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Zikun Ye, Dennis J. Zhang, Heng Zhang, Renyu Zhang, Xin Chen, Zhiwei Xu

Appendix A: Table of Notations
We provide a list of the notations in Table 4.

Appendix B: Supporting Argument for Regret Analysis
We devote this section to the proof of Theorem 1. Supporting analysis for justifying the prediction oracle
assumption (Assumption 2) for the case of neural networks can be found in Appendix G. Before presenting
the full-fledged proof of Theorem 1, we first give the proof of Lemma 1, followed by some preliminaries.

B.1. Proof of Lemma 1.

Let y∗ denote the optimal solution of the optimization model in Lemma 1. Consider an arbitrary policy π,
we have the following observation:
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in which the inequality follows from the Jensen’s inequality.
Let us use Atj to denote the event that ad j is displayed for user t and Dij to denote the distribution that

ad j is clicked when the context is i and ad j is displayed. It then follows that
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in which we define yπ
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This concludes the proof. 2

B.2. Preliminaries for Regret Analysis

We first make several additional assumptions in our proof, purely for the ease and clarity of exposition. First
of all, instead of solving

OPTt = min
λj∈[0,βj ], ∀j∈A

∑
i∈I

p̂t
i max
j=1,2,...,K

(
ĉtij(bj +λj)

)
+α

K∑
j=1

(βj −λj), (11)
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Table 4 Table of Notations

Notations in the Allocation Model and SBL Algorithm
Notation Description
K The number of ads
A= {1,2, . . . ,K} The set of ads
T The total number of the user views, namely, ad impressions
X The finite or countably infinite context set
xtj xtj is the feature vector associated with round t and ad j
xt = (xt1, . . . , xtK)∈X The context associated with round t
I = {1,2,3, . . .} The index set of context types
at ∈A The ad which is chosen to be displayed to the user view t
vt(at)∈ {0,1}K The K-dimensional binary vector representing whether each ad is clicked
D The distribution of (xt,{vt(a)}a∈K) over X ×{0,1}K×K

DX The marginal distribution of D over context types [m]
cij The CTR of ad j under the context i
V :=

∑T
t=1

vt(at) The accumulated click-through vector
bj ∈ [0,1] The bid per click of ad j ∈A
βj ∈ (0,1] The cold start reward per click of ad j ∈A
α∈ (0,1) The target click per round
Γ(V ) The objective value
Ht =

∪
s=1,...,t−1

{(xs, as, vs(as))} The history update to round t

∆A = {y ∈R|A| : yj ≥ 0,∀j ∈A,
∑

j∈A
yj ≤ 1} The distribution over arms which defines the feasible ad allocation plan

π The policy mapping from Ht to ∆A

ĉtij The predicted CTR based on Ht of ad j under context i
λt∗ The empirically optimal shadow bidding prices at round t
λt The shadow bidding prices generated by the SBL algorithm at round t
pi The probability that context i∈ I occurs
p̂t
i The empirically estimated probability that context i∈ I occurs at round t

τ1 < τ2 < . . . The epoch schedule to update λ
f(x) =O(g(x)) There exists a positive constant c such that f(x)≤ c · |g(x)| for sufficiently large x

f(x) = Õ(g(x)) There exists a positive constant c such that f(x)≤ c · |g(x)| · logk(|g(x)|)
for some k > 0 and sufficiently large x

f(x) =Ω(g(x)) There exists a positive constant c such that f(x)≥ c · |g(x)| for sufficiently large x
f(x) =Θ(g(x)) |f(x)|/|g(x)| converges to 1 as x goes to infinity.

Notations in the Neural Network Prediction Oracle
Notation Description
X The set of functions (X ×A 7→ [0,1]) to estimate CTR
w0 The dimension of the context xij ∈Rw0

w The number of hidden nodes of the neural network
L The number of hidden layers of the neural network
d The prediction error term of the regressor
θ ∈Rd The coefficients of parameters in the neural network
θ0 ∈Rd The initialized coefficients of parameters in the neural network
θt ∈Rd The updated coefficients of parameters in the neural network at round t
Hj(xij , θ) The output of the neural network parameterized by θ

given the feature input xij associated with context i and ad j
θ∗ ∈Rd The coefficients such that cij = 〈∇θHj(xi, θ0), θ∗ − θ0〉
λ0 The regularization parameter in training the neural network
η The step size in training the neural network
U The number of descent steps in training the neural network
Id The identity matrix of dimension d
H The neural tangent kernel matrix defined by Zhou et al. (2020)
γ The scalar such that H � γI, where M1 �M2 refers to

that M1 −M2 is semi-positive-definite
Notations in Proofs

Notation Description
N t

j The set of contexts i for which j ∈ argmaxj′ ĉ
t
ij′ (bj′ +λj′ )

T t
j The time periods before the round t when ad j is displayed

nt
j = |T t

j | The cardinality of the set T t
j , i.e, the number of displays of ad j before round t

gij =∇θHj(xi, θ0) The gradients of the function Hj(xi, θ0)
γ̂t
j =

∑
i∈Nt

j
piĉtij The empirical estimated probability of click-through for ad j at round t

γt
j =

∑
i∈Nt

j
pictij The expected probability of click-through for ad j at round t

n(j) The number of times that ad j is clicked over the whole horizon
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in the analysis, we assume that we solve

OPTt = min
λj∈[0,βj ], ∀j∈A

∑
i∈I

pi max
j=1,2,...,K

(
ĉtij(bj +λj)

)
+α

K∑
j=1

(βj −λj). (12)

That is, we assume that we observe pi for any i∈ I, instead of only having access to its empirical estimate. In
the meanwhile, we replace Assumption 1 with piĉij ≤O(T− 1

3 (logT )
1
3K− 5

3 ) for all i∈ I. This is without loss
of generality, because all the argument presented in this section still follows without this assumption. Indeed,
with McDiarmid’s inequality and the bound of Rademacher complexity term (Boucheron et al. 2013) with
countably many contexts, we can still uniformly bound the error of the empirical probability estimate p̂t

i.
Specifically, with probability at least 1− t−4, for any context i∈ I, we have |p̂t

i−pi| ≤O(
√

log t/t), where t is
the total number of occurrences for context i. As a result, this introduces a lower order error than Õ(t−1/3),
which can be ignored for our regret analysis. We will discuss more about this point at the end of the proof
of Theorem 1 (see Appendix B.3).

Second, we assume that, when we solve (12), the inputs are in a general position. In other words, for
any shadow bidding prices λ and round t when deciding which ad to display given a context, namely,∣∣{i : |argmaxk{ĉtik(λk + bk)}|> 1

}∣∣≤K. This assumption is introduced to avoid too many ties in Step 1 of
the SBL algorithm, thus bounding the gap between primal and dual solutions in a lower order compared
to the total regret. Similar assumptions are also made in the online matching and online linear program
literature, e.g., Devanur and Hayes (2009), Agrawal et al. (2014). As argued by Devanur and Hayes (2009),
when the general position assumption does not hold, an infinitesimal permutation ξij can be added to each
ĉtij without affecting much of the objective function value for any λ, where ξij is chosen independently and
uniformly at random from a tiny interval [−ε, ε] with ε being arbitrarily small. Hence, it is without loss of
generality to assume the total number of ties is bounded by K with probability one. As will be clear in the
proof of Lemma 2 below, the general position assumption helps us bound the total number of entries for the
allocation decision constructed from the dual that are different from the primal solution by O(K2).

Next, some definitions and notations are in order. Throughout the proof of Theorem 1, we define the
reward process (for any policy) {r(xt, at)}Tt=1, where the reward at round t is denoted by:

r(xt, at) =

{ 0, if ℓt(at) = 0,

bat
, if

∑t−1
s=1 ℓs(at)≥ αT and ℓt(at) = 1,

bat
+βat

, if
∑t−1

s=1 ℓs(at)<αT and ℓt(at) = 1,

where ℓt(a) = 1 if and only if a= at and a click-through occurs. Notice that the objective value is given by
Γ(V ) =

∑T

t=1 r(xt, at). By Lemma 1, the expected reward satisfies E[
∑T

t=1 r(xt, at)]≤ T ·OPT. We note that
r(·, ·) corresponds to the real reward collection process, which is hard to work with, because it depends on
the click-through history of each ad so far. To overcome this challenge, we instead work with an auxiliary
reward process, defined by

τ(xt, at) =

{
0, if ℓt(at) = 0,
bat

+βat
, if ℓt(at) = 1.

Note τ(xt, at)− r(xt, at) = βat
when

∑t−1
s=1 ℓs(at) ≥ αT and a click-through occurs in round t. Otherwise,

τ(xt, at) = r(xt, at).
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Furthermore, we define N t
j as the set of contexts i for which ad j is chosen to be displayed, with tie-breaking

resolved, in round t. Thus, if i∈N t
j , it holds that j ∈ argmaxj′ ĉ

t
ij′(bj′ +λj′). Let λt∗ be the empirical optimal

dual solution to (12), yt∗ be the corresponding empirical optimal primal solution, and we use ŷ to represent
the primal integer allocation decision to any shadow bidding strategy λ with arbitrary tie-breaking. Hence,
N t

j = {i : ŷt
ij = 1}.

Before formally presenting the full-fledged analysis, we need to bound the regret induced by the tie-breaking
problem and dual mirror descent in SBL algorithms. Clearly, complementary slackness implies that if yt∗

iℓ > 0,
then ℓ ∈ argmaxj ĉ

t
ij(bj + λt

j). Hence, if argmaxj ĉ
t
ij(bj + λt

j) returns a unique solution ℓ, then the optimal
primal allocation yt∗ and the integer solution ŷt∗ constructed from the dual λt∗ are the same. Because we
use the dual-based solution to make the ad allocation decision in the primal space, the tie-breaking in the
SBL algorithm can induce a difference between empirically optimal objective value and the objective value
by the dual-based allocation. One may expect that the solution to (12) still yields a good performance due
to complementary slackness, the general position assumption, and Assumption 1. Formally, the following
lemma holds.

Lemma 2 (Approximate Complementary Slackness). Under Assumption 1, we have:
(a) Suppose the SBL-RS algorithm is applied. There exist a family of non-negative constants {ηj ≥ 0 : j ∈

A} with
∑

j∈A
ηj ≤O(T− 1

3 (logT )
1
3K

1
3 ), such that the following approximate complementary slackness

condition holds for each j ∈A: (i) If λt
j ∈ [0, βj), we have

∑
i∈Nt

j
piĉ

t
ij ≥ α− ηj. (ii) If λt

j ∈ (0, βj ], we
have

∑
i∈Nt

j
piĉ

t
ij ≤ α+ ηj.

(b) Suppose the SBL-DMD algorithm is applied. Define st(λ) =−
∑

j∈[K]\at
αλj +(ĉtitat

−α)λat
. There exist

a family of non-negative constants {ηj ≥ 0 : j ∈A} with
∑

j∈A
ηj ≤O(T− 1

3 (logT )
1
3K

1
3 )+Ei∼DX

[
st(λ)+

2η
σ
+ 1

η
Dφ(λ,λ

t)− 1
η
Dφ(λ,λ

t+1)
]

such that for all feasible λ, the approximate complementary slackness
condition defined in part (a) holds.

Proof of Lemma 2.
We first prove Part (a), i.e., the approximate complementary slackness for the SBL-RS algorithm. To analyze
the non-smooth convex dual (9), we first write down the corresponding primal linear program (13) and its
dual (14) as follows,

(Primal) OPTt = max
y≥0,u≥0

∑
i∈I

K∑
j=1

piĉ
t
ijbjyij +

K∑
j=1

βj(α−uj)

s.t.
K∑

j=1

yij ≤ 1, ∀i∈ I,
∑
i∈I

piĉ
t
ijyij +uj ≥ α, ∀j ≤K,

(13)

and,

(Dual) OPTt = min
λ≥0,µ

∑
i∈I

piµi +α

K∑
j=1

(βj −λj)

s.t. λj ≤ βj ∀j ≤K

µi− ĉtijλj ≥ ĉtijbj ∀i∈ I, ∀j ≤K.

(14)
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Let (yt∗, ut∗) and (λt∗, µt∗) be the optimal solution to (13) and (14) respectively. Clearly, the following

complementary slackness conditions

λt∗
j (α−ut∗

j −
∑
i∈I

piĉ
t
ijy

t∗
ij ) = 0, ut∗

j (λt∗
j −βj) = 0, and yt∗

ij (µ
t∗
i − ĉt∗ijλ

t∗
j − ĉt∗ij bj) = 0,

hold for all i ∈ I and j ∈A. To highlight the intuition, let us first consider the case in which there is no tie

in argmaxj′ ĉ
t
ij′(bj′ + λt∗

j′ ) for any i ∈ I. Notice that if ℓ /∈ argmaxj′ ĉ
t
ij′(bj′ + λt∗

j′ ), then the complementary

condition implies that yt∗
iℓ = 0. Since the primal program is increasing in y, it must be that yt∗

ij = 1 if

j = argmaxj′ ĉ
t
ij′(bj′ + λt∗

j′ ). In this case, i ∈ N t
j if and only if yt∗

ij = 1, and yt∗
ij = 0 otherwise . If λt∗

j < βj ,

then ut∗
j = 0. As a result,

∑
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j
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t
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j
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t
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j > 0, then
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t
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t∗
ij = 0, which implies that

∑
i∈Nt

j
piĉ

t
ij ≤ α. So, if there is no tie, the lemma holds true

with ηj = 0, ∀j ∈A.

Next, we bound the gap in the case under tie-breaking under the primal allocation induced by the empirical

optimal dual solution, i.e., gap induced by difference between ŷt∗ and yt∗. By the general position assumption,

there are at most K ties and, thus, the tie-breaking introduces at most K2 different entries between a primal

optimal allocation yt∗ and the corresponding integer solution ŷt∗. This is because, with an argument similar

to the one in the previous argument, for i ∈ I such that there is no tie, the K-dimension decision vector

must satisfy ŷt∗
i· = yt∗

i· and all entries in the vector belong to the set {0,1}. Hence,

K∑
j=1

∣∣∣∣ ∑
i∈Nt∗

j

piĉ
t
ij −

∑
i∈I

piĉ
t
ijy

t∗
ij

∣∣∣∣= K∑
j=1

∣∣∣∣∑
i∈I

piĉ
t
ij ŷ

t∗
ij −

∑
i∈I

piĉ
t
ijy

t∗
ij

∣∣∣∣
≤

K∑
j=1

∑
i∈I

piĉ
t
ij

∣∣∣∣ŷt∗
ij − yt∗

ij

∣∣∣∣≤O(K2(T− 1
3 (logT )

1
3K− 5

3 )) =O(T− 1
3 (logT )

1
3K

1
3 ),

in which the first inequality follows from the definition of ŷt∗ and the second inequality is due to Assumption

1. Let us define ηj := |
∑

i∈Nt∗
j
piĉ

t
ij −

∑
i∈I piĉ

t
ijy

t∗
ij |. If λt∗

j < βj (i.e., Part (i) of the approximate comple-

mentary slackness condition), it holds that ut∗
j = 0 and

∑
i∈Nt∗

j
piĉ

t
ijy

t∗
ij =

∑
i∈I piĉ

t
ijy

t∗
ij + ut∗

j ≥ α. Therefore,∑
i∈Nt∗

j
piĉ

t
ij ≥ piĉ

t
ijy

t∗
ij − ηj ≥ α− ηj . The argument for the case λt∗

j > 0 (i.e., Part (ii) of the approximate

complementary slackness condition) follows similarly. This complete the proof of Part (a).

Finally, we prove part (b), i.e., to bound the regret induced by dual mirror descent in SBL-DMD by

using a standard result on online mirror descent, i.e., Proposition 1 in Section B.4. We define the primal

objective function Objt(y,u) of the optimization model (13), and the dual objective function Objt(λ) :=∑
i∈I pimaxj′=1,2,...,K

(
ĉtij′(bj′ + λj′)

)
+ α

∑K

j=1(βj − λj) after using the optimal µt
i = maxj′∈[K] ĉ

t
ij′(bj′ +

λj′), for all i ∈ I, and st(λ) = −
∑

j∈[K]\at
αλj + (ĉtitat

− α)λat
. In SBL-DMD, we update λt over periods

and (yt, ut) denotes the corresponding primal decision, i.e., (yt, ut) = argmaxy≥0,u≥0

∑
i∈I

∑K

j=1 piĉ
t
ijbjyij +∑K

j=1 βj(α− uj)+
∑

i∈I µ
t
i(1−

∑K

j=1 yij) +
∑K

j=1 λ
t
j(
∑

i∈I piĉ
t
ijyij + uj −α). One can check, for any realized

it at period t, the corresponding played arm at with primal decision yt
itat

> 0 is exactly the decision at =

argmaxj∈[K] ĉ
t
itj
(bj +λt

j) defined in SBL-DMD. Then, we have the following inequality,
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Objt(yt∗, ut∗)−Objt(yt, ut)≤O(T− 1
3 (logT )

1
3K

1
3 )+Objt(yt∗, ut∗)−

(
Objt(λt)−

K∑
j=1

λt
j(
∑
i∈I

piĉ
t
ijy

t
ij −α)

)
≤O(T− 1

3 (logT )
1
3K

1
3 )+

K∑
j=1

λt
j(
∑
i∈I

piĉ
t
ijy

t
ij −α)

=O(T− 1
3 (logT )

1
3K

1
3 )+Ei∼DX

[
st(λ

t)
]

≤O(T− 1
3 (logT )

1
3K

1
3 )+Ei∼DX

[
st(λ)+

2η

σ
+

1

η
Dφ(λ,λ

t)− 1

η
Dφ(λ,λ

t+1)

]
,

where the first inequality follows from tie-breaking error induced by the primal (yt, ut) and dual λt shown in

Part (a), as well as the definition of the Lagrange dual. The second inequality follows from the weak duality,

the equality follows from the definition of st(λt), and the third inequality from Proposition 1, which holds

for any λ. Thus, we complete the proof. 2

B.3. Proof of Theorem 1

In this part, we present the main argument for the proof of Theorem 1. Note that N t
j and ĉtij are random vari-

ables measurable with respect to the history Ht. We define γ̂t
j :=

∑
i∈Nt

j
piĉ

t
ij and γt

j :=
∑

i∈Nt
j
pic

t
ij . One can

show that for the SBL algorithms, the expected number of any ad j being sampled before round t is
∑t

s=1
ϵs
K
=

Θ

(
t
2
3K− 2

3 (log t)
1
3

)
. By Hoeffding’s inequality, by round t, ad j has been sampled Θ

(
t
2
3K− 2

3 (log t)
1
3

)
times

with probability 1− t−4. This implies that, by Assumption 2 and the union bound, the CTR estimate sat-

isfies |ĉtij − ctij | = O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
for all ads with probability at least 1− t−3. Combining the above

observations, we will show the following lemma.

Lemma 3 (Per Period Gap of the Alternative Reward Process).

(a) Conditioned on exploitation at round t of the SBL-RS algorithm, it holds that

E
[
τ(xt, at)

]
≥OPT+E[

K∑
j=1

βj(γ
t
j −α)+]−O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
−O

(
T− 1

3 (logT )
1
3K

1
3

)
. (15)

(b) Conditioned on exploitation at round t of the SBL-DMD algorithm, it holds that, for all feasible λ

E
[
τ(xt, at)

]
≥OPT+E[

K∑
j=1

βj(γ
t
j −α)+]−O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
−O

(
T− 1

3 (logT )
1
3K

1
3

)
−Ei∼DX

[
st(λ)+

2η

σ
+

1

η
Dφ(λ,λ

t)− 1

η
Dφ(λ,λ

t+1)

]
.

(16)

Proof of Lemma 3

We first show part (b). Applying the approximate complementary slackness (Lemma 2(b)), we bound the

expected empirical auxiliary reward process under the implementation of the dual-solution in the primal

space: ∑
i∈Nt

j

piĉ
t
ij(bj +βj).
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Fixing the history Ht and an arbitrary ad j, we have the following equality:

OPTt =
∑
i∈I

pi max
j′=1,2,...,K

(
ĉtij′(bj′ +λt

j′)

)
+α

K∑
j=1

(βj −λt
j)

=

K∑
j=1

∑
i∈Nt

j

piĉ
t
ij(bj +λt

j)+α

K∑
j=1

(βj −λt
j)

=

K∑
j=1

∑
i∈Nt

j

piĉ
t
ij(bj +βj)−

K∑
j=1

(γ̂t
j −α)(βj −λt

j),

where the first equality follows from the definition of OPTt, the second from the definition of N t
j , and the

third from the identity
∑

i∈Nt
j
piĉ

t
ij = γ̂t

j . Thus, we have

K∑
j=1

∑
i∈Nt

j

piĉ
t
ij(bj +βj) =OPTt +

K∑
j=1

(γ̂t
j −α)(βj −λt

j). (17)

Hence, if the (exact) complementary slackness condition holds with ηj = 0 for all j ∈A (see Lemma 2(b)),
we have (γ̂t

j −α)(βj −λt
j) = βj(γ̂

t
j −α)+. In this case,

K∑
j=1

∑
i∈Nt

j

piĉ
t
ij(bj +βj) =OPTt +

K∑
j=1

(γ̂t
j −α)(βj −λt

j) =OPTt +

K∑
j=1

βj(γ̂
t
j −α)+.

Otherwise, ηj > 0 for some j ∈A in Lemma 2(b). In this case, we show the following bound for the SBL-DMD
algorithm:
K∑

j=1

(γ̂t
j−α)(βj−λt

j)≥
K∑

j=1

βj(γ̂
t
j−α)+−O

(
T− 1

3 (logT )
1
3K

1
3

)
−Ei∼DX

[
st(λ)+

2η

σ
+

1

η
Dφ(λ,λ

t)− 1

η
Dφ(λ,λ

t+1)

]
.

(18)
To obtain the inequality in (18), we observe, by Lemma 2(b), that

∑
j∈A

ηj ≤ O(T− 1
3 (logT )

1
3K

1
3 ) +

Ei∼DX

[
st(λ)+

2η
σ
+ 1

η
Dφ(λ,λ

t)− 1
η
Dφ(λ,λ

t+1)
]
, so it suffices to show that

(γ̂t
j −α)(βj −λt

j)≥ βj(γ̂
t
j −α)+− ηj for all j ∈A.

More specifically, we consider three cases: (a) λt
j = 0, (b) λt

j ∈ (0, βj), and (c) λt
j = βj .

If λt
j = 0, we have (γ̂t

j − α)(βj − λt
j) = βj(γ̂

t
j − α). If γ̂t

j > α, clearly, βj(γ̂
t
j − α)+ = βj(γ̂

t
j − α). Otherwise,

(γ̂t
j −α)+ = 0, and λt

j = 0 implies that ηj ≥ αj − γ̂t
j . Therefore,

βj(γ̂
t
j −α) = βj(γ̂

t
j −α)+−βj(α− γ̂t

j)≥ βj(γ̂
t
j −α)+−βjηj ≥ βj(γ̂

t
j −α)+− ηj ,

where the last inequality follows from βj ∈ [0,1].
If λt

j = βj , we have (γ̂t
j −α)(βj −λt

j) = 0. Furthermore, the following inequality holds

0 = βj(γ̂
t
j −α)+−βj(γ̂

t
j −α)+ ≥ βj(γ̂

t
j −α)+−βjηj ≥ βj(γ̂

t
j −α)+− ηj ,

where the first inequality follows from γ̂t
j − α ≤ ηj (see Lemma 2(b)) and ηj ≥ 0, which together imply

(γ̂t
j −α)+ ≤ ηj , and the second from βj ∈ [0,1]. It then follows that (γ̂t

j −α)(βj − λt
j)≥ βj(γ̂

t
j −α)+− ηj for

the case where λt
j = βj .
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If λj ∈ (0, βj), Lemma 2(b) suggests that |γ̂t
j −α| ≤ ηj . In the case where γ̂t

j >α, we have γ̂t
j −α≤ ηj and,

therefore,

(γ̂t
j −α)(βj −λt

j) = (γ̂t
j −α)+βj − (γ̂t

j −α)λt
j ≥ (γ̂t

j −α)+βj − ηjλ
t
j ≥ (γ̂t

j −α)+βj − ηj ,

where the first inequality follows from γ̂t
j−α≤ ηj , and the second from λt

j <βj ≤ 1. In the case where γ̂t
j ≤ α,

we have

(γ̂t
j −α)(βj −λt

j) = (γ̂t
j −α)+βj − (α− γ̂t

j)(βj −λt
j)≥ (γ̂t

j −α)+βj − ηjβj ≥ (γ̂t
j −α)+βj − ηj ,

where the first equality follows from (γ̂t
j−α)+ = 0, the first inequality from 0≤ βj−λt

j ≤ βj and 0≤ α− γ̂t
j ≤

ηj , and the second inequality from βj ∈ [0,1]. Therefore, (γ̂t
j − α)(βj − λt

j) ≥ βj(γ̂
t
j − α)+ − ηj for all j ∈A

and, hence, inequality (18) follows.
Finally, we evaluate E[τ(xt, at)|Ht] and bound the terms OPTt and (γ̂t

j − α)+. Consider two cases: (a)

|ĉtij−ctij |=O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
for all j, which occurs with probability at least 1− t−3 (see the discussions

before Lemma 3); and (b) |ĉtij − ctij | 6=O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
for some j ∈A, which occurs with probability

less than t−3.
We first consider the case where |ĉtij − ctij |=O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
for all ad j (which occurs with proba-

bility at least 1− t−3). It follows from the definition of OPT (see Lemma 1) that

OPT= min
0≤λj≤βj ,∀j∈A

∑
i∈I

pi max
j=1,2,...,K

(
cij(bj +λj)

)
+α

K∑
j=1

(βj −λj).

Because |ĉtij − cij |=O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
, by the definitions of OPT and OPTt, we have

|OPTt−OPT| ≤O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
. (19)

Similarly, we bound E[τ(xt, at)|Ht] by

E[τ(xt, at)|Ht] =

K∑
j=1

∑
i∈Nt

j

picij(bj +βj)≥
K∑

j=1

∑
i∈Nt

j

piĉ
t
ij(bj +βj)−O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
. (20)

Furthermore, by Jensen’s inequality, we observe that

(γ̂t
j −α)+ ≥

(
γt
j −α−O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

) ∑
i∈N(j)

pi

)+

≥ (γt
j −α)+−O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
. (21)

Collecting the terms of (17), (18), (19), (20), and (21) above, we have that

E
[
τ(xt, at)

∣∣∣∣Ht

]
≥OPT+

K∑
j=1

βj(γ
t
j −α)+−O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
−O

(
T− 1

3 (logT )
1
3K

1
3

)
−Ei∼DX

[
st(λ)+

2η

σ
+

1

η
Dφ(λ,λ

t)− 1

η
Dφ(λ,λ

t+1)

]
.

(22)

For the case |ĉtij− ctij | 6=O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
, which occurs with probability less than t−3, we can bound

the expected gap between E[τ(xt, at)] and OPT by O(t−3), which is a lower order term compared to the gap
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in the case where |ĉtij− ctij |=O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
. Integrating over the distribution of history Ht, we have

established inequality (16) for the SBL-DMD algorithm.
To part (a), we adopt the same argument as the proof of inequality (18) together with Lemma 2(a) to

show that, under the SBL-RS algorithm, the following inequality holds:
K∑

j=1

(γ̂t
j −α)(βj −λt

j)≥
K∑

j=1

βj(γ̂
t
j −α)+−O

(
T− 1

3 (logT )
1
3K

1
3

)
. (23)

Hence, for the case |ĉtij − ctij |=O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
for all ad j, the inequalities (17), (23), (19), (20), and

(21) together imply that

E
[
τ(xt, at)

∣∣∣∣Ht

]
≥OPT+

K∑
j=1

βj(γ
t
j −α)+−O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
−O

(
T− 1

3 (logT )
1
3K

1
3

)
.

Therefore, similar to the proof of part (a), integrating over Ht will establish inequality (15) for the SBL-RS
algorithm. 2

Summing inequality (15) over the whole T periods (i.e., t= 1,2, ..., T ) and invoking Jensen’s Inequality,
we have the following regret bound on the expected auxiliary reward process E

[∑T

t=1 τ(xt, at)
]

under the
SBL-RS algorithm:

E
[ T∑

t=1

τ(xt, at)

]
≥ T ·OPT+E

[
K∑

j=1

βj

( T∑
t=1

γt
j −αT

)+]
−O

(
T

2
3 (logT )

1
3K

1
3 d

1
2

)
. (24)

Similarly, summing inequality (16) over the whole T periods and invoking Jensen’s Inequality implies that
under the SBL-DMD algorithm:

E
[ T∑

t=1

τ(xt, at)

]
≥ T ·OPT+E

[
K∑

j=1

βj

( T∑
t=1

γt
j −αT

)+]
−O

(
T

2
3 (logT )

1
3K

1
3 d

1
2

)

−E

[
T∑

t=1

st(λ)

]
− 2η

σ
T − 1

η
Dφ(λ,λ

1).

(25)

Next, we bound the difference between the auxiliary reward process τ(xt, at) and the true reward process
r(xt, at). Denote the total number of clicks for ad j in all T rounds as n(j).

Lemma 4 (Difference between Two Reward Processes). Under both SBL-RS and SBL-DMD algo-
rithms, it holds that

E

[
K∑

j=1

(
n(j)−

T∑
t=1

γt
j

)+]
≤O

(√
KT logT

)
. (26)

Proof of Lemma 4.
It suffices to establish a high probability bound: With probability at least 1−T−4, the following inequality
holds:

K∑
j=1

(
n(j)−

T∑
t=1

γt
j

)+

≤O

(√
KT logT

)
. (27)

We now show that for any subset of ads, denoted by S,∑
j∈S

n(j)−
∑
j∈S

T∑
t=1

γt
j ≤O

(√
KT logT

)
with probability at least 1−T−4. (28)
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Note that given the history by round t, Ht, the expected total number of clicks for ad j is given by γt
j . One

can use Azuma-Hoeffding inequality to show that for a fixed subset S, we have with probability at most
T−4K , ∑

j∈S

n(j)−
∑
j∈S

T∑
t=1

γt
j ≥O

(√
KT logT

)
.

Take a union bound over all subsets and notice that 2KT−4K ≤ T−4. Hence, (28) holds with probability at
least 1−T−4.

We now show (27) by contradiction. Suppose that (27) does not hold with probability at least T−4. Define
S ′ as the set of ads such that n(j)>

∑T

t=1 γ
t
j . It follows that

∑
j∈S′

n(j)−
∑
j∈S′

T∑
t=1

γt
j =

∑
j∈S′

(
n(j)−

T∑
t=1

γt
j

)
=

K∑
j=1

(
n(j)−

T∑
t=1

γt
j

)+

>O

(√
KT logT

)
,

with probability at least T−4, which contradicts inequality (28). Thus, inequality (27) holds with probability
at least 1−T−4. Finally, we take the expectation of (27) and the inequality (26) follows immediately. 2

We are now ready to prove Theorem 1.
Proof of Theorem 1.
First, we prove part (a) for the SBL-DMD algorithm. Note that

T∑
t=1

τ(xt, at) =

T∑
t=1

r(xt, at)+

K∑
j=1

βj

(
n(j)−αT

)+

≤
T∑

t=1

r(xt, at)+

K∑
j=1

βj

(
n(j)−

T∑
t=1

γt
j

)+

+

K∑
j=1

βj

( T∑
t=1

γt
j −αT

)+

, (29)

where the inequality follows from (X+Y )+ ≤X++Y + for any X,Y ∈R. Putting the inequalities (25), (26),
and (29) together, we obtain, for the exploitation rounds of the SBL-DMD algorithm,

E
[ T∑

t=1

r(xt, at)

]
≥E
[ T∑

t=1

τ(xt, at)

]
−E

[ K∑
j=1

βj

(
n(j)−

T∑
t=1

γt
j

)+]
−E

[ K∑
j=1

βj

( T∑
t=1

γt
j −αT

)+]

≥E
[ T∑

t=1

τ(xt, at)

]
−O

(√
KT logT

)
−E

[ K∑
j=1

βj

( T∑
t=1

γt
j −αT

)+]

≥T ·OPT−O

(√
KT logT

)
−O

(
T

2
3 (logT )

1
3K

1
3 d

1
2

)
−E

[ T∑
t=1

st(λ)

]
− 2η

σ
T − 1

η
Dφ(λ,λ

1)

=T ·OPT−O

(
T

2
3 (logT )

1
3K

1
3 d

1
2

)
−E

[ T∑
t=1

st(λ)

]
− 2η

σ
T − 1

η
Dφ(λ,λ

1).

For the last equality, we drop the regret term Õ(
√
KT ) which might dominate when K is large. However,

in the online advertising practice, T is several orders of magnitude higher than K. For Platform O, the
number of ad impressions in the cold-start period T is 10,000 times larger than the number of ads K. Hence,
Õ(
√
KT ) is negligible compared with Õ(T

2
3K

1
3 ) and can be safely dropped.

Next, we relax the assumption that pi is known to the algorithm for each i by demonstrating that observing
p̂i only will only incur an additional regret of an order lower than O

(
T

2
3 (logT )

1
3K

1
3 d

1
2

)
. We show that using

the empirical probability p̂i (instead of the true one pi) only incurs an additional regret of an order lower than
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the one in Lemma 3(b), i.e., O
(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
+O

(
T− 1

3 (logT )
1
3K

1
3

)
. Note that, by Assumption 2, the

estimate satisfies |ĉtij−ctij |=O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
for all ads with probability at least 1− t−3. Furthermore,

the empirical distribution estimate p̂t
i satisfies that with probability at least 1− t−4, for any context i∈ I, we

have |p̂t
i−pi| ≤O(

√
log t/t) (see the discussions in Appendix B.2). Combining the above two error estimation

bounds on ĉtij and p̂j , we have, by the definitions of OPTt and OPT,

OPTt ≥OPT−O
(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
−O

(
t−

1
2 (log t)

1
2

)
−O

(
t−

5
6 (log t)

5
6K

1
3 d

1
2

)
=OPT−O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
.

(30)
Hence, Lemma 3(b) and inequality (16) continue to hold if we replace pi with p̂t

i for each context i and each
round t. The rest of Theorem 1’s proof remains the same. Summarizing our argument above, we have shown
that the expected regret of the SBL-DMD algorithm is bounded by

O

(
T

2
3 (logT )

1
3K

1
3 d

1
2

)
+E

[ T∑
t=1

st(λ)

]
+

2η

σ
T +

1

η
Dφ(λ,λ

1),

i.e., part (b) holds.
Finally, we prove part (a) for the SBL-RS algorithm. We follow exactly the same argument as the proof

for part (b) and derive, from inequalities (24), (26), and (29), that, under SBL-RS,

E
[ T∑

t=1

r(xt, at)

]
≥ T ·OPT−O

(
T

2
3 (logT )

1
3K

1
3 d

1
2

)
Together with (30), we have, for τm− τm−1 = 1, the expected regret of the SBL-RS algorithm is bounded by

O

(
T

2
3 (logT )

1
3K

1
3 d

1
2

)
,

i.e., part (a) holds if the algorithm re-solves the empirical dual in each period.
We next show that it suffices to solve the empirical dual problem with a fixed epoch of size O(T

2
3 ). Since

the regret bound is of order Õ(T
2
3 ), we can discard the first T

2
3 periods without affecting the order of the

regret bound. After the first T 2
3 periods, with a fixed epoch schedule such that τm+1− τm =O(T

2
3 ), we have

τm ≥ (1/2)τm+1. Therefore, at round t the additional regret it incurs to solve the empirical dual program
is at most a constant multiplication of O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
, which is still of order O

(
t−

1
3 (log t)

1
3K

1
3 d

1
2

)
.

Therefore, summing this bound over t from 1 to T , we have that the total additional regret from setting
τm− τm−1 =O(T

2
3 ) is of order O

(
T

2
3 (logT )

1
3K

1
3 d

1
2

)
. This completes the proof of Theorem 1(a). 2

B.4. Online Mirror Descent

To make our paper self-contained, we present a standard result on online mirror descent, which is inherited
from Proposition 5 of Balseiro et al. (2021).

Proposition 1 (Online Mirror Descent). With the sequence of convex functions

st(λ) =−
∑

j∈[K]\at

αλj +(ĉtitat
−α)λat

,

let zt ∈ ∂λst(λ) be a subgradient and

λt+1 = argmin
0≤λj≤βj ,∀j∈A

〈zt, λ〉+
1

η
Dφ(λ,λ

t).
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By the definition of st(λ), the subgradients are bounded by ||zt||∞ ≤ α+1≤ 2. Suppose the reference function
φ is σ-strongly convex with respect to L1-norm. Then, for any λj ∈ [0, βj ] (1≤ j ≤K), we have

st(λt)− st(λ)≤ 2η

σ
+

1

η
Dφ(λ,λ

t)− 1

η
Dφ(λ,λ

t+1),

and
T∑

t=1

[st(λt)− st(λ)]≤ 2η

σ
T +

1

η
Dφ(λ,λ

1).

The proof of Proposition 1 mainly follows from the first order conditions and the Three-Point Property
of the Bregman projection. We refer interested readers to Proposition 5 in Balseiro et al. (2021) for proof
details.

Appendix C: Additional Empirical Analysis
In this section, we present the following additional empirical analysis: (a) Validation for the causality of
Figure 1; (b) randomization check for our field experiment; (c) verification of SUTVA for the experiment;
and (d) regression analysis as robustness checks for the short-term impact of oSBL (i.e., Table 2).

C.1. Validation for the Causality of Figure 1

In this section, we casually estimate the effect of cold start performance on ad retention using two different
methods. We first conduct a propensity score matching (PSM) analysis using pre-experiment data. Specifi-
cally, we access the data of all new ads created between May 1, 2020 and May 7, 2020, and examine their
performance before our two-sided experiment which started on May 23, 2020. Specifically, we use PSM to
construct the treatment and control groups of ads. The treatment (resp. control) group of ads correspond
to those ads whose conversions is greater or equal to (resp. below) 10 during their cold start period. We
include all potential confounding variables we are aware of, such as bidding price, budget, industry, and
target strategy, to match the control sample with the treatment sample using logistic regression. Note here
the target strategy is set by the advertiser before the ad campaign, which (based on age, gender, location,
phone brand and so on) chooses a subset of eligible platform users for displaying ads.

There are in total 97,273 new ads created between May 1, 2020 and May 7, 2020. We first construct a
balanced subsample of 22,994 new ads in the treatment and control groups with PSM. Then, assuming that
the data sample constructed by PSM satisfies the conditional independence assumption (CIA), we run a
regression to estimate the causal effect of obtaining at least 10 conversions during the cold start period.
See Chapter 3 of Angrist and Pischke (2008) for details. We then run a linear regression with the indicator
variable for obtaining at least 10 conversions as the treatment variable and controlling for other features
used in matching, i.e.,

PSM : yj = β0 +β1Treatmentj +Xj + ϵj ,

where yj corresponds to whether ad j is retained in the two week course after its cold-start period, Treatmentj
corresponds to whether ad j is the treatment group, and Xj are the features. Our regression result shows that
if a new ad gains more than 10 conversions during the cold start period, the retention rate is significantly
increased by 15.03% (p-value<0.0001), which is reported in the column (2) of Table 5. Thus, we have partially
established the causality for Figure 1 that reaching the cold-start conversion threshold during the first few
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days could significantly boost the retention rate of an ad. We also report the naive regression result with
PSM, i.e.,

Linear Regression : yj = β0 +β1Treatmentj + ϵj ,

in column (1) of Table 5 for comparison. Note that this corresponds to a straightforward t-test.
One may still worry whether some other unobservable confounding variables may invalidate the above

matching-based result. To further justify the validity of Figure 1, we leverage our experimental data to
casually estimate the effect of cold-start success on ad retention. Specifically, we use our two-sided experiment
as an instrumental variable (IV) to identify the effect of whether a new ad gaining more than 10 conversions
during the cold start period on its retention (encoded as the binary variable representing whether the ad
remains active on the platform for everyday in the following two weeks after the cold start period). We adopt
the two-stage least squares (2SLS) specification given by (31).

IV-First Stage: sj = α0 +α1Treatmentj +Xj + ϵj

IV-Second Stage: yj = β0 +β1ŝj +Xj + ϵj
(31)

To estimate the impact of cold start success on ad retention, we denote sj = 1 if ad j gains more than
10 conversions during the experiment; otherwise sj = 0. Xj is ad-specific features, such as bidding prices,
budget, industry, and target strategy, for ad j. Treatmentj = 1 if ad j is in the treatment group; otherwise
Treatmentj = 0. We use yj = 1 to denote that ad j stays on the platform in the next two weeks after the
cold-start period; otherwise yj = 0. We remark that Treatment is a valid instrument in this setting. On the
one hand, the p-values of the weak instrument tests are smaller than 10−5 so the strong first-stage assumption
holds. On the other hand, it seems unlikely that our experiment could impact the retention of an ad through
a channel other than conversions, so exclusion restriction also holds.

Under the 2SLS specification (31), we further validate the causality of Figure 1 and demonstrate that
gaining 10 conversions during the cold start period will significantly increase the ad retention rate by 15.20%
(p-value is less than 0.0001), which is reported in the column (3) of Table 5. Note this result effectively
matches that in the column (2). We also remark that the relative effect sizes reported in Table 5 are not
directly comparable with that in line 1 of Table 3 Panel A. This is because the former uses the binary variable
representing whether the ad is retained as the outcome variable, whereas the latter uses the number of active
days in the ad’s life time as the outcome variable.

C.2. Randomization Check of the Field Experiment

To confirm the success of our randomization in the two-sided experiment, we check the randomization on
both the ad side and the UV side before oSBL coming into effect. For the ad side randomization check,
we report the ad side randomization check results in Table 6 Panel A, where the numbers are re-scaled to
protect the sensitive data. Table 6 Panel A shows that treatment and control ads in our sample were similar
in bidding prices, the proportion of ads targeting iOS users, the proportion of ads targeting UI Version X,
and the proportion of ads in various industries. We remark that these features are all submitted by the
advertiser once s/he launches a new ad on the DSP and, therefore, are not affected by the algorithm of choice.
Similarly, the UV side randomization check results are reported in Table 6 Panel B, where the numbers are
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Table 5 Effect of Cold Start Success on Ad Retention

Methodology:
Benchmark Matching Instrumental Variable

(1) (2) (3)
Absolute Effect Size 17.01%∗∗∗∗ 15.03%∗∗∗∗ 15.20%∗∗∗∗

Standard Error (0.004) (0.006) 0.003
Experimental Data No No Yes
Observations 97,273 22,994 49,544
Industry Fixed Effects No Yes Yes
Bidding Price No Yes Yes
Budget No Yes Yes
Target Strategy No Yes Yes

Note: ∗p<0.1; ∗∗p<0.01; ∗∗∗p<0.001; ∗∗∗∗p<0.0001.

Table 6 Randomization Check of the Experiment

Panel A: Randomization Check on the Ad side
Treatment Control p-value of

ads ads t-test

Statistics during the
Experiment

Number of New Ads 34,605 34,076

Bidding Price 48.14 48.17 0.91
(52.24) (51.45)

Proportion of Ads for iOS Users 24.1% 24.2% 0.98
(0.427) (0.428)

Proportion of Ads for UI Version X 30.3% 28.3% 0.69
(0.459) (0.450)

Proportion of Ads in Game Industry 13.8% 13.7% 0.98
(0.086) (0.081)

Proportion of Ads in Education Industry 0.75% 0.67% 0.93
(0.086) (0.082)

Proportion of Ads in Finance Industry 1.75% 1.87% 0.93
(0.131) (0.135)

Panel B: Randomization Check on the UV side

Treatment Control p-value of
UV UV t-test

Statistics during the
Experiment

Number of Users 197,460,792 197,401,621

Male Proportion 0.540 0.540 >0.99
(0.491) (0.491)

Average Revenue per User 0.95 0.95 >0.99
(27.15) (27.14)

Average Impressions per User 23.36 23.24 0.95
(17900) (17864)

Average Clicks per User 3.195 3.20 0.99
(4455) (4458)

Average Conversions per User 0.041 0.040 0.88
(32.80) (32.25)

Note: Standard deviations in Panel A are clustered at the ad level and reported in the parentheses. Standard deviations in
Panel B are clustered at the user level and reported in the parentheses. To protect sensitive data, the reported metrics are
rescaled.

also rescaled to protect the sensitive data. As we can see from Table 6 Panel B, treatment UVs and control
UVs generate similar revenues, ad impressions, ad clicks, and ad conversions per hour. The proportion of
female users in the treatment group is also similar to that in the control group. We have thus confirmed
that the treatment ads (resp. UVs) and control ads (resp. UVs) in our sample are comparable, implying that
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any difference between groups after the experiment started should be attributed to whether our new oSBL
algorithm has been implemented.

C.3. Verification of SUTVA for the Experiment

To verify SUTVA for our two-sided experiment, we examine two additional assumptions during our experi-
ment time period: (a) The CTR and CVR distributions of the mature ads are not affected by the cold start
algorithms applied to different UVs; and (b) The total number of ad impressions displayed to a user is not
affected by the cold start algorithms applied to different ads. To test the first assumption, we sample 13,337
mature ads one day before the experiment and compare their empirical CTR before and during the experi-
ment. The average CTR before the experiment is 13.11% with standard deviation 0.099, while the average
CTR during the experiment is 13.19% with standard deviation 0.100. The p-value of the pairwise t-test is
0.284 and 0.481 for CTR and CVR, respectively, implying that our algorithm does not substantially change
the CTR and CVR of mature ads during the experiment. To test the second assumption, we conduct a t-test
of average ad impressions per user for the treatment and control ad impressions in our experiment. We find
that the p-value is 0.96. Hence, our algorithm does not change the number of ad impressions significantly.
Therefore, SUTVA holds for our two-sided experiment.

C.4. Robustness Check for Regression-Based Results

In this subsection, we replicate our main results for the short-term impact of oSBL (i.e., Table 2) using the
following linear regression specification which controls for the ad features to improve the efficiency of our
estimators:

Performance Indicatorj = α0 +α1Treatmentj +Xj + ϵ (32)

For the impact of the new algorithm on cold start reward and cold start success rate, Treatmentj is 1 if ad
j is in the treatment group, otherwise 0; Xj is ad-specific features including the industry category (of the
advertiser), bidding price, budget, and the to target strategy. The target strategy means that advertisers can
predetermine whom to display the ad based on users’ age, gender, location, phone, device features, and so
on. We use the specification (32) to check the robustness of results on the revenue implications of our oSBL
algorithm, where Treatmentj is 1 if ad j is in the treatment group, otherwise 0; For conciseness, we only
report the three most important metrics of the platform, namely the cold start success rate and the cold start
reward, as well as the revenue. The result of specification (32) is presented in Table 7. The regression-based
results indicate that, after controlling for ad-specific characteristics, our algorithm can significantly increase
the cold start success rate by 41.22% and the cold start reward by 53.87%, which are similar to the model-free
results on the short-term impact of oSBL (see Section 6.1) in both directions and magnitudes.

Appendix D: Additional Simulation Analysis

In this section, we first introduce the details of the simulation system, the code and data of which is released
to the public on GitHub.13 Presenting the simulation system helps us better explain in detail our algorithm
and experiment (see Appendix D.1). Then, we present comprehensive simulation analysis to complement

13 See https://github.com/zikunye2/cold_start_to_improve_market_thickness_simulation for details.
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Table 7 Regression-Based Effects of the Algorithm

Dependent Variable:
Cold Start Reward Cold Start Success Rate Revenue Per User Objective Value

(1) (2) (3) (4)
Treatment−Control 73.0 0.0146 -0.0072 556,607

(5.04) (<0.001) (<0.001)
Relative Effect Size 41.22%∗∗∗∗ 53.87%∗∗∗∗ -0.592%∗∗ 0.157%∗∗∗∗

Model-Free Relative Effect Size 47.71%∗∗∗∗ 61.62%∗∗∗∗ -0.717%∗∗ 0.147%∗∗∗∗

Industry Fixed Effects Yes Yes Yes Yes
Bidding Price Yes Yes Yes Yes
Budget Yes Yes Yes Yes
Target Strategy Yes Yes Yes Yes

Note: ∗p<0.1; ∗∗p<0.01; ∗∗∗p<0.001; ∗∗∗∗p<0.0001. Standard errors in column (1) and (2) are at the ad level and reported
in the parentheses. Standard error in column (3) is at the user level.

our theoretical and empirical results. In Appendix D.2, we quantify the estimation biases under single-sided
experiments (see also Section 5). Appendix D.3 numerically illustrates the expected regret of our algorithm
(Theorem 1). Appendix D.4 leverage the simulation model built in Section 6.3 to numerically show that for
a wide range of cold start reward parameter βj , our oSBL algorithm can substantially boost the long-term
total advertising revenue of the platform.

D.1. Simulation System

To begin with, we describe the simulation model built upon on the online advertising practice and real data
of Platform O. Interested readers are referred to our GitHub repository (see Footnote 13) for the data inputs
and implementation details of the simulation system. The goal of open-sourcing this simulation system is
to help scholars interested in our paper better understand the online advertising platforms in practice, the
implementation details of our algorithm and the two-sided experiment, and how our two-sided experiment
framework enables to reduce the estimation bias under the violation of SUTVA.

Advertising System and Cold Start Setting. To capture the core advertising mechanism without
getting trapped in engineering details, our simulator assumes the CPC billing option and first-price auction,
and adopts a threshold on the number of clicks, instead of conversions, as our cold start target (i.e., αT in our
theoretical model). Analogously, we convert each ad’s cost-per-action (CPA) to the corresponding CPC by
multiplying the average conversion rate of ad. The hyper-parameters of our simulation system, including the
cold start target parameter α, cold start reward βj ’s, the number of user impressions during the cold start
period T , the proportion of new and mature ads on the DSP, and the budget of each ad, are all fine-tuned
to provide a close approximation of the real DSP on Platform O. The exact values of these parameters are
provided in the GitHub repository (see Footnote 13). Readers may choose their own hyper-parameters as
appropriate in the problem context they are studying.

Ground-Truth CTR Model and Data Inputs: The simulator is equipped with a “ground-truth” click-
through model for each ad, which is assumed to be a (linear) fixed-effects models constructed with the
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historical user impression and click-through data. Specifically, when displaying ad j to a user impression i,
the user will click through the ad with probability

CTRi,j = User-Invariant-CTRj +Coefficient-VectorTj ×Featurei. (33)

As is clear from ground-truth data-generating process (33), the CTR for ad j and user impression i consists
of two parts, one capturing the ad fixed-effect User-Invariant-CTRj and the other capturing the impact of user
feature Coefficient-VectorTj × Featurei. The user-invariant CTR only depends on ad j and is independent of
the feature of the user i. As parameter inputs for our simulation system, we randomly sample 300 data points
from the joint distribution of bid prices (which we linearly scale from CPC using a random multiplier) and the
user-invariant ad CTR based on the real data of Platform O.14 To include the user-feature related information
into the ground truth CTR model (i.e., the second term of Eq. (33)), we incorporate the demographic feature
of each user i, Featurei, sampled from the real marginal distribution of user gender, location, and age on
Platform O. The gender feature follows a binary distribution on male, and female with equal probability.
The location feature follows a discrete distribution on large city, medium city, and small city with probability
densities equal to 0.22, 0.46, and 0.32, respectively. The age feature follows a discrete distribution on young,
mid-age, and old with probability densities equal to 0.46, 0.34, and 0.20, respectively. When generating the
feature of each user view in the simulation, we assume the above three features (gender, age, and location)
are independent. This is consistent with the practice of Platform O, and it is straightforward to adjust the
simulation system that accounts for dependent user features. For each ad j, the 3-dimensional ad-specific
coefficient vector for user-features (i.e., Coefficient−Vectorj in Eq. (33)) is randomly sampled from a uniform
distribution on the support [−0.5,0.5]× [−0.5,0.5]× [−0.5,0.5]. As before, interested readers may change the
ground-truth CTR model and/or its data inputs in accordance to the specific problem they work on.

Machine Learning Oracle to Predict CTR: As discussed in Section 4, an indispensable infrastructure
for a DSP in practice is the machine learning system (usually DNNs) to generate the pCTR for each ad j and
user i. To simulate the ML oracle for predicting CTRs, we distinguish the new ads from the mature ones. For
a mature ad j, the ML oracle has already accurately learned the true user-invariant CTR User-Invariant-CTRj

and the true ad-specific Coefficient−Vectorj . In this case, the predicted CTR is identical to the true CTR,
i.e., pCTRi,j = CTRi,j for any user i. If ad j is new, however, the ground-truth model parameters are unknown
to the ML oracle. In this case, the ML oracle initialize the prediction algorithm with Coefficient-Vectorj ←
(0,0,0)′, and

User-Invariant-CTRj← 0.5× ground-truth User-Invariant-CTRj +0.5× average CTR of all ad impressions,

which approximates the ML system on a real DSP in practice which uses the average CTR of the ad category
as the initial pCTR. Without loss of generality, one can fine-tune this hyper-parameter in the simulation
system to strengthen its CTR prediction. To train the CTR prediction model (33) and produce a pCTR upon

14 This data sample is provided at https://github.com/zikunye2/cold_start_to_improve_market_thickness_
simulation/blob/main/ctr_bid_data.npy.
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the arrival of each user impression, we adopt the online stochastic gradient descent algorithm to minimize
the (empirical) mean squared loss.

We remark that the real ML system of a DSP to predict CTRs and CVRs usually comprise of very large-
scale DNNs leveraging millions of features which are typically sparse embeddings of both the ads and users
(see, e.g., Covington et al. 2016). For data security and clarity reasons, we are unable to publicize such
detailed individual user- and ad- level data of Platform O. Instead, we take the above compromised route
to simulate the ground-truth CTR by combining ad-specific user-invariant CTRs and the linear dependence
on user features.

Ad Delivery Algorithm: As discussed in Section 3.1, the core logic for the ad delivery algorithm of a DSP
is, upon the arrival of a user impression, to display the ad with the highest eCPM, which thus maximizes the
expected advertising revenue from this ad impression. In our simulation model, the eCPM of displaying ad j

to user i is given by eCPMi,j = pCTRi,j× bj . Following the practice of Platform O, in addition to maximizing
the eCPM of each ad impression, the baseline benchmark ad delivery algorithm for the simulation system
also adopts the PID controller (see Appendix H.2, Eq. (41)) to adaptively adjusts the bidding prices during
the cold start period. Specifically, for each new ad, the algorithm uniformly increases its bidding price to
the upper-bound and then adopts the PID controller Eq. (41) to adaptively adjust the real-time bidding
prices until the end of the cold start period of the ad. The hyper-parameters of the PID system, (kp, ki, kd)

in Eq. (41), are fine-tuned to match the moments of the simulation system with those of the real DSP on
Platform O. If our new SBL algorithm is adopted, we implement its SBL-DMD version for all new ads on
the simulation system. For a mature ad, regardless of the cold start algorithm applied to new ads, the ad
delivery algorithm keeps the real-time bidding prices the same as the CPC submitted by its advertiser at
the beginning of the campaign, i.e., the bid of mature ad j remains bj . Of course, the readers are free to
implement other ad delivery algorithms for both new and mature ads in our simulation system.

Our Field Experiment: Finally, we introduce how our different experiment designs are implemented on
the simulation system. In our simulation system, we implement 3 different experimental designs: (i) parallel
simulations, (ii) one-sided (UV-side or ad-side) experiment, and (iii) two-sided experiment. We consider the
estimates for 2 outcome variables: (i) cold start success rate and (ii) advertising revenue. For the parallel
simulations, we run two simulations separately, one with all ads and UVs under the control condition and
the other all under the treatment condition. Therefore, the difference between the respective outcomes of
the 2 parallel simulations generate the “ground-truth” treatment effect of interest, which is the benchmark
to evaluate the treatment effect estimation accuracy of other (one- and two- sided) experiment designs in
our simulation system.

Treatment and Intervention of Experiments. As discussed in Section 5.1, one-sided experiment may ran-
domize the subject on the UV-side or the ad-side. The implementation of UV-side, ad-side and two-sided
experiments on the simulation system follows the design described in Section 5.1, in Figures 4 and 5 in partic-
ular. These 3 experiment designs can be formalized under a unified UV-ad pair framework. Denote the set of
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all UVs as U and the set of all new ads as A. We first randomly assign UVs into the non-overlapping treatment
group Tu and control group Cu. Analogously, the new ads are randomly and independently assigned into the
non-overlapping treatment group Ta and control group Ca. For the UV-side experiment design, |Tu|= |Cu|,
Ta = A and Ca = ∅. For the ad-side experiment design, |Ta| = |Ca|, Tu = U and Cu = ∅. For the two-sided
experiment design, |Tu|= |Cu| and |Ta|= |Ca|. For all 3 experiment designs, the algorithmic intervention and
treatment condition are applied at the UV-ad pair level, as illustrated by Figures 4 and 5. For any UV i∈ U

and ad j ∈A, the UV-ad pair will be under the treatment condition, which we denote as (i, j) ∈ Tua if and
only if both the UV and the ad are in the respective treatment groups, i.e., i ∈ Tu and j ∈ Ta. Otherwise,
j /∈ Ta or i /∈ Tu, either the control condition will be applied to the UV-ad pair, which we denote as (i, j)∈ Cua,
or this pair will be completely blocked in the case of the two-sided experiment design (see Figure 5), which
we denote as (i, j) ∈ Bua. For the (UV-side, ad-side and two-sided) experiment designs considered in this
paper, the bidding strategy of any UV-ad pair under the treatment condition (i.e., (i, j) ∈ Tua), will follow
the SBL-DMD algorithm (i.e., the bid of ad j on user impression i in period t is bj + λt

j), whereas that of
a UV-ad pair under the control condition (i.e., (i, j) ∈ Cua) will follow the benchmark PID-based algorithm
introduced above. Finally, if the UV-ad pair is blocked in the two-sided experiment design, i.e., (i, j)∈Bua,
the bid of ad j on user impression i will remain 0 throughout the cold start period.

Experiment Outcomes. To have a fair comparison with the ground-truth treatment effect produced by
the parallel simulations, we emphasize that both outcome metrics of interest (i.e., the cold start success
rate and advertising revenue) should be carefully scaled according to the UV traffic assigned into different
experiment groups. For completeness, we introduce how to evaluate both metrics under the 3 experiment
designs separately.

UV-side Experiment Design. For this design, we assume ω of UVs are assigned into the treatment and
control groups respectively, i.e., |Tu|= |Cu|= ω|U|. The cold start success rate under the UV-side experiment
design is measured as follows. For each new ad j ∈ A, we denote by V T

j (resp. V C
j ) the total number of

click-throughs of ad j by users in the treatment (resp. control) group. Then, we scale the cold start success
threshold by the user traffic ratio of the treatment and control groups, i.e., ω. Hence, I{V T

j
≥ωαT} (resp.

I{V C
j

≥ωαT}) is the binary indicator for whether ad j is successfully cold started by treatment (control) UVs.
Therefore, the cold start success rate of the treatment condition is∑

j∈A I{V T
j

≥ωαT}

|A|
,

whereas that of the control condition is ∑
j∈A I{V C

j
≥ωαT}

|A|
.

To evaluate the advertising revenue for the treatment and control conditions under the UV-side experiment
design, we need to consider that generated by mature ads, the set of which we denote as Am. Therefore, the
total revenue of the treatment condition is ∑

j∈A∪Am

bjV
T
j ,
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whereas that of the control condition is ∑
j∈A∪Am

bjV
C
j .

Ad-side Experiment Design. For this design, the cold start success rate of the treatment condition is∑
j∈Ta

I{Vj≥αT}

|Ta|
,

whereas that of the control condition is ∑
j∈Ca

I{Vj≥αT}

|Ca|
.

The total revenue of the treatment condition is ∑
j∈Ta

bjVj ,

whereas that of the control condition is ∑
j∈Ca

bjVj .

Two-sided Experiment Design. Finally, similar to the UV-side experiment design, the cold start success rate
under the two-sided experiment design should be evaluated with the cold start success threshold re-scaled
by the user traffic of treatment and control groups. Therefore, the cold start success rate of the treatment
condition is ∑

j∈Ta
I{V T

j
≥ωαT}

|Ta|
,

whereas that of the control condition is ∑
j∈Ca

I{V C
j

≥ωαT}

|Ca|
.

Under the two-sided experiment design, the total revenue should take into account that generated by the
mature ads. Therefore, the revenue of the treatment condition is given by∑

j∈Ta∪Am

bjV
T
j ,

whereas that of the control condition is given by∑
j∈Ca∪Am

bjV
C
j .

Finally, as discussed in Section 5.1, blocking those treatment (resp. control) ads in auctions for control
(resp. treatment) UVs in two-sided experiment design (see Figure 5) will reduce the competition in the
auctions, which may result in overestimation of the cold start success rate for both the treatment and control
conditions. This may not be a problem for a large-scale marketplace with ad targeting like Platform O
(blocking 20% of the experimented new ads only decreases the number of competing ads in the auctions
by 6% in our experiment). However, for our relatively small-scale simulation system, such reduction in the
competition of the auctions may create substantial biases in the estimation. To de-bias the estimates in our
simulation, we randomly add the same number of mature ads as the blocked new ads into the experimented
auctions. Readers interested in applying our simulation system for studying other experiment designs should
use their own judgment for their specific problem contexts whether mature ads should be re-sampled and
added back to the auctions so as to counter the estimation bias from the reduced competition.
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Table 8 Bias Analysis of Different Estimators

Ad-Side Experiment UV-Side Experiment Two-Sided Experiment
Treatment Control Treatment Control Treatment Control

Cold-Start Success Rate 0.068 0.024 0.050 0.038 0.060 0.038
(0.011) (0.017) (0.007) (0.013) (0.007) (0.008)

Value of Estimator 4.4%∗∗ 1.2%∗ 2.2%∗∗

Bias/Global Treatment Effect 120% -40% 10%

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001; ∗∗∗∗p<0.0001. Standard errors are reported in the parentheses.

D.2. Estimation Biases with One-Sided Experiments

In this simulation study, we quantify the estimation biases under single-sided experiments using our simula-

tion system described in Appendix D.1. This simulation is based on the simulation system built in Appendix

D.1, with much more input data and finer granularity. Specifically, we randomly sample 100 new ads, 200

mature ads, and 1,000,000 user page-views during the cold start phase as the data inputs. Moreover, after

the cold start phase, consistent with Figure 1, we assume that a new ad with fewer accumulated clicks have

a higher probability to leave the advertising platform. The new ads who stay on the platform together with

the 200 mature ads proceed to the stationary phase with another 1,000,000 user page-views.

To illustrate the potential estimation biases induced by the violation of SUTVA with Ad-side and UV-side

experiments, we run three numerical simulations (Ad-side randomization experiment (see Figure 4(a), UV-

side randomization experiment (see Figure 4(b), and two-sided experiment (see Figure 5). We fix α= 0.001

and β = 2b for all experiments in this set of simulations. In all these simulations, 50% of UVs/Ads are

randomly assigned into the treatment condition, and the other 50% into the control condition.

We replicate the simulation for each randomized experiment for five times and report corresponding

estimation results of cold start success rate in Table 8. Our simulation results demonstrate that the ad-side

experiment significantly overestimates the treatment effect of the proposed algorithm, whereas the user-

side experiment underestimates the effect. Furthermore, the two-sided equips us with an unbiased estimate.

Therefore, our simulation results necessitate and validate our two-sided experiment design by showing that

whereas one-sided experiments are likely to produce substantially biased estimates, our novel two-sided

design helps correct such biases.

D.3. Regret Illustration

To numerically illustrate the regret of our algorithm, we consider a pure cold start setting with new ads only.

We randomly select 100 new ads from the data set as well as 20,000 impressions to be allocated. The target

number of clicks for each ad per one period is α= 0.001, which is scaled in consistency with the cold start

success criteria of 10 conversions in the three-day cold start horizon. We set the cold start reward coefficient

βj = 2bj for each ad j. We run the simulation for 50 times and compute the average regret. The results are

plotted in in Figure 8, which confirms our theoretical result (Theorem 1) that the regret of SBL algorithms

is bounded by O(t2/3(log t)1/3).
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(a) Average Regret (b) Average Regret Scaled by t−2/3(log t)−1/3

Figure 8 Average Regret and Scaled Regret in the Simulation with α= 0.001 and βj = 2bj

D.4. Impact of the Cold Start Reward Coefficient on Long-Term Revenue

As shown in Section 5.2, the online implementation of our algorithm sets the cold start reward coefficient
at βj = 2bj for each ad j. In this subsection, we leverage the simulation model built in Section 6.3 to
demonstrate that for a wide range of choices of βj , our oSBL algorithm can successfully boost the long-term
total advertising revenue of the platform. Similar to the simulation setting in Section 6.3, to estimate the
global treatment effect of the cold start reward coefficient β/b on long-term revenue, we use the data with 12
million impressions from those during April 9, 2020 and April 30, 2020. The specific simulation setting and
the model validation has been documented in Section 6.3, we randomly sample 1.2 million impressions with
replacement for each simulation and replicate 10 times via Bootstrap to estimate the long-term revenue of
the oSBL. All the following results pass the t-test with p-value smaller than 10−3.

In this subsection, however, we emphasize on the robustness of the choice of cold start coefficient β/b, which
boosts the positive long term revenue within a wide range. In the regard, we conduct a sensitivity analysis
with three varying parameters in the simulation. ∆r, which refers to the average relative increase of the
retention length for mature ads, ∆CTR, which refers to the average relative increase of the CTR for mature
ads, and the cold start reward coefficient β/b. To obtain a complete picture on the global treatment effect of
our algorithm, we conduct a sensitivity analysis with our simulation model by varying ∆r ∈ {1%,2%,3%},
varying ∆CTR from 0 to 15%, and varying β/b from 0 to 3, assuming that oSBL is applied to all ads
and UVs. The baseline revenue is denoted by R0 and the revenue under the oSBL algorithm denoted by
R(∆r,∆CTR, β/b) (so R0 =R(0,0)). We are interested in the relative advertising revenue increase associated
with oSBL:

Ξ(∆r,∆CTR, β/b) =
R(∆r,∆CTR, β/b)−R0

R0

× 100%

The results of the sensitivity analysis presented in Figures 9, 10, and 11 demonstrate that for a wide range
of ∆r and ∆CTR, our algorithm oSBL can successfully boost the long-term revenue with a flexible choice of
βj ’s.

Appendix E: Performance of Subgradient Descent Algorithm for Solving Duals

To demonstrate the effectiveness of subgradient descent to obtain the shadow bids λ for ad allocation, we
compare our shadow-bidding-price-based ad allocation, where λ is computed by subgradient descent method



Ye et al.: Cold Start to Improve Market Thickness
Management Science 00(0), pp. 000–000, © 0000 INFORMS 61

Figure 9 Global Treatment Effect of oSBL on Advertising Revenue with ∆r = 0.01

Figure 10 Global Treatment Effect of oSBL on Advertising Revenue with ∆r = 0.02

with (a) the Simplex method which solves the primal directly, (b) another gradient-based method SHALE
(Bharadwaj et al. 2012, Hojjat et al. 2017), and (c) the current practice of Platform O, namely showing the
ad with maximum eCPM without considering the cold start reward. We examine a small-scale instance with
100 Ads and 10,000 UVs in an offline setting. However, our online implementation solves the dual instances
with more than 10,000,000 UVs, which is impossible to solve in a reasonable time by the standard Simplex
approach. The stopping condition of our subgradient descent algorithm is when the duality gap is less than
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Figure 11 Global Treatment Effect of oSBL on Advertising Revenue with ∆r = 0.03

O(10−4), which is consistent with our online implementation. Other parameters such as bidding prices bj

and pCTRs are directly from the real data. The computational results are summarized in Table 9.

Table 9 Objective Value Comparison

Current Practice SHALE Subgradient Descent Simplex
(1) (2) (3) (4)

Revenue 288,556 284,913 278,598 278,588
Cold Start Reward 67,747 76,171 98,429 98,679
Total Objective Value 356,303 361,084 377,026 377,267

The objective value is the sum of the revenue and cold start reward. The relative difference between our

dual-based subgradient descent approach and the optimal objective value is less than 0.07%, which suggests

that the gap induced by integer round-offs and the stopping condition in our algorithm is negligible. Moreover,

our algorithm performs substantially better than the SHALE algorithm (Bharadwaj et al. 2012).

Appendix F: Robustness Check of the UV Sampling Rate in oSBL

In this section, we conduct robustness check for the UV sampling rate, which shows that even a low sampling

rate of 1% for user views could already cover most of the new ads and produce robust dual solutions. Moreover,

considering that both memory and computational time increase linearly with the sampling rate, we choose

4% sampling rate for our online implementation, which strikes a good balance of sample representativeness

and computational time.
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Table 10 Robustness Check of the UV Sampling Rate

Sampling Rate of UV r
r= 0.04 r= 0.02 r= 0.01

(1) (2) (3)
The number of new Ads 6216 6216 6216
Mean of λ 64.21 64.22 64.25
Standard deviation of λ 62.96 62.96 63.05
25th percentile of λ 15.00 15.00 15.00
50th percentile of λ 57.60 57.60 57.21
75th percentile of λ 90.00 90.00 90.00

Note: The differences between λ’s calculated by different sampling rates are not significant. P-values of t-tests
between (1) and (2), (1) and (3), and (2) and (3) are, respectively, 0.716, 0.155, and 0.280.

Appendix G: Training with Neural Networks to Predict CTR

In this section, we show that the there exists a fully connected neural network satisfying Prediction Oracle
with high probability (i.e., Assumption 2 holds) under either (a) the lazy training regime or (b) the training
algorithm with gradient descent.

Before presenting the formal results and their proofs, we first introduce the fully connected neural network
and its initialization procedure. In recent years, deep-learning-based recommender systems are flourishing
and widely used in practice (see the review paper Zhang et al. 2019). A large-scale DSP like Platform O is
also armed with deep neural networks to predict the CTR and CVR of ads. In practice, due to the limited
computational resource and high requirement on fast response, the “funnel” structure is widely adopted.
For example, YouTube’s recommender system (see Covington et al. 2016) uses a rough deep learning model
which is very efficient but less accurate, to select hundreds out of millions of videos. Then, it uses a more
sophisticated deep-learning-based ranking model with more feature inputs to choose dozens of videos from
the hundreds selected in the previous step. Platform O and other video sharing platforms adopt a similar
recommendation strategy. Specifically, for Platform O’s DSP, there are two stages before an ad enters the final
auction: filtering and pre-ranking, both of which adopt rough deep neural network models to rule out the ads
not suitable for the user impression. Then, at the final auction stage, Platform O uses a set of fully connected
neural networks with the ReLU activation function, i.e., σ(·) = max{·,0}, to predict the CTR and CVR.
Since there are only around 150 ads joining the auction, Platform O typically uses an individualized neural
network for predicting the CTR of each ad rather than a unified model for all ads. Without loss of generality,
we assume all hidden layers of the neural network have the same number of nodes. And we denote L≥ 2 as the
network depth, w as the number of nodes in each hidden layer, and w0 as the dimension of the context/feature
vector, i.e., xij ∈Rw0 for all i∈ I, j ∈A. Following the convention of the neural network literature (e.g., Cao
and Gu 2019, Chizat et al. 2019), we parameterize the neural network by θ ∈Rd, where the prediction error
term d= w2(L− 2) +ww0 +w. Then, we can use the function Hj(xij , θ) =

√
wWLσ(WL−1σ(· · ·σ(W1xij)))

to represent the output of the neural network given the parameter θ, for any ad j and context i, where
θ = [vec(W1), · · · ,vec(WL)], W1 ∈ Rw0×w, Wi ∈ Rw×w, 2 ≤ i ≤ L − 1, WL ∈ Rw×1 and the operator vec(·)
refers to representing the matrix as a vector.
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In practice, the initialization procedure may take into account the domain knowledge of the context. In our
analysis that follows, we adopt the initialization procedure in He et al. (2015), known as the He Initialization
to set θ0. For each layer 1 ≤ l ≤ L − 1, we set Wl to be

(
W 0
0 W

)
, where each entry of this matrix W is

randomly and independently drawn from a normal distribution N(0,2/w). The parameter of the last layer is
initialized as (wT ,−wT ) where each entry of vector w is randomly and independently drawn from distribution
N(0,1/w). One can verify that under this initialization procedure of θ0, it holds that Hj(xij , θ0) = 0 for all
context i and ad j (see Cao and Gu 2019, He et al. 2015).

To validate Assumption 2 for fully connected neural networks, we make additional technical assumptions
as follows, which are mild and commonly made in the related literature (e.g., Cao and Gu 2019, Zhou et al.
2020).

Assumption 3 (Finite and nonparallel Contexts). (a) The number of context type i is finite, i.e., the
cardinality of the context set |X|=m<+∞, and m is bounded by a fixed polynomial of T , i.e., m≤O(T k)

for a some k. (b) For any pair of contexts xij , xi′j′ ∈X (i 6= i′ or j 6= j′), xij and xi′j′ are not parallel. (c)
The L2−norm of each context is normalized to 1, i.e., ‖xij‖2 = 1 for any context i ∈ [m] and ad j ∈A. (d)
The jth component of x is equal to the (j+ d/2)th component for any context x∈X and j ≤ d/2

The parts (a) and (b) of Assumption 3 are mild, while parts (c) and (d) are just for the convenience
of analysis. Notice that part (d) can always be satisfied by transforming any context x to a new one x′ =

[x,x]/
√
2.

G.1. Lazy Training Regime

The recent progress of Neural Tangent Kernels (e.g., Cao and Gu 2019, Jacot et al. 2018, Arora et al. 2019,
Zhou et al. 2020) theoretically characterizes the representation power of a neural network. Following this
literature, we use H to denote the Neural Tangent Kernel Matrix in the same way as Definition 4.1 of Zhou
et al. (2020). As discussed in Zhou et al. (2020) Assumption 4.2, H � γI always holds for some γ > 0, where
I is the identity matrix under Assumption 3. This ensures that the Neural Tangent Kernel Matrix H is
always nonsingular. Lemma 5 below shows that, as long as the ground truth CTR can be represented as a
bounded function of user contexts and ads, then the fully connected neural network with a large width w

can accurately predict this CTR with high probability in terms of the He Initialization.

Lemma 5 (Lemma 5.1 in Zhou et al. (2020)). Under Assumption 3, for any j ∈A there exists a con-
stant C > 0 such that, if w≥Cm4L6 log(m2L/δ)/γ4, then with probability 1− δ over the He Initialization of
the parameter θ0, there exists a θ∗ ∈Rd such that, for any i∈ I,

cij = 〈∇θHj(xij , θ0), θ
∗− θ0〉,

√
w ‖θ∗− θ0‖2 ≤

√
2cTHc,

where c := [cij ]i∈I ∈Rm.

Notice that the approximation of ground truth CTR in Lemma 5 is linear in the gradient ∇θHj(xij , θ0)

parametrized by θ∗− θ0. The original neural network for the ad j mapping Hj(·, ·) is now divided into two
steps. First, it maps the context xij to the gradient ∇θHj(xij , θ0). This is a static mapping that depends
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on the initialization θ0, but independent of the parameter θ. The second step linearly maps the gradient

∇θHj(xij , θ0) to the true CTR, cij . As a consequence, to train the neural network under this regime, it

suffices to fit a linear function parameterized by θ. This training method is referred to as Lazy Training in

the literature (Chizat et al. 2019). Specifically, lazy training with the regularized least square loss function

at round t for ad j is equivalent to solving the following minimization problem:

min
θ

wλ0‖θ− θ0‖2 +
∑
τ∈T t

j

(zτ −〈∇θHj(xiτaτ
, θ0), θ− θ0〉)2, (34)

where T t
j denotes the time periods until round t in which ad j is played, xiτ ,aτ

represents the context

vector associated with context iτ and ad aτ realized at round τ . λ0 is the regularized parameter, zτ denotes

the corresponding click-through outcome of round τ . With lazy training, we effectively linearize the neural

network for CTR prediction, thus reducing it to a linear regression model. Lazy training facilitates us to

focus on cold start algorithm design, without delving into the details of how a neural network shall be

trained. Similar approaches, usually referred to as Kernelized Contextual Bandits, have been adopted in the

contextual bandit literature (e.g., Valko et al. 2013). As identified by Chizat et al. (2019), the lazy training

phenomenon, where a neural network behaves similarly to a linear model when the parameter θ is close

to the initialization parameter θ0, will occur when the neural network is over-parameterized. In addition,

Chizat et al. (2019) also show that the gradient flows of the lazy training process and the gradient descent

training process (see Appendix G.2) are close to each other for over-parameterized neural networks. We also

remark that the real online training procedure of Platform O’s CTR/CVR prediction model is neither pure

supervised learning nor lazy training, but a substantial compromise under limited computational resources.

In this regard, incorporating the exact online training process into our regret analysis is unnecessary and

beyond the scope of this paper. Although Chizat et al. (2019) empirically shows that lazy training might

not perform well in some cases with biased gradients, this training method still provides a good theoretical

understanding of how the CTR/CVR estimate is produced by neutral networks, and inspires us to validate

Assumption 2 for neural networks with gradient descent training (see Appendix G.2). We are now ready to

validate Assumption 2 for neural networks under the lazy training regime.

Proposition 2 (Prediction Oracle with Lazy Training). Under Assumption 3, for any ad j ∈ A

with the prediction model (34) trained on nt
j i.i.d samples drawn from DX and the corresponding click-

through outcome before round t, then we have that for any δ there exists a constant C > 0, such that, if

w≥Cm4L6 log(m2L/δ)/γ4 and nt
j ≥Ω(d log(dT )), it holds that, with probability at least 1− δ−T−4, for any

context i∈ I the following inequality holds:

|ĉtij − cij | ≤O

(√
d logT

nt
j

)
.

where ĉtij is the predicted CTR at round t via model (34) with 0<λ0 ≤O(
√
1/(2wcTHc)).
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Proof of Proposition 2. We first introduce some definitions. We use Id to denote the identity matrix with
dimension d. We define gij :=∇θHj(xij , θ0), for all i∈ I and j ∈A. Following the standard lazy training with
regularized squared loss (34), we can compute θt in closed form at each round t as follows:

At
j :=wλ0Id +

∑
τ∈T t

j

giτaτ
gT
iτaτ

, Dt
j := [gT

iτaτ
]τ∈T t

j

btj :=
∑
τ∈T t

j

viτaτ
giτaτ

, V t
j := [viτaτ

]τ∈T t
j

θt := (At
j)

−1btj + θ0, stij :=
√

gT
ij(A

t
j)

−1gij

By Lemma 5, we consider the case, with high probability 1− δ, where CTR cij can be perfectly predicted
via a linear mapping. Thus, at round t after observing nt

j i.i.d samples, we have for any realized context i∈ I
at round t, with probability at least 1− δ:

|ĉtij − cij |= |gT
ij(θ

t− θ0)− gT
ij(θ

∗− θ0)|

= |gT
ij(A

t
j)

−1btj − gT
ij(A

t
j)

−1(wλ0Id +(Dt
j)

TDt
j)(θ

∗− θ0)|

= |gT
ij(A

t
j)

−1(Dt
j)

T (V t
j −Dt

j(θ
∗− θ0))−wλ0g

T
ij(A

t
j)

−1(θ∗− θ0)|

≤ |gT
ij(A

t
j)

−1(Dt
j)

T (V t
j −Dt

j(θ
∗− θ0))|+wλ0M

∥∥(At
j)

−1gij
∥∥
2
,

(35)

where the first equality follows from the lazy training process ĉtij = gT
ij(θ

t − θ0) (by Lemma 5), and the
second from the identity At

j = wλ0Id + (Dt
j)

TDt
j and btj = (Dt

j)
TV t

j . The inequality of (35) follows from
the triangular inequality and ‖θ∗− θ0‖2 ≤M (by Lemma 5, we take the value of M at M =

√
2cTHc/w).

Because E[V t
j −Dt

j(θ
∗− θ0)] = 0, Azuma–Hoeffding inequality implies the following concentration inequality

on the first term of (35).

P
[
|gT

ij(A
t
j)

−1(Dt
j)

T (V t
j −Dt

j(θ
∗− θ0))| ≥

√
1

2
log

2

∆
stij

]
≤ 2exp

(
−

log(2/∆)(stij)
2∥∥Dt

j(A
t
j)

−1gij
∥∥2
2

)
≤ 2exp(− log(2/∆)) =∆,

(36)

where the second inequality follows from∥∥Dt
j(A

t
j)

−1gij
∥∥2
2
= (Dt

j(A
t
j)

−1gij)
TDt

j(A
t
j)

−1gij

≤ gT
ij(A

t
j)

−1(Id +(Dt
j)

TDt
j)(A

t
j)

−1gij

= gT
ij(A

t
j)

−1gij = (stij)
2

(37)

Similarly, we have the bound
∥∥(At

j)
−1gij

∥∥
2
≤ stij . Combining the above two inequalities (36) and (37), we

have, with probability at least 1−∆, |ĉtij − cij | ≤
(
wλ0M +

√
1
2
log 2

∆

)
stij . Notice that the gradient satisfies

that ‖gij‖2 ≤
√
wL for all i and j (see Cao and Gu 2019), and the regularization parameter satisfies λ0 ≤

O(
√
1/(2wcTHc)). Therefore, the regularization term satisfies

wλ0M
∥∥(At

j)
−1gij

∥∥
2
≤w ·O(

√
1/(2wcTHc)) ·

√
2cTHc/w · stij =O(stij),

where the inequality follows from that λ0 ≤O(
√
1/(2wcTHc)) and M =

√
2cTHc/w. Let ∆ := T−4, we have

that, with probability at least 1−T−4 and a fixed context i,

|ĉtij − cij | ≤O(
√

logTstij),
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where stij =
√
gT
ij(wλ0Id +

∑
τ∈T t

j
giτaτ g

T
iτaτ

)−1gij . Next, we show that with probability at least 1− T−4, it
holds that stij ≤ O(

√
d/nt

j) with samples nt
j ≥ Ω(d log(dT )). Let Σ̂ := wλ0Id +

∑
τ∈T t

j
giτaτ

gT
iτaτ

, and Σ :=

wλ0Id +nt
jE[ggT ], then we have,

(stij)
2 = gT

ijΣ̂
−1gij

≤ |gT
ijΣ̂

−1(Σ− Σ̂)Σ−1gij |+ gT
ijΣ

−1gij

≤O

(
d

nt
j

)∥∥ 1

nt
j

∑
τ∈T t

j

giτaτ
gT
iτaτ
−E[ggT ]

∥∥
2
+O

(
d

nt
j

)
,

(38)

where the first inequality follows from the triangle inequality, and the second from the bound on gradient
‖g‖2 ≤

√
wL ≤

√
d. Next, we need to bound the term ‖ 1

nt
j

∑
τ∈T t

j
giτaτ

gT
iτaτ
− E[ggT ]‖2 ≤ O(1). Because,

the gradients are bounded with ‖g‖2 ≤
√
wL ≤

√
d, with high probability 1− T−4, we have the following

inequality based on Theorem 1.6.2 (the Matrix Bernstein inequality) in (Tropp 2015),

‖ 1
nt

j

∑
τ∈T t

j

giτaτ
gT
iτaτ
−E[ggT ]‖2 ≤

√
2d log(dT )

nt
j

+

√
d log(dT )

3nt
j

≤O(1),

where the second inequality follows from the condition nt
j ≥Ω(d log(dT )). Therefore, after taking the union

bound for all context i∈ I together with that cij can be perfectly predicted via the linear function, we obtain
that, with probability at least 1− δ−T−4, it holds

|ĉtij − cij | ≤O

(√
d logT

nt
j

)
,

where the inequality follows from the assumption that m is smaller than the polynomials of T . This concludes
the proof of Proposition 2. 2

Notice that, for the DNN predictor in our analysis, we require a very wide feed-forward neural network with
width O(m4), which implies an impractical prediction error parameter d = O(m8). However, the network
width’s dependence on m can be significantly reduced to the effective dimension of the neural tangent
kernel matrix shown by Zhou et al. (2020). Moreover, Zhou et al. (2020) claim that this effective dimension
only depends logarithmically on the number of contexts m in several special cases. Furthermore, imposing
some structural assumptions on the click-through rate (as a function of user context xt and ad j) ctj =

E[vtj(at)|at = j]∈ [0,1] also reduces the width of the DNN to estimate it. For example, Yarotsky (2017) show
that DNNs of width O

(
ϵ−

dim(x)
β (log(1/ϵ)+ 1)

)
suffice to achieve an ϵ-approximation error uniformly for all

contexts under the β-Sobolev smoothness assumption. Farrell et al. (2021) show a novel convergence rate
for this class of DNNs. However, it is worth mentioning that the convergence result in Farrell et al. (2021)
only implies our prediction oracle assumption when solving the empirical estimation to the optimality. This
represents a deviation from our first-order optimization method presented in the next subsection. We leave
it as future research to obtain a tighter dependence of d on m for general feed-forward neural networks.

G.2. Training with the Gradient Descent Algorithm

We now consider the gradient-based training procedure for neural networks to validate Assumption 2. In
fact, one can devise a gradient descent training algorithm that achieves the same convergence rate as lazy
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training (i.e., |ĉtij − cij | ≤ O(
√

d logT/nt
j)), because the training trajectory path, {θt}Tt=1, of the gradient

descent procedure is close to that of lazy training. Formally, we propose the gradient-based training of a
neural network as follows. This gradient descent procedure is an approximation of SGD. This training method
can also be replaced by stochastic gradient descent with a more involved analysis such as Allen-Zhu et al.
(2019).

Training a Neural Network with Gradient Descent at the Round t for ad j

Input: Step size η, number of gradient descent steps U , network width w, regularization parameter λ0.

Loss function: L(θ) :=
∑

τ∈T t
j
(Hj(xiτaτ

, θ)− viτaτ
)2/2+wλ0‖θ− θ0‖22/2

For u= 0,1,2, . . . ,U − 1 do

θu+1 = θu− η∇L(θu)

The following proposition shows that Assumption 2 holds for a neural network if trained with the gradient
descent algorithm described above.

Proposition 3 (Prediction Oracle with Gradient-based Training). Under Assumption 3 and all
the conditions of Proposition 2, for any ad j ∈ A, the predicted CTR at round t, ĉtij, is obtained by the
gradient descent algorithm. For any δ, there exist a family of constants {Ci}5i=0 > 0 such that, if for all
t∈ [T ], the regularization parameter λ0, training step size η, number of steps U , and network width w satisfy

w≥C0m
4L6 log(m2L/δ)/γ4

2
√
t/(wλ0)≥C1w

−3/2L−3/2[log(mL2/δ)]3/2

2
√
t/(wλ0)≤C2min{L−6[logw]−3/2, (w(λ0η)

2L−6t−1(logw)−1)3/8}

η≤C3(wλ0 + twL)−1

U >C4 log(d log(T ))/ log(1− ηwλ0)

w1/6 ≥C5

√
logwL7/2t7/6λ−7/6

0 (1+
√

t/λ0),

it holds that, if ad j is displayed nt
j ≥Ω(d log(dT )) times and the random click-through outcomes {vs(as) ∈

{0,1} : 1≤ s≤ t} are observed, then for all context i ∈ I, with probability at least 1− δ− T−4, the following
inequality holds:

|ĉtij − cij | ≤O

(√
d logT

nt
j

)
.

Before proving Proposition 3, we first introduce Lemma 6 and Lemma 7 below to bound the training
trajectory {θt : t= 1,2, ..., T} and the gradient ∇θHj(xij , θ̂), respectively.

Lemma 6 (Lemma B.2 in Zhou et al. (2020)). For any ad j ∈ A, there exist a family of constants
{Ci}5i=1 > 0 such that for any δ ∈ (0,1), if for each t∈ [T ], η and w satisfy

2
√
t/(wλ0)≥C1w

−3/2L−3/2[log(mL2/δ)]3/2

2
√
t/(wλ0)≤C2min{L−6[logw]−3/2, (w(λ0η)

2L−6t−1(logw)−1)3/8}

η≤C3(wλ0 + twL)−1

w1/6 ≥C4

√
logwL7/2t7/6λ−7/6

0 (1+
√

t/λ0)
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then, with probability at least 1− δ over the He Initialization of θ0, we have, for any t ∈ [T ], ‖θt − θ0‖2 ≤

2
√
t/wλ0 and

‖θt− (At
j)

−1btj − θ0‖2 ≤ (1− ηwλ0)
U/2
√

t/(wλ0)+C5w
−2/3

√
logwL7/2t5/3λ−5/3

0 (1+
√
t/λ0). (39)

Lemma 7 (Lemma B.4 in Zhou et al. (2020)). For any ad j ∈ A, there exist a family of constants
{Ci}3i=1 > 0 such that for any δ ∈ (0,1), if τ satisfies that

C1w
−3/2L−3/2[log(mL2/δ)]3/2 ≤ τ ≤C2L

−6[logw]−3/2.

then, with probability at least 1− δ over the He Initialization of θ0, for all θ̂ and θ̃ satisfying ‖θ̂− θ0‖2 ≤ τ

and ‖θ̃− θ0‖2 ≤ τ , we have, for any context i,∣∣Hj(xij , θ̃)−Hj(xij , θ̂)−〈∇θHj(xij , θ̂), θ̃− θ̂〉
∣∣≤C3τ

4/3L3
√

w logw.

With Lemma 6 and Lemma 7, we are now ready to prove Proposition 3.
Proof of Proposition 3. It suffices to consider the union of the high probability cases in Proposition 2,
Lemma 6, and Lemma 7. Let us set τ = 2

√
t/wλ0 in Lemma 7. At round t, after observing nt

j i.i.d samples
of each ad j, for a fixed context i, we have the following inequality:

|ĉtij − cij |= |Hj(xij , θ
t)−〈∇θHj(xij , θ0), θ

∗− θ0〉|

≤ |Hj(xij , θ
t)−〈∇θHj(xij , θ0), (A

t
j)

−1btj〉|+ |〈∇θHj(xij , θ0), (A
t
j)

−1btj〉− 〈∇θHj(xij , θ0), θ
∗− θ0〉|

≤ |Hj(xij , θ
t)−〈∇θHj(xij , θ0), (A

t
j)

−1btj〉|+O(
√

d log(T )/nt
j)

≤ |Hj(xij , θ
t)−Hj(xij , (A

t
j)

−1btj + θ0)+Hj(xij , θ0)|+C3τ
4/3L3

√
w logw+O(

√
d log(T )/nt

j)

≤ |〈∇θHj(xij , θ0),−(At
j)

−1btj − θ0 + θt〉|+2C3τ
4/3L3

√
w logw+O(

√
d log(T )/nt

j)

≤ (1− ηwλ0)
U/2
√
wL
√
t/wλ0 +O(t2/3w−1/6λ−2/3

0 L3
√
logw)+O(

√
d log(T )/nt

j),

(40)
where the equality follows from Lemma 5. The first inequality of (40) follows from the triangular inequality.
The second inequality of (40) follows from Proposition 2. The third and fourth inequalities of (40) follow
from Lemma 7, the fact that ‖(At

j)
−1btj‖2 ≤ τ (see Lemma C.4 in Zhou et al. 2020), the triangular inequality,

and Hj(xij , θ0) = 0 by the He Initialization of θ0. The last inequality of (40) follows from Lemma 6 which
bounds ‖θt− (At

j)
−1btj − θ0‖2 using inequality (39), and the bound on the gradient ‖∇θHj(xij , θ0)‖2 ≤

√
wL

(see Cao and Gu 2019, Zhou et al. 2020). With a sufficiently large neural network width w, the second
term of the last inequality (40), O(t2/3w−1/6λ−2/3

0 L3
√
logw), can be bounded by O(

√
d log(T )/nt

j). The
first term of (40), (1 − ηwλ0)

U/2
√
wL
√

t/wλ0 converges to 0 at an exponential rate with respect to the
number of training steps U . Because U >Ω(log(d log(T ))/ log(1−ηwλ0)), (1−ηwλ0)

U/2
√
wL
√

t/wλ0 is also
bounded by O(

√
d log(T )/nt

j). Following the same argument as the proof of Proposition 2, we obtain that,
with probability 1− δ−T−4, for any context i,

|ĉtij − cij | ≤O

(√
d log(1/δ)

nt
j

)
.

This concludes the proof of Proposition 3. 2
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Appendix H: Details of the Online Advertising System for Platform O
In this section, we describe the institutional details of the online advertising system for Platform. In partic-
ular, the auction mechanisms, billing options, and the PID system are introduced.

H.1. Auction Mechanisms and Billing Options

For a large scale online platform, the DSP allocates billions of ad impressions to hundreds of thousands of
ads each day. In order not to ruin the user experience, the DSP needs to efficiently match the tremendous
number of ads and ad impressions within milliseconds. Before entering the auction stage, the DSP quickly
downscales the size of the ad pool from hundreds of thousands to hundreds by simple filtering rules set by
advertisers and predictive models. At the auction stage, hundreds of ads compete to win an ad impression
based on advertisers’ bids. The ad impression is allocated to the ad with the highest estimated Cost per Mille
(eCPM) of the match, which measures the expected revenue of displaying the ad to the respective platform
user for a thousand times. Such an allocation rule ensures that each ad impression generates the highest ex
ante revenue in expectation.

The eCPM of a match between an ad and an ad impression depends on what the advertiser bids on
(impression, click, or conversion). More specifically, if the advertiser bids on impression, eCPM is the bid itself
(eCPM=bid). If the advertiser bids on click, eCPM equals the bid multiplied by the predicted CTR (pCTR)
of the ad (eCPM=bid×pCTR). Finally, if the advertiser bids on conversion, eCPM equals the bid multiplied
by the product of pCTR and the predicted conversion rate (pCVR) of the ad (eCPM=bid×pCTR×pCVR),
where pCVR is defined as the rate of the user being converted after clicking the ad. Here, conversion
means that, upon clicking an ad, a user eventually becomes the advertiser’s customer. A typical conversion,
sometimes also called an “action” of the user, may take different forms, such as app installation or deposit
in a game.

Typically, there are several different billing options for advertisers to choose from, including Cost per Mille
(CPM), Cost per Click (CPC), Cost per Action (CPA), Optimized Cost per Mille (oCPM) and Optimized
Cost per Click (oCPC). We summarize the differences between these billing options in Table 11. Under the
CPM, CPC, and CPA billing option, advertisers bid on the impressions, clicks, and conversions, respectively,
and are directly charged after their ads are displayed, clicked, or converted. Due to the intrinsic uncertainty
of user clicks and conversions, the advertiser bears a high risk under the CPM scheme. On the other hand,
if an ad is displayed to a platform user, it already makes a negative impact on user experience and causes
losses to the platform. As a consequence, in the current online advertising market (such as Facebook and
Platform O), oCPM and oCPC under which the DSP and the advertiser share the click and conversion
uncertainty risks are the most popular billing options. More specifically, under both oCPM and oCPC, the
advertisers bid on conversion. However, the advertiser will be charged by the expected cost per impression,
bid_conversion×pCTR×pCVR (resp. the expected cost per click, bid_conversion×pCVR), when the ad is
displayed to (resp. clicked by) a user under oCPM (resp. oCPC). One should note that, because of the
randomness in click-through and conversion rates, the actual payment of the advertiser per conversion is not
necessarily the same as its bid for a conversion under oCPM or oCPC. For each billing option, the auction
may run in a first-price or second-price fashion, under which the winning advertiser pays its own bid, or the
bid with the second-highest eCPM.
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Table 11 Billing Options

Payment Bid Charged Fee eCPM
Scheme Price upon Deduction (Rank by)
CPM bid_impression impression bid_impression bid_impression
CPC bid_click click bid_click bid_click×pCTR

oCPM bid_conversion impression bid_conversion×pCTR×pCVR bid_conversion×pCTR×pCVR
oCPC bid_conversion click bid_conversion×pCVR bid_conversion×pCTR×pCVR
CPA bid_conversion conversion bid_conversion bid_conversion×pCTR×pCVR

Note: This table is mainly for the first-price auction. Also, bid_impression, bid_click, bid_conversion are the bids on
impressions, clicks, and conversions given by advertisers, respectively. The column Fee Deduction gives the budget depleted
upon each impression, click, or conversion.

H.2. PID-Based Bidding System

As introduced in Section 3, the PID controller is a feedback control device widely used in online advertising
platforms, especially for the oCPC and oCPM billing options. The PID controller aims to gear the realized
CPA of each ad as close to the target CPA as possible, so it increases the bid price thus boosting its eCPM
and the chance of winning the auction, if the actual cost per conversion of an ad falls below the target cost,
and vice versa.

Both billing option oCPM and oCPC suffer from the issue that the actual cost (per conversion) of an
advertiser is different from its bid (also known as the target cost). Such a cost-control issue is exacerbated
by the following: (a) second-price auction, under which the winning advertiser pays the expected cost per
impression/click of the bidder with the second-highest eCPM; and (b) biased estimation of pCTR and pCVR,
under which for each ad and ad impression pair the DSP could not accurately estimate the CTR and CVR.
In practice, the PID controller is widely adopted on online advertising platforms (Yang et al. 2019, Zhang
et al. 2016) to control the gap between the actual cost and the target cost for an advertiser. Under PID,
advertisers authorize the DSP to adaptively change their real-time bid prices to address the aforementioned
cost control problem. The core of the PID controller is a simple feedback control idea: If the actual cost per
conversion falls below the target cost, the DSP will increase the bid price thus boosting its eCPM and the
chance of winning the auction, and vice versa. This real-time bid price given by the PID controller is referred
to as the System Bidding Price throughout this paper.

Formally, the PID controller is formulated as Eq. (41).

errort = targetBid− realCostt/realConversiont,

Pt = kp× errort

It = ki×
∑
t′≤t

errort′ ,

Dt = kd× (errort− errort−1)

PIDt = Pt + It +Dt,

systemBidt+1 = systemBidt +PIDt× systemBidt

(41)

It is clear from the above formulation that the PID controller changes the system bidding price systemBidt

after accumulating the feedback data for each ad within a fixed amount of time. The first equation quantifies
the gap between the target cost and the real cost (the total actual cost divided by the total actual conversions).
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Pt, It, Dt represents the Proportional, Integral, Derivative (PID) term in the PID system respectively. And
the corresponding coefficients kp, ki, kd are hyper-parameters to be fine-tuned. Readers interested in more
details about the PID system are referred to, e.g., Yang et al. (2019) and Zhang et al. (2016).


