

Cold Start to Improve Market Thickness on Online Advertising Platforms: Data-Driven Algorithms and Field Experiments

Renyu (Philip) Zhang

(Joint work with Zikun Ye, Dennis J. Zhang, Heng Zhang, Xin Chen)

- 1. Introduction and Contribution
- 2. Theory: Model, Algorithm and Analysis
- 3. Practice: Field Implementation, Experiment Design and Empirical Results

Online Advertising Platform

- Online advertising platform: Demand Side Platform (DSP)
- Fundamental operations question of a DSP:

When an ad request (user impression) arrives, which ad should be displayed to her?

• Core business logic:

The DSP runs large-scale auctions to determine which ad to display, in order to maximize the advertising revenue of each user ad impression.

Performance-Based In-Feed Ads

Mechanism	Charged-upon	Fee-Deduction	Rank-by
oCPC	click	pCVR * bid_convert	eCPM = pCTR * pCVR * bid_convert

Cost Per Click (CPC)

pCTR (predicted CTR) and pCVR (predicted CVR conditioned on click) are produced by underlying deep neural networks of the DSP

Cold Start on DSP: Ad Retention and Market Thickness

- X-axis: # of conversions per day in the first 3 days.
- Y-axis: Proportion of ads that will stay active on the DSP every single day in the next 2 weeks.
- Everything is rescaled.

- Key observation: If the # of conversions in the cold start period surpasses 10, the long-term retention and value soon flatten.
- Cold start will have a non-linear long-term impact on the market thickness and advertising revenue.
 - Addressing cold start through an operations lens.
- Causality of the figure: PSM and IV analysis.
- The phenomenon of the left figure is robust with respect to different definitions of ad retention.

上 海 NYU	単約大学 SHANGHAI	Key Research (and Business) Questions	CUHK BUSINESS SCHOOL
•	With the inac balance short	ccurate predictions of CTR and CVR for new ads, how to smartly t-term revenue and long-term market thickness/revenue?	
		Primal-dual based MAB algorithms: Shadow Bidding with Learning (SBL)	
•	With differen	nt ads competing for the same user impressions, how to unbiasedly	

estimate the value of our proposed algorithm?

User-ad two-sided experiment framework

Highlight of Main Contributions

- End-to-end Solution:
 - Implement a novel data-driven algorithm online to address the cold start challenge for a large-scale advertising platform with minimal engineering adjustments
 - Connect learning theory and online advertising practice
- Theory and Algorithm:
 - Tackle the cold-start challenge through an operations lens
 - SBL algorithm: Duality + MAB + neural networks

- Practice and Experiment:
 - Evaluate our algorithm with two-sided experiments that restore SUTVA
 - Causally demonstrate the significant value of the SBL algorithm to thicken the marketplace (+3.13%) and boost long-term advertising revenue (+5.35%)

- 1. Introduction and Contribution
- 2. Theory: Model, Algorithm and Analysis
- 3. Practice: Field Implementation, Experiment Design and Empirical Results

Model for Cold Start

- Problem setting: First-price auction, CVR=pCVR=1 (oCPC = CPC)
- A set of new ads $A:=\{1,2,\ldots,K\}$, with bids (per conversion) $\{b_1,b_2,\ldots,b_K\}$
- A set of user impressions, arriving at the DSP sequentially: $[T]:=\{1,2,\ldots,T\}$
- Context associated with each user: $x_t \in X$, *i.i.d.* on a countable set X, $x_t \sim \mathcal{D}$
- $v_{ij}^t = 0,1$: Whether a user with context_i clicks ad_j in round t; $y_{tj} = 0,1$: Whether display ad_j to user_t
- CTR $c_{ij} := \mathbb{E}[v_{ij}^t]$, $\hat{c}_{ij}^t :=$ pCTR estimate by the underlying DNN in round t
- Sequence of events in each round t:

Reward Upper Bound and Regret

• Our objective is to identify a policy π to maximize the expected reward $E[\Gamma]$:

Lemma (Fluid upper bound). We have the following upper bound for the expected reward: $\frac{1}{T}E_{\mathcal{D}^{T},\pi}[\Gamma] \leq \mathsf{OPT} := \max_{y_{i} \in \Delta_{A}, \forall i} \left\{ \sum_{j=1}^{K} E_{i \sim \mathcal{D}_{X}}[c_{ij}y_{ij}b_{j}] + \sum_{j=1}^{K} \beta_{j} \min\left\{ E_{i \sim \mathcal{D}_{X}}[c_{ij}y_{ij}], \alpha \right\} \right\}$ where Δ_{A} is the probability distribution over all the ads and $y_{i} = (y_{i1}, y_{i2}, \dots, y_{iK}) \in \Delta_{A}$ is the ad assignment distribution for a user with context i.

- The regret of a policy: $\operatorname{Reg}(\pi) := T \cdot \operatorname{OPT} E_{\mathcal{D}^T, \pi}[\Gamma]$
- We seek to design an algorithm with sublinear regret and implementable on a real DSP.

• The model has a too high dimension to solve efficiently online.

Duality and Shadow Bidding

- Only K decision variables: Can be efficiently solved using sub-gradient descent!
- λ_j is the dual variable for the cold start reward constraint: $\sum_i \hat{p}_i^t \hat{c}_{ij}^t y_{ij} + u_j \ge \alpha$ - We call λ_j the shadow bid of ad_j.
- The shadow bid λ_j is bounded from above by the cold start value of ad_j, β_j
- Actionable Insights:
 - Smartly computing the shadow bid of each new ad and incorporating it into the auctions of the DSP could effectively trade off short-term revenues with long-term cold start rewards!
 - Naturally fit into the ad auction system of a DSP in practice.

Sketched Regret Analysis

- Key challenges:
 - History-dependent cold start reward (i.e., the knapsack bandit setting)
 - Dual-based bidding strategy implemented on the primal space
 - Regret dependent on the underlying machine learning oracle to predict CTR
 - Too high variance with Inverse Propensity Score to estimate the expected reward
- Key ideas and the road map to overcome the challenges:
 - 1. Establish approximate complementary slackness and bound the duality gap between the empirical primal and the empirical dual, due to tie breaking in SBL by $O(T^{\frac{1}{3}}(\log T)^{\frac{1}{3}}K^{\frac{1}{3}})$
 - 2. Build an auxiliary reward process independent of history: Each click of ad j generates a reward of $b_j + \beta_j$, irrespective of whether the threshold αT is met. Under SBL, bound the gap between the auxiliary reward process and the optimal reward by $O(T^{\frac{2}{3}}(\log T)^{\frac{1}{3}}K^{\frac{1}{3}}d^{\frac{1}{2}})$
 - 3. Under SBL, bound the gap between the auxiliary reward process and the true reward process by $O(T^{\frac{1}{2}}(\log T)^{\frac{1}{2}}K^{\frac{1}{2}})$
 - 4. Putting the above bounds together yields the expected regret of SBL is $O(T^{\frac{2}{3}}(\log T)^{\frac{1}{3}}K^{\frac{1}{3}}d^{\frac{1}{2}})$

- 1. Introduction and Contribution
- 2. Theory: Model, Algorithm and Analysis
- 3. Practice: Field Implementation, Experiment Design and Empirical Results
- 4. Future Research Agenda

Implementing and Testing SBL

- SBL algorithm implemented on a large-scale video-sharing platform (Platform O).
- How to unbiasedly evaluate the SBL algorithm?
- Naive one-sided experiment designs:
 - Ad-side randomization:

Treatment		Control	Non-Experiment	Mature Ads
New Ads		New Ads	New Ads	
100% UV	Treatment Condition	Control Condition		

• User-side randomization:

	100% New Ads	Mature Ads		
Treatment UV	Treatment Condition			
Control UV	Control Condition			
Non-Experiment UV				

Treatment = oSBL algorithm; Control = baseline algorithm (uniformly increase the bidding price of all new ads)

Violation of SUTVA

Ad-side randomization:

	Treatment New Ads	Control New Ads	Non-Experiment New Ads	Mature Ads	
100% UV	Treatment Condition	Control Condition			

• User-side randomization:

	100% New Ads	Mature Ads
Treatment UV	Treatment Condition	
Control UV	Control Condition	
Non-Experiment UV		

- SUTVA (Stable unit treatment valuation assumption): The assignment of one unit to treatment or control will not affect the outcome of another unit.
- Ad-side randomization: 120% overestimate
 - Violation of SUTVA: New ads from different groups compete on the same user impressions.
- User-side randomization: 40% underestimate
 - Violation of SUTVA: The effect of oSBL spills over to the control group users.

Two-Sided Experiment Design

• A novel two-sided experiment design:

	20% Treatment New Ads	20% Control New Ads	60% Non-Experiment New Ads	Mature Ads	
33% Treatment UV	B11	B12	B13	B14	
33% Control UV	B21	B22	B23	B24	
33% Non-Experiment UV	B31	B32	B33	B34	

- Blue = oSBL, white = baseline algorithm, grey = ad blocked (to remove externalities)
- SUTVA restored! Able to generate unbiased estimates.
- Impact on long-term cold start value: Comparing B11 with B22
- Impact on short-term revenue: Comparing B11+B13+B14 with B22+B23+B24
- Experiments conducted between May 23, 2020, and May 30, 2020
- A simulation system for cold start and experimentation on online advertising platforms open-sourced @GitHub: <u>https://github.com/zikunye2/cold_start_to_improve_market_thickness_simulation</u>

24

Short- and Long-term Effects of oSBL

• Short-term effect of oSBL:

Metric of Interest	Cold start success rate	Cold start reward	Total short-term revenue	CTR Prediction AUC
Relative Change	+61.62%***	+47.71%***	-0.717%**	+7.48%*

• Long-term (post-cold start and post-experiment) effect of oSBL:

Metric of Interest	Market Thickness	CTR	Post-Cold-Start Revenue
Relative Change	+3.13%**	+11.14%***	+34.02%***

Note: The above long-term revenue boost is over-estimated because the treated ads compete with all others on impressions,

CUHIK BUSINESS SCHOOL

Simulation Results on Long-Term Ad Revenue

• Long-term (post-cold start and post-experiment) effect of oSBL:

Metric of Interest	Market Thickness	CTR	Post-Cold-Start Revenue
Relative Change	+3.13%**	+11.14%***	+34.02%***

Note: The above long-term revenue boost is over-estimated because the treated ads compete with all others on impressions,

- Simulation study on the global treatment effect of oSBL:
 - Based on 12 million auctions sampled from April 9, 2020, to April 30, 2020.
 - oSBL increases the market thickness by +0%~+5%, and the post-cold-start CTR by 0%~20% (i.e., sensitivity analysis).
 - The total number of ad impressions/auctions remain the same.
 - Simulation model validated by accurately predicting the short-term revenue loss during the experiment.
- oSBL boosts the total long-term revenue by +5.35% (at a magnitude of hundred million USD per year for Platform O) if the market thickness is increased by 3.13% and CTR by 11.46%.

0.05	0.0074	0.018	0.029	0.039	0.051	0.061	0.071	0.083	0.094	0.1	0.12		
.045	0.0052	0.016	0.027	0.037	0.048	0.059	0.069	0.08	0.091	0.1	0.11	-	0.10
0.04 0.	0.0028	0.014	0.024	0.035	0.045	0.056	0.067	0.077	0.088	0.099	0.11		
e 035	0.0009	0.012	0.022	0.032	0.043	0.054	0.065	0.075		0.097	0.11		0.08
. Increas 0.03 0.	-0.0012	0.009	0.019	0.03	0.041	0.051	0.062	0.073	0.083	0.094	0.1		0.06
025 (025 (-0.0036	0.007	0.017	0.028	0.038	0.049	0.059	0.07	0.081	0.091	0.1		
1.02 0. 0.02 0.	-0.0058	0.0049	0.015	0.025	0.036	0.046	0.057	0.068	0.078	0.089	0.1	-	0.04
015 (-0.0081	0.0024	0.013	0.023	0.033	0.044	0.055	0.065	0.076	0.086	0.097		
0.01 0.	-0.01	0.0001	0.011	0.021	0.031	0.042	0.052	0.062	0.073		0.094		0.02
005 (-0.012	-0.002	0.0082	0.019	0.029	0.039	0.05	0.06	0.071	0.081	0.092		0.00
0.0	-0.014	-0.0042	0.0061	0.016	0.026	0.037	0.047	0.058	0.068	0.079	0.089		
	0.0	0.02	0.04	0.06	0.08 Relati	0.1 ve CTR Ind	0.12 crease	0.14	0.16	0.18	0.2		26

Thank You!

Questions?

renyu.zhang@nyu.edu and philipzhang@cuhk.edu.hk

https://rphilipzhang.github.io/rphilipzhang/index.html