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Abstract. We study how retailers can use data aggregation and clustering to improve
demand prediction. High accuracy in demand prediction allows retailers to effectively
manage their inventory as well as mitigate stock-outs and excess supply. A typical retail
setting involves predicting demand for hundreds of items simultaneously. Although some
items have a large amount of historical data, others were recently introduced and, thus,
transaction data can be scarce. A common approach is to cluster several items and estimate
a joint model for each cluster. In this vein, one can estimate some model parameters by
aggregating the data from several items and other parameters at the individual-item level.
We propose a practical method referred to as data aggregation with clustering (DAC), which
balances the tradeoff between data aggregation and model flexibility. DAC allows us to
predict demand while optimally identifying the features that should be estimated at the (i)
item, (ii) cluster, and (iii) aggregate levels. We show that theDAC algorithm yields a consis-
tent and normal estimate, along with improved prediction errors relative to the decentral-
ized benchmark, which estimates a different model for each item. Using both simulated
and real data, we illustrate DAC’s improvement in prediction accuracy relative to a wide
range of common benchmarks. Interestingly, the DAC algorithm has theoretical and practi-
cal advantages and helps retailers uncover meaningful managerial insights.
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Supplemental Material: The online appendices are available at https://doi.org/10.1287/opre.2022.2301.
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1. Introduction
Retailers routinely collect large volumes of historical
data, which are used to improve future business prac-
tices, such as inventory management, pricing deci-
sions, and customer segmentation. One of the most
important data-driven tasks for retailers is to predict
the demand for each stock-keeping unit (SKU). A
common approach in practice is to classify SKUs into
different departments (e.g., soft drinks) and some-
times even into subcategories (e.g., a specific types of
soft drinks) and then build predictive models accord-
ingly. A typical demand prediction model is a regres-
sion specification with the sales (or logarithmic of the
sales) as the outcome variable and price, seasonality,
brand, color, and promotions as features. The model
coefficients are then estimated using historical data.

In many retail settings, a subset of items has been
offered for a long time (referred to as “old items”),
whereas other items were recently introduced. Although
the demand prediction for old items is generally easy

because of abundant data availability, accurately pre-
dicting the demand for newly introduced items with
a limited number of historical observations is consider-
ably more challenging. One may then wonder how the
available data of old items from the same department
could be leveraged to enhance the prediction of new
items. Indeed, SKUs in the same department often share
similar characteristics and hence tend to be affected by a
particular feature in a similar way. A prominent ap-
proach is to estimate certain coefficients at an aggregate
level (i.e., by gathering the data across all SKUs and
assuming a uniform coefficient). For example, it seems
reasonable to believe that all items in the ice cream cate-
gory share the same seasonal patterns. Although this
approach has been widely adopted in the retail indus-
try, no rigorous empirical method has been developed
to formalize how this data aggregation procedure
should be applied for demand prediction. In this paper,
we seek to bridge this gap by formalizing the trade-
off between data aggregation (i.e., pooling data from
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different items to reduce variance) and model flexibility
(i.e., estimating a different model for each item to reduce
bias) in a systematic fashion.

Because of insufficient data, the traditional ap-
proach of estimating a different model for each SKU is
usually inefficient for new products or SKUs with
noisy observations. This approach cannot identify the
right aggregation level for each coefficient and does
not find the underlying cluster structure of the co-
efficients. Based on common clustering methods (e.g.,
k-means), we propose an efficient and integrated
approach to infer the coefficient of each feature while
identifying the right level of data aggregation based
on the statistical properties of the estimated co-
efficients. Our method also allows us to incorporate
multiple aggregation levels while preserving model
interpretability. From a theoretical perspective, our
method yields a consistent estimate, along with im-
proved asymptotic properties. From a practical per-
spective, our method can easily be estimated using
retail data and significantly improves out-of-sample
prediction accuracy.

1.1. Main Results and Contributions
We study the tradeoff between data aggregation and
model flexibility by optimally identifying the right
level of aggregation for each feature, as well as the
cluster structure of the items. We propose a practical
method—referred to as the data aggregation with
clustering (DAC) algorithm, which allows us to pre-
dict demand while optimally identifying the features
that should be estimated at the (i) item, (ii) cluster,
and (iii) aggregate levels. Our proposed algorithm
first applies maximum-likelihood estimation to obtain
a different coefficient vector for each item (called the
decentralized model). It then performs a hypothesis
test (i.e., t test) on the estimated coefficients from the
decentralized model to identify the correct aggrega-
tion level for each feature. To characterize the cluster
structure of the items, we apply the k-means method
on the estimated coefficients from the decentralized
model (as opposed to using features’ average values).

We first characterize the DAC algorithm’s theoreti-
cal properties. Specifically, we show that it yields a
consistent estimate of the data aggregation levels and
cluster structures. The estimated feature coefficients
under DAC are consistent and normal. Thus, if the
data have enough observations, one can correctly
identify the underlying data generating process. In
addition to this consistency and normality result, we
derive improved prediction errors—variance, mean
squared error, and generalization error are all smaller—
relative to the commonly used maximum-likelihood esti-
mator (MLE) method applied in a decentralized fashion
to each item. Furthermore, we show that if some items

have abundant data, whereas other items have limited
data, our proposed algorithm improves the prediction
accuracy for all items, with a more significant improve-
ment for the items with limited data. Armed with these
theoretical results, we then conduct extensive computa-
tional experiments based on both simulated and real
data to illustrate the DAC algorithm’s significantly
improved prediction accuracy relative to 15 different
benchmarks. Our results highlight the essential value of
the DAC algorithm in better balancing the bias-variance
tradeoff, resulting in more accurate demand prediction.
Furthermore, our algorithm can accurately identify the
right data aggregation levels and recover cluster struc-
ture in the nonasymptotic regime (i.e., when the sample
size of the data set is finite). Finally, we apply the DAC

algorithm using two years of retail data and find that it
can also help retailers uncover useful insights on the
relationships between the different items.

1.2. Related Literature
This paper is related to several literature streams,
including prediction and clustering algorithms, retail
operations, and demand forecasting.

1.2.1. Prediction and Clustering Algorithms. The pro-
blems of demand prediction and clustering have been
extensively studied in the machine learning (ML) lit-
erature. Donti et al. (2017) focus on developing new
ML methods by training a prediction model to solve
a nominal optimization problem. Although several
studies have focused on general settings, it is difficult
to apply existing methods to a retail setting where
multiple levels of hierarchy may exist. Elmachtoub
and Grigas (2021) propose a new idea called “smart
predict, then optimize” (SPO). SPO’s key feature is
that the loss function is computed based on compar-
ing objective values generated by using predicted and
observed data. The authors then address the computa-
tional challenge and develop a tractable SPO version.
Jagabathula et al. (2018) propose a model-based em-
bedding technique to segment a large population of
customers into nonoverlapping clusters with similar
preferences. Bertsimas and Kallus (2019) combine
ideas from ML and operations research to propose a
new prediction method. The authors solve a condi-
tional stochastic optimization problem by incorporat-
ing various ML methods, such as local regression and
random forests. Liu et al. (2021) apply clustering tech-
niques to predict the travel time of last-mile delivery
services and optimize the order assignment. Our
work is also related to the traditional clustering litera-
ture. Since the introduction of k-means by MacQueen
(1967), clustering algorithms have been extensively
studied. In the context of assortment personalization,
Bernstein et al. (2019) propose a dynamic clustering
method to estimate customer preferences. In our paper,
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we leverage some theoretical properties of the k-means
clustering method and embed it as one of the key steps
in our demand prediction algorithm.

1.2.2. Retail Operations and Demand Forecasting.
Retailers are always seeking ways to improve opera-
tional decisions, such as inventory replenishment,
supply chain management, and pricing. These deci-
sions rely heavily on accurate demand prediction.
Cohen et al. (2022) provide an end-to-end practical
guide to leverage data analytics for demand predic-
tion in retail. We also refer interested readers to Fildes
et al. (2019b) for a comprehensive review of this litera-
ture, which demonstrates that forecasters in retailing
often face the dimensionality problem of having too
many features but too little data. As reported by
Cohen and Lee (2020), demand uncertainty is a major
issue in designing efficient global supply chains.
There is an extensive body of literature focused on
developing methods for demand prediction in retail
settings. Sophisticated models have been developed
in the last two decades to manage the increasing vol-
ume of data collected by retailers. Marketing papers,
such as Van Heerde et al. (2000) and Macé and Neslin
(2004), study pre- and postpromotion dips using lin-
ear regression models with lagged variables. Kök and
Fisher (2007) develop a procedure to estimate substi-
tution behavior in retail demand. Recent develop-
ments in demand prediction include the following
three papers: Huang et al. (2014), who embed compet-
itive information (including price and promotions)
into demand prediction; Fildes et al. (2019a), who sug-
gest that promotional information can be quite valua-
ble in improving forecast accuracy; and Huang et al.
(2019), who further account for the impact of market-
ing activities. Ma et al. (2016) develop a lasso-based
four-step methodological framework to overcome the
problem of the ultra-high dimensionality of the fea-
ture space under multiple product categories. In the
operations management community, demand predic-
tion models are often used as an input to an optimiza-
tion problem (Cohen et al. 2017, 2021). Specifically,
Cohen et al. (2017) estimate a log-log demand model
using supermarket data. The authors then solve the
promotion optimization problem by developing an
approximation based on linear programming. It was
shown in the retail operations literature that respond-
ing to accurate demand forecasts can substantially
increase profits (Caro and Gallien 2010). Kesavan et al.
(2010) show that incorporating the cost of goods sold,
inventory, and gross margin information can substan-
tially improve sales forecasting for retailers. In recent
years, the amount of data available has grown expo-
nentially, thus offering new opportunities for research
on demand prediction (Feng and Shanthikumar 2018).
In this context, our paper proposes a new demand

prediction method that can efficiently aggregate data
from multiple items to improve prediction accuracy.

When the demand data show too high variation or is
insufficient to construct reliable forecasting models,
appropriately pooling data to improve the prediction
accuracy has been widely studied in the demand fore-
casting literature. For example, Cooper et al. (1999) and
Cooper andGiuffrida (2000) propose pooled regression
models and residuals to extract information and draw
managerial insights on the impact of retail promo-
tions. Dekker et al. (2004) present forecasting methods
that pool demand information from a higher aggrega-
tion level and smartly combines forecasts thereof. In
a time-series framework, Gür Ali et al. (2009) find the
value of pooling observations from different stores
to improve demand prediction accuracy. By pooling
information from different stores and SKUs, Gür Ali
(2013) propose a “driver moderator” that produces
short-term forecasts for both existing and new SKUs.
In an online fashion setting, Ferreira et al. (2016) pro-
pose nonparametric machine learning techniques to
aggregate data from existing SKUs for demand pre-
diction and price optimization of new SKUs that have
never been sold before. Our main contribution in this
literature is that we provide a systematic framework
and an associated DAC algorithm to efficiently pool
data, along with rigorous theoretical justifications and
the edge of our approach over the decentralized bench-
mark (both theoretically and in practice), whereas most
existing approaches in this literature are of heuristic
nature and bear no theoretical performance guarantee
or validation.

A recent stream of papers integrates a clustering
step into demand prediction. For instance, Baardman
et al. (2017) propose an iterative approach to cluster
products and leverage existing data to predict the
sales of new products. Hu et al. (2019) propose a two-
step approach to first estimate the product lifecycle
and then cluster and predict. Park et al. (2017) develop
a generalized clusterwise linear regression model and
propose algorithms to predict the demand of multiple
SKUs. In our paper, however, the definition of clusters
is fundamentally different. Unlike previous studies, our
clustering is based on the estimated coefficients rather
than the features’ values. Furthermore, our model is
flexible enough to account for different levels of data
aggregation, whereas in previous studies, all features
are essentially estimated at the cluster level. Allowing
such flexibility is key to improving demand forecasting.

1.2.3. Structure of the Paper. The remainder of the
paper is organized as follows. In Section 2, we intro-
duce our model and discuss the relevant computa-
tional challenges. We then describe the DAC algorithm
in Section 3. Our analytical results on the value of our
proposed algorithm are presented in Section 4. In
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Sections 5 and 6, we conduct computational experi-
ments using simulated and real data, respectively. Our
conclusions are reported in Section 7. The proofs of our
analytical results are relegated to Online Appendix C.

2. Model
We introduce our demand prediction model under the
generalized linear model (GLM) framework. Specifically,
we consider a retail department (e.g., soft drinks or elec-
tronics) comprising n items (or SKUs). Each item has m
historical observations (e.g., weekly sales transactions).
We will show in Section 3 that our model and method
can be straightforwardly generalized to a setting where
different items have a different number of observations.
For item i and observation j (1 ≤ i ≤ n and 1 ≤ j ≤m), we
denote the (log-of-)sales as Yi,j and the feature vector
(e.g., price, promotion status, seasonality, functionality,
and color) as Xi,j :� (X1

i,j,X
2
i,j, : : : ,X

d
i,j)′ ∈ R

d, which is
independently and identically distributed (i.i.d.) with
respect to observation j and independent with respect to
item i. Without loss of generality, we assume that Xi,j has
a bounded support with E[Xi,j] � 0 ∈ R

d and a positive
definite second-moment matrix Σi :� E[Xi,jX

′
i,j] for each

item i, that is, the smallest eigenvalue λmin(Σi) > 0. This is a
standard assumption to ensure identification and consis-
tency in the statistics literature (Fahrmeir and Kaufmann
1985). The feature set is denoted byD :� {1, 2, : : : ,d}.

An important characteristic of our model is that a fea-
ture l ∈D may affect the demand of an item at different
data aggregation levels: (i) SKU, (ii) cluster, and (iii)
department. More precisely, a feature may have the same
impact on all items, captured by a uniform coefficient for
all items in the department. We refer to such features as
shared (i.e., department-level features), the set of which is
denoted by Ds. Here, we consider a setting where all the
items belong to the same department to be consistent
with the usual business retail practice, where demand
prediction is often performed for each department sepa-
rately. We highlight, however, that our approach can be
directly applied to a more general setting without a
department structure. Alternatively, a featuremay have a
different impact on different items, captured by a differ-
ent coefficient for each item. We refer to such features as
nonshared (i.e., SKU-level features), the set of which is
denoted byDn. Finally, we assume that the items are seg-
mented into different clusters so that some features have
the same impact on items within the same cluster and a
different impact on items from a different cluster. This
phenomenon is captured by a uniform coefficient for all
items in the same cluster (the coefficients are different for
each cluster). We refer to such features as cluster-level
features, the set of which is denoted by Dc. Without loss
of generality, we assume that, for each cluster-level fea-
ture l, the number of clusters kl or the way that the clus-
ters are formedmay be different. Thus, the entire feature

set,D, can bewritten as the union of three disjoint sets of
features that affect the demand at different aggregation
levels: D �Ds

⋃
Dn

⋃
Dc. The aggregation structure

Ds, Dn, and Dc, and the cluster partition of the items are
unknown a priori andwill be estimated fromdata.

We assume that the ground truth follows the GLM spec-
ification. Specifically, the observations are generated from
an exponential family distribution that includes normal,
binomial, gamma, Poisson, and inverse-normal distribu-
tions as special cases. We refer to Fahrmeir and Kaufmann
(1985) and McCullagh and Nelder (2019) for an intro-
duction of the standard theory of GLM. Based on the
three data aggregation levels of the features, we have

Yi,j � G
(∑
l∈Ds

Xl
i,jβ

s
l +

∑
l∈Dn

Xl
i,jβ

n
i,l +

∑
l∈Dc

Xl
i,jβ

c
ς(i,l),l

)
+ εi,j,

i � 1, : : : ,n and j � 1, : : : ,m: (1)
Here, ς(i, l) ∈ {1, 2, : : : , kl} is the cluster index that con-
tains item i with respect to feature l, G(·) represents
the strictly increasing link function that establi-
shes the relationship between the linear predictor and
the mean of the outcome variable, and εi,j s are inde-
pendent zero-mean random noises. We use Cς,l ⊂
{1, 2, : : : ,n} to denote the cluster with index ς with
respect to feature l, where ς ∈ {1, 2, : : : ,kl} and {C1,l,
C2,l, : : : ,Ckl ,l} form a partition of the items {1, 2, : : : ,n}.
We also call {C1,l,C2,l, : : : ,Ckl ,l} the cluster structure
with respect to feature l. We denote C(i, l) :� Cς(i,l),l as
the cluster that contains item i with respect to feature
l ∈Dc. We also define C(i, l) :� {i} if l ∈Dn, and C(i, l) :�
{1, 2, : : : ,n} if l ∈Ds. There are many commonly used
link functions, and in practice, the function depends
on the context. For example, if Yi,j is the number of
sold units of item i in observation j, G(u) � u can be
the identity function and, thus, the model reduces to
a linear regression. Conversely, if Yi,j is a binary
variable, G(u) � 1=(1+ exp (−u)) can be the sigmoid
function. Likewise, there exist other examples of link
functions, such as logarithmic and inverse squared.
We assume that εi,j is sub-Gaussian with parameter
σ > 0, that is, E[exp (λεi,j)] ≤ exp (λ2σ2=2) for any λ,
which is a standard assumption in the statistics and
ML literature. We assume that all the observations are
independent across both time periods and items. Ex-
tensions of the model and algorithm via vector auto-
regression (respectively, generalized least squares) to
cases where observations may be correlated across
time periods (respectively, items) are discussed at the
end of Section 3. We also define βi,l as the coefficient
of Xl

i,j in the GLM specification in Equation (1), that is,
βi,l � βsl if l ∈Ds, βi,l � βni,l if l ∈Dn and βi,l � βcς(i,l),l if
l ∈Dc. We denote bi :� (βi,1,βi,2, : : : ,βi,d)′ as the true
coefficient vector for item i and b :� (b1,b2, : : : ,bn) as
the true coefficient matrix for all items. Likewise, we
use b̂ :� (̂βi,l : 1 ≤ i ≤ n, 1 ≤ j ≤ d) to denote an estimator
of b. Therefore, β̂i,l is the estimator for βi,l.
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Based on the GLM specification in Equation (1), we
can characterize the aggregation levels of the three
types of features. For a department-level feature
l ∈Ds, its coefficient βsl is shared among all items.
Thus, all items in the department will have the same
coefficient for this feature. In comparison, for an SKU-
level feature l ∈Dn, its coefficient βni,l will differ across
items (i.e., βni,l≠βni,l for i≠ i′). Finally, for a cluster-level
feature l ∈Dc, all items in the same cluster will have
the same coefficient (i.e., for all i≠ i′ with ς(i, l) �
ς(i′, l) � ς, the coefficient of Xl

i,j and that of Xl
i′,j are

both βcς,l). Thus, the total number of coefficients for all
n items is dx :� n|Dn| +∑

l∈Dc
kl + |Ds| ≤ nd. We use ni,l

to denote the number of items that share the same
coefficient as item i for feature l (i.e., ni,l � 1 if l ∈
Dn, ni,l � n if l ∈Ds, and ni,l � |C(i, l)| if l ∈Dc). Estimat-
ing the coefficient of some features at a certain level of
aggregation is common in practice. For example, retailers
often estimate seasonality coefficients at the department
level to avoid overfitting and capture the fact that the
items follow the same seasonal patterns. Furthermore,
when estimating the effect of promotions on demand,
such as cannibalization and halo effects, one may cluster
several items together because promotions often have a
similar impact on a group of items. Assumption 1 simpli-
fies the exposition by avoiding the situation where two
clusters have the same coefficient value. Without loss of
generality, we make the following assumption throughout
the paper for expositional and computational convenience.

Assumption 1. We make the following assumptions
throughout the analysis of this paper.

(a) If a feature l is at the SKU level (i.e., l ∈Dn), then
βi,l ≠ βi′,l for any pair of items i and i′, that is, a SKU-level
feature has a different effect on each item.

(b) For l ∈Dc, we have βi,l � βi′,l if and only if C(i, l) �
C(i′, l), that is, a cluster-level feature has the same effect on
items in the same cluster and a different effect for different
clusters. Furthermore, each cluster has at least two items.

Our main goal is to accurately predict the outcome
variable Y (in our case, weekly demand) given the fea-
ture vector X (e.g., price, promotion, seasonality, or
color), assuming that the data generating process fol-
lows Equation (1). Before presenting our proposed
demand prediction method, we first discuss the key
challenge of fitting the model by using two intuitive
methods. First, one could adopt the idea of lasso regres-
sion (Tibshirani 1996, Tibshirani and Taylor 2011, Ram-
das and Tibshirani 2016, Hastie et al. 2019) and estimate
the coefficients through the generalized ℓ1−regularized
MLE. This approach revises the standard MLE by add-
ing a generalized ℓ1-regularizer

−λ
(∑
i≠i′

∑d
l�1

|βi,l − βi′,l|
)

to the log-likelihood function (see Equation (19) in
Online Appendix B.1). A canonical result in the statistics
literature shows that ℓ1-regularization will shrink the
regularized terms to zero and thus generate sparse solu-
tions (see, e.g., Tibshirani et al. 2005 and Zou and Hastie
2005). As a result, adding a generalized ℓ1-regularizer to
MLE may potentially be helpful to capture the fact that a
feature at the aggregate or cluster level shares the same
coefficient for different items. We note that this approach
is in a similar spirit to the fused lasso regression (Tibshirani
and Taylor 2011). Given the high-dimensional nature of
the regularized MLE problem in Equation (19) (i.e., the
number of decision variables is nd, which is at the magni-
tude of thousand ormore in practice), estimating the coef-
ficients is computationally prohibitive even for a linear
regression specification (i.e.,G(u)� u) as it involves invert-
ing (nd) × (nd)-matrices in each step to construct the solu-
tion path. We provide a more detailed discussion on this
approach applied to our problem inOnlineAppendix B.1.

A second possible approach is via direct optimization,
which is based on explicitly estimating the feature aggre-
gation levels and cluster structures. This approach intro-
duces one-hot encoding binary variables to represent the
aggregation level of each feature and the cluster that each
item belongs to. To simultaneously estimate (i) the aggre-
gation level of each feature, (ii) the cluster that each item
belongs to, and (iii) the coefficient of each feature for each
item, one may either reformulate the optimization as a
mixed-integer second-order conic program (SOCP), as in
Equation (27) or iteratively estimate the aggregation level,
cluster structure, and the coefficients by varying one of
these three types of decisions and fixing the other two to
maximize the maximum likelihood. In a practical setting,
however, the second-order SOCP will have a too-high
dimension to be computationally tractable. The iterative
procedure will stop once the binary variables remain
the same for two consecutive iterations. A similar itera-
tive optimization approach was proposed by Baard-
man et al. (2017) to address the demand prediction
problem with only cluster-level features (i.e., no
department-level and no SKU-level features). In their
setting, this iterative procedurewas proved to converge
to the true coefficients and cluster structure (i.e., the
estimate is consistent). In our setting, however, the con-
sistency of the approach proposed by Baardman et al.
(2017) is not guaranteed. See Online Appendix B.2 for
more details on the direct optimization approach.

3. Data Aggregation with Clustering
As mentioned, simultaneously estimating the aggrega-
tion levels, cluster structures, and feature coefficients is
computationally challenging and prone to substantial
prediction errors. In this section, we propose a novel
approach that allows us to (a) identify the correct level
of aggregation for each feature, (b) find the underlying
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cluster structure of the SKUs with respect to each fea-
ture, and (c) generate a consistent estimate of the feature
coefficients. Our method is entirely data driven and can
efficiently achieve these three goals in an integrated
fashion while yielding an accurate demand prediction.

We begin our analysis by focusing on a (simple)
special case of the GLM in Equation (1), where all the
features are at the SKU level. In this case, the data-
generating process can be written as

Yi,j � G
(∑
l∈D

Xl
i,jbi,l

)
+ εi,j,

i � 1, : : : ,n and j � 1, : : : ,m: (2)
By comparing the model specifications in (1) and (2),
we have bi,l � βsl for l ∈Ds, bi,l � βni,l for l ∈Dn, and bi,l �
βcς(i,l),l for l ∈Dc. We refer to Model (2) as the decentral-
ized model because each item is fitted in a decentralized
fashion. Estimating the decentralized model is usually
carried out through iterative reweighted least squares,
which ultimately lead to MLE (see Online Appendix
A and McCullagh and Nelder 2019 for more details).
We assume that for each item, the decentralized
model is well defined with a unique MLE solution,
which is the case for commonly used GLMs, such as
linear and logistic regression. Estimating the decentral-
ized model can be decomposed into estimating one
model for each item separately. Using the data of item
i, we apply the MLE to find the estimated coefficients
of this item, b̂i :� (̂bi,1, b̂i,2, : : : , b̂i,d)′ ∈ R

d as follows:

b̂i ∈ arg max
bi

∑m
j�1

logLi(bi|Yi,j,Xi,j)

� arg max
bi

∑m
j�1

Yi,jX′
i,jbi −H(X′

i,jbi)
[ ]

, (3)

where Li(bi|Yi,j,Xi,j) is the likelihood function associ-
ated with the data (Yi,j,Xi,j) and the coefficient vector
bi ∈ R

d, and H(·) : R→ R is the infinitely differentiable
normalization mapping in the GLM with H′(u) � G(u)
(see Online Appendix A for details). We refer to the
estimator b̂ :� (b̂1, b̂2, : : : , b̂n) as the decentralized estima-
tor. Throughout this paper, we parameterize the esti-
mators with the sample size m when we want to make
this dependence explicit. For example, we use b̂(m) :�
(b̂1(m), b̂2(m), : : : , b̂n(m)) to denote a decentralized esti-
mator with sample size m. Also, we define the Fisher
information matrix with respect to the decentralized
model of item i as

I i(bi) :� −E[∇2logLi(bi|Yi,j,Xi,j)],
where ∇2 is the Hessian operator and the expectation
is taken with respect to (Yi,j,Xi,j). We first show the
following consistency and normality property of the
decentralized estimator b̂, which will be used as a
building block for our subsequent analyses.

Proposition 1. The decentralized estimator b̂ satisfies the
following properties:

(a) Consistency. As m ↑ +∞, (i) if l ∈Ds, then b̂i,l(m)→p βsl ;
(ii) if l ∈Dn, then b̂i,l(m)→p βni,l; and (iii) if l ∈Dc, then
b̂i,l(m)→p βcς(i, l), l where→

p
refers to convergence in probability.

(b) Normality. For each item i and each feature l ∈D,
there exist a threshold mi,l on the sample size and a constant
ψi,l > 0 such that if m ≥mi,l,we have, for any ε > 0,

P(|̂bi,l(m) − βi,l| ≤ ε) ≥ 1− 3exp (−ψi,lε
2m): (4)

Furthermore, for each item i, b̂i is asymptotically normally
distributed with			

m
√ (b̂i(m) −bi)→d N (0,I i(bi)−1) as m ↑ +∞, (5)

where →d refers to convergence in distribution, N (0,I i

(bi)−1) refers to the multivariate normal distribution with
mean 0 ∈ R

d and covariance matrix I i(bi)−1.
Proposition 1(a) shows that with sufficiently many

observations, we can consistently estimate the feature
coefficients using the decentralized model. It is unsur-
prising that the decentralized estimator, b̂, is consistent
given that the decentralized model has a high amount
of flexibility (which implies a low bias; see also Fahrmeir
andKaufmann 1985). Proposition 1(b) further demonstrates
that the coefficient estimation error of the decentralized
approach is approximately normally distributed under
both finite sample and asymptotic regimes (see Li et al.
2017 for details). Therefore, if we have sufficiently
many observations for each item, the prediction accu-
racy of the decentralized model will be high. However,
two issues remain unaddressed with the decentralized
estimation: (i) how can we find the right aggregation
level for each feature, and (ii) how can we identify the
items’ cluster structure. Furthermore, the decentral-
ized estimation may suffer from overfitting and, hence,
admit a high variance. Addressing these issues will be
the main focus in the rest of this paper.

To estimate the aggregation level and the underly-
ing cluster structure based on the GLM specification
in Equation (1), we next introduce another special
case of the model in which the data aggregation level
and the cluster structure are known to the retailer. We
refer to this case as the aggregate model and call its
MLE the aggregate estimator, which we denote by

b̂
a ∈ arg max

b∈Ξ

∑m
j�1

∑n
i�1

logL(bi|Yi,j,Xi,j)

� arg max
b∈Ξ

∑m
j�1

∑n
i�1

Yi,jX′
i,jbi −H(X′

i,jbi)
[ ]

where Ξ :� {b : βi,l � βi′,l if (i) l ∈ Ds or (ii) l ∈ Dc

and ς(i, l) � ς(i′, l)}: (6)

Thus, b̂
a
i,l is the estimated coefficient of feature l for item

i under the aggregate approach. As a counterpart of
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Proposition 1, the following result establishes the con-
sistency and normality of the aggregate estimator b̂

a
.

Proposition 2. The aggregate estimator b̂
a
satisfies the fol-

lowing properties:
(a) Consistency. As m ↑ +∞, (i) if l ∈Ds, then

b̂
a
i,l(m)→p βsl ; (ii) if l ∈Dn, then b̂

a
i,l(m)→p βni,l; and (iii) if

l ∈Dc, then b̂
a

i,l(m)→p βcς(i,l),l.
(b) Normality. For each item i and each feature l ∈D,

there exist a threshold m̃i,l on the sample size and a constant
ψ̃i,l > 0 such that if m ≥ m̃i,l,we have, for any ε > 0,

P(|̂bai,l(m) − βi,l| ≤ ε) ≥ 1− 3exp (−ψ̃i,lε
2m):

Furthermore, if Dc
⋃
Ds ≠ ∅, then

			
m

√ (b̂a(m) −b) con-
verges in distribution to a zero-mean degenerate multivari-
ate normal distribution as m ↑ +∞.

Although the aggregate model requires knowing
the data aggregation level of each feature and the clus-
ter structure of the items, Proposition 1 facilitates us to
infer such critical information with high accuracy from
the statistical properties of the decentralized approach.
We are now ready to introduce the data aggregation with
clustering (DAC) algorithm (described in Algorithm 1),
which consistently estimates the coefficient of each fea-
ture for each item, as well as correctly identifies the
aggregation levels and the underlying cluster structure
of the items. We denote the cumulative distribution
function of a standard normal distribution by Φ(·).
Algorithm 1 (Data Aggregation with Clustering DACa)

Initialize: α � the significance level for hypothesis
testing; D̂n � D̂s � D̂c � ∅.

1: (DECENTRALIZED ESTIMATION) Estimate b̂i,l and its

standard error ŜEi,l �
																	
1
m (Î i(b̂i)−1)l,l

√
for each item

i and feature l, where Î i(b̂i) is the estimated Fisher
informationmatrix for item i.
For each feature l ∈D,

2: (HYPOTHESIS TESTING) Fix an item 1. For all other
items i≠ 1, compute the p-value under the null
hypothesisHl

1,i that b1,l � bi,l, which we denote as

p1,i � 2

[
1−Φ

|̂b1,l − b̂i,l|															
ŜE

2
1,l + ŜE

2
i,l

√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
]
:

Reject Hl
1,i if and only if p1,i < α.

3: If Hl
1,i is not rejected for all items i≠ 1, then assign

feature l to D̂s.
4: If Hl

1,i is rejected for some items i≠ 1 and not for
others, then assign feature l to D̂c.

5: If Hl
1,i is rejected for all items i≠ 1, then assign fea-

ture l to D̂n.
6: (CLUSTERING) If l ∈ D̂c, runaone-dimensional k-means
algorithm on {̂b1,l, b̂2,l, : : : , b̂n,l}with k � kl and obtain
the estimated cluster structure {Ĉ1,l, Ĉ2,l, : : : , Ĉkl,l}.
EndFor.

7: (AGGREGATE ESTIMATION) Obtain the aggregate esti-
mator b̂

a
based on the aggregation levels (D̂n, D̂s,

D̂c) and the cluster structures {Ĉ1,l, Ĉ2,l, : : : , Ĉkl,l} for
each l ∈ D̂c.

Output: (a) Aggregation levels: (D̂n, D̂s, D̂c), (b)
Cluster structures: {Ĉ1,l, Ĉ2,l, : : : , Ĉkl,l} for each l ∈ D̂c,
and (c) Feature coefficients: b̂

a
.

Throughout this paper, we use DACα to denote the
data aggregation with clustering algorithm initialized
with a significance level α and b̂

α
as the estimated fea-

ture coefficient matrix of the DACα algorithm. We also
call b̂

α
the DACα estimator. By leveraging the consis-

tency and normality of the decentralized estimate (see
Proposition 1), we can perform hypothesis testing
(i.e., the Wald test) to identify the correct data aggre-
gation levels and cluster structure.1 The main idea is
as follows: if one cannot reject the null hypothesis that
the estimated coefficients in the decentralized model
b̂i,l and b̂i′,l are the same, then it is very likely that
either items i and i′ belong to the same cluster or that
feature l is an aggregate-level feature. An interesting
characteristic of our method is that it uses the esti-
mated coefficients as inputs to identify the cluster
structure of the items with respect to each cluster-
level feature (see Step 6), as opposed to directly using
features as in traditional clustering algorithms. Identi-
fying the cluster structure in Step 6 of Algorithm 1 is
very efficient because this step runs a single-
dimensional k-means. For each item i and feature
l ∈D, we denote the estimated cluster that the item
belongs to as Ĉ(i, l). We also highlight that the last step
of the DAC algorithm to fit an aggregate model can be
regularized using a lasso, ridge, or elastic net penalty
to avoid unnecessary features and mitigate overfit-
ting. This would be especially useful with high corre-
lations between features, which is common in retail
settings. Finally, we remark that the DAC algorithm is
in a similar spirit as the two-stage heuristic proposed
by Park et al. (2017) to address a special case of our
problem, which has only cluster-level features and
assumes identical cluster structures for all features.
The two-stage heuristic fits the decentralized model in
the first stage and then runs a multidimensional clus-
tering algorithm for all the decentralized coefficients
in the second stage. Our main contribution relative to
this two-stage heuristic is multifaceted: (a) we adopt
hypothesis testing to account for different data
aggregation levels across features; (b) we account for
different cluster structures across features; and (c) we
provide rigorous theoretical justifications for the val-
idity of our approach and the edge of our method
over the decentralized benchmark.

We next show that, with an arbitrarily high proba-
bility, the DACα algorithm can consistently identify
the aggregation level of each feature, as well as the
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underlying cluster structure of the items with respect
to each cluster-level feature. Under the DACα algo-
rithm and sample size m, we define E(m,α) as the
event where the aggregation level of each feature
and the cluster structure of each item for each cluster-
level feature is correctly identified, namely, (i) (D̂n,
D̂s, D̂c) � (Dn,Ds,Dc) and (ii) (Ĉ1,l, Ĉ2,l, : : : , Ĉkl,l) is a per-
mutation of (C1,l,C2,l, : : : ,Ckl,l) for each l ∈Dc. Consis-
tent with the decentralized and aggregate approaches,
the DACα algorithm generates a consistent and normal
estimator b̂

α
.

Proposition 3. The DACα algorithm satisfies the follow-
ing properties:

(a) Consistency. There exists a positive probability p(α)
strictly decreasing in α with lim α ↓ 0p(α) � 0, such that

lim
m↑∞

P[E(m,α)] ≥ 1 − p(α): (7)

Furthermore, b̂
α
is consistent, that is, as m ↑ +∞, (i) if

l ∈Ds, then β̂
α

i,l(m)→p βsl ; (ii) if l ∈Dn, then β̂
α

i,l(m)→p βni,l;
and (iii) if l ∈Dc, then β̂

α

i,l(m)→p βcς(i,l),l.
(b) Normality. For each item i and each feature l ∈D,

there exist a threshold mα
i,l on the sample size and two con-

stants ψα
i,l > 0 and ηαi,l > 0, such that if m ≥mα

i,l, we have, for
any ε > 0,

P(|̂βα

i,l(m) − βi,l| ≤ ε) ≥ 1− ηαi,lexp (−ψα
i,lε

2m): (8)

Misspecifying the feature aggregation levels for the
DACα algorithm may stem from two types of errors in
hypothesis testing (Step 2 in Algorithm 1): (i) Type I
errors (i.e., rejecting the otherwise true null hypothe-
sis) under which the algorithm falsely identifies two
identical coefficients as different from each other, and
(ii) Type II errors (i.e., not rejecting the otherwise false
null hypothesis) under which the algorithm falsely
identifies two different coefficients to be the same. By
the finite-sample and asymptotic normality of the
decentralized estimator (i.e., Proposition 1(b)), the
Type II errors of DACα decay exponentially with the
sample size m, which shrink to zero as m approaches
infinity. The Type I errors of the DACα algorithm are
induced by the errors in each hypothesis test, which
are controlled by the significance level α. Although the
Type I error probability for each H0

1,i is upper bounded
by α, because of the notorious multiple hypothesis
testing issue (Shaffer 1995), the total Type I error prob-
ability of the DACα algorithm is in general higher than
α. Indeed, we leverage the asymptotic normality of the
decentralized estimator to evaluate this probability as
p(α), which can be arbitrarily small with a proper
choice of the significance level α (see the proof of Prop-
osition 3 for all the details). Equivalently, we can also
adjust p values via Bonferroni correction from the

simultaneous inference literature (Shaffer 1995) to im-
plement the DACα(p) algorithm. In this case, the total
Type I error probability is upper bounded by p, where
α(p) is the (strictly decreasing) inverse of p(α). For
the practical implementation of the DACα algorithm
using data, as we demonstrate in Sections 5 and 6,
the significance level α for a single hypothesis test is a
hyper-parameter to be fine-tuned via cross-validation.
Finally, we remark that, for our demand prediction
problem with heterogeneous data aggregation levels,
Type I errors are somehow acceptable in the sense that
they will only cause model imprecision (i.e., the algo-
rithm does not identify identical coefficients), but not
misspecification, so that the estimation remains consis-
tent and normal even under these errors (Proposition
3(a) and (b)). Instead, Type I errors will only affect the
efficiency of the DAC estimator, giving rise to esti-
mates with a higher variance. We will elaborate on
this point in Section 4.

Several remarks are in order regarding the DACα

algorithm and its consistency and normality. First,
Proposition 3 shows the effectiveness of Algorithm 1
under the regime where the sample size m is suffi-
ciently large. For the case where the data sample size
m is small (e.g., a new item with limited data), the esti-
mation variance will be high. In this case, the DAC

algorithm, based on hypothesis testing, may misspe-
cify the aggregation level of each feature, giving rise
to Type I errors, Type II errors, and eventually predic-
tion errors. To address this model misspecification
issue, we adopt a cross-validation procedure to fine-
tune several hyper-parameters, including the signifi-
cance level α for hypothesis testing and the threshold
for classifying each feature into clustering and depart-
ment levels (see Sections 5 and 6 for the implementa-
tion details). Using both simulated and real data, in
Sections 5 and 6, we show that our proposed DAC

algorithm outperforms a multitude of well-established
benchmarks used in the literature and in practice. We
also examine the case with new items that have limited
data availability. Our theoretical results (Proposition 6)
and our computational results (Figure 3) show that
our DAC algorithm can efficiently pool and leverage
the data while substantially improving the prediction
accuracy for all items regardless of their data availabil-
ity. More importantly, the accuracy improvement is
more substantial for items with limited data.

Second, we assume in our base model that all the
observations are independent across time periods and
items. Such an independence assumption can also be
relaxed through the vector auto-regression (VAR)
model for the case with correlations across time peri-
ods and through the generalized least squares (GLS)
model for the case with correlations across items. We
conclude this section by discussing how the DAC

algorithm can be generalized to these two cases.
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3.1. Correlation Across Time Periods
To account for correlations across time periods, we
assume that the observations {1, 2, : : : ,m} are ranked
in chronological order. More precisely, the data col-
lected in period j are indexed as observation j. We
consider the following VAR model specification:

Yi,j � ρiYi,j−1 +
∑
l∈Ds

Xl
i,jβ

s
l +

∑
l∈Dn

Xl
i,jβ

n
i,l +

∑
l∈Dc

Xl
i,jβ

c
ς(i,l) + εi,j,

i � 1, : : : ,n and j � 2, : : : ,m,

where ρiYi,j−1 is the auto-regression term, βsl , β
n
i,l, and

βcς(i,l) are defined in the same fashion as in the base
model, and εi,j are the independent unobservable zero-
mean sub-Gaussian error terms uncorrelated with the
features X (i.e., E[εi,j|X] � 0). Applying the standard
VAR estimation approach (Greene 2003, chapter 19),
we can follow the same procedure as Algorithm 1 to
estimate the decentralized model, conduct hypothesis
tests, cluster the items, and finally estimate the aggre-
gate model. All the results presented in this paper
remain valid under this VAR setting.

3.2. Correlation Across Items
To account for correlations across items, we consider
the following GLS model specification:

Yi,j �
∑
l∈Ds

Xl
i,jβ

s
l +

∑
l∈Dn

Xl
i,jβ

n
i,l +

∑
l∈Dc

Xl
i,jβ

c
ς(i,l) + εi,j,

i � 1, : : : ,n and j � 1, : : : ,m,

where βsl , β
n
i,l, and βcς(i,l) are defined in the same fashion

as in the base model, and εi,j are the unobservable error
terms with E[εi,j|X] � 0, but E[εi,jεi′,j|X]≠ 0 for i≠ i′.
This model extension allows us to capture comple-
mentary and substitute relationships between different
SKUs within a department, such as the cannibalization
effect between dark roast and medium roast coffee and
the halo effect between shampoo and conditioner. For
this model, one can slightly modify the DAC algorithm
to correctly estimate the aggregation levels, cluster
structures, and feature coefficients. More specifically,
we follow the same procedure as in Steps 1–6 of Algo-
rithm 1 to estimate the decentralized model, conduct
hypothesis tests, and cluster the items. However, the
final step (Step 7) that estimates the aggregate model
should be adjusted to apply the GLS (instead of ordi-
nary least squares (OLS)) estimation method (Greene
2003, chapter 10). All the results presented in this
paper remain valid under this GLS setting. If there are
correlations across both time periods and items, we
could combine the VAR and GLS frameworks and
modify the DAC algorithm accordingly to yield consis-
tent estimates of the model coefficients, data aggrega-
tion levels, and cluster structure.

4. Value of Pooling Data Through DAC
The remainder of this paper is devoted to characteriz-
ing the benefits of performing the pairwise tests and
the clustering algorithm benchmarked against existing
approaches in the literature. Specifically, we present
three sets of analyses from different perspectives: (a)
analytical comparisons between the DAC algorithm
and the decentralized method, which highlight the
value of data aggregation through efficient clustering;
(b) simulation studies of the DAC algorithm versus
several benchmarks, which show that the DAC algo-
rithm can successfully identify and leverage data
aggregation and the cluster structures; and (c) imple-
mentation of the DAC algorithm using real retail data,
which showcases the practical value of our proposed
method in improving demand prediction accuracy.

In this section, we examine the value of data aggre-
gation through efficient clustering from a theoretical
perspective by showing several benefits of the aggre-
gated model relative to the decentralized model. To
convey the DAC algorithm’s benefits, we first observe
that if the true data-generating process has aggregate
and/or cluster level features, the decentralized model
assumes an overly complex model and, hence, will
be prone to overfitting. To formalize this intuition,
we leverage the asymptotic normality property of the
MLE established by Propositions 1, 2, and 3 to derive
the following result on the estimation errors of the de-
centralized approach and the DAC algorithm.

Proposition 4. The following statements hold:
(a) For the decentralized estimator b̂, there exists a con-

stant κi,l � (I i(bi)−1)l,l > 0 for each (i, l) such that

lim
m↑+∞

m · E(̂bi,l(m) − βi,l)2 � κi,l,

i � 1, 2, : : : ,n, l � 1, 2, : : : , d: (9)

(b) For theDACα estimator b̂
α
, under the same set of con-

stants {κi,l : 1 ≤ i ≤ n, 1 ≤ l ≤ d},we have
lim
m↑+∞

m ·E(̂βα

i,l(m) − βi,l)2 ≤ p(α)κi,l + (1− p(α))
1
ni,l

( )2( ∑
i′∈C(i, l)

κi′,l

)
, i � 1, 2, : : : ,n, l � 1, 2, : : : ,d, (10)

where p(α) is the upper bound on the total Type I error of
DACα characterized in Proposition 3 and the inequality is
strict if Dc

⋃
Ds ≠ ∅.

(a) If Dc
⋃
Ds ≠ ∅ and κi,l >

1
ni,l

( )2(∑i′∈C(i,l)κi′,l), there
exists a threshold m̄i,l such that if m ≥ m̄i,l,we have

E(̂βα

i,l(m) − βi,l)2 < E(̂bi,l(m) − βi,l)2: (11)

By the consistency of the decentralized and DAC esti-
mators, when the number of observations m becomes
large, the expected squared error of the estimated
coefficient for each item and feature will shrink to
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zero. The positive constant κi,l � (I i(bi)−1)l,l is the
asymptotic variance of the decentralized estimator b̂i,l.
What makes the DAC estimator more powerful is its
ability to pool the data from different items and thus
further reduce the variance of the estimates, as shown
by the comparison result in Proposition 4(c). We note
that 1

ni,l

∑
i′∈C(i,l)κi′,l is the average variance of the esti-

mated coefficient of feature l for items in C(i, l) when
using the decentralized estimator. Since ni,l ≥ 2 for

l ∈Ds
⋃
Dc, the condition κi,l >

1
ni,l

( )2(∑i′∈C(i,l)κi′,l) can

easily be satisfied. Furthermore, the Type I error prob-
ability is upper bounded by p(α) ≈ 0, so that the DAC

algorithm yields a smaller asymptotic error relative to
the decentralized estimator for the coefficients of fea-
tures at the department or cluster levels. In this case,
for the same training sample, the DAC algorithm will
use at least twice as many observations as the decen-
tralized estimator to estimate the coefficient of such
features. Hence, the estimation error will shrink to
zero faster, especially when ni,l is large. In practice, a
typical retail department consists of a large number of
items (n > 100), so the DAC algorithm will be much
more efficient relative to the decentralized estimator
for cluster- and aggregate-level features. Moreover,
for these features, the value of the DAC algorithm in
reducing the estimation variance of their coefficients
will be stronger when the number of items n
increases, because it allows to pool more data to
improve the estimation efficiency of these features.

One can see from Equation (10) that the estimation
error of the DAC algorithm can be decomposed into
two parts. The first part, p(α)κi,l, bounds the error for
the case when a Type I error occurs so that the algo-
rithm fails to identify the pooled feature coefficients.
In this case, the estimation error is upper bounded by
the error of the decentralized approach, κi,l, multiplied
by the maximum chance that this case occurs p(α).
The second part, (1− p(α)) 1

ni,l

( )2(∑i′∈C(i,l)κi′,l) bounds

the error for the case where the DAC algorithm cor-
rectly identifies the data aggregation levels and the
cluster structures. In this case, the estimation error is
upper bounded by the error of the aggregate estima-

tor, 1
ni,l

( )2(∑i′∈C(i,l)κi′,l), multiplied by the chance that

the data aggregation levels and the cluster structure
are correctly specified, 1− p(α). As long as there are
some aggregate level or cluster level features (i.e.,
Dc

⋃
Ds ≠ ∅), then the DAC algorithm could at least

partially identify some (but not all) of the pooled coef-
ficients so that the expected error will be strictly
smaller relative to the decentralized model even if a
Type I error occurs. Hence, the inequality in Equation
(10) is strict when Dc

⋃
Ds ≠ ∅. Finally, we remark that

the expected squared error driven Type II errors of

the DAC algorithm is of a lower magnitude relative to
the advantage of the aggregate estimator over the
decentralized and thus can be ignored without com-
promising the overall error bound of the algorithm.

Proposition 4 demonstrates the significant efficiency
improvement (i.e., reducing the expected estimation
error) of the DAC algorithm relative to the decentral-
ized estimator under the presence of aggregate- and
cluster-level features. We next analyze how the DAC

algorithm affects the mean squared error (MSE) of the
predicted outcome under a fixed design (i.e., viewing
the feature matrix X as deterministic; Rigollet 2015,
chapter 2) for the linear regression model (i.e., G(u) �
u and εi,j follows an i:i:d: normal distribution with a
mean of zero and standard deviation σ). For any esti-
mator b̂, we define its MSE as

M̂SE(b̂) :�
∑n

i�1
∑m

j�1(Yi,j −Xi,jb̂i)2
nm

:

Proposition 5. Under a linear regression setting, the fol-
lowing statements hold:

(a) TheMSE of the decentralized estimator b̂ satisfies

E M̂SE(b̂)
[ ]

≤ 4σ2d
m

, (12)

where the expectation is taken with respect to the error
terms εi,j.

(b)Assume thatDc
⋃
Ds ≠ ∅. TheMSE of theDACα esti-

mator b̂
α
satisfies

E M̂SE(b̂α)
[ ]

≤ 4σ2dx(α)
nm

+ o(m−1) < 4σ2d
m

(13)

when m is sufficiently large. Here, the expectation is taken
with respect to both the randomness of the error terms εi,j
and the DAC algorithm, dx(α) < nd is the expected number
of coefficients to estimate in Step 7 of Algorithm 1, which is
decreasing in α and such that limα↓0dx(α) � dx, and
o(m−1) is the standard “Little-o Notation.”

Comparing parts (a) and (b) of Proposition 5 reveals
the insight that the expected MSE of the DAC estima-
tor is substantially lower relative to the decentralized
benchmark. Such an improvement is driven by the
fact that our proposed DAC algorithm leverages
hypothesis testing to pool data, hence significantly
reducing the number of model coefficients to estimate
(from nd to dx(α)), which corresponds to 20%–70%, as
shown by the implementation of our algorithm using
real data (Table 7). This illustrates the power of aggre-
gating data and reducing the model dimensionality to
ultimately improve prediction accuracy.

We next study an important generalization of our
base model where each item i has a different number
of observations mi. This setting fits well the scenario
where some items have been offered for a long time
(and, hence, have abundant data), whereas other items
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are new to the market (and, hence, have limited data).
More specifically, we assume that, in the training set,
item i has mi �mτi observations for each i. Namely,
the larger τi, the more data are available for item i. We
define τ :�∑n

i�1τi and τ(i, l) :�∑
i′∈C(i,l)τi′ . Hence,

τ(i, l) � τ if l ∈Ds and τ(i, l) � τi if l ∈Dn. Then, the total
number of data observations with the same coefficient
for feature l as βi,l is m(i, l) :�m · τ(i, l). To highlight the
main intuition without getting trapped in technical
details, we focus on the linear regression setting with
independent features. Namely, we assume that for
each item i and for all data observations j, Xl

i,j are i:i:d:
with mean 0 and variance 1. The entire training data
set is denoted asDtr :� {(Yi,j Xi,j) : 1 ≤ i ≤ n, 1 ≤ j ≤mi},
whereas the training data set of item i is denoted as
Dtr(i) :� {(Yi,jXi,j) : 1 ≤ j ≤mi}.

We are interested in the generalization error (GE) of each
item under different demand prediction methods in the
random design setting, which measures the out-of-sam-
ple expected squared error assuming that the training
and testing data are independently drawn from the same
data generating process (Hastie et al. 2009, chapter 2.9).
For an estimation algorithm π ∈ {Dec,DACα} trained
on Dtr, where Dec refers to the decentralized approach,
we define the estimator generated by π as b̂(π,
Dtr) � (b̂1(π,Dtr), b̂2(π,Dtr), : : : , b̂n(π,Dtr)), where
b̂i(π, Dtr) is the coefficient vector for item i. The GE of π
for each item i is defined as follows:

GEi(π) :� E Yi,mi+1 −Xi,mi+1b̂i(π,Dtr)
[ ]2

,

i � 1, 2, : : : ,n,

where the testing data (Yi,mi+1,Xi,mi+1) is independ-
ently drawn from the same distribution as each train-
ing observation (Yi,j,Xi,j) ∈ Dtr(i) and the expectation
is taken with respect to the randomness of both the
training and testing data.

The following proposition demonstrates the effec-
tiveness of the DAC algorithm (in the asymptotic
regime) for the case where different items have differ-
ent data volumes.

Proposition 6. Under a linear regression setting, the fol-
lowing statements hold if the estimators are trained on Dtr:

(a) The GE of theDec estimator satisfies

lim
m↑+∞

m · GEi(Dec) − σ2
( ) � d · σ2

τi
, i � 1, 2, : : : ,n: (14)

(b) The GE of theDACα estimator satisfies

lim
m↑+∞

m · (GEi(DACα) − σ2) ≤ p(α) · d · σ
2

τi
+ (1− p(α))

·
(∑d
l�1

1
τ(i, l)

)
· σ2, i � 1, 2, : : : ,n,

(15)

where p(α) is the upper bound of the Type I error of DACα

characterized in Proposition 3 and the inequality is strict if
Dc

⋃
Ds ≠ ∅.

(c) If Dc
⋃
Ds ≠ ∅, we have, for each item i � 1, 2, : : : ,n,

and sufficiently large m,

m ·
(
GEi(Dec) −GEi(DACα)

)
>

(
1− p(α)) ·

(
ds

(
1
τi
− 1
τ

)
+∑
l∈Dc

(
1
τi
− 1
τ(i, l)

))
· σ2 > 0:

(16)

Furthermore, gi(τ) :� ds( 1τi − 1
τ) +

∑
l∈Dc

( 1
τi
− 1

τ(i, l)) is con-
vexly decreasing in τi and concavely increasing in τi′ for
each i and i′ ≠ i.

Proposition 6 shows that when the sample size is
sufficiently large, the DAC algorithm yields a lower
generalization error relative to the decentralized
approach for each item, regardless of the item’s data
availability. Furthermore, pooling data via our pro-
posed DAC algorithm reduces the generalization error
more substantially for items with a lower amount of
data (i.e., smaller τi). As expected, the prediction accu-
racy improvement of the DAC algorithm is strength-
ened when the number of features at the aggregate or
cluster level, ds or dc, is higher. We further show the
robustness of this result via extensive computational
experiments in Section 5.2. The monotonicity result of
gi(t) in Proposition 6(c) also indicates that if the sam-
ple size of one item increases, other items can success-
fully leverage this fact but with diminishing marginal
returns, whereas the item itself could extract less addi-
tional information from other items’ data. The proof
of Proposition 6 relies on the bias-variance decompo-
sition of the linear regression model. We also highlight
that, similar to the estimation error characterized in
Proposition 4, the generalization error of the DAC

algorithm can be decomposed into two parts, where
the first part, p(α) · d·σ2τi

, measures the GE when Type I
errors occur, and the second part, (1− p(α)) · (∑d

l�1
1

τ(i, l)) · σ2, measures the GE when the DAC algorithm
correctly identifies aggregation levels and cluster
structures. Finally, we remark that Proposition 6
benchmarks the GE of different estimators relative to
σ2, which is the variance of the noise term εi,j and,
thus, a lower bound of any GE by relying on the bias-
variance decomposition (Hastie et al. 2009, equation
(7.9); Equation (54) in Online Appendix C).

To conclude this section, we note that we focused
our analysis on the case where the sample size m is
sufficiently large. In practice, the sample size is often
limited. Ultimately, one may question whether the
value of pooling data via our proposed DAC algorithm
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remains significant in the small-sample regime. Our
simulation and real data studies (Sections 5 and 6)
clearly convey that the DAC algorithm efficiently iden-
tifies and leverages data aggregation and hence sub-
stantially improves the out-of-sample prediction accu-
racy relative to several common benchmarks.

5. Simulated Experiments
In this section, we conduct computational experi-
ments using simulated data. We focus on the DAC

algorithm’s predictive power and illustrate the
improvement in prediction accuracy relative to sev-
eral benchmarks in the nonasymptotic regime (i.e.,
when the data sample size m is moderate or small).
We consider two GLM settings: linear regression (i.e.,
G(u) � u; see Section 5.1) and logistic regression (i.e.,
G(u) � 1=(1+ exp (−u)); see Section 5.3). The model’s
performance is evaluated using the out-of-sample R2

for linear regression and the area under the receiving
operating characteristic (ROC) curve (AUC) for logis-
tic regression. We also undertake a comprehensive
sensitivity analysis to investigate how the different
parameters affect the model’s performance. All the
results presented in this section can be reproduced by
using our available code and implementation details.2

5.1. Linear Regression
We assume that the data are generated from the fol-
lowing linear model:

Yi,j �
∑
l∈Ds

Xl
i,jβ

s
l +

∑
l∈Dn

Xl
i,jβ

n
i,l +

∑
l∈Dc

Xl
i,jβ

c
ς(i,l),l + εi,j,

i � 1, 2, : : : ,n and j � 1, 2, : : : ,m,

where εi,j ~N (0,σ2) are i.i.d. random variables. Each
feature, Xl

i,j, is generated randomly from a uniform
[0, 1] distribution, and each coefficient β is obtained
from a uniform [−5, 5] distribution. We fix the number
of clusters kl � 2 for all feature l ∈D and vary the
parameters {n,d,m,σ2,p,q} one at a time (we observed
similar results for alternative values of kls). The defini-
tion and range of values for these parameters are
reported in Table 1. The parameters p and q represent
the probability that a given feature is modeled at the
aggregate and cluster levels, respectively (different

features are drawn independently). Thus, the proba-
bility that a feature is at the SKU level is (1− p− q).

It is important to note that the DAC algorithm’s
implementation admits three hyper-parameters (i.e.,
θ, RU, and RL) in addition to the numbers of clusters
kls. These three parameters represent the strictness of
our algorithm in determining whether a feature
should be aggregated. Specifically, θ � α is the p-value
cutoff for statistical significance and is usually set at
0.05 or 0.01. The parameters RU and RL represent
thresholds for the ratio of nonrejected hypotheses. For
example, suppose that the percentage of nonrejected
hypotheses for feature j is Rj � 0:3 (i.e., 30% of the
items have statistically close estimated coefficients).
Then, we label feature j as a department-level feature
if Rj > RU and as a SKU-level feature if Rj < RL. For
any intermediate value Rj ∈ [RL,RU], we will label fea-
ture j as a cluster-level feature. A good way to set the
parameters RL and RU is by performing a cross-
validation procedure (for more details, see Section 6).
The parameters θ, RU, and RL provide flexibility in the
tolerance level of the algorithm. In this section, we
fine-tune these parameters by testing a grid of values.
When implementing our algorithm with real data
(Section 6), we will carefully set their values using a
rigorous cross-validation procedure.

To test the performance of the DAC algorithm, we
consider the following four benchmarks: decentral-
ized, decentralized-lasso, centralized, and clustering.
For each problem instance (i.e., a specific combination
of {n,d,m,σ,p,q}), we generate 100 independent trials
(i.e., data sets) and use 67% as training and 33% as
testing for each trial. We then report the average out-
of-sample R2 across all items and observations. Here
is a description of the methods we consider:

1. DAC: We implement our algorithm with θ � 0:05,
RU � 0.9, and RL � 0.6.

2. Decentralized: We estimate a simple OLS model
for each item separately (i.e., nmodels).

3. Decentralized-lasso: Same as the decentralized
method, but we add an ℓ1 regularization term to each
OLS model (we obtained similar results when using a
regularization based on Ridge regression or Elasticnet).

4. Centralized: This is a naïve OLS model where we
assume that for each feature, all the items have the
same coefficient.

5.Clustering: We first cluster the items using k-means
based on their features. We then fit an OLS model for
each cluster.

As we can see from Figure 1, our algorithm outper-
forms all the benchmarks in all settings, in terms of
out-of-sample R2. Similar results were observed for
the MSE. As expected, as we increase the number of
observations, the prediction accuracy of the DAC
algorithm will also increase. We also find that the con-
vergence our DAC approach is faster relative to the

Table 1. Parameters Used in Section 5.1

Parameter Range of values

Number of items (n) [10, 150]
Number of features (d) [5, 15]
Number of observations (m) [10,50]
Variance of the noise (σ2) [0:25,2]
Department-level probability (p) [1=6, 2=3] or [1=6, 1=3]
Cluster-level probability (q) [1=6, 2=3] or [1=6, 1=3]
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decentralized OLS method (with or without regulari-
zation), hence highlighting the benefit of the DAC

algorithm under limited data availability. This clearly
demonstrates the power of data aggregation and clus-
tering present in our algorithm. Interestingly, the per-
formance is not greatly affected by the number of
items or by the number of features (indeed, the per-
formance of each method depends on the proportion
of the different feature types rather than the absolute
number of features). Finally, as expected, a higher σ2

negatively impacts the prediction accuracy of all
methods, as it makes identifying the structure more
challenging. Still, our proposed algorithm has a sub-
stantial advantage relative to the four benchmarks. To
complement the results of Figure 1, we report some
statistics on the results of the different methods. In
Table 2, we report the performance statistics (measured
by the out-of-sample R2) over the 100 independent
trials. In Table 3, we report the performance statistics
across n � 100 different items (in this case, the per-
item performance is captured by the MSE). As we can
see from both tables, the DAC algorithm outperforms
all the benchmarks for all metrics. In addition, the
standard deviation—both across instances and across
items—reduces significantly, hence suggesting that our

proposed algorithm also decreases the variability of the
performance.

Figure 2 presents the performance of the methods
when we vary the structure probability of the features
in terms of aggregation level. When a large proportion
of the features are at the department level (i.e., p is
getting close to one), all five methods perform well
(the DAC algorithm still performs best in all cases).
However, for instances where the structure is more
diverse, our algorithm significantly outperforms the
four benchmarks. Specifically, in all cases, the DAC

algorithm leverages the structure of the problem by
aggregating the data, ultimately yielding a higher
prediction accuracy.

Figure 1. (Color online) Comparison of PredictionModels (for Linear Regression)

Notes. (a) Varying the number of items. (b) Varying the number of features. (c) Varying the number of observations. (d) Varying the noise
magnitude.

Table 2. Performance Statistics over 100 Independent Trials
(Each Value Is the Out-of-Sample R2

Method Minimum Maximum Mean
Standard
deviation

DAC 0.691 0.943 0.876 0.038
Decentralized 0.564 0.924 0.825 0.061
Centralized 0.025 0.907 0.403 0.199
Clustering 0.056 0.907 0.405 0.197
Decentralized-lasso 0.48 0.909 0.799 0.071

Note. Parameters:m � 20, d � 8, n � 100, σ2 � 1, p � 2/3, q � 1/6.
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To further evaluate the performance of the DAC algo-
rithm, we consider two additional performance metrics:
measuring the capability to correctly identify the data
aggregation levels of the features, and measuring the
capability to accurately recover the cluster structure of
the items with respect to cluster-level features. To quan-
tify the first capability, we investigate the proportion of
features for which the DAC algorithm correctly identi-
fies their aggregation level. This metric is defined in a
similar fashion as the Accuracy metric used by Jagaba-
thula et al. (2018). To quantify the second capability, we
measure the ability to recover the cluster structures
using the Rand index (Rand 1971), defined as

RI :� a+ b
n
2

( ) ,

where a is the number of item pairs that belong to the
same cluster and predicted to be in the same cluster, b
is the number of item pairs that are in different clus-
ters and predicted to be in different clusters, and(n
2

)
� n(n− 1)=2 is total number of item pairs. The

higher RI is, the more capable the algorithm is in
recovering the true cluster structure. As a benchmark
approach to recover the cluster structure, we consider
the standard k-means clustering algorithm, where we
first cluster the items into different clusters based on
the average normalized values of the features X, and
then estimate a demand model for each cluster.

We highlight that to compute the previous two met-
rics, one needs to have access to the ground-truth val-
ues of the aggregation levels and the cluster structure,
which is not the case in settings based on real data. In
such settings, the only way to evaluate the perform-
ance of our DAC algorithm is to compute the out-of-
sample prediction accuracy as shown in Section 6.

We consider the same computational setting as in
Table 1. We report the results of our simulation analy-
ses in Figures 7–9 in Online Appendix D. As shown in
Figure 7 in Online Appendix D, the DAC algorithm
can identify the data aggregation level of each feature
with a reasonably high level of accuracy. Similarly,
the DAC algorithm can correctly recover the cluster
structure in most instances.3 In Figure 8 in Online

Table 3. Performance Across Items (Each Value Is the Out-
of-Sample MSE)

Method Minimum Maximum Mean
Standard
deviation

DAC 0.216 2.61 1.041 0.495
Decentralized 0.304 3.515 1.542 0.653
Centralized 0.386 13.25 3.725 3.02
Clustering 0.273 13.69 3.69 2.983
Decentralized-lasso 0.285 6.728 1.784 1.07

Note. Same parameters as Table 2.

Figure 2. (Color online) Comparison of PredictionModels (for Linear Regression)

Notes. (a) Varying p (fixing q � 1
3). (b) Varying p (fixing q � 2

3). (c) Varying q (fixing p � 1
3). (d) Varying q (fixing p � 2

3).
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Appendix D, we conduct a comprehensive sensitivity
analysis on both performance metrics with respect to
changes in the different model parameters including
the number of items n, the number of features d, the
number of data observations m, the noise magnitude
σ, and the number of clusters k (we assume that the
number of clusters is the same for all cluster-level fea-
tures). We find that the performance of our approach
is robust with respect to the different parameters, gen-
erating a reasonable performance for all problem
instances we examine. In particular, the DAC algo-
rithm is most accurate in identifying aggregation lev-
els and recovering the cluster structure when the noise
magnitude is low (i.e., a small value of σ) and when
the sample size m is large. This is inline with our theo-
retical result that the DAC algorithm is consistent in
identifying aggregation levels and the cluster struc-
ture (i.e., Proposition 3(a)).

Finally, Figure 9 in Online Appendix D reports the
comparison of the Rand index between the DAC algo-
rithm and the benchmark clustering algorithm (based
on k-means). Our simulation results show that the
DAC algorithm outperforms the standard clustering
approach in recovering the true cluster structure.
Importantly, DAC dominates the benchmark with a
sizable increase (15%–20%) in the Rand index.

5.2. Two Types of Items
In this section, we consider an interesting setting
where a subset of the items has limited data (referred
to as new items), whereas other items have abundant
data (referred to as old items). Our goal is to showcase
that our proposed DAC algorithm can leverage the
data from the old items to improve the prediction
accuracy for both types of items. These computational
experiments complement the analytical result derived
in Proposition 6 by considering a nonasymptotic
regime. Specifically, we consider a setting with n � 20
items, d � 5 features, σ2 � 1, p � 2/3, q � 1/6, mnew � 10,
and mold � 30. It thus corresponds to the situation where
the old items have three times more observations than
the new items. We then vary the proportion of new
items, captured by the parameter γ ∈ [0, 1]. When γ � 0,
it corresponds to the setting where all the items have
abundant data (i.e., they all have mold � 30 observations).
As before, we consider 100 independent trials and use
the same fine-tuned values of θ, RU, and RL.

The results are presented in Figure 3. In the top
panel, we show the average out-of-sample R2 across
all items as a function of γ. As before, the DAC algo-
rithm consistently outperforms all four benchmarks.
As expected, the benefit of the proposed algorithm rel-
ative to the decentralized OLS method increases as γ

Figure 3. (Color online) Comparison of PredictionModels for a Setting with Two Types of Items (for Linear Regression)

Notes. (a) All items. (b) New items only. (c) Old items only.
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increases. In the bottom two panels, we compute the
out-of-sample R2 separately for new items (Figure
3(b)) and old items (Figure 3(c)) while focusing on the
comparison between DAC and decentralized methods.
The results readily confirm both insights drawn from
Proposition 6: (i) the DAC algorithm improves the pre-
diction accuracy for both types of items, and (ii) the
improvement is more substantial for the items with
limited data.

5.3. Logistic Regression
In this section, we present computational experiments
for a classification problem in which the data-generating
process is the logistic regression model, that is, for i �
1, : : : ,n and j � 1, : : : ,m,

Yi,j � logit
∑
l∈Ds

Xl
i,jβ

s
l +

∑
l∈Dn

Xl
i,jβ

n
i,l +

∑
l∈Dc

Xl
i,jβ

c
ς(i,l),l

( )
+ εi,j,

where logit(u) :� 1=(1+ exp (−u)) is the Sigmoid func-
tion. We consider a similar setting as in Section 5.1
and use the same values of k, θ, RU, and RL as before.
We first generate the data matrix X from a uniform
[0, 1] distribution and the b coefficients from a uni-
form [−5, 5] distribution. The outcome variable Y is
then generated based on a Bernoulli distribution with
parameter μ :� logit(Xb). As in the linear regression
case, we systematically vary one parameter at a time.
The parameters’ value ranges are summarized in
Table 4.

Following several prior studies on binary classifica-
tion problems, we use the AUC as the metric to evalu-
ate the performance of the different models. AUC is
defined as the area under the ROC curve (Bradley
1997). It can be interpreted as the probability that a
prediction model is correctly ranking a random posi-
tive outcome higher than a random negative outcome.
We compare our DAC algorithm relative to three
benchmarks: decentralized, centralized, and clustering
(the definition of each algorithm is similar to that in
Section 5.1).4 For each instance, we generate 100 inde-
pendent trials and report the average out-of-sample
AUC scores. As we can see from Figure 4, our method
outperforms the benchmarks in all cases. Regardless
of how we vary {n,m,d}, the DAC algorithm outper-
forms the three other methods in terms of prediction

Table 4. Parameters Used in Section 5.3

Parameter Range of values

Number of items (n) [10, 30]
Number of features (d) [5, 15]
Number of observations (m) [40, 100]

Figure 4. (Color online) Comparison of PredictionModels (for Logistic Regression)

Notes. (a) Varying the number of items. (b) Varying the number of features. (c) Varying the number of observations.
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accuracy. Furthermore, a similar result as in Figure 2
was also observed for the logistic regression model
(the details are omitted to avoid repetition).

To summarize, our simulation studies demonstrate a
substantial and robust performance improvement for
our proposed algorithm relative to several benchmarks
(which are commonly used in practice and in the litera-
ture), even when the sample size is limited. Various
other benchmarks will be considered in the next section,
where the prediction algorithms are implemented. For
both regression and classification problems, the DAC

algorithm efficiently aggregates data and correctly iden-
tifies the data aggregation levels of the features and the
cluster structures of the items, thus ultimately improv-
ing the prediction accuracy. In the next section, we
apply the DAC algorithm using retail data to showcase
its benefits in a practical setting.

6. Applying the DAC Algorithm to
Retail Data

In this section, we apply the DAC algorithm to a retail
data set from a large global retailer (we cannot reveal
the name of the retailer because of a nondisclosure
agreement). We first provide a detailed description of
the data and then test the prediction performance of the
DAC algorithm relative to a broad range of benchmarks
(we consider a total of 15 commonly used benchmarks).
Finally, based on our computational findings, we draw
managerial insights that can help retailers infer which
features should be aggregated in practice.

6.1. Data
We have access to the retailer’s online sales data. The
data set includes the weekly sales information of three
departments between November 2013 and October
2016. A typical department comprises 100–150 SKUs.
In addition to the weekly sales information, the data
set includes the weekly price, a promotion indicator
(i.e., whether an item was promoted), the vendor, and
the color of the SKU. Table 5 summarizes the specifics
of each department. The size corresponds to the num-
ber of items in each department, and the numbers in
parentheses are the standard deviations.

As we can see from Table 5, each department has a
large number of observations (here, the observations are
at the SKU-week level). There is also a great variation in

terms of weekly sales, prices, promotion frequency, and
discount rates across the different departments. Table 6
provides a brief description of the different fields in our
data set. The effective weekly price is computed as the
total weekly revenue divided by the total weekly sales.
Functionality is a segmentation hierarchy used by the
firm to classify several SKUs from the same department
into subcategories.

Based on the features available in our data, we con-
sider the following model specification:

Yi,t � βiTrend · Ti,t + βi0 · pi,t + βi1 · PromoFlagi,t
+ βi2 · Fatiguei,t + βi3 · Seasonalityi,t+
+ βi4 · Functionalityi,t + βi5 · Colori,t
+ βi6 · Vendori,t + εi,t: (17)

Equation (17) includes the following features: Yi,t is
the total weekly sales of item i in week t (our depend-
ent variable), Ti,t is the trend variable of item i (we
normalize the year so that Ti � 0, 1, 2, 3), pi,t is the effec-
tive price of item i in week t, PromoFlagi,t is a binary
variable indicating whether there is a promotion for
item i in week t, Fatiguei,t is the number of weeks
since the most recent promotion for item i (if there is
no previous promotion, Fatiguei,t � 0; this feature
allows us to capture the postpromotion dip effect),
Seasonality is a categorical variable that measures the
weekly or monthly effect on sales (we use one-hot
encoding), and εi,t is an additive unobserved error.
The remaining three variables are categorical variables
indicating the web class index (functionality), color,
and vendor of the SKU, respectively.

Table 5. Summary Statistics of the Data from Each Department

Department Size Observations Weekly sales Price Promotion frequency Discount rate

1 147 19,064 108.11 42.92 31.3% 4.2%
(377.45) (38.80)

2 134 20,826 254.23 8.94 7.7% 6.4%
(517.07) (8.67)

3 125 14,457 68.68 97.61 8.5% 1.5%
(691.55) (67.12)

Table 6. Fields in Our Data Set (Observations Are
Aggregated at the SKU-Week Level)

Fields Description

SKU ID Unique SKU ID
Week Week index
Year Year index
Units Total weekly sales of a specific SKU
Price Effective weekly price of a specific SKU
PromoFlag Whether there was a promotion during that week
Functionality Class index of a specific SKU
Color Color of a specific SKU
Vendor Vendor of a specific SKU
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6.2. Prediction Performance
6.2.1. Benchmarks. As in Section 5, we compare the
performance of the DAC algorithm relative to the same
four benchmarks (decentralized, decentralized-lasso,

centralized, and clustering). In this section, for our anal-
ysis with real data, we also consider the following addi-
tional benchmarks: decentralized-elasticnet, DBSCAN
clustering, OPTICS clustering, centralized-ISI (item-

specific intercepts), centralized- K -means CFE (cluster

-fixed effects), centralized-DBSCAN CFE, centralized-

OPTICS CFE, decision tree, random forest, gradient

boosted tree, and neuralnetwork.5 We consider three
different clustering methods as benchmarks (k-means,
DBSCAN, and OPTICS) and ML-based methods. Fi-
nally, we test adding fixed effects to the decentralized
model under several configurations. We thus compare
the DAC algorithm’s performance to a total of 15 bench-
marks, which are commonly used in both academia
and practice.

It is important to mention that when implementing
our DAC algorithm, we need to slightly adapt the
clustering step of the algorithm. To ensure that we
output a single cluster structure, we first collect the
estimated coefficients from all cluster-level features
and then fit a multidimensional k-means model
(instead of a one-dimensional k-means for each fea-
ture). To avoid over-fitting, one can also include a
ℓ1-regularization term in the aggregated estimation
(Step 7 of Algorithm 1).

6.2.2. Implementation of DAC. Because the DAC algo-
rithm has four hyper-parameters (k,θ,RU,RL), we use
an extensive cross-validation procedure to fine-tune
these parameters and select the best model. For each
department, we first randomly split the data into
training (70%) and testing (30%) sets. We assume that
each design parameter lies within a prespecified range:
k ∈ {3, 4, : : : , 10}, θ ∈ {0:01,0:05,0:1, 0:5}, RU ∈ {0:7, 0:8,
0:9}, and RL ∈ {0:1, 0:2, 0:3, 0:4, 0:5} (we add the option
θ � 0:5 to include the decentralized method as a spe-
cial case). For each combination of hyper-parameters,
we perform a five-fold cross-validation by fitting the
model on 80% of the training data and compute the R2

based on the remaining 20% of the data. This proce-
dure is repeated five times for each parameter combi-
nation, and we compute the average R2 over the five
folds. We next select the best model based on the aver-
age cross-validation performance. Finally, the out-of-
sample R2 is computed on the testing set. Furthermore,
because the train/cross-validation/test split is done
randomly, we conduct 100 independent trials and
report the mean and the 95% confidence interval of the
out-of-sample R2.

Our computational environment relies on the re-
sources of Compute Canada and, more precisely, on
the Volta generation Nvidia V100-SXM2-16Go node

accessible on the Beluga computing network, with 6
Go of memory (V100 offers the performance of up to
100 CPUs in a single GPU).

6.2.3. Results. We present the results for the out-of-
sample R2 using a five-fold cross validation in Figure
5. As expected, we obtain similar results for the MSE
and the mean absolute percentage error (the details
are omitted for conciseness). In Figure 5, each bar rep-
resents the average out-of-sample performance, and
the length of the vertical line corresponds to the 95%
confidence interval across 100 trials. For all three
departments, the DAC algorithm not only achieves a
better average prediction performance but also often
has a smaller variance. This shows that our algorithm
is robust to different train/test splits, which is very
desirable in practice. In addition, DAC outperforms all
15 benchmarks regardless of data quality. More pre-
cisely, Department 2 seems to have high-quality data
and predictability power, whereas the data for
Department 3 seems to be of lower quality (the num-
ber of observations per SKU is the smallest for Depart-
ment 3, and data variability is high). Irrespective of
the data quality, the DAC algorithm yields a clear
improvement in prediction accuracy relative to all the
benchmarks we considered. For completeness, we
also recorded the in-sample R2 values and consistently
observed that the DAC algorithm reduces the amount
of overfitting relative to the other methods.

6.2.4. Time-Based Split Results. Thus far, we consid-
ered testing the different methods by using a random-
based split. This allows us to perform a cross validation
and ultimately compute confidence intervals to make
statistical claims on the performance comparisons. An
alternative way is to use a time-based split. Specifically,
we can split the data by using the first Y% weeks for
training (e.g., Y � 70) and the remaining 1−Y% for test-
ing. This alternative data splitting rule is attractive in
terms of prediction applicability but lacks statistical
support in terms of comparing the different methods.
When opting for a time-based split, two options are
possible: an item-based split or an absolute split. In an
item-based split, we divide the data into training and
testing sets for each item separately. In an absolute split,
we look at the total number of weeks in the data set
and then divide the data for all the items using the
same week threshold. These two options differ when
different items are introduced to the assortment at dif-
ferent times. In Figure 6, we present the results for
Department 2 (the highest performing department)
under an item-based split using 70% for training and
30% for testing. We obtained similar results for other
split ratios and when using an absolute split. When
using a time-based split, we can also consider time-
series methods. Specifically, we include the Prophet
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Figure 5. (Color online) Performance Comparison Using Real Data (Metric: Out-of-Sample R2, Random Split)

Notes. (a) Department 1. (b) Department 2. (c) Department 3.
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method as an additional benchmark (Taylor and
Letham 2018), which is considered among the state-of-
the-art time-series approaches for demand prediction.
Overall, as in the random-based split, the DAC algo-
rithm outperforms all the benchmarks.

In summary, our results based on real data from
three retail departments strongly suggest that the
DAC algorithm has superior performance in terms of
prediction accuracy. In addition to outperforming 15
benchmarks, our method reduces overfitting and pro-
vides a great interpretability advantage. Specifically, it
can help retailers identify the correct level of data
aggregation for the different features and uncover
the underlying cluster structure. Unlike other meth-
ods, the model output yields meaningful managerial
insights, as we discuss next.

6.3. Managerial Insights
Thus far, we focused on the prediction performance of
our proposed method. We then apply the DAC algo-
rithm to our data set and examine the estimation out-
put. Our goal is to draw managerial insights into the
hierarchical structure of the features. Next, we sum-
marize our findings.

• The DAC algorithm can significantly reduce the
model dimension. In Table 7, we report the number of
estimated coefficients for the decentralized and DAC

approaches across all three departments. Depending
on the department, the number of estimated coeffi-
cients is reduced by 20%–70%. The results in Table 7
confirm that shared coefficients do occur in practice
and that data aggregation can play an important role in
correctly identifying the aggregation structure.

• Practitioners often argue that seasonality features
should be aggregated at the department level for
demand prediction (Cohen et al. 2017, Vakhutinsky
et al. 2019). Using our retail data set, we discover that

this is indeed the case. If we model seasonality at the
month level (i.e., we use 11 dummy variables for each
calendar month), we find that for two departments, all
11 variables should indeed be estimated at the depart-
ment level (whereas for the third department, the same
is true for 7 of 11 variables). If we instead model sea-
sonality at the week level (i.e., we use 51 dummy varia-
bles for each week of the year), we find that 48 of 51
variables should be estimated at the department level
for two departments (and 18 of 51 for the third depart-
ment). Thus, our findings validate and refine a well-
known insight in practice.

• The price feature is unarguably one of the most
important features for demand prediction in retail.
According to our estimation results, for all three
departments, we obtain a distinct coefficient for the
price feature, implying that the price coefficient should
be estimated at the SKU level. This typically holds for
departments with a heterogeneous item collection.

• We find that the fatigue and promotion features
should be estimated at the department level for all three
departments (except the fatigue feature for one depart-
ment). This is an interesting insight that can guide
retailers when deciding their promotion strategy.

•We also find that all vendor and color dummy vari-
ables should be estimated at the SKU level. This is
unsurprising given that most vendor-color combina-
tions are unique for a specific SKU.

• The functionality dummy variables have different
aggregation levels and cluster structures. Interestingly,

Figure 6. (Color online) Comparison Using Real Data for Department 2 (Metric: Out-of-Sample R2, Time-Based Split)

Table 7. Number of Estimated Coefficients

Department Decentralized DAC

1 9,408 6,095
2 6,298 4,977
3 3,000 892
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most cluster-level features come from functionality.
One possible explanation is that the functionality fea-
ture is obtained based on the hierarchy structure used
by the company. Thus, SKUs with similar characteris-
tics are usually labeled under the same functionality,
making the cluster structure more prominent for func-
tionality features. Retailers can use such results to
potentially revise and improve their hierarchical struc-
ture and product segmentation.

7. Conclusion
Demand prediction or sales forecasting is an impor-
tant task faced by most retailers. Improving prediction
accuracy and drawing insights on data aggregation
can significantly impact retailers’ decisions and prof-
its. When designing and estimating predictive models,
retailers need to decide the aggregation level of each
feature (e.g., seasonality and price). Some features
may be estimated at the SKU level, others at the
department level, and the rest at a cluster level. Tradi-
tionally, this problem was addressed by trial-and-
error or by relying on past experience. It is common to
see data scientists testing a multitude of model specifi-
cations until they find the best aggregation level for
each feature. Such an ad hoc approach can be tedious
and is not scalable for cases with a large number of
features and items. The goal of this paper is to
develop an efficient method to simultaneously deter-
mine (i) the correct aggregation level of each feature,
(ii) the underlying cluster structure, and (iii) the esti-
mated coefficients.

We propose a method referred to as the (DAC) algo-
rithm. The DAC algorithm can determine the correct
aggregation level and identify the cluster structure of the
items. This method is tractable even when data dimen-
sionality is high, and it can significantly improve the effi-
ciency in estimating the model parameters. We first
derive several analytical results to demonstrate the valid-
ity and benefits of our proposed method. Specifically, we
show that the DAC algorithm yields a consistent esti-
mate, along with improved asymptotic properties rela-
tive to the decentralized method. We then go beyond the
theory and implement the DAC algorithm using a large
retail data set. In all our computational tests, we observe
that the proposed method significantly improves predic-
tion accuracy relative to a multitude of benchmarks.
Finally, we convey that our method can help retailers
uncover useful insights from their data.
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Endnotes
1 Under Assumption 1(b), each cluster has at least two items. Thus,
Step 4 of Algorithm 1 (with a time complexity of O(nd)) is sufficient
to determine the SKU-level features. If we relax this assumption
(i.e., some cluster may have only one feature), the DAC algorithm
can easily be adapted to run O(n2d) pairwise hypothesis tests
instead of O(nd).
2 See https://github.com/DACPublicator/DAC_Publication.
3 We note that the notion of “good performance” in this context is
subjective, as it depends on the performance of alternative methods.
We will consider below a benchmark approach for the task of recover-
ing the cluster structure and convey the superiority of our approach.
4 Because estimating a decentralized model with ℓ1 regularization is
computationally prohibitive for the logistic regression setting, we
only show the performance of the decentralized model without
regularization.
5 The implementation details of the aforementioned methods are
quite generic and are available upon request.
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Gür Ali Ö (2013) Driver moderator method for retail sales predic-

tion. Internat. J. Inform. Tech. Decision Making 12(06):1261–1286.
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