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Abstract. Cold start describes a commonly recognized challenge for online advertising
platforms: with limited data, the machine learning system cannot accurately estimate
the click-through rates (CTR) of new ads and, in turn, cannot efficiently price these new
ads or match them with platform users. Traditional cold start algorithms often focus on
improving the learning rates of CTR for new ads to improve short-term revenue, but
unsuccessful cold start can prompt advertisers to leave the platform, decreasing the
thickness of the ad marketplace. To address these issues, we build a data-driven optimi-
zation model that captures the essential trade-off between short-term revenue and
long-term market thickness on the platform. Based on duality theory and bandit algo-
rithms, we develop the shadow bidding with learning (SBL) algorithms with a provable
regret upper bound ofO(T2=3K1=3 (logT)1=3d1=2), where K is the number of ads and d cap-
tures the error magnitude of the underlying machine learning oracle for predicting
CTR. Our proposed algorithms can be implemented in a real online advertising system
with minimal adjustments. To demonstrate this practicality, we have collaborated with
a large-scale video-sharing platform, conducting a novel, two-sided randomized field
experiment to examine the effectiveness of our SBL algorithm. Our results show that
the algorithm increased the cold start success rate by 61.62% while compromising
short-term revenue by only 0.717%. Our algorithm has also boosted the platform’s over-
all market thickness by 3.13% and its long-term advertising revenue by (at least) 5.35%.
Our study bridges the gap between the theory of bandit algorithms and the practice of
cold start in online advertising, highlighting the value of well-designed cold start algo-
rithms for online advertising platforms.

History:Accepted by Gabriel Weintraub, revenue management andmarket analytics.
Supplemental Material: Data and the online appendices are available at https://doi.org/10.1287/mnsc.

2022.4550.

Keywords: cold start problem • online advertising • contextual bandit • two-sided field experiment

1. Introduction
With the rapid growth of internet technology and
smartphone penetration, online advertising has become
an enormous industry, with a substantial impact on the
entire economy. The Interactive Advertising Bureau
reports that online advertising revenue in the United
States increased to $124.6 billion in 2019 (16% year-
over-year growth rate compared with 2018, 19% aver-
age annual growth rate since 2010), 70% of which comes
from mobile advertising.1 Facebook, TikTok, and other
large online platforms monetize their gigantic user traf-
fic primarily through online advertising. For example,

in 2019, Facebook earned $69.7 billion revenue from
advertising—98.53% of its total revenue.2

Online advertising platforms face a critical challenge
called the cold start problem (see, e.g., Dave and Varma
2014, Choi et al. 2020). People have noted, both in the lit-
erature and in practice, that limited data history pre-
vents online advertising platforms from accurately
predicting the click-through rate (CTR) and the conver-
sion rate (CVR) of new ads. Whereas most of the exist-
ing literature focuses on improving the statistical
properties of cold start algorithms—improving the
learning rates for CTR and CVR—to maximize the
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short-run advertising revenue, we propose considering
another important economic factor—market thickness—
when designing cold start algorithms. Throughout this
paper, we use the market thickness to represent the
average number of ads competing for user impressions
on an online advertising platform.3 Specifically, we
observe that in practice, throughout a whole ad cam-
paign, advertisers especially value an ad’s performance
in the first few days—a bad performance with few con-
versions (i.e., app installs, purchases) may lead the
advertiser to remove the ad from the platform. Therefore,
it is crucial that platforms help new ads perform well
and economically win advertisers’ loyalty, maintaining
the thickness of the ad pool in the auction (see Section 3
for details) while learning the CTR and CVR of these
new ads during cold start. If the number of ad impres-
sions remains the same,4 a thicker market implies a
higher revenue for the platform, with a decreasing mar-
ginal return. This is because with higher market thick-
ness, on one hand, some user impressions that would
otherwise be left unmatched can be matched with suit-
able ads and, on the other hand, the ads havemore inten-
sive competitions in the auctions on the platform. For an
online business-to-business (B2B) auction market, Bimpi-
kis et al. (2020) also empirically show that higher market
thickness increases the platform’s revenue.

To illustrate that the performance of new ads during
cold start could fundamentally impact the long-term
behavior of these ads, we collaborate with a large-
scale online video-sharing platform (referred to as
PlatformO hereafter), and plot in Figure 1 the relation-
ship between the number of conversions per day dur-
ing new ads’ first three days on the platform (the cold
start period; on the x-axis) and the retention rate of
these new ads in the subsequent two weeks on Plat-
form O.5 Here, we focus on the ad-level retention rate
metric, the increase of which leads to higher
aggregate-level market thickness in the long run, as
long as the arrival rate of new ads remains stable.
Two key observations emerge from Figure 1: (1) the

long-term retention rate of a new ad is positively cor-
related with its performance during the cold start, and
(2) such positive correlation is flattened when the
number of conversions reaches a threshold around 10.
In other words, for an ad platform to have enough mar-
ket thickness and, in turn, high long-run revenue,
quickly accumulating the first few conversions of each
new ad is essential.6 Not only is the ad retention depend-
ent on the cold start, advertisers are also sensitive to
whether their ads can obtain enough conversions during
the cold start. On Platform O, advertisers will carefully
monitor ad performance during the cold start; they may
tighten the budget, reduce admaterials, or leave the plat-
form if they are unsatisfied with the performance. There-
fore, cold start performance will significantly impact the
thickness of the admarketplace.

On the other hand, to boost retention of new ads,
platforms cannot simply provide more traffic to these
new ads during cold start. This is because, as discussed
earlier, the platform has less information about these
new ads during cold start and, in turn, is less likely to
efficiently match potential customers with these new
ads. The inability to accurately predict CTR and CVR
for new ads naturally brings up the exploration-
exploitation trade-off between the short-term revenue
generated by matching more mature ads (exploitation)
and the long-term value from market thickness by
matching more new ads (exploration). The fundamen-
tal trade-off in solving the cold start problem is to
dynamically balance the long-term gain of successfully
cold starting new ads and the short-term disutility
from inefficiently matching new ads during cold start.

The main goal of this paper is to develop a new, the-
oretically sound and practically feasible end-to-end
approach to solve the cold start problem when market
thickness is important. To this end, we build a novel
data-driven optimization model that integrates both
the short-term revenue and the long-term cold start
reward (defined as the long-term value from conver-
sions during cold start to boost future market thickness)
of an advertising platform. We develop a primal-dual-
based multiarmed bandit (MAB) algorithm, denoted as
the shadow bidding with learning (SBL) algorithm,
which adaptively adds a shadow bid to each new ad’s
bidding price. Our proposed algorithm adeptly bridges
theory and practice: it has a provable performance guar-
antee and it could be straightforwardly implemented
on an online advertising platform with minimal adjust-
ments. To demonstrate the practical value of our algo-
rithm, we collaborated with Platform O to conduct a
large-scale randomized field experiment to evaluate our
algorithm.7 Our results show that the proposed algo-
rithm significantly increases both the cold start reward
of new ads and the long-term total revenue of the entire
platform. We summarize the main contributions of this
paper as follows.

Figure 1. (Color online) Retention Rate
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Optimization Model to Capture Cold Start and
Market Thickness. Previous research on cold start in
advertising has focused on improving CTR and CVR
prediction accuracy and/or learning rates (Choi et al.
2020). We are the first in the literature to consider the
economic aspect of cold start, and to explicitly model
cold start as an important lever for improving market
thickness. We formulate the cold start problem for
online advertising platforms as a data-driven optimiza-
tion model, synthesizing the linear program and MAB
models in an innovative fashion. We believe our new
modeling assumptions are critical, because identifying
promising ads with high retention and keeping the ads
market thick becomes notoriously challenging and
important for not only the platform we work with but
also other advertising platforms. Therefore, our model-
ing framework has the potential to empower other
studies of the cold start problem for online adverti-
sing and recommender systems through an optimiza-
tion lens.

End-to-End Solution to the Cold Start Problem for
Online Advertising. To the best of our knowledge, we
are the first in the literature to provide an end-to-end
implementation of a new algorithm to address the cold
start problem for online advertising platforms when
market thickness is important. We develop a novel SBL
algorithm by embedding a linear program primal-dual
framework into an ε-greedy contextual bandit algo-
rithm. Though theoretically compelling, existing algo-
rithms for general contextual bandits with concave
objectives (e.g., Agarwal et al. 2014, 2016) are practically
infeasible on real-world online advertising platforms.
This is because these algorithms rely on an underlying
argmax oracle (AMO), which is unavailable or computa-
tionally intractable in practice. Our proposed bandit
algorithm bridges the gap between the learning theory
and advertising cold start practice with a provable per-
formance guarantee and straightforward implementa-
tion on real online advertising platforms. The algorithm
leverages the dual variables of the cold start reward
constraints, the power of the advertising platform’s
underlying machine learning system to predict CTR and
CVR, and an ε-greedy exploration scheme, thus yielding
a provable regret bound of O(T2=3K1=3(logT)1=3d1=2),
where K is the number of new ads and d is the prediction
error term of the underlying machine learning oracle for
predicting CTR and CVR. This term characterizes the dif-
ficulty of the CTR prediction problem with the underly-
ing machine learning (ML) oracle. The smaller the d, the
simpler the CTR prediction problem, and, therefore, the
more powerful the ML models to predict CTR. We also
incorporate the dual mirror descent method into the SBL
algorithm, which reduces its computational complexity
without compromising the regret bound. Another com-
pelling advantage of our SBL algorithm is that it enables
us to minimally adjust the bidding system of an online

advertising platform by simply adding a shadow bid for
each ad (i.e., the dual variable of the cold start reward
constraint) to its real-time bidding price.

Experimental Evaluation of Our Algorithm. We
are the first in the literature to conduct two-sided
randomized field experiments for bandit algorithms.
In a general advertising cold start setting, the tradi-
tional one-sided experiment is invalidated by the vio-
lation of the stable unit treatment value assumption
(SUTVA) (see Section 5 for more discussion on this
point) and, therefore, gives rise to estimation biases
as high as 120%. Such violation of SUTVA is common
in the experimental evaluation of algorithms and poli-
cies on e-commerce (e.g., Facebook Marketplace; see
Ha-Thuc et al. 2020) and vacation-rentals (e.g., Airbnb;
see Johari et al. 2022) platforms and has caused sub-
stantially biased estimations for experiments thereof.
To address such a challenge, we design and imple-
ment a novel two-sided field experiment on Platform
O. Under mild assumptions, the experiment restores
SUTVA and enables us to causally estimate the value
of our proposed algorithm in an unbiased fashion. The
new experiment framework could be applied to evalu-
ate other algorithms and policies of recommender sys-
tems on two-sided platforms. Based on our two-sided
field experiments, we find that the proposed algorithm
successfully increases the cold start success rate by
61.62%. Our experiment also demonstrates that the
SBL algorithm increases the average retention time of
the ads and, thus, market thickness by 3.13%. More-
over, we conduct comprehensive simulation studies
that show that our algorithm boosts the total (long-
term) advertising revenue of the entire platform by (at
least) 5.35% if the advertisers’ behaviors remain the
same as what we observed in the experiment even
when the SBL algorithm is applied to all ads and user
impressions in the long run. Such increase translates
to hundreds of millions of U.S. dollars revenue boost
per year for Platform O. In short, the two-sided experi-
ments enable us to demonstrate that the SBL algorithm
substantially improves the long-term revenue of an
advertising platform.

In short, our study bridges the gap between the
theory of bandit algorithms and the practice of cold
start in online advertising, highlighting the significant
value of well-designed cold start algorithms for online
advertising platforms. The rest of this paper is organ-
ized as follows. In Section 2, we position our paper in
the relevant literature. Section 3 discusses the business
practices on which we base our model. In Section 4,
we propose our algorithms and analyze the regret
bound. In Section 5, we introduce our field experiment
setting. Section 6 reports our experimental results. Sec-
tion 7 concludes. All proofs are relegated to the online
appendices.

Ye et al.: Cold Start on Online Advertising Platforms
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2. Literature Review
Our paper is primarily related to three streams of liter-
ature: cold start for online advertising, bandit algo-
rithms, and field experiments on large-scale online
platforms.

Estimating the CTR of new ads is a challenging prob-
lem, because there is very little data and information to
provide reliable prediction (see, e.g., Dave and Varma
2014, Choi et al. 2020). The sophisticated deep learning
models developed in recent years are designed to better
estimate the CTR of cold start items. For example, Zhou
et al. (2018) propose the deep interest network, which
incorporates data on users’ historical behavior and
interests to learn the CTR. Vartak et al. (2017) propose a
meta-learning strategy to address the cold start problem
when new items arrive continuously. In contrast, our
proposed SBL algorithm avoids any extra data or differ-
ent neural network architectures. Instead, we employ
the ε-greedy random-exploration scheme and shadow
bids to feedmore data from new ads into the neural net-
works, which also substantially increases the accuracy
of CTR/CVR estimations.

We study the cold start problem as a data-driven
optimization model and offer efficient algorithms to
tackle this challenge. Viewing the problem as ad allo-
cation in the repeated-auction setting is in line with
another stream of literature in operations management
(see, e.g., Caldentey and Vulcano 2007; Balseiro et al.
2014, 2015; Hojjat et al. 2017; Balseiro and Gur 2019). In
particular, Balseiro et al. (2014) adopt a dual-based
bid-price control policy to study the ad allocation
problem in the presence of the trade-off between
short-term revenue and long-term value from deliver-
ing good spots to the (contracted) reservation ads.
Whereas most of the literature on ad allocation
assumes the CTR is known to the decision maker, we
study a more realistic contextual bandit setting where
the true CTR is unknown and is predicted by an
underlying machine learning system.

Our algorithm is closely related to the literature on
the stochastic contextual bandit. We compare our algo-
rithm’s properties with existing contextual bandit
algorithms in Table 1, where the settings consistent
with the practice of Platform O are marked in bold. At
a high level, contextual bandit algorithms can be cate-
gorized into two different classes (see Simchi-Levi and
Xu 2021): (1) agnostic approaches, which are model-
free but require a prespecified policy set and optimiza-
tion oracles; and (2) realizability-based approaches,
which explicitly specify the underlying model to rep-
resent the reward as a function of contexts. As Simchi-
Levi and Xu (2021, p. 1904) observe “Although many
different contextual bandit algorithms (realizability-
based or agnostic) have been proposed over the last 20
years, most of them have either theoretical or practical

issues.” There is still substantial room for improve-
ment in this literature. It is useful to differentiate our
algorithm from existing ones with both agnostic and
realizability-based approaches.

The agnostic approaches for contextual bandits
(e.g., Dudik et al. 2011, Agarwal et al. 2014, Agrawal
et al. 2016) usually adopt a conservative exploration
scheme (Bietti et al. 2021), based on an AMO and a pol-
icy set. Take, for example, the algorithm proposed by
Agarwal et al. (2014) with a Õ( ����������������

KT log (|Π|)√ ) regret
bound. They assume that, given the policy set Π

and the set S of context-reward pairs (x, r) ∈ X × R
K,

the AMO returns the loss-minimization policy π∗ �
arg maxπ∈Π

∑
(x,r)∈Sr(π(x)). The reason to assume this

oracle as a subroutine is that it is generally impractical
to optimize the loss by enumerating over Π. In a prac-
tical setting such as the problem we study, this oracle
is clearly infeasible. First, Platform O leverages the
deep neural network, a very large policy set in which
|Π| is on the magnitude of trillions. Specifically, if the
policy set Π is the collection of neural networks with
fixed structure, depth, and width, even under the
proper parameter discretization, its cardinality |Π|
grows exponentially with the number of parameters.
In fact, without a proper realizability assumption, the
AMO is computationally intractable in practice. Even
if we assume the underlying data-generating process
is a neural network, we are not aware of an efficient
AMO for finding the optimal policy. Second, the algo-
rithm of Agarwal et al. (2014) computes the empirical
regret of a policy via the inverse propensity score (IPS)
at each epoch. The IPS method gives an unbiased
reward estimate of a policy and is, thus, widely used
in regret analysis. However, IPS suffers from a high
variance when the policy set is large and/or the past
sample paths vary significantly, which is indeed the
case of our implementation on Platform O. In fact, all
the agnostic approaches in the contextual bandit litera-
ture suffer from the aforementioned two issues and
are therefore not applicable in our context.

The core idea of our algorithm is similar to the
realizability-based approaches. Some realizability-based
algorithms leverage the upper confidence bound (UCB)
and Thompson sampling exploration schemes, which
are only tractable for reward functions parametrized in a
certain way, such as linear models (Chu et al. 2011) and
deep neural networks (Zhou et al. 2020). Foster et al.
(2018) adopt a least-squares regression oracle for their
realizability-based algorithm, which is amenable to
widely used gradient-based training methods. Empiri-
cally, this algorithm works well among existing contex-
tual bandit approaches, but it is theoretically suboptimal.
In the realizability-based setting with an offline regres-
sion oracle to predict the reward, Simchi-Levi and Xu
(2021) provide the first optimal black-box reduction (i.e.,

Ye et al.: Cold Start on Online Advertising Platforms
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achieving the Õ( ��
T

√ ) theoretical lower bound) from a
contextual bandit to an offline regression. The key to this
reduction is a special exploration-exploitation scheme
implicitly aligned with the agnostic approach proposed
by Agarwal et al. (2014). This reduction works only for
an objective function linear in the accumulated reward,
so it is not applicable to our setting of contextual bandits
with a concave objective function. It remains an open
problem whether such a reduction that matches the
Õ( ��

T
√ ) theoretical lower bound exists for contextual ban-

dits with concave objectives (e.g., Agrawal and Devanur
2014, Agrawal et al. 2016). In this paper, we integrate a
machine learning oracle into a contextual bandit model
with a concave objective function, and we develop dual-
based algorithms that achieve a sublinear regret. More-
over, implementing these known approaches in the liter-
ature requires substantial engineering effort, such as a
complex sampling scheme for known policies, whereas
our method is compatible with the existing advertising
system on PlatformO.

Besides the literature on contextual bandit algo-
rithms, our work is also closely related to the growing
literature on solving operations management problems
with online learning. Given the intrinsically uncertain
business environment, a recent trend is to combine
learning theory and optimization to solve revenue man-
agement and inventory control problems. For example,
Chen et al. (2019) build an algorithm to solve the joint
problem of pricing and inventory control with nonpara-
metric demand learning for nonperishable products,
and they show the regret convergence result. Nambiar
et al. (2019) propose an algorithm with theoretical per-
formance guarantees to solve the dynamic pricing

problemwith misspecified demandmodels; they evalu-
ate its performance using offline simulations. Ferreira
et al. (2018) use Thompson sampling to learn the
demand at each price and solve the network revenue
management problem. Chen et al. (2020) build an online
learning algorithm to solve the single-item inventory
control problem under the periodic review, backlogging
policy with unknown capacity and demand distribu-
tions. Chen and Gallego (2022) propose a primal-dual
learning algorithm to learn the dual optimal solution for
the personalized dynamic pricing problem with an
inventory constraint. Bastani et al. (2022) propose a
meta-dynamic pricing algorithm to learn the prior
through experiment while solving the pricing problem.
Golrezaei et al. (2019) propose learning algorithms to set
reserve prices in contextual auctions. Our main contribu-
tion to this strand of literature is that we have not only
proved the theoretical performance guarantee of the pro-
posed algorithm but also implemented it on a large-scale
advertising platform and tested its performance using
field experiments.

Last but not least, our paper directly relates to the
growing literature on field experiments on online plat-
forms (Terwiesch et al. 2020). For example, Zhang et al.
(2020) document the spillover effects across platform
users in a field experiment on a retailing platform.
Zeng et al. (2021) show that social nudge can boost the
productivity of content providers on a social network
platform through randomized field experiments.
Fisher et al. (2018) leverage both modeling and field
experiments to study competition-based dynamic
pricing in retailing. Several other papers in the litera-
ture conduct field experiments to study platform

Table 1. Algorithm’s Performance in the Contextual Bandit Setting

Algorithm Bandit setting Regret Computational complexity

LinearUCB (Agrawal and
Devanur 2014)

Linear context Optimal Calls to offline linear regression
at each roundKnapsack

NeuralUCB (Zhou et al.
2020)

Neural network context Optimal Gradient-descent-based update
of the predictor at each
round

Nonknapsack

Regressor elimination
(Agarwal et al. 2012)

Realizability-based Optimal Ω(|Π|) intractable
Nonknapsack

ILOVETOCONBANDITS
(Agarwal et al. 2014)

Agnostic Optimal Õ( ���������������
KT=log |Π|√ )

calls to AMONonknapsack
Algorithm adapted from

ILOVETOCONBANDITS
(Agrawal et al. 2016)

Agnostic Optimal Õ(K ��������������
KT log |Π|√ ) calls to AMO

Knapsack

RegCB (Foster et al. 2018) Realizability-based Suboptimal O(T3=2) calls to an offline
regression oracleNonknapsack

FALCON (Simchi-Levi and
Xu 2021)

Realizability-based Optimal O(logT) calls to an offline
regression oracleNonknapsack

SBL-RS/SBL-DMD (this
paper)

Neural network context Suboptimal Gradient-descent-based update
of the predictor, O(T1=3) calls
to solving dual or dual
mirror descent

Knapsack

Note. Boldface type indicates the same setting as our problem.
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operations problems (e.g., Cui et al. 2019, Cui et al.
2020, Feldman et al. 2021). In the marketing literature,
Schwartz et al. (2017) implement a learning algorithm
to optimize the user-acquisition strategy through dis-
play advertising and conduct a field experiment to
gauge its effectiveness. A growing body of literature
examines the violation of SUTVA for experiments on
large-scale platforms. Ha-Thuc et al. (2020) develop a
new counterfactual framework for seller-side A/B
testing on Facebook Marketplace and show that the
new experiment framework satisfies the SUTVA.
Johari et al. (2022) propose a mean-field model to
show that single-sided experiments (demand-side or
supply-side randomization) will result in biases in esti-
mation for a two-sided marketplace such as Airbnb.
They also propose a two-sided randomization and the
associated estimator, which is unbiased when the sup-
ply and demand are extremely imbalanced. Other
authors use clustering algorithms to reduce the impact
of interference in experiments on networks. Rolnick
et al. (2019) propose a geographical clustering algo-
rithm (referred to as the GeoCUTS algorithm) that
minimizes the interference between different geo-
graphical units while preserving the balance in cluster
size. Pouget-Abadie et al. (2019) introduce a novel
clustering objective and a corresponding algorithm
that partitions a bipartite graph so as to maximize the
statistical power of a bipartite experiment on that
graph. Liu et al. (2021) document a significant canni-
balization bias of one-sided A/B tests on an online ad
marketplace and propose a budget-split experiment
design to de-bias the estimates. Our contribution
toward this stream of research is the design and imple-
mentation of a novel, two-sided randomized field
experiment to causally estimate the value of our pro-
posed bandit algorithm. The proposed experiment
framework could potentially be applied to evaluating
other algorithms and policies in general recommender
systems of two-sided online platforms.

3. Background and Model
In this section, we first introduce the background
setting of a typical demand-side platform (DSP) for
online advertising, with a particular focus on its cold
start problem. Based on institutional knowledge, we
then develop a data-driven optimization model that
integrates linear programs and multiarmed bandits to
tackle the issue.

3.1. Online Advertising Platforms
Large-scale online platforms such as Facebook and
TikTok are usually equipped with a DSP, a centralized
advertising system that aggregates online ads and effi-
ciently matches the ads with users. Figure 2 summarizes
the landscape of a DSP. Advertisers and platform users

interact with each other on the DSP. On the demand
side, advertisers set up their advertising campaigns by
submitting the necessary information to the DSP: bid pri-
ces, billing options, ad content, advertising budget, and
the users they wish to target. On the supply-side, plat-
form users are exposed to ads while viewing organic
content. The DSP plays a central role in allocating user
impressions to different ads, with a goal of maximizing
long-term revenue.

Next, we show how the DSP monetizes its user traf-
fic. Ad impression requests from platform users con-
tinuously arrive at the DSP. For the rest of this paper,
we use ad impression, user view, and user impression
interchangeably. For large-scale online platforms, the
DSP allocates billions of impressions to hundreds of
thousands of ads each day. The decision is typically
based on a large-scale auction, where hundreds of ads
compete to win an ad impression based on adver-
tisers’ bids, predicted click-through rates (pCTR), and
predicted conversion rates (pCVR). The user impres-
sion is allocated to the ad with the highest estimated
cost per mille (eCPM) of the match between the
impression and the ad, which measures the expected
revenue of displaying the ad to the respective platform
user a thousand times. This rule ensures that each ad
impression generates the highest ex ante revenue in
expectation.

Advertisers can choose from among several billing
options, depending on what they wish to bid for each
impression (e.g., clicks or conversions) and how the
advertising fee is charged (e.g., by impressions, clicks,
or conversions). Under all billing options, the bids,
pCTRs, and pCVRs can be effectively converted to
eCPM, based on which ads can be ranked under the
same scale. See Online Appendix H for a detailed
description of different auction mechanisms and bill-
ing options.

Cold Start on a DSP. The inability to accurately pre-
dict the CTR and CVR of new ads makes cold start one
of the key challenges faced by platforms and adver-
tisers alike. It is extremely difficult to strike a smart
balance between boosting new ads that have great
potential to enhance the long-term thickness of the
platform and maximizing the short-term revenue gen-
erated by high-quality mature ads. To the best of our
knowledge, most DSPs tackle the cold start problem
ad hoc. For example, to increase its cold start success
rate, Platform O has adopted a bid-controlling system
(called the PID system; see Appendix H in the online
appendix) to uniformly increase the system bidding
prices for all new ads within a very short time un-
til the preset upper bounds of the system bidding
prices are met. This approach increases the prob-
ability of winning impressions for new ads, resulting
in more exploration of the ads and potentially more
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conversions. Soon after such sharp increases in the
system bidding prices, this system will adaptively
lower these prices to offset the extra costs caused by
the uniform bid increases. To our knowledge, this
heuristic approach has no performance guarantee—
fine-tuning hyperparameters is the only leverage. In
the following, we formulate the cold start pro-
blem as a data-driven optimization problem, design a
contextual bandit algorithm with a provable per-
formance guarantee to address this problem, and con-
duct a two-sided experiment to evaluate the proposed
algorithm.

3.2. The Cold Start Model
We formulate the cold start problem of a DSP as a
data-driven optimization model. To highlight the key
trade-off associated with the problem and avoid
unnecessary complexity, we make two high-level
modeling assumptions. First, the ad allocation mecha-
nism is a first-price auction, where all advertisers bid
on clicks, so they are charged once their ad is clicked.
Without loss of generality and for ease of exposition,
we assume CVR�pCVR�1, that is, conversion is
guaranteed upon click-through. (Later, we will show
that our proposed algorithm can be easily imple-
mented on a real DSP.) The first-price auction is more
intuitive for advertisers, so there is a recent trend of
switching from second-price auctions to first-price
auctions in the online advertising industry. For exam-
ple, Google Ad Manager moved to first-price auctions
in 2019.8 Second, the real-time system bidding price of
each ad remains the same as the bid submitted by the
advertiser. In the online implementation of our pro-
posed algorithm, the model is adapted to incorporate

the actual online auction mechanism and the real-time
system bidding prices of the DSP we experiment on.

We consider a DSP where a set of K new ads,
denoted as A :� [K] � {1, 2, : : : ,K},9 are competing for
user impressions. We only consider new ads in our
base model; in Section 5.2, we discuss how our algo-
rithm can be generalized to a setting with both new
and mature ads. User impressions arrive sequentially
at the DSP. We define the set of all user impressions as
[T] � {1, 2, : : : ,T}. For each user impression t and ad j,
there is an associated context/feature vector xt,j. The
context xt,j could be quite broad, containing the demo-
graphic and behavioral information of user impression
t inherited from the platform, and ad information from
ad j. Upon the arrival of user impression t, the DSP
observes K feature vectors xt,j, j ∈ A. For ease of exposi-
tion, we define the vector xt :� (xt,1,xt,2, : : : ,xt,K) ∈ X,
where X is a countable feature space. Suppose that ad
at ∈ A is chosen to be displayed. We can define a K-
dimensional binary vector vt(at) ∈ {0, 1}K representing
whether each ad is clicked. More specifically, the jth
component of the vector vt,j(at) � 1 only if at� j and ad j
is clicked by user t. Furthermore, we assume a stochas-
tic contextual bandit setting, that is, the set of context
vectors and the click-through vector (xt, {vt(a)}a∈K) for
t ∈ [T] is drawn independent and identically distrib-
uted (i.i.d.) from a distribution D over X × {0, 1}K2

,
which is unknown to the DSP. And, we can observe
the partial outcome vt(at) only at round t of the played
ad at. Throughout this paper, we use the subscript i to
denote the context index of the countable feature space
X. We denote the marginal distribution of D over the
context as DX, that is, for round t ∈ [T], the context
type i is drawn i.i.d. as i ~DX. Given the context

Figure 2. (Color online) Online Advertising on Platforms
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information for round t and ad j, we define ct,j :�
E[vt,j(at) | at � j] as the CTR of ad j at round t. We some-
times also abuse the notation, denoting by cij the CTR
of ad j under the context type i.

A core challenge faced by Platform O and other
DSPs is jointly optimizing the revenue and the cold
start reward of new ads. To evaluate revenue during
cold start, we define V :�∑T

t�1 vt(at) as the accumula-
tive click-through vector, where Vj :�∑T

t�1 vt,j ∈ {0, 1,
: : : ,T} is the total number of clicks generated by ad j
until customer T. As prescribed by the oCPC billing
option (see Online Appendix H for details), the total
revenue generated by the ads is given by∑K

j�1
bjVj,

where bj ∈ [0, 1] is the bid (per click) of ad j ∈ A. To
quantify the cold start reward, one may want to
directly estimate the total lifetime revenue from an ad
based on the number of accumulated conversions dur-
ing its cold start period (the first three days for Plat-
form O). However, such an estimation is extremely
difficult, if not impossible, because we need to estab-
lish the causal effect of conversions during the cold
start period on the new ad’s lifetime revenue. There-
fore, we take an alternative approach to approximate
the aforementioned relationship between conversions
in the cold start period and lifetime revenue. We
observe from Figure 1 that an ad’s retention rate
increases linearly in the number of clicks/conversions
while this number is below a certain threshold; it stays
(almost) unchanged once it exceeds the threshold.
Motivated by this phenomenon, we assume the cold
start reward of each conversion for ad j before the
number of accumulated conversions reaching the con-
version target as βj ∈ (0, 1]. Without loss of generality,
we denote the conversion target as αT, where
α ∈ (0, 1). Thus, the cold start reward is given by

∑K
j�1

βjmin{Vj,αT}: (1)

In practice, the conversion target αT is determined by
business practice and validated by our observation in
Figure 1. We specify the cold start reward per conver-
sion βj via two steps: (1) inherit the business practice of
Platform O that βj � 2bj for each ad j, and (2) conduct
simulations to validate the choice of β. Our simulation
results, in Online Appendix D, demonstrate that set-
ting βj � 2bj for each ad j would significantly increase
the expected long-term revenue for the platform. Fur-
thermore, our two-sided experiment shows that such
a choice of βj boosts the long-term advertising revenue
of PlatformO by 5.35%.

We are now ready to present the objective of the
DSP for cold start, which equals the sum of revenue

and cold start reward:

Γ(V) :� ∑K
j�1

bjVj +
∑K
j�1

βj min{Vj,αT}

� ∑K
j�1

bj
∑T
t�1

vt,j +
∑K
j�1

βj min
∑T
t�1

vt,j,αT

{ }
, (2)

which is piecewise linear and concavely increasing in
the number of conversions for each ad j.

3.3. Definition of Regret
In this subsection, we formally define the benchmark
for our proposed bandit algorithms. In every round
t ∈ [T], a policy π observes the feature vector xt ∈ X,
chooses an ad/action at ∈ A, and observes the random
outcome whether the ad is clicked. We define the his-
tory update to round t asHt �∪s�1,: : : ,t−1{(xs,as,vs(as))}.
Let ΔA :� {y ∈ R

|A| : yj ≥ 0, ∀j ∈ A,
∑

j∈Ayj ≤ 1} be the set
of the nonnegative weight/distribution over arms.
Formally, a policy π defines a mapping from the his-
tory Ht and the context xt to the set of distribution
over ads ΔA for any t.

Recall that one can express the expected reward we
gain from policy π as EDT ,π[Γ(V)], whereDT refers to T
independent copies of the distribution D. We notice
that Γ(·) is concave in V. Using Jensen’s inequality, one
can show that the following lemma holds.

Lemma 1. For any policy π, the scaled expected reward
can be upper-bounded as

1
T
·EDT ,π[Γ(V)] ≤OPT

:� max
yi∈ΔA,∀i

∑K
j�1

Ei~DX[cijyijbj]+
∑K
j�1

βjmin{Ei~DX[cijyij],α}
{ }

:

Essentially, T ·OPT is the upper bound of the cold
start objective function Γ(·); it can be viewed as the sol-
ution to a fluid version of our cold start problem, in
which the decision variable yi ∈ ΔA is a sampling dis-
tribution over all the ads inA given user context i. Sim-
ilar upper bounds are widely used in the revenue
management literature (Gallego and Van Ryzin 1994,
Golrezaei et al. 2014, Zhang et al. 2018), as well as the
bandit learning literature (Agrawal et al. 2016, Badani-
diyuru et al. 2018). With Lemma 1, one can formally
define the regret for an arbitrary policy π as

Reg(π) � T ·OPT−EDT ,π[Γ(V)]: (3)

Our goal is to propose a novel policy that has a prov-
ably optimal performance guarantee (measured by a
sublinear regret) and that can be effectively imple-
mented on a practical DSP. As mentioned in Section 2,
although the regret defined similar to (3) is common in
the stochastic bandit setting with a concave objective
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function (see, e.g., Agarwal et al. 2014, 2016), the exist-
ing bandit algorithms are not practically feasible in
our setting, for two reasons. First, these algorithms are
often built upon the AMO, which is computationally
intractable for most policy classes. Furthermore, a
practical DSP often relies on a machine learning
system to generalize the knowledge learned from the
data on observed click-throughs and conversions
and make accurate predictions about future user
behaviors. How to design efficient algorithms for
realizability-based bandits with deep learning models
and concave objectives remains an open question in
the literature. Second, existing MAB algorithms usu-
ally provide an empirical estimate of OPT based on
IPS (e.g., Agrawal et al. 2016). In practice, such an IPS
technique may suffer from a high variance. As such,
we design a novel primal-dual-based algorithm by
leveraging the predictions of the machine learning sys-
tem of a DSP as model inputs and adding “shadow
bids” to new ads. The ad allocation policy can be easily
implemented by the auction system of a real-world
DSP, by adjusting the bidding prices of new ads. As
we show in Section 5, one can easily implement this
shadow bidding with learning algorithm on a real-
world DSP, and our field experiments show significant
improvements in long-term retention and revenue
without much compromising short-term revenue.

4. Cold Start Algorithms
In this section, we propose novel bandit learning algo-
rithms for our cold start problem. Our algorithms lev-
erage the ε-greedy exploration strategy, the prediction
power of a DSP’s underlying machine learning sys-
tem, and the empirically optimal dual solution to the
fluid upper bound.

4.1. Shadow Bidding with Learning
(SBL) Algorithms

In this subsection, we outline our primal-dual-based
learning algorithm. One central difficulty is the un-
known distributional information of the underlying
model. In particular, the ground-truth CTRs at round
t are unknown to any algorithm. Instead, we have ac-
cess to an empirically estimated CTR only via the on-
line training of predicting models on the historical
data. To get an empirically optimal ad allocation pol-
icy, one can solve the following ad allocation model at
round t:

max
yi∈ΔA,∀i∈I

∑
i∈I

∑
j∈A

p̂ti ĉ
t
ijbjyij +

∑
j∈A

βj min
{∑
i∈I

p̂ti ĉ
t
ijyij,α

}
:

(4)

Recall that the number of contexts is countable, so we
define I :� {1, 2, 3, : : : } as the set of context types. We

denote pi as the probability that incoming context is
type i. In our model and analysis, pi is unknown in
prior and is estimated using the empirical estimation
p̂ti based on the historical data Ht. Here, the empirical
CTR ĉtij is the estimated CTR at time t under the con-
text i, and ad j trained on the historical data Ht. In
practice, ĉtij is usually produced by a deep neural net-
work associated with the DSP to predict the CTR/
CVR of the ads facing different user contexts. By intro-
ducing an additional variable uj for each ad j, we can
transform (4) to a linear program:

max
y,u≥0

∑
i∈I

∑
j∈A

p̂ti ĉ
t
ijbjyij+

∑
j∈A

βj(α−uj)

s:t:
∑
j∈A

yij≤1, ∀i∈I ,∑
i∈I

p̂ti ĉ
t
ijyij+uj≥α, ∀j∈A (5)

We succinctly write the dual of (5) as

min
∑
i∈I

p̂ti max
j∈A

{ĉtij(bj + λj)} + α
∑
j∈A

(βj − λj)

s:t: 0 ≤ λj ≤ βj, ∀j ∈ A,
(6)

which is a nonsmooth convex program with decision
variables λ � (λ1,λ2, : : : ,λK). Strong duality dictates
that the optimal values of (5) and (6) must be the same.
Utilizing such duality, we propose the following cold
start algorithm.

Algorithm 1 (Shadow Bidding with Learning and Resol-
ving (SBL-RS))

Parameters: Epoch schedule 1 � τ1 < τ2 < : : : such
that τm − τm−1 � τm+1 − τm ≤O(T2=3). Cold start re-
ward coefficient β. Target conversion parameter α.
Initialization: λ1 ∈ [0,β]K, m← 1.
For t � 1, 2, : : : ,T, do

Step 1: Observe the context it at period t. With
probability εt � t−1=3(K log t)1=3, the algorithm picks
an ad uniformly at random. Otherwise, display an
ad at ∈ arg maxj ĉtitj(bj +λτm

j ) with arbitrary tie-
breaking rules.
Step 2: If t � τm, we solve the dual model (6) to
optimality to update λτm and setm←m+ 1.
Step 3: Observe the outcome of at, and update the
parameters of the underlying machine learning
model for predicting ĉt+1ij .

Several remarks are in order. First, we highlight a
compelling advantage of the SBL-RS algorithm: it fits
perfectly into the auction system of a real-life advertis-
ing platform, fully leveraging the predictive power of
the embedded machine learning oracle to estimate the
CTR of ads. This makes our algorithm generalizable
and implementable for any large-scale DSP. In particu-
lar, we periodically resolve the optimization problem
(6) to produce the dual vector λτm . With the most
recent λτm , and the most up-to-date CTR estimation
given the context, ĉtij, the SBL-RS algorithm picks ad j
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with the highest adjusted eCPM, ĉtij(bj +λτm
j ) (ties bro-

ken arbitrarily), which can be easily implemented in
practice by adding λτm

j to the bidding price of ad j in
the auction system (see the oSBL algorithm presented
in Section 5). Solving the dual problemwith a carefully
chosen epoch will save computing resources without
hurting algorithm performance.

Second, the term shadow bidding comes from the
ad-selection rule. We pick the ad with the largest
adjusted eCPM upon the arrival of each user, which is
the sum of the bid price, bj, and the shadow price for
the cold start reward, λτm

j , multiplied by the predicted
CTR. The original bidding process of the DSP seeks
only to maximize the short-term revenue by picking
ad jwith the highest eCPM� ĉtijbj, whereas we add λτm

j ,
the shadow price associated with the constraint∑

i∈I p̂ti ĉ
t
ijyij + uj ≥ α in (5), to the bid bj in order to cap-

ture the long-term cold start reward of displaying ad j
immediately. In effect, we use the solution in the dual
space to characterize the correct assignment in the pri-
mal space, which gives a fast and simple allocation rule.
Similar dual-based strategies are used in the online lin-
ear program under stochastic input or random permu-
tation (Li et al. 2020), and the noncontextual knapsack
bandit setting (Badanidiyuru et al. 2018). One may also
wonder whether existing algorithms that directly solve
the primal problem (e.g., Agarwal et al. 2014, 2016)
would also work in our cold start setting. In fact,
though theoretically possible, directly implementing
the primal solutions on a practical DSP is very hard, if
not impossible. Specifically, solving the primal problem
amounts to dictating an ad-assignment scheme. How-
ever, the primal space of the problem is extremely
large—its solution has a cardinality of the number of
impressions multiplied by the number of ads, which is
on the order of trillions. The cardinality of the associ-
ated dual space, however, is the number of ads, which
is on the order of hundreds of thousands. Therefore, in
practice, working with the dual space is substantially
simpler than working with the primal space.

Third, in each round t, we explore new ads with
probability t−1=3(K log t)1=3, and exploit, with probability
1− t−1=3(K log t)1=3, following the dual-based policy (6).
This exploration-exploitation schedule is common for
ε-greedy algorithms in the bandit learning literature. The
novelty of our algorithm lies in the well-designed, dual-
based exploitation scheme and the integration of anMAB
algorithm with the underlying machine learning oracle
of a DSP. One may also consider other exploration-
exploitation strategies such as upper confidence bound or
Thompson sampling. We leave it to future researchers to
study the optimal exploration scheme for our cold start
problem.Moreover, an ε-greedy based algorithm (such as
SBL-RS) can be naturally embedded into aDSP in practice
without much engineering change, as we will show in
Section 5.

Although the SBL-RS algorithm achieves a sublinear
regret bound and is therefore asymptotically optimal
(see Theorem 1(a)), it needs to solve the dual program
(6) O(T1

3) times which may be computationally costly.
Furthermore, the theoretical guarantee in Theorem 1(a)
holds if the dual program (6) is solved to optimality.
Although achieving the exact optimality is generally
hard, there are polynomial-time algorithms to achieve
an arbitrarily small optimality gap ε. For example, the
subgradient descent method with box constraint projec-
tion has an O ε−2

( )
computational complexity for our

Lipschitz continuous convex object function (6) (see,
e.g., theorem 3.2.2 in Nesterov 2014). However, this
approach is computationally inefficient for a large-scale
auction in practice, because it is costly to obtain the sub-
gradient in this setting. Such computational complexity
also motivates us to consider a variant of our SBL-RS
algorithm, which incorporates the dual mirror descent
(DMD) optimization method (e.g., Balseiro et al. 2022)
into our SBL algorithmic framework. Using DMD, it
suffices to update the shadow bids without solving the
dual program throughout the algorithm. Specifically,
let φ(·) be a σ-strongly convex function with respect to
the ℓ1-norm (i.e., φ(λ) ≥ φ(λ0) + 〈∇φ(λ0),λ−λ0〉 + σ

2 ||λ−λ0||21 for any λ and λ0, where ∇φ(·) is the gradient of
φ(·)) and define the Bregman divergence associated
with φ(·) as follows:

Dφ(λ1,λ2) :� φ(λ1) −φ(λ2) − 〈∇φ(λ2),λ1 −λ2〉: (7)

We are now ready to present the SBL algorithm incor-
porated with dual mirror descent.

Algorithm 2 (Shadow Bidding with Learning and Dual
Mirror Descent (SBL-DMD))

Parameters: Cold start reward coefficients β, target
conversion parameter α, and learning rate η.
Initialization: λ1 ∈ [0,β]K.
For t � 1, 2, : : : ,T, do

Step 1: Observes the context it at period t. With
probability εt � t−1=3(K log t)1=3, the algorithm picks
an aduniformly at random.Otherwise, display an ad
at ∈ arg maxj ĉtitj(bj +λt

j) with arbitrary tie-breaking
rules.
Step 2: Updating λ via the online dual mirror
descent. Let st(λ) � −∑j∈[K]\atαλj + (ĉtitat −α)λat . Let
zt ∈ ∂λst(λ) be a subgradient and assign

λt+1 ← arg min
0≤λj≤βj,∀j∈A

〈zt,λ〉 + 1
η
Dφ(λ,λt): (8)

Step 3: Observe the outcome of at, and update the
parameters of the underlying machine learning
model for predicting ĉt+1ij .

Incorporating dual mirror descent into our SBL
framework frees our algorithm from solving the
empirical dual (6). Instead, the dual variables are
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updated with the help of the Bergman divergence
Dφ(·, ·) via a convex optimization (8). In particular, if
the strongly convex function φ(·) is properly chosen,
the dual variable update (8) has a closed-form solution
and, thus, can be obtained very efficiently. We show in
Theorem 1 that, by setting the learning rate to
η �Θ(1= ��

T
√ ), the regret of SBL-DMD is of the same

order as SBL-RS. In our implementation on Platform
O, we adapt SBL-RS to the practical online advertising
system (the oSBL algorithm presented in Section 5).

4.2. Analysis of the Regret Bound
Notice that in running the SBL-RS algorithm, we are
effectively solving

OPTt � min
0≤λj≤βj,∀j∈A

∑
i∈I

p̂ti max
j�1, 2, : : : ,K(ĉ

t
ij(bj + λj))

+ α
∑K
j�1

(βj − λj), (9)

where ĉtij is the estimate of cij produced by the underly-
ing prediction model prior to round t, and p̂ti denotes
the empirical distribution of contexts prior to round t.
Before formally presenting the results of our main
regret analysis, we address two basic issues regarding
this formulation. First, we need to bound the gap
between optimal empirical primal allocation and our
optimal empirical dual allocation. By strong duality,
this gap is induced by tie-breaking in Steps 1 and 2 of
the SBL algorithms. As we will show in Online Appen-
dix B, adding an arbitrarily small perturbation to the
CTR estimate ĉtij will ensure that the tie breaking in
Step 1 will only induce an arbitrarily small additional
regret. To bound the gap from tie breaking in Step 2,
we make the following assumption.

Assumption 1. For each context i ∈ I , each ad j ∈ A, and
each period t, it holds that

p̂ti ĉ
t
ij ≤O(T−1

3(logT)13K−5
3):

Assumption 1 states that the empirically estimated
probability of a user with context i clicking ad j is neg-
ligible. This assumption is introduced to guarantee
that the error from tie breaking in Step 1 of the SBL
algorithms is small. Similar assumptions are made for
other primal-dual settings (e.g., Devanur and Hayes
2009, Agrawal et al. 2014). We note that a typical
online DSP faces hundreds of millions of different
users, each of whom can be regarded as a unique con-
text. Therefore, Assumption 1 is made without loss of
generality in practice. We remark that Step 2 of SBL-
RS generally incurs the computational/optimization
error in practice as we have discussed. To demonstrate
the effectiveness of our method, subgradient descent
algorithm together with the arbitrary tie-breaking rule

for our ad allocation model, in Online Appendix E, we
report a numerical experiment that shows that the sol-
ution of method produces negligible error compared
with the exact solution in the primal space solved by
the simplex method.

The second source of regret for the SBL algorithms is
the prediction error associated with the underlying
machine learning model to estimate CTR. Clearly, the
performance of our algorithms depends on that of the
underlying predictor for estimating CTR. In practice,
the underlying predictor returns the predicted CTR in
period t, ĉtij, by training from a class of functions X that
estimates the CTR of each context facing each ad
(X × A → [0, 1]). The CTR predictor may take the form
of linear regressors, regression trees, and neural networks,
the last of which are the actual casewith a practical adver-
tising system like Platform O. To bound the prediction
error of the underlying machine learning model, we
make the following prediction oracle assumption.

Assumption 2 (Prediction Oracle). For each ad j ∈ A with
ntj observed i.i.d. contexts drawn from the distribution DX
before round t and the corresponding click-through out-
comes of showing ad j to these contexts, with probability at
least 1− δ, for any context i, the estimate ĉtij satisfies

|ĉtij − cij| ≤O
������������������
log (1=δ)d=ntj

√( )
, where d parameterizes the

prediction error of the underlying machine learning oracle
and only depends on the function class X .

Assumption 2 is made regardless of the total num-
ber of contexts m � |I |. Instead, it assumes that as long
as ad j is displayed for a total of ntj times with the user
contexts drawn in an i.i.d. fashion from the distribu-
tion DX, the error of estimating its CTR has an order of

O
������
1=ntj

√( )
with a high probability, regardless of which

contexts the ad is displayed to at round t. A similar
assumption with i.i.d. data and a function-class-
dependent prediction error is made by Simchi-Levi
and Xu (2021) for a wide class of X , such as kernel
methods, random forests, and deep neural networks.
An alternative interpretation of Assumption 2 is that
the platform has a machine learning oracle for predict-
ing the ad CTRs with reasonable generalization error,
that is, it is capable of learning from training data and
makes accurate predictions on unseen data. In particu-
lar, the error decreases with the training sample size ntj
and is impacted by the prediction error characterized
by d.

We emphasize that Assumption 2 could be satisfied
for general prediction models such as linear regres-
sion, regression trees, and neural networks. We first
note that, in the noncontextual setting (i.e., X is a sin-
gleton), Assumption 2 is reduced to the standard
Hoeffding’s inequality with d� 1. If X is the set of lin-
ear regressors and the true data-generating process is
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indeed a linear function, the prediction oracle assump-
tion holds with the ridge regression and the prediction
error term d defined as the context dimension (Hsu
et al. 2014). For the standard ridge regression model, it
requires ntj ≥Ω(d log (d=δ)) in general to achieve this

O
������
1=ntj

√( )
error bound. In our context, as long as

we additionally assume T>Kd, extra exploration of
O(Kd log (d=δ)) periods before the start of the SBL still
suffices to achieve the same regret bound in Theorem 1.
Because we are most interested in the dependence of
regret on Twhen T is sufficiently large, this condition is
naturally satisfied in this regime. Also notice that in the
literature, the dependence of error bound on the predic-
tion error term is either d or

��
d

√
, depending on the regu-

larity conditions of the features (Chu et al. 2011, Yang
and Wang 2020, Zhou et al. 2020). We explicitly specify
those conditions for neural networks in Online Appen-
dix G. For the regression tree predictor, it has been well
established in the literature (e.g., Wager and Walther
2015) that an adaptive regression tree with each child
node containing at least η fraction of the data points
in its parent node and each leaf node containing q train-
ing samples has a more general convergence rate of���������������������������������������
log (ntj)log (d)=q log ((1− η)−1)

√
. Therefore, Assumption

2 is satisfied under the mild condition that the regres-
sion trees have a fixed depth and q �Ω(ntj), which com-
monly holds in practice. For a large-scale practical DSP
such as Platform O, X is the set of fully connected
neural networks with the rectified linear unit (ReLU)
activation function. Assumption 2 holds in this setting
with certain parameterization of very wide neural net-
works. Specifically, the error parameter d will be very
large in this setting (i.e., d �O(m8)), which may be
impractical in practice. We defer a detailed discussion
of the DNN prediction oracle to Online Appendix G.
In practice, the number of contexts is large, but thanks
to the enormous wealth of data the platform can
access, advanced neural network algorithms can
extract useful information with small generalization
errors. We are now ready to state our main theoretical
result in the following theorem.

Theorem 1 (Õ(T2=3) Regret Bound). Suppose Assump-
tions 1 and 2 hold:

a. The expected regret of the SBL-RS algorithm is upper-
bounded by O(T2=3K1=3(logT)1=3d1=2).

b. The expected regret of the SBL-DMD algorithm is
upper-bounded by

O(T2
3K

1
3(logT)13d1

2) + E

∑T
t�1

st(λ) + 2η
σ
T + 1

η
Dφ(λ,λ1)

[ ]
,

for anyλ ∈ ∏
j∈A

[0, βj]:

Thus, by taking λ� 0 and η �
����
σD̄
2T

√
, where D̄ :�Dφ (0,λ1),

we have the expected regret of the SBL-DMD algorithm is
bounded by O(T2=3K1=3(logT)1=3d1=2).

Theorem 1 shows that our proposed SBL-RS and SBL-
DMD algorithms both have an expected regret of order
Õ(T2=3), which is consistent with the ε-greedy type algo-
rithms for contextual bandits. Furthermore, the bound
depends on the prediction error term of the predictor by��
d

√
. This is a natural and necessary price we have to pay

with the SBL algorithms, which relies on the underlying
machine learningmodel to predict CTR. If the underlying
CTR prediction is easy (hard) so that the prediction error
term of the predictor is small (large), our algorithm can
achieve a sharper (looser) regret bound. Theorem 1
presents our regret bound in the expected regret, but we
can easily extend it to a high-probability-type bound
using the Azuma-Hoeffding inequality. We also remark
that the analysis of our ε-greedy based SBL algorithms is
more difficult than the standard contextual bandit algo-
rithms with a linear reward function (e.g., Chu et al.
2011). This is because the cold start reward depends on
the aggregated click-though outcomes over all T periods.

The proof of Theorem 1 relies on carefully mapping
the total rewards into the dual space. We first establish,
by Lemma 2 (in Online Appendix B), the approximate
complementary slackness and bound the duality gap
between the empirical primal and the empirical dual
due to tie-breaking in Step 1 of the SBL algorithms by
O(T−1=3K1=3(logT)1=3). Then, we build an auxiliary
history-independent reward process: each click of ad j
generates a reward of bj + βj, regardless of whether the
threshold αT is met. Based on the approximate comple-
mentary slackness and Hoeffding’s inequality, Lemma
3 (in Online Appendix B) bounds, under the SBL-
RS algorithm, the gap between the auxiliary reward
process and the optimal reward by O(T2=3K1=3(logT)1=3
d1=2). Finally, in Lemma 4 (in Online Appendix B), we
bound the gap between the auxiliary reward process
and the true reward process by O( �����������

KT logT
√ ). Because

T is usually several orders of magnitude larger than K,
putting all bounds together yields the desired regret
bound of order O(T2=3K1=3(logT)1=3d1=2) for the SBL-RS
algorithm. For the SBL-DMD algorithm, a key property
of dual mirror descent (Proposition 1 in Online Appen-
dix B.4) implies that, compared with SBL-RS, it in-
curs only an additional regret of a lower order, O( ��

T
√ ).

Therefore, the SBL-DMD algorithm also has a regret
bound of Õ(T2=3).
5. Field Experiment Design and

Algorithm Implementation
To demonstrate the practical value of our SBL algo-
rithm, we conduct a two-sided randomized field
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experiment to causally evaluate its impact on both the
revenue and the cold start reward/success rate. In this
section, we first discuss our field setting and introduce
our two-sided experiment design, then we present the
online implementation of our algorithm (i.e., the oSBL
algorithm).

5.1. Two-Sided Experiment Design
We collaborate with a large-scale online video-sharing
platform (Platform O), where in-feed advertising con-
tributes to more than half of its revenue. PlatformO fea-
tures interactive short videos (whose length is typically
no more than 30 seconds) and in-feed ads—more akin
to TikTok than to YouTube. On Platform O and other
social media platforms, in-feed ads are presented in a
short-wide format (with an “Ad” label) and intertwined
with other organic content updates. As a user swipes
up on the screen, a new organic video or an in-feed ad
will be shown. Unlike on YouTube, where users have to
watch a certain length of an ad before skipping it, Plat-
form O users can swipe up to skip an ad at any time.
Users interested in an ad may click the button that
directs them to external sites such as AppStore to down-
load the smartphone app, an e-commerce website for
online shopping, and so on. Users are converted if they
finish the target action set by the advertiser, such as
downloading the app or purchasing the product. Figure 3
illustrates this process.

One may want to test the effectiveness of our algo-
rithm by either randomly assigning new ads or ran-
domly assigning user views into treatment and control
groups, as shown in Figure 4, panels (a) and (b),
respectively. However, both designs would violate the
stable unit treatment value assumption (SUTVA, see
Imbens and Rubin 2015), thus causing biased esti-
mates for the effect of the new algorithm (Blake and
Coey 2014, Johari et al. 2022). Figure 4(a) illustrates the
ad-side randomization design, in which new ads are
randomly assigned to treatment and control groups.
The SBL algorithm is applied to all ads in the treat-
ment group, and the baseline cold start algorithm of
the DSP (the real-time bidding prices generated by
the PID controller; see Section 3.1 and online Appen-
dix H) is applied to ads in the control group. In this
ad-randomization setting, the ads using our new algo-
rithm will compete with those using the baseline algo-
rithm on the same set of impressions, so the global
effect of the SBL algorithm (i.e., the effect of the algo-
rithm applied to all the ads on the platform) will be
overestimated due to the cannibalization effect. This
bias has been confirmed by our numerical simulations,
which show that the ad-side experiment overestimates
the cold start success rate by as much as 120% (see
Table 8 in Online Appendix D.2).

Alternatively, one may conduct an experiment that
randomizes over user views (UVs), in which users are

randomly assigned to treatment and control groups
each using different algorithms (SBL for treatment and
the baseline algorithm for control). See Figure 4(b) for
an illustration. Such UV-side randomization design
has been widely applied in other online platform con-
texts (see, e.g., Schwartz et al. 2017). For our setting,
however, the UV-side randomization design is also
invalidated, again due to the violation of SUTVA.
Both the SBL algorithm and the baseline algorithm are
applied to the same new ads, through which the effect
of SBL will spill over to the control group. Specifically,
under this experiment design, the SBL algorithm is
applied to all new ads so that the underlying machine
learning model could produce better CTR estimates
for all new ads, which are also served by the baseline
algorithm. Therefore, the effect of the baseline algo-
rithm will be overestimated. Due to such spillover
effect, directly comparing the outcomes of the treat-
ment- and control group users under the UV-side ran-
domization will result in underestimates for the effect
of our algorithm. Our simulation studies have con-
firmed that such underestimation bias under UV-side
randomization could be as high as 40% (see Table 8 in
Online Appendix D.2).

To address the aforementioned SUTVA violation
issue under one-sided experiments, we design a novel
two-sided field experiment to evaluate our SBL algo-
rithm. A similar two-sided experimental framework
has also been studied by Johari et al. (2022) from a the-
oretical perspective. Liu et al. (2021) study a similar
two-sided randomization design with proportionally
split budgets, and implement it on an online advertis-
ing marketplace. The major difference between our
setting and theirs is that we measure the outcomes of
both the UV side and the ad side, which motivates us
to implement and analyze the novel two-sided design.
Our experiment was conducted from May 23, 2020, to
May 30, 2020; the experiment design is illustrated in
Figure 5. Specifically, we randomly assigned 33% plat-
form UVs into the treatment group and another 33%
UVs into the control group. On the ad side, we ran-
domly assigned 20% of the new ads to the treatment
group and 20% to the control group. The rest of the
UVs and ads are referred to as the nonexperiment UVs
and nonexperiment ads. The ad-side randomization is
independent from the UV-side randomization. The
SBL algorithm is applied if both the UV and ad are in
the treatment group (cell B11 in Figure 5), whereas the
baseline algorithm is applied if both the UV and ad are
in the control group (cell B22 in Figure 5). The salient
feature of this design is that the treatment (control)
ads can bid only on the treatment (control) UVs; they
are not allowed to bid on the control (treatment) UVs.
Implementation-wise, we set the bids in cells B12, B21,
B31, and B32 in Figure 5 to 0. For the nonexperiment
new ads, we applied the baseline cold start algorithms
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regardless of UVs (cells B13, B23, and B33 in Figure 5).
Finally, we keep the bidding algorithm for the mature
ads (cells B14, B24, and B34 in Figure 5) unchanged.

Through such a two-sided randomization design,
the SUTVA condition is restored to the greatest extent
we can. First, our two-sided design avoids the direct
competitions between treatment and control ads on
the same UVs and therefore removes the cannibaliza-
tion effect of experimenting with ad-side randomization

only. Furthermore, blocking the control UV impressions
for treatment ads and the treatment UV impressions for
control ads (B21 and B12 in Figure 5, respectively) con-
fines the treatment ads to our SBL algorithm and the
control ads to the baseline algorithm, thus removing the
spillover effect of the experiment only with UV-side ran-
domization. Specifically, the CTR estimates, produced
by the underlying machine learning system, for the
treated ads will be affected only by our SBL algorithm,

Figure 3. (Color online) HowAds Are Displayed to Users10

Figure 4. (Color online) One-Sided Randomization Experiments
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whereas those for the control ads only by the baseline
algorithm. Thus, the difference between the treated ads
and control ads shall be causally attributed to the effect
of our new algorithm compared with the baseline one.
To fully ensure SUTVA for our two-sided experiment,
we make two additional assumptions during our
experiment period: (1) the CTR and CVR distributions
of the mature ads are not affected by the cold start algo-
rithms applied to different UVs; and (2) the number of
ad impressions displayed to a user is not affected by the
cold start algorithms applied to different ads. We report
the verification of both assumptions in Online Appen-
dix C.1. Although our two-sided experiment design
helps us to tease out cannibalization bias in a two-sided
experiment and generates unbiased causal estimates for
the effect of our algorithm, we acknowledge a limitation
of our experimental framework is that it may introduce
another potential bias by reducing the competition in
the auctions for both the treatment and control UVs (i.e.,
20% of new ads are blocked for the experimented UVs;
see Figure 5). In other words, even though the internal
validity of the experiment is secured, the external valid-
ity may be affected by this added competition level.
However, we remark that, because each ad is targeted
to a specific set of platform users, blocking 20% of new
ads only reduces the number of ads competing for the
experimented UVs by 6%, suggesting a marginal reduc-
tion in ad competition in our two-sided experiment. In
Online Appendix D, we build a simulation system11

and conduct simulation studies and sensitivity analysis
of our two-sided experiment to demonstrate that the
experiment results are close to the ground truth of the
overall treatment effect if the algorithm is applied to all
UVs and all ads. A theoretically justified approach to
fully de-bias the estimates from our two-sided experi-
ment to evaluate the treatment effect of the algorithm
applied to all UVs and all ads should be a promising
direction for future research.

Some other recent developments on experiment
design and analysis have also addressed the violation
of SUTVA in a two-sided setting (e.g., Pouget-Abadie

et al. 2019, Rolnick et al. 2019). This line of research
focuses on developing cluster-level randomization
and the associated algorithms to improve the power of
statistical inferences in this setting. We, however, take
a different approach, proposing a new two-sided
experimental framework that causally evaluates an
advertising algorithm for a large-scale DSP.

5.2. Online Implementation of the Algorithm
We highlight a key advantage of our SBL algo-
rithms—they can be easily adapted into the infrastruc-
ture of Platform O’s DSP. Such convenience has
enabled us to actually implement the algorithm online.
The implemented version of the algorithm is online
shadow bidding with learning (oSBL), as detailed
next.

Algorithm 3 (Online Shadow Bidding with Learning (oSBL))
Parameters: Set epoch schedule 1 � τ1 < τ2 <⋯<
τm � T with fixed, one-hour intervals; the cold start
reward coefficient βj � 2bj; and the conversion target
αT � 10 for new ads.
Initialization: λ1 ← 0, m← 1.
For t � 1, 2, : : : ,T, do

Step 1: Observe the context it at round t. Choose
the top 150 ads (including new and mature ads,
ranked by a preranking model12), together with 15
randomly picked new ads, to join the auction.
Step 2: Get ĉtitj, the estimate of pCTR × pCVR. Dis-
play the ad a∗t � arg maxj∈[Kt]ĉ

t
itj(btj +λτm

j ), where btj
is the system bidding price calculated by a real-
time PID system for ad j at period t, and [Kt] �
[Kn

t ] ∪ [Km
t ] is the set of 165 ads that join the auc-

tion at time t, with [Kn
t ] ([Km

t ]) as the set of new
(mature) ads.
Step 3: If t � τm, construct the history data set Ht
by randomly sampling 4% of the auctions in the
past hour, the auction/round index set of which is
denoted by T t. Update m←m+ 1, and λτm

j for
each ad j by solving the following dual program,

Figure 5. (Color online) Two-Sided Experiment Design

Notes. The new ads in cell B11 are bid with the SBL algorithm (i.e., the shadow bids λ∗ will be added to the real-time bidding prices). The new
ads in cells B21, B31, B12, and B32 are forbidden to join the auction. All other ads in uncolored cells join the auction following the real-time bid-
ding prices without shadow bids.
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where the shadow bidding price for mature ads is
set as 0, that is, λj � 0, ∀j ∈ [Km

τ ],
min

∑
τ∈T t

max
j∈[Kτ]

{
ĉτiτj(λj + bsj )

}+α|T t| ∑
j∈[Kτ]

(βj −λj)

s:t: λj ∈ [0,βj], ∀j ∈ [Kn
τ], λj � 0, ∀j ∈ [Km

τ ]:

Step 4: Observe the outcome of ad a∗t , and update
the parameters of the neural networks. The adver-
tiser will be charged based on the real-time system
bidding price btj , instead of the total bid btj +λτm

j .

Several aspects of the oSBL algorithm are different
from the original SBL-RS and SBL-DMD. First, oSBL
accounts for both new and mature ads, with the
shadow bids for mature ads fixed at 0. Second, the bid
for each ad j in oSBL will follow the system bidding
prices generated by the PID system (so the bid will
change over time), to which the shadow bids are adap-
tively added. Furthermore, the two-sided experiments
(Figure 5) can also be easily implemented online by
adjusting the shadow bids according to which cell the
ad-UV pair belongs to. Third, the exploration of the
oSBL algorithm is to randomly add 15 new ads into
the final auction for each impression, instead of the
ε-greedy scheme proposed in SBL-RS and SBL-DMD.
This adjustment is mainly driven by the fact that we
inherit the 10%-exploration heuristic that has already
been implemented by Platform O’s DSP. Making mini-
mum changes to the online system of the DSP will
ensure the robustness of our new algorithm. Fourth,
when computing the shadow bids λ∗

j for each ad j, we
sample 4% of the total auctions for user impressions.
Such a downsampling approach could further reduce
the computational burden of the oSBL algorithm. As a
matter of fact, our algorithm could produce robust
shadow bids even with a sampling rate of only 1%,
as shown by our robustness check results in Online
Appendix F.

We also set the fixed, one-hour epoch schedule
interval in oSBL to update the shadow bids. On the
one hand, this makes the pace of the algorithm consis-
tent with other online systems of the DSP, such as the
predictive models for pCTR and pCVR, and the PID
controller. On the other hand, it alleviates the compu-
tational burden of the algorithm so that the shadow
bids can be generated in a timely manner. Also, due to
the engineering constraint, the pCTR and pCVR data
cannot be accessed in real time by our field experiment
in our actual implementation on Platform O—directly
resolving the optimal dual variables for the empirical
allocation problem will be more robust than updating
via the mirror descent procedure. This is why oSBL is
implemented in a resolving fashion on Platform O.

Finally, we set the cold start reward coefficient βj �
2bj and the conversion target αT � 10 mainly because of

the business practice of Platform O’s DSP. Furthermore,
as shown by our simulation results in Section 6.3 with
βj � 2bj, the oSBL algorithm would yield a substantial
(at least 5.35%) increase in Platform O’s long-term total
advertising revenue. The more sophisticated choice of
the cold start reward coefficient, therefore, will boost
the long-term revenue even higher.

6. Field Experiment Results
In this section, we present the results of our two-sided
field experiment. The randomization check (see Online
Appendix C.2) confirms that both the treatment ads
and the control ads in our sample are comparable,
implying that any difference between groups after the
experiment started should be attributed to whether our
new oSBL algorithm has been implemented. In the fol-
lowing subsections, we document three sets of results
to demonstrate the value of our proposed algorithm: (1)
the short-term impact, (2) the long-term impact, and (3)
the global treatment effect on advertising revenue. This
experiment, together with a comprehensive simulation
study, shows that advertising revenue from our oSBL
algorithm increased at least 5.35%. For a large-scale plat-
form such as Platform O, such an increase would trans-
late to hundreds of millions of U.S. dollars per year.

6.1. Short-Term Performance of Our oSBL Algorithm
We present the model-free results here. See Online
Appendix C.4 for the robustness checks with regres-
sion models. We base our analysis on the following
metrics during the experiment period:

1. Cold Start Success Rate. This metric is defined as
the proportion of ads whose total number of conversions
exceeds the conversion target, that is,

∑K
j�1 I{Vj≥αT}=K,

where K is the total number of new ads assigned to the
respective experimental group. For Platform O, the cold
start period of any ad is the first three days, whereas the
conversion target during the cold start period is 10 con-
versions, that is, αT � 10. New ads that arrive in the last
three days of the experiment do not pass the entire cold
start period, but this will not affect comparisons
between the treatment and control groups.

2. Cold Start Reward. This metric is clustered at each
ad j, that is, βjmin{Vj,αT}.

3. Short-Term Revenue. This metric is clustered at
the UV level for all (old and mature) ads in different
experiment groups on the DSP.

4. Ratio Between Real and Target Cost per Conver-
sion. This metric is clustered at the ad level to evaluate
the impact of our oSBL algorithm on the controllability
of advertisers’ costs. If this ratio is significantly larger
than 1, it implies that our new algorithm substantially
increases the cost per conversion for the advertisers,
which may cause them to complain or even leave the
platform.
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We summarize our experimental results on the short-
term impact of the oSBL algorithm in Table 2, which
can also be replicated by regression analysis presented
in Online Appendix C.4. It is evident from panel A that
our oSBL algorithm has substantially increased both the
cold start success rate and the cold start reward of new
ads by 61.62% and 47.41% (p-values ≤ 0:0001). Such
improvements result from the shadow bids produced
by oSBL that are added to the real-time system bidding
prices, which also give rise to a 44.94% increase in ad
impressions, a 35.34% increase in ad clicks, and a
59.67% increase in ad conversions (p-values ≤ 0:01) dur-
ing the cold start period of new ads.

Thanks to the shadow bids, our oSBL algorithm sig-
nificantly improved the new ad cold start performance,
but it could also have cannibalized the impressions and

conversions of mature ads. As a consequence, the algo-
rithm could have reduced total short-term revenue dur-
ing the experiment. Comparing the per-UV revenue of
the treatment and control groups on the UV side, panel
B of Table 2 confirms this intuition, by quantifying that
the oSBL algorithmwill decrease short-term revenue by
0.717% (with a p-value less than 0.01). This small rela-
tive decrease in short-term revenue is both within our
expectation and acceptable for Platform O. And, as we
articulate in Section 6.3, a short-term loss (−0.717%) can
be well compensated for by the long-term revenue
boost (5.35%) of the oSBL algorithm.

Are the improvements in success rate and reward
offset by increased advertiser costs? Panel C of Table 2
addresses this question by examining the distribution
of the relative gap between the real cost of an ad and

Table 2. Short-Term Effects of oSBL

Panel A: Effects on the cold start at the ad level

Time window: May 23–30, 2020

Treatment Control
Dependent variable (1) (2)

Number of impressions 29,866 (268,139) 20,605 (232,143)
Relative effect size 44.94%****
Number of clicks 2,352 (24,088) 1,738 (30,780)
Relative effect size 35.34%**
Number of conversions 9.38 (108.93) 5.86 (68.67)
Relative effect size 59.67%****
Observations 34,605 34,076
Cold start success rate 0.0438 (0.204) 0.0271 (0.162)
Relative effect size 61.62%****
Cold start reward 261.6 (958.1) 177.1 (930.5)
Relative effect size 47.71%****
Observations 34,605 34,076

Panel B: Effects of the algorithm on short-term revenue and the objective value

Time window: May 23–30, 2020

Dependent variable
Treatment Control

(1) (2)

Revenue per user 1.439 (37.81) 1.448 (37.83)
Relative effect size of total revenue −0.717%**
Observations 240,308,309 240,538,298
Total objective value 354,856,325 354,334,315
Relative effect size 0.147%****

Panel C: Effects of the algorithm on advertiser costs

Real Cost
Target Cost− 1

–30%~ 30% 30%~ 100% >100%
(1) (2) (3)

Proportion of ads (treatment condition) 0.665 0.041 0.059
(0.472) (0.198) (0.235)

Proportion of ads (control condition) 0.648 0.026 0.045
(0.477) (0.159) (0.209)

p-value of t-test 0.74 0.45 0.58

Notes. Mean values are reported in this table. To protect sensitive data, the impressions, clicks, conversions, and revenues are linearly scaled.
The cutoff ranges of panel C—[−30%,30%], [30%,100%], and > 100%—are adopted in consistency with Platform O’s business practice. Standard
errors in panels A and C are clustered at the ad level and reported in parentheses.

*p < 0.1; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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its target cost gap (measured by Real Cost
Target Cost− 1). It shows

that there is no significant difference between the dis-
tribution of the relative gap for ads in the treatment
group and that for ads in the control group. Specifi-
cally, the treatment and control groups are similar in
the proportion of new ads whose relative cost gap is in
each of the following ranges [−30%, 30%], [30%,
100%], and > 100%. The results show that the oSBL
algorithm does not boost advertisers’ cost to increase
the cold start success rate and the cold start reward of
their new ads.

Last but not least, our oSBL algorithm has substan-
tially increased the prediction accuracy for the CTR of
new ads. Specifically, our two-sided experiments
show that the area under the curve (AUC) of new ad
CTR prediction in the treatment group is 7.48% larger
than the one in the control condition, with the p-value
of t-test being 0.017. (To protect sensitive data, we only
report the relative difference here.)

6.2. Long-Term Performance of Our oSBL Algorithm
We next examine the long-term impact of oSBL on both
ads and advertisers after the cold start period, when the
shadow bids are set to zero. Regarding ads, we evaluate
how oSBL influences the lifetime performance of an ad
after the cold start period by comparing the following
postexperiment metrics of the treatment and control
ads: (a) retention days (number of days that an ad is
active after the cold start period), (b) lifetime number of
impressions, (c) lifetime revenue, (d) CTR/CVR, and (e)
average system bidding price. Because the distribution
of impression and lifetime advertising revenue after
cold start is heavy tailed, we perform the t-test after tak-
ing log-transformation of or winsorizing the revenue at
the 99% level. Regarding advertisers, we investigate
whether oSBL changes advertiser behaviors, especially
their bid prices and the length of time they wish to keep
their ads active on PlatformO.

Panel A of Table 3 documents the effects on ads. The
results show that our algorithm significantly increased—
by 3.13%—the average number of active days and, thus,
the average market thickness (defined as the average
number of ads competing for each user impression).
Figure 6 plots the scaled (to protect sensitive data) total
number of ads in different experiment conditions that
remained active each day after the experiment—it shows
that our proposed algorithm significantly increased mar-
ket thickness—by 7.21% on average—especially during
the first twoweeks after cold start.

Comparing the lifetime revenues of the treatment and
control ads reveals further insights. The oSBL algorithm
boosted postexperiment revenue after cold start by
34.02%. This benefit is driven by the fact that the algo-
rithm not only thickens the market by retaining the ads
longer but also successfully identifies high-quality ads
with 11.14% higher CTRs. By algorithmically adding the

optimal shadow bids to the system bidding prices, the
oSBL algorithm automatically awards more user traffic
to the new ads with higher CTR potential, thus signifi-
cantly increasing the CTRs of the treatment ads after the
cold start period. To this regard, the benchmark PID
algorithm under-explores the new ads so that it is unable
to identify the ads with the highest CTR performance in
the long run with a high confidence. We also observe
that our proposed algorithm had no significant impact
on the CVR and average system bidding prices of an ad.
In summary, the oSBL algorithm substantially improved
the market thickness and CTR of the ads after cold start.
In Section 6.3, we build a simulation model to demon-
strate that such long-term effects on ads could be trans-
lated into a significant global treatment effect of our
algorithm on the advertising revenue of a DSP.

Given that the oSBL algorithm significantly improves
ads’ CTRs and, thus, revenue performance, would
advertisers also respond to such improvements by
changing their behaviors on Platform O (such as bidding
prices)? In particular, if an advertiser increases its expect-
ation on cold start performance, would the effectiveness
of our algorithm be weakened? To address these ques-
tions, we next examine whether advertisers would
behave differently after oSBL is adopted. To this end, we
adopt a two-stage least squares (2SLS) specification in
Equation (10) to identify whether the total number of
conversions during the cold start period will change an
advertiser’s behavior, where Xj are the advertiser-
specific features such as industry fixed effects, bidding
prices, budge, and target strategy. We define exp ratio as
the proportion of treatment ads among all the ads in our
experiment for each advertiser and adopt it as the instru-
mental variable. The endogenous variable is the total
number of conversions by an advertiser during the cold
start period and the experiment, whereas the dependent
variable may take different forms such as average bid-
ding prices, the total number of impressions/conver-
sions, and the average number of retention days for all
the ads of an advertiser. Note that exp ratio is a valid
instrument in this setting. One the one hand, the
p-values of the weak instrument tests are smaller than
10−5, so the strong first-stage assumption holds. On the
other hand, it is unlikely that exp ratio could impact an
advertiser’s behavior through a channel other than con-
versions, so the exclusion restriction also holds.

First Stage :
Cold Start Conversionj � α0 + α1exp ratioj +Xj + ε

Second Stage :
Dependent Variablej � β0 + β1Cold Start Conversionj

+Xj + ε (10)

Finally, panel B of Table 3 reports the estimation results
for the 4,340 advertisers we study. After controlling for
industry fixed effects, bidding prices, budget, and target
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strategy, we find no evidence that implies our oSBL
algorithm significantly changed advertisers’ long-term
behaviors on Platform O. Notice that the analysis of the
long-term effect of our oSBL algorithm is based on a
one-time experiment that only lasted for eight days.
The advertisers’ behaviors on the platform might
change if the oSBL algorithm is applied to all their ads
for a longer period of time, thus invalidating the afore-
mentioned benefits of the algorithm such as increasing

the market thickness and identifying the ads with a
high CTR. The oSBL algorithm boosts the ad retention
and market thickness by awarding more user traffic
and, consequently, more conversions to new ads. In the
long run, however, advertisers might perceive such
additional traffic and conversions for their new ads
and, thus, increase their expectation of new ad per-
formance correspondingly. This will in turn change
advertiser behavior and weaken the effectiveness of

Table 3. The Long-Term Effects of oSBL

Panel A: Effects of oSBL on ads

Time window: May 31–August 31, 2020

Dependent variable
Treatment Control Relative increase

(1) (2) (3)

Retention days 10.20 (11.03) 9.89 (10.81) 3.13%**
Log (Impressions) 8.02 (3.18) 7.46 (3.00) ****
99% Winsorized impressions 107,424 (379,251) 63,981 (242,250) 67.90%****
Log (Revenue) 2.60 (2.69) 2.13 (2.56) ****
99% winsorized revenue 485 (1,914) 362 (1,526) 34.02%****
CTR 0.054 (0.059) 0.049 (0.056) 11.14%****
CVR 0.023 (0.132) 0.024 (0.138) p > 0.1
Bid prices 57.14 (62,62) 57.19 (61.30) p > 0.1
Observations 34,605 34,076

Panel B: Effects of oSBL on advertiser behaviors

Time window: May 31–June 25, 2020

Dependent variable:

Bidding prices Impressions Conversions Retention days
(1) (2) (3) (4)

Treatment–Control 29.57 5568 6.35 −0.0023
(334.04) (13,180) (20.10) (0.073)

p-value 0.93 0.67 0.75 0.75
Industry fixed effects Yes Yes Yes Yes
Bidding price Yes Yes Yes
Budget Yes Yes Yes Yes
Target strategy Yes Yes Yes Yes

Notes. Mean values are reported in panel A. To protect sensitive data, all metrics are linearly scaled. For panel B, we report only the coefficient
and its standard error of the endogenous variable (i.e., the number of conversions during the cold start period and the experiment). Standard
errors in panel A (panel B) are clustered at the ad (advertiser) level and reported in parentheses.

*p < 0.1; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Figure 6. (Color online) Effect of oSBL onMarket Thickness
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the algorithm. We acknowledge this limitation of our
study, which can be addressed with running a high-
cost long-run hold-out experiment similar to ours.

6.3. Global Treatment Effect of Our oSBL Algorithm
on Advertising Revenue

Our experiment cannot directly observe the effect of
oSBL on the long-term revenue change, because all the
experimental new ads would flow into the pool of
mature ads and join the auction under both treatment
and control UVs. One solution is to use the two-sided
experiment with blocking for those experimented new
ads after they mature. Though this design can better
deal with cannibalization and spillover effects when
estimating the long-term effect of the algorithm on the
revenue, it is much more costly, due to the lifetime
blocking of all ads for a substantial portion of UVs.

In this subsection, we seek to quantify, through sim-
ulation, the global treatment effect of our oSBL algo-
rithm on advertising revenue. Specifically, based on
our empirical results on the long-term impact of the
algorithm (Table 3, panel A), our oSBL could substan-
tially improve the length of ads’ retention time by
3.13% and CTR by 11.14%without negatively affecting
their CVR and average system bidding prices. This
motivates us to build a simulation model to translate
such positive impact into the long-term revenue boost
for the platform.

To estimate the long-term revenue increase our
algorithm could generate, we use data with 12 million
impressions between April 9 and April 30, 2020. We
randomly sampled 1.2million impressions with replace-
ment for each simulation and replicated 10 times via
Bootstrap—the following results all pass the t-test with
p-values smaller than 10−3. In our simulation, we apply
the oSBL for the new ads in the treatment condition.
After the cold start, new ads flowed into the pool of
mature ads. As we documented in Section 6.2, the ads
under the oSBL have a higher CTR and longer retention
after the cold start period. To model this oSBL effect, we
assume the CTR of the treated ads will increase by ΔCTR

(relative changes) and their retention time length will
increase by Δr (relative changes). As shown next,
because the values of ΔCTR and Δr may change once the
algorithm is applied to all ads and the entire user traffic,
we perform sensitivity analysis by varying the values of
ΔCTR and Δr.

We first validate our model by replicating our experi-
mental results so that the short-term revenue will
decrease when oSBL is applied to 20% of new ads (see
panel B of Table 2) during the experiment period (May
23–30, 2020). We use the nonexperiment impressions
(B13, B23, B33, B14, B24, and B34 in Figure 5) in the sim-
ulation. We compare the total revenue of these eight
days for two cases: where oSBL is applied to 20% of
new ads and where the baseline algorithm is applied to

all new ads. We find that the average short-term reve-
nue decrease is 0.583%, which is consistent with our
regression-based result that oSBL (applied to 20% of the
ads) will decrease short-term revenue by 0.592%. There-
fore, our simulation model is fairly accurate in predict-
ing the short-term revenue loss caused by oSBL.

The estimation of two key parameters in our simula-
tion model Δr (which refers to the average relative
increase of the retention length for mature ads) and
ΔCTR (which refers to the average relative increase of
the CTR for mature ads) relies on the two-sided
experiment where only 20% of ads and 33% of UVs
are included in the treatment group. Therefore, it is
challenging to extrapolate their estimates to the coun-
terfactual setting, where the oSBL algorithm is applied
to the entire ad set and user population. To obtain a
complete picture on the global treatment effect of our
algorithm, we conduct a sensitivity analysis with our
simulation model by varying Δr from 0% to 5% and
varying ΔCTR from 0% to 20%, assuming that oSBL is
applied to all ads and UVs. Baseline revenue is
denoted by R0 and revenue under the oSBL algorithm
is denoted by R(Δr,ΔCTR) (so R0 � R(0, 0)). We are
interested in the relative advertising revenue increase
associated with oSBL:

Ξ(Δr,ΔCTR) � R(Δr,ΔCTR) −R0

R0
× 100%:

Figure 7 demonstrates that for a wide range of poten-
tial values for Δr and ΔCTR, the relative revenue
increase Ξ(Δr,ΔCTR) is significantly above 0, implying
that our oSBL algorithm could substantially boost the
long-term advertising revenue of a DSP. In particular,
if we linearly extrapolate the estimates from our two-
sided experiment, Δr � 3:13% and ΔCTR � 11:14%, to all
ads and the entire population, the advertising revenue
increase from our algorithm is at least 5.35%. For a
large-scale platform such as Platform O, such an
increase would translate to hundreds of millions of
U.S. dollars per year. Finally, the previous simulations
do not fully capture, if any, the long-term behavior
changes of the advertisers when the new oSBL algo-
rithm are applied to all their ads for a long period of
time as we discussed in the previous subsection. This
is an inevitable limitation of our simulation study,
because our experiment only lasted for eight days.

7. Discussion and Conclusion
We close by discussing several promising directions
for future research. In Sections 3 and 5, we detail the
cost-control problem brought by complicated auction
mechanisms and bidding/payment methods in a real
DSP. Future research could examine the cold start
algorithm under real-time bidding. Furthermore, our
cold start algorithm, in principle, could be embedded
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into a recommender system for general content as
well. In this setting, ranking is a prominent data-
driven decision. Thus, an interesting extension of our
work would be integrating MAB algorithms and state-
of-the-art ranking models such as Learning2Rank.
Finally, future research could test other ways of con-
ducting two-sided field experiments and quantify the
biases that may be introduced by the violation of
SUTVA in two-sided platforms.
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Endnotes
1 See https://www.iab.com/insights/internet-advertising-revenue-
fy2019-q12020/ for more details.
2 See the financial report of Facebook: https://www.sec.gov/ix?doc=/
Archives/edgar/data/1326801/000132680120000013/fb-12312019x10k.
htm.
3 Note that one advertiser can launch multiple ad campaigns, so we
may also define market thickness as the average number of adver-
tisers on the platform. These two thickness metrics clearly have
strong positive correlations, and our paper focuses on the ad’s per-
spective. Furthermore, one can split the platform into multiple sub-
markets according to the industry the advertiser belongs to (e.g.,
e-commerce, online gaming, and FinTech). Such segmentation will

allow for individualized implementation and analysis for each
submarket.
4 It is indeed the case with our industry partner, Platform O, that
the total number of user impressions for ads is not significantly
affected by the advertisement algorithm the platform adopts.
5 The retention rate in these two weeks is defined as the number of
ads that have exposure to users every day in these two weeks div-
ided by the total number of ads. To protect the platform’s identity
and sensitive data, we re-scale the y-axis value to [0, 1]. The curve
pattern remains the same if we vary the duration from one day to
14 days.
6 Obviously, Figure 1 only shows the correlation between new ads’
conversions during the cold start and their long-run retention rates.
In Online Appendix C.1, we also conduct extensive empirical analy-
sis to provide causal evidence that gaining 10 conversions during
the cold start will significantly boost ad retention by 15.03%.
7 Platform O’s area under the curve (AUC) of new ad CTR predic-
tion is 5.77% smaller than that of mature ads, a sizable gap for a
large-scale platform that indicates it is more difficult to predict the
CTR of new ads than that of mature ones. This prediction inaccur-
acy is amplified by the sparsity of conversions. Along these lines,
Facebook recommends that its advertisers earmark enough budget
for at least 50 conversions to successfully bring their ads out of the
initial learning phase (i.e., the cold start period). See https://www.
facebook.com/business/help/112167992830700?id=561906377587030.
8 See https://www.blog.google/products/admanager/rolling-out-
first-price-auctions-google-ad-manager-partners/.
9 For ease of reading, we summarize all the notations in Table 4 in
Online Appendix A.
10 To protect the Platform O’s identity, we created the screenshots
of an in-feed ad on another large online advertising platform in Fig-
ure 3, whose interface is similar to Platform O.
11 See the GitHub repository at https://github.com/zikunye2/
cold_start_to_improve_market_thickness_simulation for the code
of our simulation system.

Figure 7. (Color online) Global Treatment Effect of oSBL on Advertising Revenue
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12 On Platform O’s DSP, there are two stages before an ad enters
the final auction—filtering and pre-ranking—both of which adopt
deep neural network models to rule out the ads not suitable for the
user impression.
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