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Cold Start to Improve Market Thickness on Online Advertising Platforms:
Data-Driven Algorithms and Field Experiments

Renyu (Philip) Zhang

(Joint work with Zikun Ye, Dennis J. Zhang, Heng Zhang, Xin Chen)
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Introduction and Contribution
. Theory: Model, Algorithm and Analysis

Practice: Field Implementation, Experiment Design and Empirical Results
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* Online advertising platform: Demand Side Platform (DSP)

* Fundamental operations question of a DSP:

Online Advertising Platform

m$ Users

Ad Impressions

When an ad request (user impression) arrives,
which ad should be displayed to her?

YYVYIv v

DSP

* Core business logic:

The DSP runs large-scale auctions to determine
which ad to display, in order to maximize the

advertising revenue of each user ad impression.

T+ 4 4 1%
Ads Bid

'c'e

Advertisers
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» Performance-based ads: Advertisers want more conversions at a low cost.
- Mobile games: Activation & deposit
- eCommerce: Activation & purchase

CTR CVR
llmpression“ Click [====){ Conversion

* Auction Mechanism & Billing Option: Optimized Cost-Per-Click (0CPC)
- The advertisers bid on conversions and pay upon clicks (a compromise between the advertisers and the DSP).
- The ads are ranked by the expected cost-per-mile (eCPM), which is the expected revenue per unit impression.
- The impression is allocated to the ad with the highest e CPM.,

oCPC click pCVR * bid_convert eCPM = pCTR * pCVR * bid_convert

| |
Cost Per Click (CPQ)
pCTR (predicted CTR) and pCVR (predicted CVR conditioned on click) are produced by underlying deep neural networks of the DSP
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« Cold Start: Learning pCTR and pCVR efficiently with limited data for new ads.

Ad Impressions

* New ads: vYYY Yy Y

*  Noenough data to estimate pCTR and pCVR accurately. ‘

* Unclear revenue implications for the DSP.

*  Successful cold start of new ads thickens the ad pool and boosts advertiser retention., I‘ l?) D5SP
« Mature ads: High and stable revenues, minimally affecting user experiences. ‘Mature Ads O New Ads

Core problem in cold start: How to allocate user impressions between new and
mature ads to balance the short-term revenue and the long-term market thickness?

Exploitation Vs Exploration
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®  Cold Start on DSP: Ad Retention and Market Thickness %

Retention Rate of New Ads
()
~

e
o

' ' ' ' «  Key observation: If the # of conversions in the cold start period
el surpasses 10, the long-term retention and value soon flatten.
Kot 4 ¢ Cold start will have a non-linear long-term impact on the
lo market thickness and advertising revenue.
/ - . .
/ : * Addressing cold start through an operations lens.
| :
X ]
I
|
|
|
| 1 « Causality of the figure: PSM and IV analysis.
| === Average Rentetion Rate
95% Confidence Interval
20 40 60 80 100
Average Conversions per Day during the Cold-Start Period » The phenomenon of the left figure is robust with respect to

X-axis: # of conversions per day in the first 3 days. different definitions of ad retention.

Y-axis: Proportion of ads that will stay active on the DSP every
single day in the next 2 weeks.
Everything is rescaled.




Ve

/ &

e Key Research (and Business) Questions

NYU SHANGHAI

* With the inaccurate predictions of CTR and CVR for new ads, how to smartly
balance short-term revenue and long-term market thickness/revenue?

Primal-dual based MAB algorithms:
Shadow Bidding with Learning (SBL)

« With different ads competing for the same user impressions, how to unbiasedly
estimate the value of our proposed algorithm?

User-ad two-sided experiment framework
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Related Literature
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Ad Cold Start: More accurate CTR and CVR predictions for new ads.
Dave and Varma (2012, 2014), Zhou et al. (2018), Choi et al. (2020), etc.
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Operations problem with online learning: Bandit learning algorithms applied to pricing, inventory, and advertising problem:s.
Besbes and Zeevi (2009), Nambiar et al. (2019), Chen et al. (2019), Golrezaei et al. (2019), etc.

Experimental evaluations of algorithms on two-sided platforms: Debiasing the estimate when SUTVA does not hold.
Ha-Thuc et al. (2020), Johari et al. (2020), Bojinov et al. (2020), Candogan et al. (2021), etc.
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End-to-end Solution:

* Implement a novel data-driven algorithm online to address
the cold start challenge for a large-scale advertising platform

with minimal engineering adjustments
* Connect learning theory and online advertising practice

Theory and Algorithm:

» Tackle the cold-start challenge through an operations lens
« SBL algorithm: Duality + MAB + neural networks

Practice and Experiment:

Evaluate our algorithm with two-sided experiments that restore SUTVA
Causally demonstrate the significant value of the SBL algorithm to thicken the

marketplace (+3.13%) and boost long-term advertising revenue (+5.35%)

10
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3. Practice: Field Implementation, Experiment Design and Empirical Results
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Model for Cold Start
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* Problem setting: First-price auction, CVR=pCVR=1 (oCPC = CP()

« Asetofnewads A :={1,2,..., K}, with bids (per conversion) {b1, b, ..., bk }

« A set of user impressions, arriving at the DSP sequentially: [T] := {1,2,...,T}

+ Context associated with each user: z;; € X, /.i.d. on a countable set X, x; ~ D

. fufj =0,1: Whether a user with context _i clicks ad_j in round t; y¢; = 0, 1: Whether display ad_j to user_t
» CTR ¢;; :=E[v}]] . ¢, := pCTR estimate by the underlying DNN in round t

» Sequence of events in each round t:

PlatfornA‘l estimates -
Platform observes pCTR Ctxt j for all Platform decides which Click-through outcome v, ;
the context ¢ ad j ad to display ¥y realized

X X T n .

12
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N PERtd « If the # of conversions in the cold start period is below 10, the
(] ‘-F’ .
Zo6r .~ A long-term retention and value
s |/
2 ol
=
o 04 i 7 . . .
R » If the # of conversions in the cold start period surpasses 10,
2 1 .
2| the long-term retention and value soon
|
02 ]
I — == Average Rentetion Rate
95% Confidence Interval
00 1 1 1 1
0 7 20 40 60 80 100
Average Conversions per Day during the Cold-Start Period
K T
- t
« The cold start value: E , S min E : VU, jYts> QT
j=1 t=1
* B = the cold start value of ad_j, determined by and

* o' = the threshold for cold start success

13
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«  Our objective is to identify a policy 7 to maximize the expected reward E[I']:

K T K T
I' = ij vact,jytj —|—Zﬂj min vact,jytj,aT
=1 t=1 o j=1 t=1
Short-ter'm revenue Long-term co'ld start value
* T is @ non-anticipative (randomized) ad allocation policy.

Lemma (Fluid upper bound). We have the following upper bound for the expected reward:

K K

1 )

MEpr S OPT o= max | >~ Bmalety}+3 8y mi { By lesuilialb)
= J1=

where A 4is the probability distribution over all the ads and ¥i = (i1, ¥i2, - - -, ¥ix) € A4 is the
ad assignment distribution for a user with context i.

* Theregretofapolicy: Reg(7):=T-OPT — Epr [T]

*  We seek to design an algorithm with sublinear regret and implementable on a real DSP.

14
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* Empirically optimal ad allocation policy at round t:

eCPM of ad_j and context i

AL AL LAt
mzzb 3 ymind Sate
ST T jeA ,JeA '

| |

Short-term revenue Long-term cold start reward

* Linearize:

omax 0N piebiyi + D Bila = uy)
10 Z_ M J

1 jJEA JEA
Zyw <1, Vi, Zﬁf%ym +u; >a, VjeEA
JEA

* u_jis the number of conversions below the threshold.

* The model has a too high dimension to solve efficiently online.

15
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Duality and Shadow Bidding

min Zﬁfmax égj(bj‘*_)\j)}—OéZ)\j

S NARY JEA Y =

|
Adjusted eCPM for
ad_j and context i

Only K decision variables: Can be efficiently solved using sub-gradient descent!

A; is the dual variable for the cold start reward constraint: ), pictvi; 4+ u; > «
- We call \;the shadow bid of ad_j.

The shadow bid ), is bounded from above by the cold start value of ad_j, 3;

Actionable Insights:

Smartly computing the shadow bid of each new ad and incorporating it into the auctions of
the DSP could effectively trade off short-term revenues with long-term cold start rewards!

Naturally fit into the ad auction system of a DSP in practice.

16
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Shadow Bidding with Learning (SBL) Algorithm
«  Update shadow bids at rounds 71,72, . . . , with Tm+1 — Tm = Tm — Tm-1 = O(T

W

)

* Foreachroundt=1,2,3, -, T
1. Observe the context x+ = ¢ . With probability ¢; = t3 (K log t)% , explore uniformly at random;
with probability 1 — ¢, , display the ad argmaxjéﬁj(bj + ;). with an arbitrary tie-breaking rule.

2. Ift = 1, solve the empirical dual program to update ), and update m + m + 1

3. Observe the click-through outcome, and update c’;]“

Existing approaches in the literature: SBL Algorithm:
» Based on empirical risk minimization oracle. * Dual + MAB (epsilon greedy) + ML Oracle.
* Optimal primal ad allocation with the dual
. Regret benchmarked with the best po“cy ina solution and prediction from the ML Oracle.
policy set, dependent on the policy set size. Vs

* Regret benchmarked with the optimal primal

» Of theoretical nature, not scalable and allocatiorj under true'le‘R.
implementable on a real DSP. Duality gap + prediction error.

* Implementable on a large-scale DSP in
practice with minimal changes to the system.

17
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© Machine learning oracle assumption: With probability at least 1 — 0, the estimate ¢;; satisfies
¢ — i) < 0 (\los(1/8)d/n})

where d captures the error magnitude of the underlying machine learning oracle to obtain the pCTR ¢
number of i/,d. impressions for ad_j by round t.

t .
i T is the

+ Satisfied by (i) linear regressions; (ii) regression trees; and (iii) fully connected neural networks.

Theorem (Regret bound). The expected regret of SBL is bounded by O(T3 K3 (log T)3d?) .

20

15F

Remark: The same regret bound holds if the shadow bids are
updated via dual-mirror descent (DMD).

Total Scaled Regret
=)

| L
0 2500 5000 7500 10000 12500 15000 17500 20000
Period t

Total Regret Scaled by t=3(logt)~3

18
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* Key challenges:
«  History-dependent cold start reward (i.e., the knapsack bandit setting)
«  Dual-based bidding strategy implemented on the primal space
* Regret dependent on the underlying machine learning oracle to predict CTR
* Too high variance with Inverse Propensity Score to estimate the expected reward

*  Keyideas and the road map to overcome the challenges:

1. Establish approximate complementary sllacknesslancl:l bound the duality gap between the empirical primal and the empirical
dual, due to tie breaking in SBLby|[O(T'3 (logT')3 K3

2. Build an auxiliary reward process independent of history: Each click of ad j generates a reward of b; + (3}, irrespective of
whether the threshold /7" is met. Under SBL, bound the gap between the auxiliary reward process and the optimal reward
by [O(T3 (log T)z K3d2)

3. Under SBL, bound the gap between the auxiliary reward process and the true reward process by [0 (T2 (log T)z K =

4. Putting the above bounds together yields the expected regret of SBLis |0(T'5 (log T)5 K 3d>

19
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4. Future Research Agenda
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Online Shadow Bidding with Learning (oSBL) Algorithm
* Update shadow bids at rounds 71, 72, . .., where Tp+1 — T = 1 hour; set oT = 10, 3; = 2b;

* Foreachroundt=1,2,3, -, T
1. Observe the context z; = 7 . Choose top 150 (new & mature) ads and another 15 randomly picked new ads to join the auction.

2. Obtain ¢;; =pCTR*pCVR. Display argmax ;¢ e, 1Cr; (bej + ;). where by; is the system bidding price calculated by the real-time
PID system and [K,]| is the set of the 165 ads who join the auction.

3. If t = 7,,, sample 4% of the auctions in the past hour #, and update the shadow bids A by

min max {¢;;(bs; + ;) } — o|H Aj
)\jG[O,ﬂj]NjE[K]v)‘j:Oyvje[K/]S%t]je[KS]{ (0 2 | t’jEZ[I;] ’

where [K] is the set of new ads and [K’] is the set of mature ads.

4. Observe the click-through and conversion outcome, and update ¢/ !

«  Conversions are incorporated into the algorithm (CVR and pCVR are much smaller than 1).
* Foramature ad, the shadow bid is O.

* Shadow bids are updated every hour based on sampled data, implemented on top of the PID real-time bidding system.
*  More like uniform exploration than epsilon-greedy.

« Cold start value is set at twice as much as the target CPA (i.e., bid_convert) of the ad: 5; = 2b,

21
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* SBL algorithm implemented on a large-scale video-sharing platform (Platform O).
* How to unbiasedly evaluate the SBL algorithm?

* Naive one-sided experiment designs:
* Ad-side randomization:

Treatment Control Non-Experiment
New Ads New Ads New Ads

100% UV Contiol Condition

* User-side randomization:

Mature Ads

100% New Ads Mature Ads
Treatment "
UV
Control ...
uv Control Condition
Non-Experiment
uv

Treatment = oSBL algorithm; Control = baseline algorithm (uniformly increase the bidding price of all new ads)

22
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e Ad-side randomization:

Treatment Control Non-Experiment
New Ads New Ads New Ads

100% UV Eontel Condition

*  User-side randomization:

Mature Ads

100% New Ads Mature Ads
Treatment Treatment Conditi
UV reatment Condition |
Control ..
uv Control Condition
Non-Experiment
uv

«  SUTVA (Stable unit treatment valuation assumption): The assignment of one unit to treatment or control will not affect the
outcome of another unit.

e Ad-side randomization: 120% overestimate
* Violation of SUTVA: New ads from different groups compete on the same user impressions.

*  User-side randomization: 40% underestimate
*  Violation of SUTVA: The effect of oSBL spills over to the control group users.

23




Two-Sided Experiment Design

* A novel two-sided experiment design:

20% Treatment 20% Control 60% Non-Experiment

ey New Ads New Ads Mature Ads
33% "I;Jriiitment B11 B12 B13 B14
33%[33\(;ntr01 B21 | B22 B23 B24
33% Nonl}li;cperiment B31 B32 B33 B34

- Blue = oSBL, white = baseline algorithm, grey = ad blocked (to remove externalities)
- SUTVA restored! Able to generate unbiased estimates.

- Impact on long-term cold start value: Comparing B11 with B22

- Impact on short-term revenue: Comparing B11+B13+B14 with B22+B23+B24

- Experiments conducted between May 23, 2020, and May 30, 2020

* Asimulation system for cold start and experimentation on online advertising platforms open-sourced @GitHub:
https://github.com/zikunye2/cold start to improve market thickness simulation

24
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Short- and Long-term Effects of oSBL
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Short-term effect of oSBL:

&
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Metric of Interest | Cold start Cold start Total CTR Prediction

Relative Change -0.717%** +7.48%*

Long-term (post-cold start and post-experiment) effect of oSBL:

Metric of Interest Post-Cold-Start

Relative Change

Note: The above long-term revenue boost is over-estimated because the treated ads combete with all others on imbressions,
1.0

—-= Control
----- Treatment

0.8
0.6 \
0.4 4 = \:

0.2 4 "&"/.:\ ]

Rescaled Market Thickness of Experimental Ads

0.0 T T . . ; . . . i . LS
2020-05-25 2020-06-01 2020-06-08 2020-06-15 2020-06-22 2020-06-29 2020-07-06 2020-07-13 2020-07-20 2020-07-27 2020-08-03 2020-08-10 2020-08-17
date

25
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Simulation Results on Long-Term Ad Revenue cuHK

* Long-term (post-cold start and post-experiment) effect of oSBL:

Metric of Interest Market Thickness CTR Post-Cold-Start Revenue

Relative Change +3.13 %% +11.140% +34.02%***

Note: The above long-term revenue boost is over-estimated because the treated ads compete with all others on impressions,

0.0074 0.018 0.029 0.039 0.051 0.061 0.071 = ( b 0.12

0.05

« Simulation study on the global treatment effect of oSBL:

0.069 0. . 0.11 -0.10

. Based on 12 million auctions sampled from April 9, 2020, to
April 30, 2020.

0.11

0.04 0.045

0.08

*  0SBLincreases the market thickness by +0%~+5%, and the o

post-cold-start CTR by 0% ~20% (i.e., sensitivity analysis).

0.03 0.035

g 0.1
£ 0.06
*  The total number of ad impressions/auctions remain the same. g i 01
£3
«  Simulation model validated by accurately predicting the short- % o 0.1 0.04
term revenue loss during the experiment. e
n 0.097
g 0.02
* 0SBL boosts the total long-term revenue by +5.35% (at a g 005
magnitude of hundred million USD per year for Platform O) if 0.092
the market thickness is increased by 3.13% and CTR by S oo
o ° 0.037  0.047 0.089
11.46%. °
0.0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 O.IZ

Relative CTR Increase 26
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A smart algorithm to connect bandit learning theory and the ad cold start practice.

Causally estimate the value of SBL for a large-scale online advertising platform
(substantial ad revenue improvement for the platform).

« SBL and two-sided experiment have the potential to optimize and evaluate more general

Link to the paper: https://rphilipzhang.github.io/rphilipzhang/Cold_Start_unblinded.pdf

27
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hank You!

Questions?

renyu.zhang@nyu.edu and philipzhang @ cuhk.edu.hk

https://rphilipzhang.github.io/rphilipzhang/index.html
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