 1$, we then have $\tilde{k}_{n}^{*} / K=\min \left\{z^{*}, 1, \frac{\bar{\lambda} T_{n}}{\rho_{\max } K}\right\}$. It is easy to check that if K increases, z^{*} will decrease. Since $\frac{\bar{\lambda} T_{n}}{\rho_{\max K}}$ is also decreasing in $K, \tilde{k}_{n}^{*} / K$ is decreasing in K.
$\underline{2(\mathrm{e})} \tilde{w}_{n}^{*}$ is decreasing in K. Note that $\tilde{w}_{n}^{*}=\tilde{k}_{n}^{*} /\left(\bar{\lambda} \tilde{s}_{n}^{*} d_{n}\right) G^{-1}\left(\frac{\tilde{k}_{n}^{*}}{K}\right)=T_{n} /\left(\rho_{\max } d_{n}\right) G^{-1}\left(\tilde{k}_{n}^{*} / K\right)$. Since \tilde{k}_{n}^{*} / K is decreasing in K, \tilde{w}_{n}^{*} is also decreasing in K.
$\underline{2(\mathrm{f})} \tilde{\Pi}_{n}^{*}$ is increasing in K. Since $G^{-1}\left(\frac{k}{K}\right)$ is decreasing $K, \Pi_{n}(s, k)=\bar{\lambda} v_{n}(1-s) s-k G^{-1}\left(\frac{k}{K}\right)$ is increasing in K. Furthermore, the constraint $k \leq K$ is less tight as K increases. Thus, $\tilde{\Pi}_{n}^{*}=\max \Pi_{n}(s, k)$ is increasing in K as well. Q.E.D.

Proof of Lemma 2. We prove joint concavity by showing that the Hessian matrix of $f_{p}(\cdot)$ is negative semidefinite, or alternatively, its leading principal minors have alternate signs. Taking derivatives and by $v_{n}=v_{p}+\Delta$, we have

$$
\begin{aligned}
& \frac{\partial f_{p}\left(s_{n}, s_{p}\right)}{\partial s_{n}}=\bar{\lambda}\left[-2 v_{n} s_{n}-2 s_{p} v_{p}+v_{n}\right]-\frac{\bar{\lambda} T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p} T_{p}+s_{n} T_{n}\right)}{\rho_{\max } K}\right) \\
& \frac{\partial f_{p}\left(s_{n}, s_{p}\right)}{\partial s_{p}}=\bar{\lambda}\left[-2 v_{p} s_{n}-2 s_{p} v_{p}+v_{p}\right]-\frac{\bar{\lambda} T_{p}}{m \rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p} T_{p}+s_{n} T_{n}\right)}{\rho_{\max } K}\right) .
\end{aligned}
$$

It then follows that $\frac{\partial^{2} f_{p}\left(s_{n}, s_{p}\right)}{\partial s_{n}^{2}}=-2 v_{n} \bar{\lambda}-\frac{\bar{\lambda}^{2} T_{n}^{2}}{\rho_{\max }^{2} K} C^{\prime \prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p} T_{p}+s_{n} T_{n}\right)}{\rho_{\max } K}\right) \leq 0$ because $C(\cdot)$ is convexly increasing. Similarly, we have $\frac{\partial^{2} f_{p}\left(s_{n}, s_{p}\right)}{\partial s_{p}^{2}}=-2 v_{p} \bar{\lambda}-\frac{\bar{\lambda}^{2} T_{p}^{2}}{m^{2} \rho_{\max }^{2} K} C^{\prime \prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p} T_{p}+s_{n} T_{n}\right)}{\rho_{\max } K}\right) \leq 0$. It remains to show

$$
\begin{equation*}
\frac{\partial^{2} f_{p}\left(s_{n}, s_{p}\right)}{\partial s_{n}^{2}} \cdot \frac{\partial^{2} f_{p}\left(s_{n}, s_{p}\right)}{\partial s_{p}^{2}} \geq\left(\frac{\partial^{2} f_{p}\left(s_{n}, s_{p}\right)}{\partial s_{p} \partial s_{n}}\right)^{2} \tag{14}
\end{equation*}
$$

It is straightforward to check that (14) holds if and only if

$$
\begin{equation*}
2 \bar{\lambda}^{2} v_{p} v_{n}+\frac{\bar{\lambda}^{3} T_{p}^{2} \alpha v_{n}}{m^{2} \rho_{\max }^{2} K}+\frac{\bar{\lambda}^{3} T_{n}^{2} \alpha v_{p}}{\rho_{\max }^{2} K} \geq 2 \bar{\lambda}^{2} v_{p}^{2}+\frac{2 \bar{\lambda}^{3} T_{p} T_{n} \alpha v_{p}}{m \rho_{\max }^{2} K}, \tag{15}
\end{equation*}
$$

where $\alpha:=C^{\prime \prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p} T_{p}+s_{n} T_{n}\right)}{\rho_{\max } K}\right)$. Since $v_{n} \geq v_{p}$ and $\alpha \geq 0$, a sufficient condition for (15) to hold is $T_{p}^{2} v_{n}+$ $m^{2} T_{n}^{2} v_{p} \geq 2 m T_{p} T_{n} v_{p}$, which is clearly true since $v_{n} \geq v_{p}$ and $\left(T_{p}-m T_{n}\right)^{2} \geq 0$. Q.E.D.

Proof of Proposition 2. We first show that if $\Delta=0, s_{n}^{*}=0$. If $\Delta=0$,

$$
f_{p}\left(s_{n}, s_{p}\right)=\bar{\lambda}\left[\left(1-s_{n}-s_{p}\right)\left(s_{n}+s_{p}\right) v_{n}\right]-K C\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p} T_{p}+s_{n} T_{n}\right)}{\rho_{\max } K}\right)
$$

Assume to the contrary that $s_{n}^{*}>0$. Let $\epsilon>0$ be small enough such that $s_{n}^{\prime}=s_{n}^{*}-\epsilon \geq 0, s_{p}^{\prime}=s_{p}^{*}+\epsilon$. Since $T_{n}>\frac{T_{p}}{m}$, we have

$$
\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{\prime} T_{p}+s_{n}^{\prime} T_{n}\right)}{\rho_{\max } K}=\frac{\bar{\lambda}\left(\frac{1}{m}\left(s_{p}^{*}+\epsilon\right) T_{p}+\left(s_{n}^{*}-\epsilon\right) T_{n}\right)}{\rho_{\max } K}=\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}+\frac{\bar{\lambda}\left(\frac{1}{m} T_{p}-T_{n}\right) \epsilon}{\rho_{\max } K}<\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K} .
$$

Thus,

$$
C\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{\prime} T_{p}+s_{n}^{\prime} T_{n}\right)}{\rho_{\max } K}\right)<C\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)
$$

In addition, $\left(1-s_{n}^{\prime}-s_{p}^{\prime}\right)\left(s_{n}^{\prime}+s_{p}^{\prime}\right) v_{n}=\left(1-s_{n}^{*}-s_{p}^{*}\right)\left(s_{n}^{*}+s_{p}^{*}\right) v_{n}$. Hence,

$$
\begin{aligned}
f_{p}\left(s_{n}^{\prime}, s_{p}^{\prime}\right) & =\bar{\lambda}\left[\left(1-s_{n}^{\prime}-s_{p}^{\prime}\right)\left(s_{n}^{\prime}+s_{p}^{\prime}\right) v_{n}\right]-K C\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{\prime} T_{p}+s_{n}^{\prime} T_{n}\right)}{\rho_{\max } K}\right) \\
& >\bar{\lambda}\left[\left(1-s_{n}^{*}-s_{p}^{*}\right)\left(s_{n}^{*}+s_{p}^{*}\right) v_{n}\right]-K C\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)=f_{p}\left(s_{n}^{*}, s_{p}^{*}\right) .
\end{aligned}
$$

Therefore, $s_{n}^{*}=0$ if $\Delta=0$.
We now show that if $\Delta=v_{n}, s_{p}^{*}=0$. If $\Delta=v_{n}$, we have $f_{p}\left(s_{n}, s_{p}\right):=\bar{\lambda}\left[\left(1-s_{n}\right) v_{n} s_{n}\right]-$ $K C\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p} T_{p}+s_{n} T_{n}\right)}{\rho_{\max } K}\right)$. Since $\overline{C(\cdot) \text { is convexly }}$ increasing, $f_{p}\left(s_{n}, s_{p}\right)$ is decreasing in s_{p} for all s_{n}. Therefore, $s_{p}^{*}=0$ if $\Delta=v_{n}$.

Next, we show that s_{n}^{*} is increasing in Δ. Assume $\hat{\Delta}>\Delta, \hat{f}_{p}(\cdot, \cdot)$ is the profit function associated with $\hat{\Delta}$, and $\left(\hat{s}_{n}^{*}, \hat{s}_{p}^{*}\right)$ is the maximizer of $\hat{f}_{p}(\cdot, \cdot)$. Assume to the contrary that $\hat{s}_{n}^{*}<s_{n}^{*}$. Then we have $\partial_{s_{n}} \hat{f}_{p}\left(\hat{s}_{n}^{*}, \hat{s}_{p}^{*}\right) \leq$ $0 \leq \partial_{s_{n}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)$. Therefore,
$-2 \bar{\lambda} v_{n} s_{n}^{*}-2 \bar{\lambda}\left(v_{n}-\Delta\right) s_{p}^{*}+\bar{\lambda} v_{n}-\frac{\bar{\lambda} T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right) \geq-2 \bar{\lambda} v_{n} \hat{s}_{n}^{*}-2 \bar{\lambda}\left(v_{n}-\hat{\Delta}\right) \hat{s}_{p}^{*}+\bar{\lambda} v_{n}-\frac{\bar{\lambda} T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} \hat{s}_{p}^{*} T_{p}+\hat{s}_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)$,
which implies that

$$
\begin{equation*}
y^{*}-\hat{y}^{*} \leq 2 v_{n}\left(\hat{s}_{n}^{*}-s_{n}^{*}\right)+2\left(v_{n}-\hat{\Delta}\right) \hat{s}_{p}^{*}-2\left(v_{n}-\Delta\right) s_{p}^{*}, \tag{16}
\end{equation*}
$$

where

$$
y^{*}:=\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right) \text { and } \hat{y}^{*}:=\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} \hat{s}_{p}^{*} T_{p}+\hat{s}_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right) .
$$

If $\hat{s}_{p}^{*} \leq s_{p}^{*}$, the convexity of $C(\cdot)$ suggests that $y^{*}-\hat{y}^{*}>0$. Since $\hat{s}_{n}^{*}<s_{n}^{*}, \hat{\Delta}>\Delta$, and $\hat{s}_{p}^{*} \leq s_{p}^{*}$, we have $2 v_{n}\left(\hat{s}_{n}^{*}-s_{n}^{*}\right)+2\left(v_{n}-\hat{\Delta}\right) \hat{s}_{p}^{*}-2\left(v_{n}-\Delta\right) s_{p}^{*}<0$. This forms a contradiction. Thus, we have $\hat{s}_{p}^{*}>s_{p}^{*}$. It then follows that $\partial_{s_{p}} \hat{f}_{p}\left(\hat{s}_{n}^{*}, \hat{s}_{p}^{*}\right) \geq 0 \geq \partial_{s_{p}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)$. Therefore, we have $\left(v_{n}-\hat{\Delta}\right)\left(1-2 \hat{s}_{n}^{*}-2 \hat{s}_{p}^{*}\right)-\frac{T_{p}}{m T_{n}} \hat{y}^{*} \geq\left(v_{n}-\right.$ $\Delta)\left(1-2 s_{n}^{*}-2 s_{p}^{*}\right)-\frac{T_{p}}{m T_{n}} y^{*}$. It then follows that

$$
\begin{align*}
y^{*}-\hat{y}^{*} & \geq \frac{m T_{n}}{T_{p}}\left(\left(v_{n}-\Delta\right)\left(1-2 s_{n}^{*}-2 s_{p}^{*}\right)-\left(v_{n}-\hat{\Delta}\right)\left(1-2 \hat{s}_{n}^{*}-2 \hat{s}_{p}^{*}\right)\right) \\
& \geq\left(v_{n}-\Delta\right)\left(1-2 s_{n}^{*}-2 s_{p}^{*}\right)-\left(v_{n}-\hat{\Delta}\right)\left(1-2 \hat{s}_{n}^{*}-2 \hat{s}_{p}^{*}\right) \\
& =(\hat{\Delta}-\Delta)+2\left(v_{n}-\hat{\Delta}\right) \hat{s}_{n}^{*}-2\left(v_{n}-\Delta\right) s_{n}^{*}+2\left(v_{n}-\hat{\Delta}\right) \hat{s}_{p}^{*}-2\left(v_{n}-\Delta\right) s_{p}^{*} \tag{17}\\
& >2\left(v_{n}-\Delta\right)\left(\hat{s}_{n}^{*}-s_{n}^{*}\right)+2\left(v_{n}-\hat{\Delta}\right) \hat{s}_{p}^{*}-2\left(v_{n}-\Delta\right) s_{p}^{*} \\
& >2 v_{n}\left(\hat{s}_{n}^{*}-s_{n}^{*}\right)+2\left(v_{n}-\hat{\Delta}\right) \hat{s}_{p}^{*}-2\left(v_{n}-\Delta\right) s_{p}^{*},
\end{align*}
$$

where the second inequality follows from $T_{n}>\frac{1}{m} T_{p}$ and $s_{n}^{*}+s_{p}^{*} \leq 0.5$ (which will be shown later in (19)), the third inequality follows from $\hat{s}_{n}^{*}<s_{n}^{*}$, and the last inequality follows from the assumption that $\hat{s}_{n}^{*}<s_{n}^{*}$. Inequality (16) contradicts with inequality (17). Therefore, $\hat{s}_{n}^{*} \geq s_{n}^{*}$ if $\hat{\Delta}>\Delta$.

Next, we show that $\hat{s}_{p}^{*} \leq s_{p}^{*}$ if $\hat{\Delta}>\Delta$. Assume to the contrary that $\hat{s}_{p}^{*}>s_{p}^{*}$. Then we have $\partial_{s_{p}} \hat{f}_{p}\left(\hat{s}_{n}^{*}, \hat{s}_{p}^{*}\right) \geq$ $0 \geq \partial_{s_{p}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)$, and therefore

$$
\begin{equation*}
\left(v_{n}-\hat{\Delta}\right)\left(1-2 \hat{s}_{n}^{*}-2 \hat{s}_{p}^{*}\right)-\frac{T_{p}}{m T_{n}} \hat{y}^{*} \geq\left(v_{n}-\Delta\right)\left(1-2 s_{n}^{*}-2 s_{p}^{*}\right)-\frac{T_{p}}{m T_{n}} y^{*} \tag{18}
\end{equation*}
$$

We have shown that $\hat{s}_{n}^{*} \geq s_{n}^{*}$. Thus, $\hat{s}_{n}^{*}+\hat{s}_{p}^{*}>s_{n}^{*}+s_{p}^{*},\left(v_{n}-\hat{\Delta}\right)\left(1-2 \hat{s}_{n}^{*}-2 \hat{s}_{p}^{*}\right)<\left(v_{n}-\Delta\right)\left(1-2 s_{n}^{*}-2 s_{p}^{*}\right)$, and

$$
\hat{y}^{*}=\frac{\bar{\lambda} T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} \hat{s}_{p}^{*} T_{p}+\hat{s}_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)>\frac{\bar{\lambda} T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)=y^{*}
$$

Therefore,

$$
\left(v_{n}-\hat{\Delta}\right)\left(1-2 \hat{s}_{n}^{*}-2 \hat{s}_{p}^{*}\right)-\frac{T_{p}}{m T_{n}} \hat{y}^{*}<\left(v_{n}-\Delta\right)\left(1-2 s_{n}^{*}-2 s_{p}^{*}\right)-\frac{T_{p}}{m T_{n}} y^{*}
$$

The above inequality contradicts with (18) and hence implies that $\hat{s}_{p}^{*} \leq s_{p}^{*}$ if $\hat{\Delta}>\Delta$.
Next, we show the existence of $\underline{\Delta}$ and $\bar{\Delta}$. Note that if $\Delta=0$ we have $s_{p}^{*}>0$, and if $\Delta=v_{n}$ we have $s_{n}^{*}>0$. Since $f_{p}\left(s_{n}, s_{p} \mid \Delta\right)$ is continuously differentiable with respect to $\left(s_{n}, s_{p}, \Delta\right)$, by the maximum theorem, the maximizer $\left(s_{n}^{*}(\Delta), s_{p}^{*}(\Delta)\right)$ is continuous in Δ. Therefore, the monotonicity and continuity of s_{n}^{*} and s_{p}^{*} with respect to Δ yields that there exists $\underline{\Delta}$ and $\bar{\Delta}$ such that

$$
s_{n}^{*}\left\{\begin{array} { l l }
{ = 0 , } & { \text { if } \Delta \in [0 , \underline { \Delta }] , } \\
{ > 0 , } & { \text { if } \Delta \in (\underline { \Delta } , v _ { n }] ; }
\end{array} \quad \text { and } s _ { p } ^ { * } \left\{\begin{array}{ll}
>0, & \text { if } \Delta \in[0, \bar{\Delta}) \\
=0, & \text { if } \Delta \in\left[\bar{\Delta}, v_{n}\right]
\end{array}\right.\right.
$$

To show $\bar{\Delta}>\underline{\Delta}$, observe that $s_{n}^{*}=s_{p}^{*}=0$ is never optimal for any $\Delta \in\left[0, v_{n}\right]$, which immediately implies that $\underline{\Delta}<\bar{\Delta}$. In the remainder of the proof, we show that

$$
\begin{align*}
& s_{p}^{*}+s_{n}^{*} \leq 0.5, \text { and } \tag{19}\\
& \bar{\Delta}=v_{n}\left(1-\frac{T_{p}}{m T_{n}}\right) . \tag{20}
\end{align*}
$$

We first show (19). Assume to the contrary that $s_{p}^{*}+s_{n}^{*}>0.5$. We have

$$
\partial_{s_{p}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)=\bar{\lambda}\left[\left(v_{n}-\Delta\right)\left(1-2 s_{n}^{*}-s_{p}^{*}\right)-\frac{T_{p}}{m \rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)\right]<0
$$

so we must have $s_{p}^{*}=0$, and thus $s_{n}^{*}>0.5$. Therefore,

$$
\partial_{s_{n}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)=\bar{\lambda}\left[v_{n}\left(1-2 s_{n}^{*}\right)-\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)\right]<0
$$

which implies that $s_{n}^{*}=0$, contradicting with $s_{n}^{*}>0.5$. We next show (20). It suffices to show that if $\Delta>$ $v_{n}\left(1-\frac{T_{p}}{m T_{n}}\right)$ (resp. $\left.\Delta<v_{n}\left(1-\frac{T_{p}}{m T_{n}}\right)\right), s_{p}^{*}=0$ (resp. $s_{p}^{*}>0$). If $\Delta>v_{n}\left(1-\frac{T_{p}}{m T_{n}}\right)$ and $s_{p}^{*}>0$, the First Order Condition (FOC) with respect to s_{p} implies that

$$
\left(v_{n}-\Delta\right)\left(1-2 s_{n}^{*}-2 s_{p}^{*}\right)-\frac{T_{p}}{m \rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)=\frac{T_{p}}{m} \mu_{2}^{*}
$$

where μ_{2}^{*} is the Lagrangian multiplier with respect to the constraint $\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right) \leq \rho_{\max } K$. By $\Delta>$ $v_{n}\left(1-\frac{T_{p}}{m T_{n}}\right)$, we have $\frac{v_{n}-\Delta}{v_{n}}<\frac{T_{p}}{m T_{n}}$. It then follows that

$$
\begin{aligned}
\partial_{s_{n}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right) & =\bar{\lambda}\left(-2 v_{n} s_{n}^{*}-2\left(v_{n}-\Delta\right) s_{p}^{*}+v_{n}-\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)\right) \\
& =\bar{\lambda}\left(-2 v_{n} s_{n}^{*}-2\left(v_{n}-\Delta\right) s_{p}^{*}+v_{n}-\frac{m\left(v_{n}-\Delta\right)\left(1-2 s_{n}^{*}-2 s_{p}^{*}\right) T_{n}}{T_{p}}+T_{n} \mu_{2}^{*}\right) \\
& >\bar{\lambda}\left(-2 v_{n} s_{n}^{*}-2\left(v_{n}-\Delta\right) s_{p}^{*}+v_{n}-v_{n}\left(1-2 s_{n}^{*}-2 s_{p}^{*}\right)+T_{n} \mu_{2}^{*}\right)=2 \bar{\lambda} \Delta s_{p}^{*}+\bar{\lambda} T_{n} \mu_{2}^{*}>\bar{\lambda} T_{n} \mu_{2}^{*},
\end{aligned}
$$

where the first inequality follows from $\frac{v_{n}-\Delta}{v_{n}}<\frac{T_{p}}{m T_{n}}$. Therefore we have $\partial_{s_{n}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)-\bar{\lambda} T_{n} \mu_{2}^{*}>0$, which contradicts the FOC that $\partial_{s_{n}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)-\bar{\lambda} T_{n} \mu_{2}^{*}=0$. If then follows that $s_{p}^{*}=0$ if $\Delta>v_{n}\left(1-\frac{T_{p}}{m T_{n}}\right)$.

If $\Delta<v_{n}\left(1-\frac{T_{p}}{m T_{n}}\right)$ and $s_{p}^{*}=0$, we have that $s_{n}^{*}>0$ since both of s_{n}^{*} and s_{p}^{*} being equal to zero is clearly suboptimal. The FOC with respect to s_{n} implies that

$$
v_{n}-2 v_{n} s_{n}^{*}-\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda} s_{n}^{*} T_{n}}{\rho_{\max } K}\right)=T_{n} \mu_{2}^{*},
$$

and by $\Delta<v_{n}\left(1-\frac{T_{p}}{m T_{n}}\right)$ we have $\frac{v_{n}-\Delta}{v_{n}}>\frac{T_{p}}{m T_{n}}$. It then follows that

$$
\begin{aligned}
\partial_{s_{p}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right) & =\bar{\lambda}\left(\left(v_{n}-\Delta\right)\left(1-2 s_{n}^{*}-2 s_{p}^{*}\right)-\frac{T_{p}}{m \rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)\right) \\
& >\bar{\lambda}\left(v_{n}\left(1-2 s_{n}^{*}\right) \frac{T_{p}}{m T_{n}}-\frac{T_{p}}{m \rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)\right) \\
& =\frac{\bar{\lambda} T_{p}}{m T_{n}}\left(v_{n}\left(1-2 s_{n}^{*}\right)-\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{2} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)\right)=\frac{\bar{\lambda} T_{p}}{m} \mu_{2}^{*},
\end{aligned}
$$

where the inequality follows from $\frac{v_{n}-\Delta}{v_{n}}>\frac{T_{p}}{m T_{n}}$ and the assumption $s_{p}^{*}=0$. Thus, $\partial_{s_{p}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)-\frac{\bar{\lambda} T_{p}}{m} \mu_{2}^{*}>0$, which contradicts with $\partial_{s_{p}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)-\frac{\bar{\lambda} T_{p}}{m} \mu_{2}^{*}=0$. Therefore, we have $s_{p}^{*}>0$ if $\Delta<v_{n}\left(1-\frac{T_{p}}{m T_{n}}\right)$. Q.E.D.

Proof of Theorem 1. Let $\hat{\Delta}>\Delta$. We need to show that $\hat{s}^{*}=\hat{s}_{n}^{*}+\hat{s}_{p}^{*} \leq s^{*}=s_{n}^{*}+s_{p}^{*}$. Notice that $\hat{s}_{n}^{*} \geq s_{n}^{*}$ by Proposition 2. If $\hat{s}_{n}^{*}=s_{n}^{*}$, then we have $\hat{s}^{*}=\hat{s}_{n}^{*}+\hat{s}_{p}^{*} \leq s^{*}=s_{n}^{*}+s_{p}^{*}$ since $\hat{s}_{p}^{*} \leq s_{p}^{*}$ by Proposition 2. Therefore, it remains to consider the case where $\hat{s}_{n}^{*}>s_{n}^{*}$.

If $\hat{s}_{n}^{*}>s_{n}^{*}$, we have $\partial_{s_{n}} \hat{f}_{p}\left(\hat{s}_{n}^{*}, \hat{s}_{p}^{*}\right) \geq 0 \geq \partial_{s_{n}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)$, i.e.,

$$
-2 v_{n} \hat{s}_{n}^{*}-2\left(v_{n}-\hat{\Delta}\right) \hat{s}_{p}^{*}-\hat{y}^{*} \geq-2 v_{n} s_{n}^{*}-2\left(v_{n}-\Delta\right) s_{p}^{*}-y^{*}
$$

where $y^{*}=\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)$ and $\hat{y}^{*}=\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} \hat{s}_{p}^{*} T_{p}+\hat{s}_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)$. It then follows that

$$
2\left(v_{n}-\hat{\Delta}\right)\left(\hat{s}^{*}-s^{*}\right) \leq 2 \hat{\Delta}\left(s_{n}^{*}-\hat{s}_{n}^{*}\right)+2(\Delta-\hat{\Delta}) s_{p}^{*}+y^{*}-\hat{y}^{*} .
$$

If $y^{*} \leq \hat{y}^{*}$, then $s^{*}>\hat{s}^{*}$ immediately follows from $s_{n}^{*}<\hat{s}_{n}^{*}$ and $\Delta<\hat{\Delta}$. If $y^{*}>\hat{y}^{*}$, the convexity of $C(\cdot)$ implies that $\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}>\frac{1}{m} \hat{s}_{p}^{*} T_{p}+\hat{s}_{n}^{*} T_{n}$. Since $\left(T_{p} / m\right)<T_{n}$, it then follows that $s_{p}^{*}-\hat{s}_{p}^{*}>\hat{s}_{n}^{*}-s_{n}^{*}$, or equivalently, $s^{*}=s_{n}^{*}+s_{p}^{*}>\hat{s}_{n}^{*}+\hat{s}_{p}^{*}=\hat{s}^{*} . \quad$ Q.E.D.

Proof of Theorem 2. We first show $p_{p}^{*} \leq \tilde{p}_{n}^{*}$ for all $\Delta \in\left[0, v_{n}\right]$. Note that $p_{p}^{*}=\left(1-s_{p}^{*}-s_{n}^{*}\right)\left(v_{n}-\Delta\right) / d_{p}$ and $\tilde{p}_{n}^{*}=\left(1-\tilde{s}_{n}^{*}\right) v_{n} / d_{n}$. By Theorem 1, we have $\tilde{s}_{n}^{*} \leq s_{p}^{*}+s_{n}^{*}\left(\tilde{s}_{n}^{*}\right.$ corresponds to $s_{n}^{*}+s_{p}^{*}$ in the case with $\left.\Delta=v_{n}\right)$, and $p_{p}^{*} \leq \tilde{p}_{n}^{*}$ follows immediately from $\Delta \geq 0$ and $d_{p} \geq d_{n}$. Next, we show that $p_{n}^{*} \leq \tilde{p}_{n}^{*}$ for all $\Delta \in[0, \bar{\Delta})$. We proceed in two steps. First, we show that $p_{n}^{*} \leq \tilde{p}_{n}^{*}$ when $\Delta \in[\underline{\Delta}, \bar{\Delta})$. Then we show that p_{n}^{*} is increasing in Δ on $\Delta \in[0, \underline{\Delta}]$, which would complete the proof.

First, consider the case where $\Delta \in(\underline{\Delta}, \bar{\Delta})$ (i.e., $s_{n}^{*}>0$ and $s_{p}^{*}>0$). Assume, to the contrary, that $p_{n}^{*}>\tilde{p}_{n}^{*}$, i.e., $\left(1-s_{n}^{*}\right) v_{n}-s_{p}^{*}\left(v_{n}-\Delta\right)>\left(1-\tilde{s}_{n}^{*}\right) v_{n}$. Rearranging terms, we get

$$
\tilde{s}_{n}^{*}>s_{n}^{*}+\frac{v_{n}-\Delta}{v_{n}} s_{p}^{*}>s_{n}^{*}+\frac{T_{p}}{m T_{n}} s_{p}^{*},
$$

where the second inequality holds because $\Delta<\bar{\Delta}$ implies $\frac{v_{n}-\Delta}{v_{n}}>\frac{T_{p}}{m T_{n}}$. Note that

$$
\begin{align*}
\partial_{s_{n}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right) & =\bar{\lambda}\left(v_{n}-2 v_{n} s_{n}^{*}-2\left(v_{n}-\Delta\right) s_{p}^{*}-\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)\right) \\
& >\bar{\lambda}\left(v_{n}-2 v_{n} s_{n}^{*}-2\left(v_{n}-\Delta\right) s_{p}^{*}-\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda} \tilde{s}_{n}^{*} T_{n}}{\rho_{\max } K}\right)\right) \tag{21}\\
& >\bar{\lambda}\left(v_{n}-2 v_{n} s_{n}^{*}-2 v_{n}\left(\tilde{s}_{n}^{*}-s_{n}^{*}\right)-\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda} \tilde{s}_{n}^{*} T_{n}}{\rho_{\max } K}\right)\right) \\
& =\bar{\lambda}\left(v_{n}-2 v_{n} \tilde{s}_{n}^{*}-\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda} \tilde{s}_{n}^{*} T_{n}}{\rho_{\max } K}\right)\right)=f_{n}^{\prime}\left(\tilde{s}_{n}^{*}\right) \geq 0,
\end{align*}
$$

where $f_{n}\left(\tilde{s}_{n}\right):=\bar{\lambda} v_{n}\left(1-\tilde{s}_{n}\right) \tilde{s}_{n}-K C\left(\frac{\bar{\lambda} \tilde{s}_{n} T_{n}}{\rho_{\max } K}\right)$ is the profit of the platform which only offers the normal service. In (21), the first inequality follows from $\tilde{s}_{n}^{*}>s_{n}^{*}+\frac{T_{p}}{m T_{n}} s_{p}^{*}$, the second inequality follows from $\tilde{s}_{n}^{*}>$ $s_{n}^{*}+\frac{v_{n}-\Delta}{v_{n}} s_{p}^{*}$, and the last inequality follows from $\tilde{s}_{n}^{*}>0$. In addition, it is straightforward to check that $\tilde{s}_{n}^{*}>s_{n}^{*}+\frac{T_{p}}{m T_{n}} s_{p}^{*}$ implies $\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}<1$. It then follows from (21) that $\partial_{s_{n}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)>0$, which contradicts with $\left(s_{n}^{*}, s_{p}^{*}\right)$ being the optimal solution. Therefore, we have $p_{n}^{*} \leq \tilde{p}_{n}^{*}$ when $\Delta \in(\underline{\Delta}, \bar{\Delta})$. Finally, we show $\underline{p_{n}^{*}}$ is increasing in Δ on $\Delta \in[0, \underline{\Delta}]$. When $\Delta \in[0, \underline{\Delta}]$, we have $s_{n}^{*}=0$ and

$$
p_{n}^{*}=\left(\left(1-s_{n}^{*}\right) \Delta+\left(1-s_{n}^{*}-s_{p}^{*}\right)\left(v_{n}-\Delta\right)\right) / d_{n}=\left(\Delta+\left(1-s_{p}^{*}\right)\left(v_{n}-\Delta\right)\right) / d_{n}=\left(v_{n}-\left(v_{n}-\Delta\right) s_{p}^{*}\right) / d_{n}
$$

By Proposition 2, s_{p}^{*} is decreasing in Δ. Therefore, $\left(v_{n}-\Delta\right) s_{p}^{*}$ is decreasing in Δ and it follows that p_{n}^{*} is increasing in Δ on $\Delta \in[0, \underline{\Delta}]$.

Proof of Proposition 3. First, it follows immediately from

$$
\Pi_{p}^{*}=\max \left\{\bar{\lambda}\left[\left(\left(1-s_{n}-s_{p}\right)\left(v_{n}-\Delta\right)+\left(1-s_{n}\right) \Delta\right) s_{n}+\left(1-s_{n}-s_{p}\right)\left(v_{n}-\Delta\right) s_{p}\right]-K C\left(\frac{\bar{\lambda}\left(\frac{s_{p}}{\gamma}+s_{n} T_{n}\right)}{\rho_{\max } K}\right)\right\}
$$

that Π_{p}^{*} is increasing in $\gamma\left(\right.$ as $C(\cdot)$ is decreasing in y). If $\Delta \leq \underline{\Delta}$, as shown in Proposition $2, s_{n}^{*}=0$. It can be easily checked that $\partial_{s_{p}} f_{p}\left(0, s_{p}\right)=\left(v_{n}-\Delta\right)\left(1-2 s_{p}\right)-\frac{\bar{\lambda}}{\rho_{\max \gamma}} C^{\prime}\left(\frac{\bar{\lambda} s_{p}}{\gamma}\right)$ is increasing in s_{p}, so $f_{p}\left(0, s_{p}\right)$ is supermodular in $\left(s_{p}, \gamma\right)$. Hence, s_{p}^{*} is increasing in γ. Since $s_{n}^{*}=0, s^{*}=s_{n}^{*}+s_{p}^{*}=s_{p}^{*}$ is increasing in γ, whereas $p_{n}^{*}=\left(\left(1-s^{*}\right) v_{p}+\left(1-s_{n}^{*}\right) \Delta\right) / d_{n}=\left(\left(1-s^{*}\right) v_{p}+\Delta\right) / d_{n}$ and $p_{p}^{*}=\left(1-s^{*}\right) v_{p} / d_{p}$ are decreasing in s^{*} and thus in γ as well.

We now consider the case $\Delta>\underline{\Delta}$, in which case $s_{p}^{*}>0$ and $s_{n}^{*}>0$. Assume that $\hat{\gamma}>\gamma, \hat{f}_{p}(\cdot, \cdot)$ is the profit function associated with $\hat{\gamma}$, and $\left(\hat{s}_{n}^{*}, \hat{s}_{n}^{*}\right)$ is the optimizer of $\hat{f}_{p}(\cdot, \cdot)$. We first show $\underline{\hat{s}_{p}^{*} \geq s_{p}^{*} \text {. Assume to the }{ }^{\text {. }} \text {. }}$ contrary that $\hat{s}_{p}^{*}<s_{p}^{*}$. Then we have $\partial_{s_{p}} \hat{f}_{p}\left(\hat{s}_{p}^{*}, \hat{s}_{n}^{*}\right) \leq 0 \leq \partial_{s_{p}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)$, or alternatively, $\left(v_{n}-\Delta\right)\left(1-2 \hat{s}_{n}^{*}-\right.$ $\left.2 \hat{s}_{p}^{*}\right)-\frac{\hat{y}^{*}}{\hat{\gamma} T_{n}} \leq\left(v_{n}-\Delta\right)\left(1-2 s_{n}^{*}-2 s_{p}^{*}\right)-\frac{y^{*}}{\gamma T_{n}}$, where $\hat{y}^{*}:=\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{\hat{s}_{p}^{*}}{\gamma}+\hat{s}_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)$ and $y^{*}:=\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{s_{p}^{*}}{\gamma}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)$. Equivalently,

$$
\begin{equation*}
\frac{\hat{y}^{*}}{\hat{\gamma} T_{n}}-\frac{y^{*}}{\gamma T_{n}} \geq 2\left(v_{n}-\Delta\right)\left(s_{n}^{*}-\hat{s}_{n}^{*}\right)+2\left(v_{n}-\Delta\right)\left(s_{p}^{*}-\hat{s}_{p}^{*}\right) \tag{22}
\end{equation*}
$$

If in addition we have $\hat{s}_{n}^{*} \leq s_{n}^{*}$, the convexity of $C(\cdot)$ suggests that $\hat{y}^{*}<y^{*}$. However, (22) implies that $\hat{y}^{*}>y^{*}$, which forms a contradiction. Hence, we must have $\hat{s}_{n}^{*}>s_{n}^{*}$. Thus, $\partial_{s_{n}} \hat{f}_{p}\left(\hat{s}_{p}^{*}, \hat{s}_{n}^{*}\right) \geq 0 \geq \partial_{s_{n}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)$, or alternatively, $-2\left(v_{n}-\Delta\right) \hat{s}_{p}^{*}+v_{n}\left(1-2 \hat{s}_{n}^{*}\right)-\hat{y}^{*} \geq-2\left(v_{n}-\Delta\right) s_{p}^{*}+v_{n}\left(1-2 s_{n}^{*}\right)-y^{*}$. Equivalently,

$$
\begin{equation*}
\hat{y}^{*}-y^{*} \leq 2\left(v_{n}-\Delta\right)\left(s_{p}^{*}-\hat{s}_{p}^{*}\right)+2 v_{n}\left(s_{n}^{*}-\hat{s}_{n}^{*}\right) . \tag{23}
\end{equation*}
$$

By (22) and $\hat{\gamma} T_{n}>\gamma T_{n}>1, \hat{y}^{*}-y^{*}>2\left(v_{n}-\Delta\right)\left(s_{p}^{*}-\hat{s}_{p}^{*}\right)+2 v_{n}\left(s_{n}^{*}-\hat{s}_{n}^{*}\right)$, which contradicts (23). We have thus shown that $\hat{s}_{p}^{*} \geq s_{p}^{*}$.

Next, we show that $\hat{s}_{p}^{*}+\hat{s}_{n}^{*} \geq s_{p}^{*}+s_{n}^{*}$. If $\hat{s}_{p}^{*}=s_{p}^{*}$, then $\frac{\hat{s}_{p}^{*}}{\hat{\gamma}} \leq \frac{s_{p}^{*}}{\gamma}$. We have

$$
\begin{aligned}
\partial_{s_{n}} \hat{f}_{p}\left(s_{n}^{*}, \hat{s}_{p}^{*}\right) & =\bar{\lambda}\left(v_{n}-2 v_{n} s_{n}^{*}-2\left(v_{n}-\Delta\right) \hat{s}_{p}^{*}\right)-\frac{\bar{\lambda} T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{\hat{s}_{p}^{*}}{\hat{\gamma}}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right) \\
& \geq \bar{\lambda}\left(v_{n}-2 v_{n} s_{n}^{*}-2\left(v_{n}-\Delta\right) \hat{s}_{p}^{*}\right)-\frac{\bar{\lambda} T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{s_{p}^{*}}{\gamma}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)=\partial_{s_{n}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right) \geq 0 .
\end{aligned}
$$

Therefore, we have $\hat{s}_{n}^{*} \geq s_{n}^{*}$ and hence, $\hat{s}_{p}^{*}+\hat{s}_{n}^{*} \geq s_{p}^{*}+s_{n}^{*}$.
Now we consider the case $\hat{s}_{p}^{*}>s_{p}^{*}$. If $\hat{s}_{n}^{*}+\hat{s}_{p}^{*} \leq s_{n}^{*}+s_{p}^{*}$, we must have $\hat{s}_{n}^{*}<s_{n}^{*}$. Thus, $\partial_{s_{n}} \hat{f}_{p}\left(\hat{s}_{p}^{*}, \hat{s}_{n}^{*}\right) \leq 0 \leq$ $\partial_{s_{n}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)$, i.e., $-2\left(v_{n}-\Delta\right) \hat{s}_{p}^{*}+v_{n}\left(1-2 \hat{s}_{n}^{*}\right)-\hat{y}^{*} \leq-2\left(v_{n}-\Delta\right) s_{p}^{*}+v_{n}\left(1-2 s_{n}^{*}\right)-y^{*}$. Equivalently,

$$
\begin{equation*}
\hat{y}^{*}-y^{*} \geq 2\left(v_{n}-\Delta\right)\left(s_{p}^{*}-\hat{s}_{p}^{*}\right)+2 v_{n}\left(s_{n}^{*}-\hat{s}_{n}^{*}\right)>0, \tag{24}
\end{equation*}
$$

where the last inequality follows from $\hat{s}_{n}^{*}+\hat{s}_{p}^{*} \leq s_{n}^{*}+s_{p}^{*}$. Since $C(\cdot)$ is convex, (24) implies that $\frac{\hat{s}_{p}^{*}}{\hat{\gamma}}+T_{n} \hat{s}_{n}^{*}>$ $\frac{s_{p}^{*}}{\gamma}+T_{n} s_{n}^{*}$, which is equivalent to that $s_{n}^{*}-\hat{s}_{n}^{*}<\frac{\hat{s}_{p}^{*}}{\hat{\gamma} T_{n}}-\frac{s_{p}^{*}}{\gamma T_{n}}<\hat{s}_{p}^{*}-s_{p}^{*}$, where the inequality follows from that $\hat{\gamma} T_{n}>\gamma T_{n}>1$. Thus, $\hat{s}_{n}^{*}+\hat{s}_{p}^{*}>s_{n}^{*}+s_{p}^{*}$, contradicting with $\hat{s}_{n}^{*}+\hat{s}_{p}^{*} \leq s_{n}^{*}+s_{p}^{*}$. Therefore, we must have $\hat{s}_{n}^{*}+\hat{s}_{p}^{*} \geq s_{n}^{*}+s_{p}^{*}$.

Next, we show that $\hat{p}_{p}^{*} \leq p_{p}^{*}$. Note that $\hat{p}_{p}^{*}=\left(v_{n}-\Delta\right)\left(1-\hat{s}_{n}^{*}-\hat{s}_{p}^{*}\right) / d_{p}$ and $p_{p}^{*}=\left(v_{n}-\Delta\right)\left(1-\hat{s}_{n}^{*}-\hat{s}_{p}^{*}\right) / d_{p}$, $\hat{p}_{p}^{*} \leq p_{p}^{*}$ follows immediately from $\hat{s}_{n}^{*}+\hat{s}_{p}^{*} \geq s_{n}^{*}+s_{p}^{*}$.

Finally, we show that $\hat{p}_{n}^{*} \leq p_{n}^{*}$. Assume to the contrary that $\hat{p}_{n}^{*}>p_{n}^{*}$, i.e., $\left(v_{n}-\Delta\right)\left(1-\hat{s}_{n}^{*}-\hat{s}_{p}^{*}\right)+\Delta(1-$ $\left.\hat{s}_{n}^{*}\right)>\left(v_{n}-\Delta\right)\left(1-s_{n}^{*}-s_{p}^{*}\right)+\Delta\left(1-s_{n}^{*}\right)$. Hence, $v_{n}\left(s_{n}^{*}-\hat{s}_{n}^{*}\right)>\left(v_{n}-\Delta\right)\left(\hat{s}_{p}^{*}-s_{p}^{*}\right)>0$, where the second inequality follows from that $\hat{s}_{p}^{*}>s_{p}^{*}$. The inequality $\hat{s}_{n}^{*}<s_{n}^{*}$ implies that $\partial_{s_{n}} \hat{f}_{p}\left(\hat{s}_{p}^{*}, \hat{s}_{n}^{*}\right) \leq 0 \leq \partial_{s_{n}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)$, i.e., $-2\left(v_{n}-\Delta\right) \hat{s}_{p}^{*}+v_{n}\left(1-2 \hat{s}_{n}^{*}\right)-\hat{y}^{*} \leq-2\left(v_{n}-\Delta\right) s_{p}^{*}+v_{n}\left(1-2 s_{n}^{*}\right)-y^{*}$. Equivalently,

$$
\begin{equation*}
\hat{y}^{*}-y^{*} \geq 2\left(v_{n}-\Delta\right)\left(s_{p}^{*}-\hat{s}_{p}^{*}\right)+2 v_{n}\left(s_{n}^{*}-\hat{s}_{n}^{*}\right)>0, \tag{25}
\end{equation*}
$$

where the last inequality follows from $v_{n}\left(s_{n}^{*}-\hat{s}_{n}^{*}\right)>\left(v_{n}-\Delta\right)\left(\hat{s}_{p}^{*}-s_{p}^{*}\right)>0$. Since $C(\cdot)$ is convex, (25) implies that $\frac{\hat{s}_{p}^{*}}{\hat{\gamma}}+T_{n} \hat{s}_{n}^{*}>\frac{s_{p}^{*}}{\gamma}+T_{n} s_{n}^{*}$, which is equivalent to that $s_{n}^{*}-\hat{s}_{n}^{*}<\frac{\hat{s}_{p}^{*}}{\hat{\gamma} T_{n}}-\frac{s_{p}^{*}}{\gamma T_{n}}<\frac{\hat{s}_{p}^{*}-s_{p}^{*}}{\hat{\gamma} T_{n}}$, where the inequality follows from that $\hat{\gamma} T_{n}>\gamma T_{n}$. Since $\Delta<\bar{\Delta},\left(v_{n}-\Delta\right) / v_{n}>1 /\left(\hat{\gamma} T_{n}\right)$. So we have $\frac{\left(v_{n}-\Delta\right)\left(s_{p}^{*}-s_{p}^{*}\right)}{v_{n}}>\frac{\hat{s}_{p}^{*}-s_{p}^{*}}{\hat{\gamma} T_{n}}>s_{n}^{*}-\hat{s}_{n}^{*}$. This inequality contradicts that $v_{n}\left(s_{n}^{*}-\hat{s}_{n}^{*}\right)>\left(v_{n}-\Delta\right)\left(\hat{s}_{p}^{*}-s_{p}^{*}\right)$. Therefore, we must have $\hat{p}_{n}^{*} \leq p_{n}^{*}$. Q.E.D.

Proof of Proposition 4. We use $\lambda_{p}^{*}:=\bar{\lambda} s_{p}^{*}$ and $\lambda_{n}^{*}:=\bar{\lambda} s_{n}^{*}$. Notice that when $\left(v_{n}-\Delta\right) / v_{n}>T_{p} /\left(m T_{n}\right)$, we have $\Delta<\bar{\Delta}$ and hence $s_{p}^{*}>0$. By the KKT condition (which is both necessary and sufficient for optimality by the joint concavity of $f_{p}(\cdot)$ and compactness of the feasible region of $\left(s_{n}, s_{p}\right)$), we have

$$
\begin{align*}
& \bar{\lambda}\left[-2 v_{p} s_{n}^{*}-2 \Delta s_{n}^{*}-2 s_{p}^{*} v_{p}+v_{p}+\Delta\right]-\frac{\bar{\lambda} T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)=\mu_{1}^{*}+\bar{\lambda} T_{n} \mu_{2}^{*}-\eta_{1}^{*}, \tag{26}\\
& \bar{\lambda}\left[-2 v_{p} s_{n}^{*}-2 s_{p}^{*} v_{p}+v_{p}\right]-\frac{\bar{\lambda} T_{p}}{m \rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)=\mu_{1}^{*}+\frac{1}{m} \bar{\lambda} T_{p} \mu_{2}^{*}-\eta_{2}^{*}, \tag{27}\\
& \mu_{1}^{*}\left(1-s_{n}^{*}-s_{p}^{*}\right)=0, \tag{28}\\
& \mu_{2}^{*}\left(\rho_{\max } K-\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)\right)=0, \tag{29}\\
& \eta_{1}^{*} s_{n}^{*}=0, \quad \eta_{2}^{*} s_{p}^{*}=0, \tag{30}\\
& \mu_{1}^{*}, \mu_{2}^{*}, \eta_{1}^{*}, \eta_{2}^{*} \geq 0, \tag{31}
\end{align*}
$$

where $\mu_{1}^{*}, \mu_{2}^{*}, \eta_{1}^{*}$, and η_{2}^{*} are the Lagrangian multipliers with respect to the constraints $s_{n}^{*}+s_{p}^{*} \leq 1, \bar{\lambda}\left(\frac{1}{m} s_{n}^{*} T_{n}+\right.$ $\left.s_{p}^{*} T_{p}\right) \leq \rho_{\max } K, s_{n}^{*} \geq 0$ and $s_{p}^{*} \geq 0$, respectively. Notice that by (19), $s_{n}^{*}+s_{p}^{*}<1$ and hence by complementary slackness condition, we have $\mu_{1}^{*}=0$.
(a) s_{n}^{*} is decreasing in $\bar{\lambda}$. Consider $\hat{\bar{\lambda}}$ and $\bar{\lambda}$ with $\hat{\bar{\lambda}}>\bar{\lambda}$. Notice that $\left(v_{n}-\Delta\right) / v_{n}>T_{p} /\left(m T_{n}\right)$ and hence $\Delta<\bar{\Delta}$, we have $s_{p}^{*}>0$ and $\hat{s}_{p}^{*}>0$. By (30), $\eta_{2}^{*}=\hat{\eta}_{2}=0$. We first consider the case where $\hat{s}_{n}^{*}, s_{n}^{*}>0$, and therefore $\eta_{1}^{*}=\hat{\eta}_{1}=0$. Then the KKT conditions (26) and (27) imply that:

$$
\begin{align*}
& v_{n}-2 v_{n} s_{n}^{*}-2\left(v_{n}-\Delta\right) s_{p}^{*}-y^{*}-\mu_{2}^{*} T_{n}=0 \\
& \left(v_{n}-\Delta\right)\left(1-2 s_{n}^{*}-2 s_{p}^{*}\right)-\frac{T_{p}}{m T_{n}} y^{*}-\mu_{2}^{*} \frac{T_{p}}{m}=0 \\
& v_{n}-2 v_{n} \hat{s}_{n}^{*}-2\left(v_{n}-\Delta\right) \hat{s}_{p}^{*}-\hat{y}^{*}-\hat{\mu}_{2}^{*} T_{n}=0 \tag{32}\\
& \left(v_{n}-\Delta\right)\left(1-2 \hat{s}_{n}^{*}-2 \hat{s}_{p}^{*}\right)-\frac{T_{p}}{m T_{n}} \hat{y}^{*}-\hat{\mu}_{2}^{*} \frac{T_{p}}{m}=0
\end{align*}
$$

where $y^{*}:=\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\bar{\lambda}\left(\frac{1}{m} s_{p}^{*} T_{p}+s_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)$ and $\hat{y}^{*}:=\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\hat{\lambda}\left(\frac{1}{m} \hat{s}_{p}^{*} T_{p}+\hat{s}_{n}^{*} T_{n}\right)}{\rho_{\max } K}\right)$. Observe that both $\left(s_{n}^{*}, s_{p}^{*}\right)$ and $\left(\hat{s}_{n}^{*}, \hat{s}_{p}^{*}\right)$ are located on the line

$$
\begin{equation*}
\frac{v_{n}-2 v_{n} s_{n}-2\left(v_{n}-\Delta\right) s_{p}}{\left(v_{n}-\Delta\right)\left(1-2 s_{n}-2 s_{p}\right)}=\frac{m T_{n}}{T_{p}} \tag{33}
\end{equation*}
$$

If $\hat{s}_{n}^{*}-s_{n}^{*}=\delta>0$, then it is easy to check by (33) that $s_{p}^{*}>\hat{s}_{p}^{*}$ and $s_{p}^{*}-\hat{s}_{p}^{*}<\delta$. Thus, we have $\hat{s}_{n}^{*}+\hat{s}_{p}^{*}>$ $s_{n}^{*}+s_{p}^{*}$ and $\hat{\bar{\lambda}}\left(\hat{s}_{n}^{*} T_{n}+\frac{1}{m} T_{p} \hat{s}_{p}^{*}\right)>\bar{\lambda}\left(s_{n}^{*} T_{n}+\frac{1}{m} s_{p}^{*} T_{p}\right)$. Hence, $\hat{y}^{*}>y^{*}$. Moreover, by the complementary slackness condition (29), $\hat{\mu}_{2}^{*} \geq \mu_{2}^{*}$. Therefore,

$$
\left(v_{n}-\Delta\right)\left(1-2 \hat{s}_{n}^{*}-2 \hat{s}_{p}^{*}\right)-\frac{T_{p}}{m T_{n}} \hat{y}^{*}-\hat{\mu}_{2}^{*} \frac{T_{p}}{m}<\left(v_{n}-\Delta\right)\left(1-2 s_{n}^{*}-2 s_{p}^{*}\right)-\frac{T_{p}}{m T_{n}} y^{*}-\mu_{2}^{*} \frac{T_{p}}{m}
$$

which contradicts with (32). Hence, in the range of $s_{n}^{*}>0, s_{n}^{*}$ is decreasing in $\bar{\lambda}$. By the continuity of s_{n}^{*}, it is clear that s_{n}^{*} is decreasing in $\bar{\lambda}$ for all $\bar{\lambda}$.
(b) There exists a λ_{0} such that $s_{n}^{*}=0$ for $\bar{\lambda} \geq \lambda_{0}$. Note that $\Delta<\bar{\Delta}$ is equivalent to $\frac{v_{n}-\Delta}{v_{n}}>\frac{T_{p}}{m T_{n}}$. We use $\lambda_{p}:=\bar{\lambda} s_{p}$ and $\lambda_{n}:=\bar{\lambda} s_{n}$ as the decision variables. The platform is then to maximize

$$
\begin{equation*}
f_{p}\left(\lambda_{n}, \lambda_{p}\right)=\left(\left(1-\frac{\lambda_{p}}{\bar{\lambda}}-\frac{\lambda_{n}}{\bar{\lambda}}\right)\left(v_{n}-\Delta\right)+\left(1-\frac{\lambda_{n}}{\bar{\lambda}}\right) \Delta\right) \lambda_{n}+\left(1-\frac{\lambda_{n}}{\bar{\lambda}}-\frac{\lambda_{p}}{\bar{\lambda}}\right)\left(v_{n}-\Delta\right) \lambda_{p}-K C\left(\frac{\frac{1}{m} \lambda_{p} T_{p}+\lambda_{n} T_{n}}{\rho_{\max } K}\right) \tag{34}
\end{equation*}
$$

subject to the constraint $0 \leq \lambda_{n}+\lambda_{p} \leq \bar{\lambda}$ and $\lambda_{n} T_{n}+\lambda_{p} \frac{T_{p}}{m} \leq \rho_{\max } K$. We have

$$
\begin{aligned}
\partial_{\lambda_{n}} f_{p}\left(\lambda_{n}^{*}, \lambda_{p}^{*}\right) & =v_{n}-2 v_{n} \frac{\lambda_{n}^{*}}{\bar{\lambda}}-2\left(v_{n}-\Delta\right) \frac{\lambda_{p}^{*}}{\bar{\lambda}}-\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\frac{1}{m} \lambda_{p}^{*} T_{p}+\lambda_{n}^{*} T_{n}}{\rho_{\max } K}\right) \\
& =v_{n}-2 v_{n} s_{n}^{*}-2\left(v_{n}-\Delta\right) s_{p}^{*}-\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\frac{1}{m} \lambda_{p}^{*} T_{p}+\lambda_{n}^{*} T_{n}}{\rho_{\max } K}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\partial_{\lambda_{p}} f_{p}\left(\lambda_{n}^{*}, \lambda_{p}^{*}\right) & =\left(v_{n}-\Delta\right)\left(1-\frac{2 \lambda_{n}^{*}}{\bar{\lambda}}-\frac{2 \lambda_{p}^{*}}{\bar{\lambda}}\right)-\frac{T_{p}}{m \rho_{\max }} C^{\prime}\left(\frac{\frac{1}{m} \lambda_{p}^{*} T_{p}+\lambda_{n}^{*} T_{n}}{\rho_{\max } K}\right) \\
& =\left(v_{n}-\Delta\right)\left(1-2 s_{n}^{*}-2 s_{p}^{*}\right)-\frac{T_{p}}{m \rho_{\max }} C^{\prime}\left(\frac{\frac{1}{m} \lambda_{p}^{*} T_{p}+\lambda_{n}^{*} T_{n}}{\rho_{\max } K}\right) .
\end{aligned}
$$

Since $\lambda_{n}^{*} T_{n}+\lambda_{p}^{*} \frac{T_{p}}{m} \leq \rho_{\max } K$, it follows that $s_{n}^{*}=\frac{\lambda_{n}^{*}}{\lambda} \leq \frac{\rho_{\max } K}{T_{n} \lambda}$ and $s_{p}^{*}=\frac{\lambda_{p}^{*}}{\lambda} \leq \frac{m \rho_{\max } K}{T_{n} \lambda}$. Therefore, we have $s_{n}^{*} \rightarrow 0$ and $s_{p}^{*} \rightarrow 0$ as $\bar{\lambda} \rightarrow+\infty$. Because $\Delta<v_{n}\left(1-\frac{T_{p}}{m T_{n}}\right)$, we have

$$
v_{n}-\Delta-\frac{T_{p}}{m \rho_{\max }} C^{\prime}\left(\frac{\frac{1}{m} \lambda_{p}^{*} T_{p}+\lambda_{n}^{*} T_{n}}{\rho_{\max } K}\right)>\frac{T_{p}}{m T_{n}}\left(v_{n}-\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\frac{1}{m} \lambda_{p}^{*} T_{p}+\lambda_{n}^{*} T_{n}}{\rho_{\max } K}\right)\right)
$$

Therefore, when $\bar{\lambda}$ is sufficiently large (where $s_{n}^{*} \rightarrow 0$ and $s_{p}^{*} \rightarrow 0$), we have

$$
\begin{align*}
\partial_{\lambda_{p}} f_{p}\left(\lambda_{n}^{*}, \lambda_{p}^{*}\right)-\frac{T_{p}}{m} \mu_{2}^{*} & =\left(v_{n}-\Delta\right)\left(1-2 s_{n}^{*}-2 s_{p}^{*}\right)-\frac{T_{p}}{m \rho_{\max }} C^{\prime}\left(\frac{\frac{1}{m} \lambda_{p}^{*} T_{p}+\lambda_{n}^{*} T_{n}}{\rho_{\max } K}\right)-\frac{T_{p}}{m} \mu_{2}^{*} \\
& >\frac{T_{p}}{m T_{n}}\left(v_{n}-2 v_{n} s_{n}^{*}-2\left(v_{n}-\Delta\right) s_{p}^{*}-\frac{T_{n}}{\rho_{\max }} C^{\prime}\left(\frac{\frac{1}{m} \lambda_{p}^{*} T_{p}+\lambda_{n}^{*} T_{n}}{\rho_{\max } K}\right)-T_{n} \mu_{2}^{*}\right) \tag{35}\\
& =\frac{T_{p}}{m T_{n}}\left(\partial_{\lambda_{n}} f_{p}\left(\lambda_{n}^{*}, \lambda_{p}^{*}\right)-T_{n} \mu_{2}^{*}\right),
\end{align*}
$$

where μ_{2}^{*} is the Lagrangian multiplier with respect to the constraint $\lambda_{n} T_{n}+\lambda_{p} \frac{T_{p}}{m} \leq \rho_{\max } K$. Since $s_{p}^{*}>0$ and thus $\lambda_{p}^{*}>0$, the first-order condition $\partial_{\lambda_{p}} f_{p}\left(\lambda_{n}^{*}, \lambda_{p}^{*}\right)-\frac{T_{p}}{m} \mu_{2}^{*}=0$ when $\bar{\lambda}$ is sufficiently large. In this case, (35) implies that $\partial_{\lambda_{n}} f_{n}\left(\lambda_{n}^{*}, \lambda_{p}^{*}\right)-T_{n} \mu_{2}^{*}<\frac{m T_{n}}{T_{p}}\left(\partial_{\lambda_{p}} f_{p}\left(\lambda_{n}^{*}, \lambda_{p}^{*}\right)-\frac{T_{p}}{m}\right)=0$. It is straightforward to check that by the KKT condition of optimization problem (34), $\partial_{\lambda_{n}} f_{n}\left(\lambda_{n}^{*}, \lambda_{p}^{*}\right)-T_{n} \mu_{2}^{*}<0$ implies that $\lambda_{n}^{*}=0$. It then follows that $s_{n}^{*}=0$ when $\bar{\lambda}$ is sufficiently large, or, there exists a threshold λ_{0}, such that $s_{n}^{*}=0$ for $\bar{\lambda} \geq \lambda_{0}$.
(c) s_{p}^{*} is increasing (resp. decreasing) in $\bar{\lambda}$ for $\bar{\lambda}<\lambda_{0}\left(\right.$ resp. $\bar{\lambda}>\lambda_{0}$). Recall that $\lambda_{0}:=\min \left\{\bar{\lambda}: s_{n}^{*}=0\right\}$. If $\bar{\lambda}<\lambda_{0},\left(s_{n}^{*}, s_{p}^{*}\right)$ satisfies (33). Since s_{n}^{*} is decreasing in $\bar{\lambda}$, it is straightforward to check that s_{p}^{*} is decreasing in s_{n}^{*}, thus increasing in $\bar{\lambda}$ as well. If $\bar{\lambda}>\lambda_{0}$, then we have $s_{n}^{*}=0$. By Proposition $1, s_{p}^{*}$ is decreasing in $\bar{\lambda}$.
(d) p_{n}^{*} and p_{p}^{*} are increasing in $\bar{\lambda}$, and $p_{n}^{*} d_{n}-p_{p}^{*} d_{p}$ is increasing in $\bar{\lambda}$. Note that $p_{p}^{*}=\left(v_{n}-\Delta\right)\left(1-s_{n}^{*}-\right.$ s_{p}^{*} / d_{p}. If $\bar{\lambda}<\lambda_{0}, s_{n}^{*}>0$ and $\left(s_{n}^{*}, s_{p}^{*}\right)$ satisfies (33). Since s_{n}^{*} is decreasing in $\bar{\lambda}$, it is easy to check, by (33), that $s_{n}^{*}+s_{p}^{*}$ is decreasing in $\bar{\lambda}$. Thus, $p_{p}^{*}=\left(v_{n}-\Delta\right)\left(1-s_{n}^{*}-s_{p}^{*}\right) / d_{p}$ is increasing in $\bar{\lambda}$. Furthermore, $p_{n}^{*} d_{n}-p_{p}^{*} d_{p}=\left(1-s_{n}^{*}\right) \Delta$ is decreasing in s_{n}^{*}, thus increasing $\bar{\lambda}$. Hence, $p_{n}^{*}=\left(p_{p}^{*} d_{p}+\left(1-s_{n}^{*}\right) \Delta\right) / d_{n}$ is also increasing in $\bar{\lambda}$. Q.E.D.

Proof of Proposition 5. It follows from (10) that if $\Delta=0, R S_{p}^{*}=\frac{1}{2} \bar{\lambda}\left(s_{p}^{*}\right)^{2} . \tilde{R S_{n}^{*}}=R S_{p}^{*}(\bar{\Delta})=\frac{1}{2} \bar{\lambda}\left(s_{n}^{*}\right)^{2}$. We now show that $s_{p}^{*}(0)>s_{n}^{*}(\bar{\Delta})$. By Theorem $1, s_{p}^{*}(0)+s_{n}^{*}(0)>s_{p}^{*}(\bar{\Delta})+s_{n}^{*}(\bar{\Delta})$. By Proposition $2, s_{n}^{*}(0)=$ $s_{p}^{*}(\bar{\Delta})=0$, we have $s_{p}^{*}(0)>s_{n}^{*}(\bar{\Delta})$, which implies that $R S_{p}^{*}(0)>R S_{p}^{*}(\bar{\Delta})$. The existence of $\underline{\Delta}_{r}$ then follows directly from $R S_{p}^{*}(\Delta)$ being continuous in Δ.

For the ease of exposition, we normalize $K=1, T_{n}=1$, and $v_{n}=1$. We also define $\gamma=m / T_{p}$ and $\eta=v_{n}-\Delta$. Then, we have the constraints $\gamma>1, \eta<1$, and $\eta \gamma>1$. If $G(r)=r$, we first compare $R S_{p}^{*}(\Delta)$ with $\tilde{R S_{n}^{*}}$ for $\Delta \in(\underline{\Delta}, \bar{\Delta})$. In this case, $s_{n}^{*}(\Delta)>0$. Then, It is straightforward to calculate that

$$
\begin{cases}s_{n}^{*}(\Delta)= & \frac{1}{2}\left(1-\frac{\eta \bar{\lambda}(1 / \gamma-1)}{-\eta \bar{\lambda}+(\eta-1) \eta \rho_{\max }^{2}+2 \eta \bar{\lambda} / \gamma-\lambda / \gamma^{2}}\right) \\ s_{p}^{*}(\Delta)= & \frac{\bar{\lambda}(1 / \gamma-\eta)}{-2 \eta \bar{\lambda}+2(\eta-1) \eta \rho_{\max }^{2}+4 \eta \lambda / \gamma-2 \bar{\lambda} / \gamma^{2}} \\ \tilde{s}_{n}^{*}= & \frac{\rho_{\max }^{2}}{2\left(\lambda+\rho_{\max }^{2}\right)}\end{cases}
$$

Then, we can calculate the difference between the setting with carpool services and that without:
$R S_{p}^{*}(\Delta)-\tilde{R S_{n}^{*}}=-\frac{\bar{\lambda}^{2}(\eta-1 / \gamma)^{2}\left(\eta\left(-\bar{\lambda}^{2}+2(\eta-2) \bar{\lambda} \rho_{\max }^{2}+3(\eta-1) \rho_{\max }^{4}\right)+2 \eta \bar{\lambda}\left(\bar{\lambda}+2 \rho_{\max }^{2}\right) / \gamma-\lambda\left(\lambda+2 \rho_{\max }^{2}\right) / \gamma^{2}\right)}{4\left(\lambda+\rho_{\max }^{2}\right)^{2}\left(\eta \lambda-(\eta-1) \eta \rho_{\max }^{2}-2 \eta \bar{\lambda} / \gamma+\bar{\lambda} / \gamma^{2}\right)^{2}}$
Hence, it suffices to show that

$$
\eta\left(-\bar{\lambda}^{2}+2(\eta-2) \bar{\lambda} \rho_{\max }^{2}+3(\eta-1) \rho_{\max }^{4}\right)+2 \eta \bar{\lambda}\left(\bar{\lambda}+2 \rho_{\max }^{2}\right) / \gamma-\lambda\left(\lambda+2 \rho_{\max }^{2}\right) / \gamma^{2}<0
$$

Rearranging the terms, it suffices to show that

$$
\begin{align*}
& \bar{\lambda}^{2}\left(\eta-2 \eta / \gamma+1 / \gamma^{2}\right)>0 \tag{36}\\
& 2 \bar{\lambda} \rho_{\max }^{2}\left((2-\eta) \eta-2 \eta / \gamma+1 / \gamma^{2}\right)>0 \tag{37}\\
& 3(1-\eta) \eta \rho_{\max }^{4}>0 \tag{38}
\end{align*}
$$

To show (36), observe that $\bar{\lambda}^{2}\left(\eta-2 \eta / \gamma+1 / \gamma^{2}\right)>\bar{\lambda}^{2}\left(\eta^{2}-2 \eta / \gamma+1 / \gamma^{2}\right)=\bar{\lambda}^{2}(\eta-1 / \gamma)^{2}>0$, where the first inequality follows from $\eta<1$ and the second from $\eta \gamma>1$. To show (37), observe that $2 \bar{\lambda} \rho_{\max }^{2}((2-\eta) \eta-$ $\left.2 \eta / \gamma+1 / \gamma^{2}\right)>2 \bar{\lambda} \rho_{\text {max }}^{2}\left(\eta^{2}-2 \eta / \gamma+1 / \gamma^{2}\right)=2 \bar{\lambda} \rho_{\text {max }}^{2}(\eta-1 / \gamma)^{2}>0$, where the first inequality follows from
$(2-\eta) \eta>\eta^{2}$ for $\eta \in(0,1)$, and the second from $\eta>1 / \gamma$. This proves that if $\Delta \in(\underline{\Delta}, \bar{\Delta}), R S_{p}^{*}(\Delta)>\tilde{R S} S_{n}^{*}$. Inequality (38) follows immediately from $0<\eta<1$. Putting everything together, we have that $R S_{p}^{*}(\Delta)>\tilde{R} S_{p}^{*}$ for $\Delta \in[\underline{\Delta}, \bar{\Delta})$.

Finally we show that for the case $\Delta \leq \underline{\Delta}, R S_{p}^{*}(\Delta)>\tilde{R S_{n}^{*}}$. By continuity, if $\Delta=\underline{\Delta}, R S_{p}^{*}(\Delta)>\tilde{R S_{n}^{*}}$. Furthermore, $s_{p}^{*}(\Delta)$ is decreasing in Δ (by Proposition 2). Therefore, $R S_{p}^{*}(\Delta)=\frac{1}{2}\left(v_{n}-\Delta\right)\left(s_{p}^{*}(\Delta)\right)^{2}$ is decreasing in Δ. Hence, $R S_{p}^{*}(\Delta)>R S_{p}^{*}(\underline{\Delta})$ for all $\Delta<\underline{\Delta}$. This concludes the proof of Proposition 5. Q.E.D.

Proof of Proposition 6. It is clear from (11) and (12) that the driver surplus is strictly increasing in the number of active drivers k^{*} in equilibrium, and hence it boils down to analyzing the impact of carpool services on k^{*} (which is also equivalent to analyzing the impact of carpool services on the per-unit-time wage for the drivers in equilibrium, since $w^{*}=k^{*} G^{-1}\left(k^{*} / K\right)$ and G^{-1} is a monotonically increasing function). When $\Delta \in(\underline{\Delta}, \bar{\Delta})$, it follows from Proposition 2 that $s_{n}^{*}>0$ and $s_{p}^{*}>0$. Then by first order conditions $\partial_{s_{n}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)=0$ and $\partial_{s_{p}} f_{p}\left(s_{n}^{*}, s_{p}^{*}\right)=0$, it is straightforward to derive that

$$
\left\{\begin{array}{l}
s_{n}^{*}=\frac{\left(\Delta^{2} K m^{2} \rho_{\max }^{2}+\bar{\lambda}\left(m T_{n}-T_{p}\right) T_{p} v_{n}-\Delta m\left(\bar{\lambda} T_{n} T_{p}+K m \rho_{\max }^{2} v_{n}\right)\right)}{\left(2 \Delta m\left(\Delta K m \rho_{\max }^{2}+\bar{\lambda} T_{n}\left(m T_{n}-2 T_{p}\right)\right)-2\left(\Delta K m^{2} \rho_{\max }^{2}+\bar{\lambda}\left(m T_{n}-T_{p}\right)^{2}\right) v_{n}\right)}, \\
s_{p}^{*}=\frac{\bar{\lambda} m T_{n}\left(\Delta m T_{n}-\left(m T_{n}-T_{p}\right) v_{n}\right)}{2 \Delta m\left(\Delta K m \rho_{\max }^{2}+\bar{\lambda} T_{n}\left(m T_{n}-2 T_{p}\right)\right)-2\left(\Delta K m^{2} \rho_{\max }^{2}+\bar{\lambda}\left(m T_{n}-T_{p}\right)^{2}\right) v_{n}}
\end{array}\right.
$$

Similarly, the first order condition $\partial_{\tilde{s}_{n}} f_{b}\left(\tilde{s}_{n}^{*} \mid \bar{\lambda}\right)=0$ implies that

$$
\tilde{s}_{n}^{*}=\frac{K \rho_{\max }^{2} v_{n}}{2 \bar{\lambda} T_{n}^{2}+2 K \rho_{\max }^{2} v_{n}}
$$

Note that

$$
\tilde{k}_{n}^{*}-k^{*}=\frac{\bar{\lambda} T_{n}\left(\tilde{s}_{n}^{*}-s_{n}^{*}-\left(T_{p} s_{p}^{*}\right) /\left(m T_{n}\right)\right)}{\rho_{\max }}
$$

Therefore, $\tilde{k}_{n}^{*}>k^{*}$ is equivalent to $\tilde{s}_{n}^{*}>s_{n}^{*}+\frac{T_{p} s_{p}^{*}}{m T_{n}}$. We next compute $\tilde{s}_{n}^{*}-\left(s_{n}^{*}+\frac{T_{p} s_{p}^{*}}{m T_{n}}\right)$ as follows:

$$
\begin{aligned}
\tilde{s}_{n}^{*}-\left(s_{n}^{*}+\frac{T_{p} s_{p}^{*}}{m T_{n}}\right) & =\frac{K \bar{\lambda} \rho_{\max }^{2}\left(\Delta m T_{n}-\left(m T_{n}-T_{p}\right) v_{n}\right)^{2}}{2\left(\bar{\lambda} T_{n}^{2}+K \rho_{\max }^{2} v_{n}\right)\left(-\Delta m\left(\Delta K m \rho_{\max }^{2}+\bar{\lambda} T_{n}\left(m T_{n}-2 T_{p}\right)\right)+\left(\Delta K m^{2} \rho_{\max }^{2}+\bar{\lambda}\left(m T_{n}-T_{p}\right)^{2}\right) v_{n}\right)} \\
& =\frac{K \bar{\lambda} \rho_{\max }^{2}\left(\Delta m T_{n}-\left(m T_{n}-T_{p}\right) v_{n}\right)^{2}}{\left.2\left(\bar{\lambda} T_{n}^{2}+K \rho_{\max }^{2} v_{n}\right)\left[\Delta\left(v_{n}-\Delta\right) K m^{2} \rho_{\max }^{2}+\bar{\lambda}\left(\left(m T_{n}-T_{p}\right)^{2}\left(v_{n}-\Delta\right)+T_{p}^{2} \Delta\right)\right)\right]} \\
& >0,
\end{aligned}
$$

where the inequality follows from $v_{n}>\Delta \geq 0$. Therefore, $\tilde{s}_{n}^{*}>s_{n}^{*}+\frac{T_{p} s_{p}^{*}}{m T_{n}}$. It then follows that $\tilde{k}_{n}^{*}>k^{*}$, which implies $D S_{p}^{*}<\tilde{D S_{n}^{*}}$ in view of (11) and (12).

Finally, we show $w^{*}<\tilde{w}^{*}$. Note that $w^{*}=k^{*} G^{-1}\left(k^{*} / K\right)$ and $\tilde{w}^{*}=\tilde{k}_{n}^{*} G^{-1}\left(\tilde{k}_{n}^{*} / K\right)$. It then immediately follows from $\tilde{k}_{n}^{*}>k^{*}$ that $\tilde{w}^{*}>w^{*}$. Q.E.D.

