
Cohen, Zhang, and Jiao: Data Aggregation and Demand Prediction
38

Online Appendices to “Data Aggregation and Demand
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Maxime C. Cohen, Renyu Zhang, Kevin Jiao

Appendix A: Standard Generalized Linear Models
We next discuss the standard generalized linear models for completeness. Interested readers are referred to
McCullagh and Nelder (2019) for a comprehensive presentation of the GLM theory. In particular, we will
use the decentralized model to illustrate the classical likelihood theory of generalized linear models. More
specifically, for item i, we assume that the conditional distribution of Yi,j given the features Xi,j comes from
an exponential family with the following density:

P
(
Yi,j |Xi,j

)
= exp

{
Yi,jX

′
i,jβi −H(X ′

i,jβi)

H2(γ)
+H3(Yi,j , γ)

}
, (18)

where γ ∈ R+ is a known scale parameter, and H(·), H2(·), and H3(·) are three real-valued normalization
functions. The exponential family in Eq. (18) is very broad and includes Gaussian, binomial, Poisson, gamma,
and inverse-Gaussian as special cases. It is straightforward to derive that, under the true parameter βi, the
condition expectation of the outcome satisfies

E
[
Yi,j |Xi,j

]
=H ′(X ′

i,jβi) =G(X ′
i,jβi),

and the conditional variance of the outcome satisfies

V
(
Yi,j |Xi,j

)
=H ′′(X ′

i,jβi) =G′(X ′
i,jβi)H2(γ).

The log-likelihood function of parameter bi for item i under model (18) is thus given by

logLi(bi|Yi,Xi) =

m∑
j=1

[
Yi,jX

′
i,jbi −H(X ′

i,jbi)

H2(γ)
+H3(Yi,j , γ)

]
=

1

H2(γ)
·

m∑
j=1

[
Yi,jX

′
i,jbi −H(X ′

i,jbi)
]
+constant,

where the constant is independent of the parameter bi. Therefore, the decentralized MLE b̂i is given by
Eq. (3), which is equivalent to an iterative weighted least-squares procedure. The statistical theory of GLM
and MLE establishes the asymptotic and finite sample properties of the decentralized estimator b̂i. See
Proposition 1 for more details.

Appendix B: Two Potential Methods
In this section, we introduce two potential methods to estimate the model in Eq. (1) and predict the demand,
as well as discuss why these methods are not applicable to our setting.

B.1. Generalized ℓ1-Regularized MLE

The first potential method we consider is the generalized ℓ1-/lasso-regularized MLE (see, e.g., Tibshirani
1996, Tibshirani and Taylor 2011, Hastie et al. 2019) to estimate the coefficients. This approach revises
the standard MLE by adding a generalized ℓ1-regularizer. More specifically, the ℓ1-regularized log-likelihood
function of the aggregate model is given by:

1

m

m∑
j=1

n∑
i=1

[
Yi,jX

′
i,jβi −H(X ′

i,jβi)
]
−λ

(∑
i ̸=i′

d∑
l=1

|βi,l −βi′,l|

)
, λ > 0, (19)
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where H(·) is the normalization mapping that satisfies H ′(u) =G(u) (see Appendix A). A canonical result in
the statistics literature shows that ℓ1-regularization will shrink the regularized terms to 0 and, thus, generate
sparse solutions (see, e.g., Tibshirani 1996, Tibshirani and Taylor 2011, Zou and Hastie 2005). As a result,
adding a generalized ℓ1-regularizer to MLE may potentially be helpful to capture the fact that a feature
at the aggregate or cluster level shares the same coefficient for different items. We note that ℓ1-regularized
MLE is in a similar spirit to the fused lasso regression (see, e.g., Tibshirani and Taylor 2011, Tibshirani
et al. 2005). In the retail demand forecasting literature, Huang et al. (2014) and Ma et al. (2016) develop
Lasso-based methodological frameworks to overcome the problem of the ultra-high dimensionality of the
feature space under multiple product categories.

As shown by Tibshirani and Taylor (2011) and Ramdas and Tibshirani (2016), generating the ℓ1-regularized
MLE typically involves solving the dual problem multiple times along the solution path. Given the high-
dimensional nature of the convex optimization problem in Eq. (19) (i.e., the number of decision variables is
nd, which is at the magnitude of thousand or more in practice), estimating the coefficients is computationally
prohibitive even for a linear regression specification (i.e., G(u) = u) as it involves inverting (nd) × (nd)-
matrices in each step to construct the solution path (see, e.g., Tibshirani and Taylor 2011, Ramdas and
Tibshirani 2016). Therefore, though theoretically plausible, using the ℓ1-regularized MLE is not tractable
for our problem in practical settings.

B.2. Direct Optimization

We next consider the direct optimization approach that directly formulates the problem as a nonlinear
program to jointly estimate the data aggregation levels, cluster structures, and feature coefficients. Since
the data aggregation levels and cluster structures are unknown apriori, we need to use one-hot encoding to
represent the aggregation levels and cluster structures. More specifically, we use δsi,l to denote the indicator
variable for feature l of item i to be at the aggregate level, δni,l to denote the indicator variable for feature l
of item i to be at the individual level, and δci,l,ς to denote the indicator variable for feature l of item i to be

at the cluster level and item i being in cluster Cl,ς . Thus, there is a total of 2nd+ n
d∑

l=1

kl binary decision
variables. For expositional convenience, we consider the linear regression model (i.e., G(u) = u). Then, the
mean squared loss minimization can be written as:

min
β,δ

1

nm

n∑
i=1

m∑
j=1

(
Yi,j −X ′

i,jβi

)2
.

The constraints are not straightforward, so we next list them one by one. First, the δ variables are binary:

δsi,l ∈ {0,1}, δni,l ∈ {0,1}, and δci,l,ς ∈ {0,1}, for all 1≤ i≤ n,1≤ l≤ d,1≤ ς ≤ kl. (20)

Second, a feature can be at one (and only one) data aggregation level, that is,

δsi,l + δni,l +

kl∑
ς=1

δci,l,ς = 1, for all 1≤ i≤ n,1≤ l≤ d. (21)

Third, an aggregate-level feature should be at the aggregate level for all items:

δsi,l = δsi′,l, for all i ̸= i′,1≤ l≤ d. (22)
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Similarly, a SKU-level feature should be at the SKU level for all items:

δni,l = δni′,l, for all i ̸= i′,1≤ l≤ d. (23)

By combining Eqs. (21), (22), and (23), it implies that a cluster-level feature should be at the cluster level

for all items, namely,

kl∑
ς=1

δci,l,ς =

kl∑
ς=1

δci′,l,ς , for all i ̸= i′,1≤ l≤ d.

The number of items in each cluster with respect to each cluster-level feature is at least two:

n∑
i=1

δci,l,ς ≥
2

n

kl∑
ς′=1

n∑
i=1

δci,l,ς′ , for all 1≤ l≤ d and 1≤ ς ≤ kl. (24)

We note that the left-hand side of Eq. (24) quantifies the total number of items in cluster ς with respect to

feature l. Accordingly, one needs to consider two cases. First, if feature l is not at the cluster level, then the

left-hand side of Eq. (24) should be equal to 0. By combining Eqs. (21), (22), and (23), this is equivalent to

δci,l,ς = 0 for all item i and cluster ς, that is, the left-hand and right-hand sides of Eq. (24) are both equal to

0, and hence Eq. (24) holds in this case. Second, if feature l is at the cluster level, then the left-hand side of

Eq. (24) should be at least equal to two. In fact, in this case, the RHS of Eq. (24) is

2

n

kl∑
ς′=1

n∑
i=1

δci,l,ς′ =
2

n

n∑
i=1

kl∑
ς′=1

δci,l,ς′ =
2

n
·n · 1 = 2,

where the second equality follows from Eqs. (21), (22), and (23). Thus, the constraint in Eq. (24) is equivalent

to requiring that the number of items in each cluster with respect to each cluster-level feature is at least

equal to two.

For an aggregate-level feature, its coefficient should be the same for all items:

− 2β̄(1− δai,l)≤ βi,l −βi′,l ≤ 2β̄(1− δai,l), for all i ̸= i′ and 1≤ l≤ d, (25)

where β̄ is the maximum possible absolute value of the coefficients. Analogously, for a cluster-level feature

and the items within the same cluster with respect to this feature, the coefficient should be identical:

− 2β̄(2− δci,l,ς − δci′,l,ς)≤ βi,l −βi′,l ≤ 2β̄(2− δci,l,ς − δci′,l,ς), for all i ̸= i′, 1≤ l≤ d, and 1≤ ς ≤ kl. (26)
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Based on (20), (21), (22), (23), (24), (25), and (26), we formulate the direct optimization approach as the
following mixed-integer second-order conic program (SOCP):

min
β,δ

1

nm

n∑
i=1

m∑
j=1

(
Yi,j −X ′

i,jβi

)2
s.t. − β̄ ≤ βi,l ≤ β̄ i= 1,2, . . . , n, l= 1,2, . . . , d,

δsi,l ∈ {0,1}, δni,l ∈ {0,1}, and δci,l,ς ∈ {0,1}, for all 1≤ i≤ n,1≤ l≤ d,1≤ ς ≤ kl,

δsi,l + δni,l +

kl∑
ς=1

δci,l,ς = 1, for all 1≤ i≤ n,1≤ l≤ d,

δsi,l = δsi′,l, for all i ̸= i′,1≤ l≤ d,

δni,l = δni′,l, for all i ̸= i′,1≤ l≤ d,

n∑
i=1

δci,l,ς ≥
2

n

kl∑
ς′=1

n∑
i=1

δci,l,ς′ , for all 1≤ l≤ d and 1≤ ς ≤ kl,

− 2β̄(1− δai,l)≤ βi,l −βi′,l ≤ 2β̄(1− δai,l), for all i ̸= i′ and 1≤ l≤ d,

− 2β̄(2− δci,l,ς − δci′,l,ς)≤ βi,l −βi′,l ≤ 2β̄(2− δci,l,ς − δci′,l,ς), for all i ̸= i′, 1≤ l≤ d, and 1≤ ς ≤ kl.
(27)

We note that the mixed-integer SOCP in Eq. (27) has nd continuous decision variables, 2nd+n
d∑

l=1

kl binary

decision variables, and O
(
n2d

(
d∑

l=1

kl

))
linear constraints, which is intractable for a practical problem of a

reasonable size.
A similar generalized clusterwise linear regression (CLR) model has been proposed by Park et al. (2017) to

address a special case of our problem where all the features are at the cluster level and the cluster structure
is the same across all features. Park et al. (2017) show that the generalized CLR is NP-hard and propose
column generation and metaheuristic genetic algorithms to solve this problem. Since our problem in Eq. (27)
is more general with unknown data aggregation levels, the estimation methods proposed by Park et al. (2017)
are not applicable and tractable in our setting.

Alternatively, one may solve problem (27) via a procedure that iteratively estimates the continuous coef-
ficients and the binary decision variables for aggregation levels and cluster structures (in a similar way as in
Baardman et al. 2017). The iterative procedure will stop once the binary variables remain the same for two
consecutive iterations. Baardman et al. (2017) address the demand prediction problem when there are only
cluster-level features (i.e., no aggregate-level and no SKU-level features). In their setting, this iterative pro-
cedure was proved to converge to the true coefficients and cluster structure (i.e., the estimate is consistent).
In our setting, however, we cannot guarantee the consistency of the iterative optimization approach due to
the heterogeneous data aggregation levels and the unknown cluster structures in our model. As a result, the
iterative procedure is not a viable approach to solve problem (27) and estimate our model.

In conclusion, both the generalized ℓ1-regularized MLE and the direct optimization approaches cannot be
used to solve our problem in practice.

Appendix C: Proofs of Statements

We next provide the proofs of all the technical results.
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Proof of Proposition 1

Part (a). The proof of the consistency results follows from a standard result in statistics stating that the
maximum-likelihood estimator (MLE) is consistent under some regularity conditions that are satisfied by a
generalized linear model. See, for example, Fahrmeir et al. (1985) and McCullagh and Nelder (2019).

Part (b). We first show the asymptotic normality in Eq. (5). This is a standard result in the MLE
literature, which follows directly from, e.g., Theorem 3 of Fahrmeir et al. (1985).

We next prove the finite-sample normality result in Eq. (4). Since the smallest eigenvalue of Σi =

E
[
Xi,jX

′
i,j

]
, λmin(Σi), is strictly positive, by Proposition 1 of Li et al. (2017), there exists a (sufficiently

large) threshold m′
i such that, as long m≥m′

i, the smallest eigenvalue of V̂i(m) :=
m∑

j=1

Xi,jX
′
i,j , λmin(V̂i(m)),

can be arbitrarily large as m increases to infinity. Therefore, the condition of Theorem 1 in Li et al. (2017)
(i.e., Equation (4) thereof) is satisfied.

We define x ∈Rd with xl = 1 and all other xl′ = 0. Thus, x′(b̂(m)i −βi) = b̂i,l(m)− βi,l and the ℓ2-norm
of x associated with V̂i(m) is

||x||V̂i(m)−1 =

√
x′V̂i(m)−1x=

√
(V̂i(m)−1)l,l =

√√√√√ 1

m

( 1

m

m∑
j=1

Xi,jX ′
i,j

)−1


l,l

≤
√

2(Σ−1
i )l,l
m

, (28)

when m≥m′
i,l for some threshold m′

i,l by the strong law of large numbers. For any ϵ > 0, we define

δ := exp
(
−ψi,l · ϵ2 ·m

)
where ψi,l :=

g2
i

18(Σ−1
i )l,lσ2

, and g
i
:= inf

{
G′(z′bi) : z ∈Rd, ||z|| ≤ 1, ||bi −βi|| ≤ 1

}
> 0.

Hence, δ satisfies
3σ

g
i

·

√
log

(
1

δ

)
·
√

2(Σ−1
i )l,l
m

= ϵ.

Thus, if m≥mi,l :=max{m′
i,m

′
i,l}, with probability at least 1− 3δ, the following inequality holds:

|b̂i,l(m)−βi,l|= |x′(b̂(m)i −βi)| ≤
3σ

g
i

·

√
log

(
1

δ

)
· ||x||V̂i(m)−1 ≤

3σ

g
i

·

√
log

(
1

δ

)
·
√

2(Σ−1
i )l,l
m

= ϵ, (29)

where the first inequality follows from Theorem 1 in Li et al. (2017) and the second from Eq. (28). Inequal-
ity (29) immediately implies that, for m≥mi,l, inequality (4) holds, hence proving Proposition 1. □

Proof of Proposition 2

The proof is similar to the proof of Proposition 1, so we only sketch it for brevity. We note that we can
reformulate the aggregate model as a new GLM with m× n observations. We denote the outcome vector
as Ỹ ∈ Rmn. The feature design matrix X̃ has m × n rows (representing observations) and dx columns
(representing the total number of features):

Ỹj =G

(
dx∑
l=1

X̃ l
j β̃l

)
+ ϵj , (30)

where β̃l is the coefficient for feature l in the aggregate model and ϵj is the independent sub-Gaussian error
term. With the new formulation in Eq. (30), the aggregate model can be viewed as a decentralized model
with one item, dx features, and m×n observations.
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For part (a), the proof follows directly from the standard MLE theory. For part (b), both the finite
sample and asymptotic normality follow from a similar argument as in the proof of Proposition 1. Finally,
if Dc ∪ Ds ̸= ∅, then

√
mbai,l(m) =

√
mbai′,l(m) for i ̸= i′ and C(i, l) = C(i′, l). In this case, the asymptotic

distribution of
√
m(ba(m)−β) is clearly degenerate, because it has some equal coordinates for all m. This

concludes the proof of Proposition 2. □

Proof of Proposition 3

Part (a). We first show the inequality in Eq. (7).
• Step 1. If β1,l ̸= βi,l for some i ̸= 1, then lim

m↑+∞
P
[
H l

1,i is not rejected
]
= 0. This implies that the proba-

bility of Type-II error to falsely identify two different coefficients to be the same converges to 0.
We now assume that β1,l ̸= βi,l and use the notation H l

1,i(m) to make the dependence of H l
1,i on the sample

size m explicit. The probability that H l
1,i(m) is not rejected (resp. is rejected) is denoted by p(m) (resp.

q(m) := 1− p(m)). Since
√
mb̂1,l(m) and

√
mb̂i,l(m) are asymptotically normally distributed, there exists a

constant ci,l > 0 independent of m such that H l
1,i(m) is not rejected if and only if

|
√
mb̂1,l(m)−

√
mb̂i,l(m)| ≤ ci,l, for m sufficiently large.

We define ε := 1
3
· |β1,l − βi,l| > 0. We assume that m >

( ci,l

ε

)2, i.e., ci,l√
m
< ε and consider the case where

|b̂1,l(m)−β1,l| ≤ ε and |b̂i,l(m)−βi,l| ≤ ε. In this case,

|b̂1,l(m)− b̂i,l(m)| ≥ 1

3
|β1,l −βi,l|= ε >

ci,l√
m
.

Therefore, if |b̂1,l(m)− β1,l| ≤ ε and |b̂i,l(m)− βi,l| ≤ ε, H l
1,i(m) will be rejected, which implies that if m is

sufficiently large, we have

q(m)≥P
[
|b̂1,l(m)−β1,l| ≤ ε, |b̂i,l(m)−βi,l| ≤ ε

]
=1−P

[
|b̂1,l(m)−β1,l|> ε or |b̂i,l(m)−βi,l|> ε

]
≥1−P

[
|b̂1,l(m)−β1,l|> ε

]
−P

[
|b̂i,l(m)−βi,l|> ε

]
≥1− 3exp(−ψ1,lε

2m)− 3exp(−ψi,lε
2m),

(31)

where the second inequality follows from the union bound and the last inequality from Eq. (4). Inequality (31)
implies that lim

m↑+∞
q(m) = 1, or equivalently, lim

m↑+∞
p(m) = 0, which proves Step 1. This also implies that, as

m ↑+∞, the probability that the DACα algorithm mis-specifies an individual-level feature as a cluster- or
aggregate- level one, or a cluster-level feature as an aggregate-level one will shrink to 0 exponentially fast.

• Step 2. If l ∈Dc, then Step 6 of Algorithm 1 will produce a consistent estimate of the cluster structure
with respect to feature l, that is,

lim
m↑+∞

P
[
(Ĉ1,l, Ĉ2,l, . . . , Ĉkl,l) is a permutation of (C1,l,C2,l, . . . ,Ckl,l)

]
= 0.

We now fix feature l ∈Dc. We note that, for any i ∈ Cς (1≤ ς ≤ kl), the coefficient of feature l is βc
ς,l and

b̂i,l converges to βc
ς,l with a probability that exponentially decays in the sample size m. Thus, for the k-means

algorithm (k = kl) applied to {b̂1,l, b̂2,l, ..., b̂n,l}, the centers of the kl clusters {ĉ1,l, ĉ2,l, ..., ĉkl,l}, where ĉς is
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the center of cluster Cς , will converge to the true coefficient vectors for cluster-level features βc
ς,l up to a

permutation on {1,2, ..., kl}. For notational convenience, we assume that ĉς,l converges to βc
ς,l for 1≤ ς ≤ kl.

If there is an item i∈ Cς,l that is “mis-clustered” into Ĉς′,l, we have, as m ↑+∞, b̂i,l1 converges to βc
ς,l ̸= βc

ς′,l,
that is, for m sufficiently large,

|b̂i,l −βc
ς,l|< |b̂i,l −βc

ς′,l|.

This implies that, for m sufficiently large,

|b̂i,l − ĉς,l|< |b̂i,l − ĉς′,l|,

which contradicts the assumption that item i∈ Cς,l is mis-clustered into Ĉς′,l and hence concludes the proof
of Step 2. This also implies that, if m ↑+∞, as long as a cluster-level feature is correctly specified, the cluster
structure can also be correctly identified with probability 1.

• Step 3. Given any significance level α ∈ (0,1), the probability that the DACα algorithm mis-specifies
any cluster-level feature as an individual one, or any aggregate-level feature as a cluster-level one or an
individual-level one is upper bounded by p(α)> 0 as m ↑+∞.

We first note that the probability that the DACα algorithm mis-specifies any cluster-level feature as an
individual one, or any aggregate-level feature as a cluster-level one or an individual-level one is upper bounded
by the probability of the event that all the features are at the aggregate level but the algorithm mis-specifies
some feature to be at the cluster level or the individual level. We define the latter probability as p(α), which
is the probability that H l

1,i is rejected for at least one (i, l) under 2≤ i≤ n and 1≤ l≤ d under the condition
that all the features are at the aggregate level. For the rest of the proof of Step 3, we assume that all features
are at the aggregate level

We next quantify p(α) using multiple hypothesis testing (MHT) in the asymptotic regime (m ↑ +∞).
With a slight abuse of notation, we use b̂∈Rnd to denote a virtual estimator following the same distribution
as the limiting distribution (i.e., m ↑ +∞) of

√
m(b̂(m)− β). By Proposition 1(b), b̂ follows a zero-mean

multivariate normal distribution with covariance matrix V := diag(I1(β1)
−1,I2(β2)

−1, ...,In(βn)
−1), which

is block diagonal. We define an (n− 1)d-by-nd matrix T such that t̂ := T · b̂ is the joint estimator for Step 6
(Hypothesis Testing) of Algorithm 1, that is,

t̂ := T · b̂=



b̂1,1 − b̂2,1
b̂1,1 − b̂3,1

...

b̂1,1 − b̂n,1

...

b̂1,d − b̂2,d
b̂1,d − b̂3,d

...

b̂1,d − b̂n,d


∈R(n−1)d.

Therefore, t̂ is normally distributed with mean 0 ∈ R(n−1)d and covariance matrix Ṽ := T · V · T ′. Then, in
Algorithm 1, Hl

1,i (1 ≤ l ≤ d and 2 ≤ i ≤ n) is rejected if and only if t̃(n−1)(l−1)+i−1 = b̂1,l − b̂i,l is located
outside the interval

Ij(α) :=
[
−Vj,jΦ

−1
(
1− α

2

)
,Vj,jΦ

−1
(
1− α

2

)]
, where j := (n−1)(l−1)+i−1 and Φ−1(·) is the inverse Φ(·).
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We define I(α) :=
(n−1)d∏
j=1

Ij(α) as the Cartesian product of all Ij(α). We then have

p(α) = P
[
t̂ /∈ I(α)

]
, where t̂∼N (0, Ṽ ).

We have now completed the proof of Step 3.

• Step 4. The probability p(α) is strictly decreasing in α with lim
α↓0

p(α) = 0.

It is clear by definition that Ij(α1)⊂ Ij(α2) for α1 >α2, so I(α1) =
(n−1)d∏
j=1

Ij(α1)⊂
(n−1)d∏
j=1

Ij(α2) = I(α2) for

α1 >α2. Therefore, for α1 >α2,

p(α1) = P
[
t̂ /∈ I(α1)

]
> P

[
t̂ /∈ I(α1)

]
= p(α2),

where the inequality follows from I(α1) ⊂ I(α2). Finally, to prove that lim
α↓0

p(α) = 0, we note that

lim
α↓0

Φ−1
(
1− α

2

)
=+∞. Thus, lim

α↓0
I(α) =R(n−1)d, which implies that

lim
α↓0

p(α) = lim
α↓0

P
[
t̂ /∈ I(α)

]
= 0,

where the last equality follows from the monotone convergence theorem. This completes the proof of Step 4.

Furthermore, by combining Step 1, Step 2, Step 3, and Step 4, we conclude that inequality (7) holds.

• Step 5. The DACα estimator β̂α is consistent.

If the data aggregation levels (Ds,Dc,Dn) and the cluster structure {C1,l,C2,l, ...,Ckl,l} are correctly iden-

tified, Proposition 2 implies the consistency of β̂α. We next consider the following two cases: (i) A Type-I

error occurs, under which Algorithm 1 falsely identifies two identical coefficients to be different; and (ii) A

Type-II error occurs, under which Algorithm 1 falsely identifies two different coefficients to be the same.

Step 1 implies that the probability of Type-II error converges to 0 as the sample size m goes to infinity. For

the case of Type-I error, the model is not mis-specified and, as a consequence, the same argument as in the

proof of Proposition 1(a) implies that Step 7 of Algorithm 1 consistently estimates the true coefficient β.

This completes the proof of Step 5 and of Proposition 3(a).

Part (b). Once again, we consider the following three cases:

• Case 1. The data aggregation levels (Ds,Dc,Dn) and the cluster structure {C1,l,C2,l, ...,Ckl,l} are correctly

identified. The event of this case is denoted by E1(m), where we make the dependence on the sample size m

explicit.

• Case 2. A Type-I error occurs but there is no Type-II error, under which Algorithm 1 falsely identifies

two identical coefficients to be different. The event of this case is denoted by E2(m), where we make the

dependence on the sample size m explicit.

• Case 3. A Type-II error occurs, under which Algorithm 1 falsely identifies two different coefficients to

be the same. The event of this case is denoted by E3(m), where we make the dependence on the sample size

m explicit.
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We note that P
[
E1(m)∪E2(m)∪E3(m)

]
= 1 by definition. We first establish the following, for any ϵ > 0:

P
[
|β̂α

i,l(m)−βi,l|> ϵ
]
≤P
[
|β̂α

i,l(m)−βi,l|> ϵ,E1(m)
]
+P
[
|β̂α

i,l(m)−βi,l|> ϵ,E2(m)
]
+P
[
|β̂α

i,l(m)−βi,l|> ϵ,E3(m)
]

=

3∑
j=1

P
[
|β̂α

i,l(m)−βi,l|> ϵ
∣∣∣∣Ej(m)

]
P
[
Ej(m)

]
≤

2∑
j=1

P
[
|β̂α

i,l(m)−βi,l|> ϵ
∣∣∣∣Ej(m)

]
+P
[
E3(m)

]
,

(32)

where the first inequality follows from the union bound and from P
[
E1(m) ∪ E2(m) ∪ E3(m)

]
= 1, and the

second inequality from P
[
|β̂α

i,l(m) − βi,l| > ϵ

∣∣∣∣E2(m)
]
≤ 1 and P

[
Ej(m)

]
≤ 1 (j = 1,2). The above equality

follows from the definition of conditional probability. To prove Eq. (8), it suffices to show that there exist
two constants c1 > 0 and c2 > 0, such that, for any ϵ > 0 and sufficiently large m, the following holds:

P
[
|β̂α

i,l(m)−βi,l|> ϵ
∣∣∣∣Ej(m)

]
≤ c1 exp(−c2ϵ2m), j = 1,2, (33)

P
[
E3(m)

]
≤ c1 exp(−c2ϵ2m). (34)

We next quantify the concentration bounds in Eqs. (33) and (34) for the three cases separately.
Case 1. In this case, E1(m) holds true. Therefore, inequality (33) (for j = 1) follows immediately from

Proposition 2(b).
Case 2. In this case, E2(m) holds true. There are O(nd) sub-cases that differ on the estimation results

of the data aggregation levels. For each sub-case, Proposition 2(b) also holds (though each with a different
aggregate model to estimate). Thus, by applying the law of total probability, inequality (33) (for j = 2)
follows.

Case 3. In this case, inequality (31) implies that inequality (34) holds. Plugging inequalities (33) and (34)
into (32) implies that there exist constants ηαi,l > 0 and ψα

i,l > 0 such that inequality (8) holds for any m>mα
i,l

by setting the threshold mα
i,l sufficiently large. It thus concludes the proof of Proposition 3(b). □

Proof of Proposition 4

Part (a). By Proposition 1(b) (Eq. (5) in particular),
√
m(b̂i,l(m) − βi,l) converges in distribution to a

single-dimensional normal distribution with mean 0 and variance κi,l = (Ii(βi)
−1)l,l. Thus, we have

lim
m↑+∞

mE(b̂i,l(m)−βi,l)
2 = lim

m↑+∞
E
[√

m(b̂i,l(m)−βi,l)
]2

= κi,l,

namely, Eq. (9) holds for all 1≤ i≤ n and 1≤ l≤ d. This completes the proof of Proposition 4(a).
Part (b). The proof relies on analyzing the log-likelihood functions of the decentralized and aggregate

models carefully. Hence, we first introduce some notation. We define the (empirical average) log-likelihood
of item i with the data sample {(Yi,j ,Xi,j) : j = 1,2, . . . ,m} as

Li(bi;m) :=
1

m

m∑
j=1

logLi(βi|Yi,j ,Xi,j) =
1

m

m∑
j=1

[Yi,jX
′
ijbi −H(X ′

i,jbi)],

where we ignore a constant independent of data for the last equality and H ′(u) =G(u). Thus, the decentral-
ized estimator for item i is b̂i(m) = argmax

bi

Li(bi;m).
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We also denote the gradient and Hessian of the log-likelihood function associated with item i by ∇Li(bi;m)

and ∇2Li(bi;m), respectively. The Fisher information matrix with respect to the decentralized model of item i

is thus given by Ii(bi) =−E[∇2Li(bi; 1)], where the expectation is taken with respect to the true value of bi =

βi and the true distribution of (Yi,1,Xi,1). By using the law of large numbers, we have lim
m↑+∞

∇2Li(bi;m) =

−Ii(bi). Likewise, we define the log-likelihood of all the items as follows:

L(b;m) =

n∑
i=1

Li(bi;m) :=

n∑
i=1

1

m

m∑
j=1

logLi(bi|Yi,j ,Xi,j) =

n∑
i=1

1

m

m∑
j=1

[Yi,jX
′
ijbi −H(X ′

i,jbi)].

Hence, the aggregate estimator is defined by b̂a(m) = argmax
b∈Ξ

L(β;m), where the feasible parameter set Ξ

is defined as in Eq. (6). We denote the gradient and Hessian of L(b;m) as ∇L(b;m) =
n∑

i=1

∇Li(b;m) and

∇2L(b;m) =
n∑

i=1

∇2Li(b;m), respectively. We are now ready to prove Proposition 4(b) in different steps.

• Step 1. The aggregate estimator b̂a(m) satisfies the following expected squared error:

lim
m↑+∞

m ·E(bai,l(m)−βi,l)
2 =

(
1

ni,l

)2

·

 ∑
i′∈C(i,l)

κi′,l

 , for all 1≤ i≤ n and 1≤ l≤ d, (35)

where κi,l’s are defined in Proposition 4.
Based on the decentralized estimator, b̂(m), we first construct the following new estimator θ̂i,l(m) for each

item i and feature l:
θ̂i,l(m) =

1

ni,l

∑
i′∈C(i,l)

b̂i′,l(m).

By the consistency and asymptotic normality of b̂(m) (Proposition 1), we have θ̂i,l(m)
p−→

βi,l, for each i and l; and

lim
m→+∞

m ·E(θ̂i,l(m)−βi,l)
2 = lim

m→+∞
m ·E

( 1

ni,l

∑
i′∈C(i,l)

b̂i′,l(m)−βi,l

)2
=

(
1

ni,l

)2

· lim
m→+∞

m ·E
( ∑

i′∈C(i,l)

(b̂i′,l(m)−βi,l)
)2

=
( 1

ni,l

)2
·
∑

i′∈C(i,l)

[
lim

m→+∞
m ·E

(
b̂i′,l(m)−βi,l

)2]
=
( 1

ni,l

)2
·
( ∑

i′∈C(i,l)

κi′,l

)
, for i= 1,2, . . . , n, and l= 1,2, . . . , d,

(36)

where the third equality follows from the fact that the demand of different items are independent and the
last equality follows from Proposition 4(a).

We next apply the Taylor expansion of ∇Li(·;m) around the true parameter value βi for each i:

∇Li(b̂i(m);m) =∇Li(βi;m)+∇2Li(βi;m) · (b̂i(m)−βi)+ o(||b̂i(m)−βi||),

where o(·) refers to the standard “Little-o Notation” applied to each component of the vector.
Since b̂i(m) is the maximizer of Li(·;m), the first-order condition applies, that is, ∇Li(b̂i(m);m) = 0.

Thus, by plugging this into the Taylor expansion of ∇Li(·;m) we obtain

∇Li(βi;m)+∇2Li(βi;m) · (b̂i(m)−βi)+ o(||b̂i(m)−βi||) = 0, for each i. (37)
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Analogously, we apply the Taylor expansion of ∇L(·;m) around the true parameter value β:

∇L(b̂a;m) =∇L(β;m)+∇2L(β;m) · (b̂a(m)−β)+ o(||b̂a(m)−β||),

that is,
n∑

i=1

∇Li(b̂
a
i (m);m) =

n∑
i=1

∇Li(β;m)+

n∑
i=1

∇2Li(βi;m) · (b̂a
i (m)−βi)+ o(||b̂a(m)−β||).

Since b̂a(m) is the maximizer of L(·;m) under the constraint that βi,l = βi′,l for all i′ ∈ C(i, l), we have∑
i′∈C(i,l)

∇lLi′(β̂i′(m);m) = 0, where the operator ∇l refers to the partial derivative with respect to feature l.

Thus, for each item i, it follows that∑
i′∈C(i,l)

∇lLi′(b̂
a
i′(m);m) =

∑
i′∈C(i,l)

∇lLi′(βi′ ;m)+
∑

i′∈C(i,l)

∇l
2Li′(βi′ ;m) · (b̂a

i′(m)−βi′)+ o(||b̂(m)−β||) = 0,

(38)

where ∇l
2 is the l-th row of the Hessian.

From Eq. (37), we have for each i and each l,∑
i′∈C(i,l)

∇lLi′(b̂i′(m);m) =
∑

i′∈C(i,l)

∇lLi′(βi′ ;m)+
∑

i′∈C(i,l)

∇l
2Li′(βi′ ;m) · (b̂i′(m)−βi′)+ o(||b̂(m)−β||) = 0.

(39)

We note that b̂ai′,l(m) = b̂ai,l(m) for all i′ ∈ C(i, l), so that in total there are ni,l = |C(i, l)| coefficients
identical to b̂ai,l(m). By plugging this identity into Eq. (38) and subtracting Eq. (39), we obtain the
following, for each i and each l:∣∣∣∣ni,lb̂

a
i,l(m)−

∑
i′∈C(i,l)

b̂i,l(m)

∣∣∣∣= o(m− 1
2 ), i.e., |b̂ai,l(m)− θ̂i,l(m)|= o(m− 1

2 ), (40)

where we used the facts that ||b̂(m)−β||=O(m− 1
2 ) and ||b̂a(m)−β||=O(m− 1

2 ) (by applying the
strong law of large numbers, namely, lim

m↑+∞
∇l

2Li(βi;m) =−I l
i(βi) for any i and l). Thus, by Eq. (40),

E
(
b̂ai,l(m)− θ̂i,l(m)

)2

= o(m−1) for each i and each l. (41)

For each i and each l, we have

m ·E
(
b̂ai,l(m)−βi,l

)2
=m ·E

(
b̂ai,l(m)− θ̂i,l(m)+ θ̂i,l(m)−βi,l

)2
=m ·

[
E
(
b̂ai,l(m)− θ̂i,l(m)

)2
+E

(
θ̂i,l(m)−βi,l

)2
+2E

(
b̂ai,l(m)− θ̂i,l(m)

)(
θ̂i,l(m)−βi,l

)] (42)

By Eq. (36), we have

lim
↑+∞

m ·E
(
b̂ai,l(m)− θ̂i,l(m)

)2

=
( 1

ni,l

)2

·
( ∑

i′∈C(i,l)

κi′,l

)
. (43)

By Eq. (41), we have
lim

m↑+∞
m ·E

(
θ̂i,l(m)−βi,l

)2

= 0. (44)
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By Eq. (36) and Eq. (41), we have

lim
m↑+∞

m ·
∣∣∣∣E(b̂ai,l(m)− θ̂i,l(m)

)(
θ̂i,l(m)−βi,l

)∣∣∣∣
≤ lim

m↑+∞
2m ·

√
E
(
b̂ai,l(m)− θ̂i,l(m)

)2
·E
(
θ̂i,l(m)−βi,l

)2
=2

√(
lim

m↑+∞
m ·E

(
b̂ai,l(m)− θ̂i,l(m)

)2)
·
(

lim
m↑+∞

m ·E
(
θ̂i,l(m)−βi,l

)2)
=0,

(45)

where the inequality follows from the Cauchy-Schwartz inequality, the first equality from the fact
that both limits exist, and the last from Eqs. (43) and (44). Finally, we plug Eqs. (43), (44), and
(45) into Eq. (42) to obtain Eq. (35), and this concludes the proof of Step 1.

• Step 2. For the DACα estimator β̂α, inequality (10) holds.
We consider the three cases defined in the proof of Proposition 3: (i) E1(m) (i.e., data aggregation

levels and cluster structures corrected identified by DACα), (ii) E2(m) (Type-I error made but no
Type-II error made by DACα), and (iii) E3(m) (Type-II error made by DACα).

Since P
[
E1(m)∪E2(m)∪E3(m)

]
= 1, we have

E
[
β̂α
i,l(m)−βi,l

]2
≤E

[(
β̂α
i,l(m)−βi,l

)
1E1(m)

]2
+E

[(
β̂α
i,l(m)−βi,l

)
1E2(m)

]2
+E

[(
β̂α
i,l(m)−βi,l

)
1E3(m)

]2
=

3∑
j=1

E
[(

β̂α
i,l(m)−βi,l

)2
∣∣∣∣Ej(m)

]
P
[
Ej(m)

]
≤E

[(
β̂α
i,l(m)−βi,l

)2
∣∣∣∣E1(m)

]
P
[
E1(m)

]
+E

[(
β̂α
i,l(m)−βi,l

)2
∣∣∣∣E2(m)

]
P
[
E2(m)

]
+4β̄2P

[
E3(m)

]
,

(46)

where the first inequality follows from the union bound, the second from
(
β̂α
i,l(m)−βi,l

)2

≤ 4β̄2,
and the equality from the definition of conditional expectation.

We next bound each of the three terms in Eq. (46). By Proposition 3 (inequality (7) in particular),
Eq. (9), Eq. (35) and, P

[
E1(m)

]
+P
[
E2(m)

]
≤ 1, we obtain

lim
m↑+∞

mE
[(
β̂α
i,l(m)−βi,l

)2 ∣∣∣∣E1(m)
]
P
[
E1(m)

]
+ lim

m↑+∞
mE
[(
β̂α
i,l(m)−βi,l

)2 ∣∣∣∣E2(m)
]
P
[
E2(m)

]
≤(1− p(α))

(
1

ni,l

)2

·

 ∑
i′∈C(i,l)

κi′,l

+ p(α)κi,l.

(47)

By invoking inequality (34) in the proof of Proposition 3, we have

lim
m↑+∞

4β̄2mP
[
E3(m)

]
≤ 4β̄2 · lim

m↑+∞

[
mc1 exp(−c2m)

]
= 0. (48)

Plugging inequalities (47) and (48) into inequality (46) implies that inequality (10) holds. This
completes the proof of Step 2, and, thus, the proof of Proposition 4(b).

Part (c). Since
(

1
ni,l

)2

·
( ∑

i′∈C(i,l)
κi′,l

)
<κi,l and 0< p(α)< 1 (by Proposition 3), we have

(1− p(α))
( 1

ni,l

)2

·
( ∑

i′∈C(i,l)

κi′,l

)
+ p(α)κi,l <κi,l.
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Hence, by Proposition 4(a) and (b), there exists a threshold m̄i,l such that

m ·E
[
β̂α
i,l(m)−βi,l

]2
<m ·E

[
b̂i,l(m)−βi,l

]2
for all m≥ m̄i,l,

which implies Eq. (11). This completes the proof of Proposition 4(c). □

Proof of Proposition 5

Part (a). Since λmin(Σi)> 0 for any item i, the matrix X ′
iXi is of full rank (i.e., rank= d) when the

sample size m is sufficiently large. We denote the MSE of item i with respect to an estimator β̂i as

M̂SE i(β̂i) =

∑m

j=1(Yi,j −Xi,jβ̂i)
2

m
.

Applying Theorem 2.2 and its proof from Rigollet (2015) to the decentralized estimator of item i b̂i

implies that
E
[
M̂SE i(β̂i)

]
≤ dσ2

m
. (49)

One should also observe the identity that

1

n

n∑
i=1

M̂SE i(b̂i) =

∑n

i=1

∑m

j=1(Yi,j −Xi,jβ̂i)
2

nm
= M̂SE(b̂). (50)

Plugging Eq. (49) into the expectation of Eq. (50) yields inequality (12) and, thus, proves Proposi-
tion 5(a).

Part (b). We prove this result in different steps.
• Step 1. The MSE of the aggregate estimator b̂a has the following bound:

E
[
M̂SE(b̂a)

]
≤ 4dxσ

2

nm
. (51)

Following the proof of Proposition 2, the aggregate model can be formulated as Eq. (30) with
G(u) = u. Furthermore, the dimension of the design matrix X̃ is of dimension n×m by dx. One can
easily check that X̃ ′X̃ has rank dx. Thus, by Theorem 2.2 from Rigollet (2015), Eq. (51) holds. This
proves Step 1.

• Step 2. Under the DAC algorithm, we denote the event that only a Type-I error occurs but a
Type-II error does not occur (i.e., the algorithm may only falsely identify two identical coefficients
to be different) as E1 and the total number of coefficients to estimate in Step 7 of Algorithm 1 is
denoted as the random variable d̃x(α). We then have

E
[
M̂SE(β̂α)

∣∣∣∣E1, d̃x(α) = dx

]
≤ 4dxσ

2

nm
, for all dx = dx, dx +1, ..., nd. (52)

Conditioned on E1 and d̃x(α) = dx, the DACα can be viewed as the aggregate estimator in a revised
aggregate model. Therefore, by applying Eq. (52) to this model implies that Eq. (52) holds, and this
proves Step 2.
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• Step 3. Inequality (13) holds for the DACα estimator.
We denote E2 as the event where a Type-II error occurs (i.e., the DAC algorithm falsely identifies

different coefficients to be identical). Hence, P[E1 ∪E2] = 1. We thus have

E
[
M̂SE(β̂α)

]
≤E
[
M̂SE(β̂α) ·1E1

]
+E

[
M̂SE(β̂α) ·1E2

]
=E

[
M̂SE(β̂α)

∣∣∣∣E1

]
P
[
E1

]
+E

[
M̂SE(β̂α)

∣∣∣∣E2

]
P
[
E2

]
=

dx∑
dx=d

E
[
M̂SE(β̂α)

∣∣∣∣E1, d̃x(α) = dx

]
P
[
E1, d̃x(α) = dx

]
+E

[
M̂SE(β̂α)

∣∣∣∣E2

]
P
[
E2

]
≤

dx∑
dx=d

4dxσ
2

nm
P
[
d̃x(α) = dx

]
+4β̄2c1 exp(−c2m)

=
4dx(α)σ

2

nm
+ o(m−1),

(53)

where the first inequality follows from the union bound, the second from inequality Eq. (52)
and inequality (34), and the last equality from the definition of dx(α) and the identity
lim

m↑+∞
m exp(−c2m) = 0. By Eq. (53), to prove Eq. (13), it suffices to show that dx(α)< nd, which

holds by the support of d̃x(α). This completes the proof of Step 3.
• Step 4. The function dx(α) is decreasing in α with limα↓0 dx(α) = dx.
By Steps 3 and 4 from the proof of Proposition 3(a), Step 2 of Algorithm 1 is less likely to reject

H l
1,i for each i and each l with a smaller α, for any sample path of X and ϵ. Thus, for any sample path

of X and ϵ, d̃x(α) is decreasing in α. Hence, dx(α) = E
[
d̃x(α)

]
is decreasing in α as well. Finally,

as α ↓ 0, the probability that Step 2 of Algorithm 1 will reject H l
1,i converges to 0, which implies

that d̃x(α) converges to dx with probability 1. Therefore, lim
α↓0

dx(α) = lim
α↓0

E
[
d̃x(α)

]
= dx, where the

second equality follows from the monotone convergence theorem. This completes the proof of Step 4
and of Proposition 5(b). □

Proof of Proposition 6

As a first step, we adopt the bias-variance decomposition (e.g., Eq. (7.9) in Hastie et al. 2019) to
evaluate the generalization error of each item i. For any estimation algorithm π, we have

GE i(π) =E
[
Yi,mi+1 −

∑
l∈D

β̂i,l(π,Dtr)X
l
i,mi+1

]2
=σ2 +E

(∑
l∈D

βi,lX
l
i,mi+1 −E

[∑
l∈D

β̂i,l(π,Dtr)X
l
i,mi+1

])2

+E
(∑

l∈D

β̂i,l(π,Dtr)X
l
i,mi+1 −E

[∑
l∈D

β̂i,l(π,Dtr)X
l
i,mi+1

])2

,

(54)

where the first term is referred to as the irreducible error, the second term as the bias (which we
denote as Bi(π)), and the third term as the variance (which we denote as Vi(π)). In the following,
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we will evaluate the bias and variance terms for the Dec and DAC estimators. We also use Agg to
denote the aggregate estimator.

Before completing the proof of Proposition 6, we show that Agg is also an OLS estimator. The true
data-generating process (of the training set) can be specified as

Ỹ = X̃(tr)β̃+ ϵ̃, (55)

where Ỹ is a (τm)-dimensional vector that concatenates Yi for all items i= 1,2, ..., n, ϵ̃ is a (τm)-
dimensional error vector that concatenates ϵi for all items, and X̃(tr) is the (τm)× dx-dimensional
feature matrix defined as follows:

X̃(tr) :=


Xs

1(tr), X
n
1 (tr), 0, ..., 0, X̃c

1

Xs
2(tr), 0, Xn

2 (tr), ..., 0, X̃c
2

..., ..., ..., ..., ..., ...

Xs
n(tr), 0, 0, ..., Xn

n (tr), X̃
c
n

 ,

where X̃c
i (mi× (

∑
l∈Dc

kl)-dimensional) is the design matrix block of the aggregate model with respect

to item i (i= 1,2, ..., n), which is constructed in a similar fashion as the aggregate-level and individual-
level features. For conciseness, we do not write out X̃c

i in full detail. Thus, β̃ is a dx-dimensional
vector where the first ds entries are the coefficients of the features at the aggregate level, the next
ndn entries are the coefficients of the features at the individual level for each of the n items, and the
last

∑
l∈Dc

dl entries are the coefficients of the features at the cluster level. By the model specification

in Eq. (55), the coefficient estimates for the aggregate model are given by:

ˆ̃
β(Agg,D(tr)) = (X̃(tr)T X̃(tr))−1X̃(tr)T Ỹ (tr) = β̃+(X̃(tr)T X̃(tr))−1X(tr)T ϵ̃∈Rdx , (56)

which is essentially an OLS estimator (see also McCullagh and Nelder 2019 for more details).
Part (a). The Dec and Agg estimators are ordinary least squares (OLS). It is a standard result in

the statistics and econometrics literature that OLS is an unbiased estimator, that is, Bi(π) = 0 for
π ∈ {Agg,Dec} or, equivalently,∑

l∈D

βi,lX
l
i,mi+1 −E

[∑
l∈D

β̂i,l(π)X
l
i,mi+1

]
= 0, for π ∈ {Agg,Dec}. (57)

We next quantify the variance term Vi(π) for item i and estimation algorithm π. For the training
data of item i, we use the mi × d matrix Xi(tr) := (X l

i,j(tr) : 1 ≤ l ≤ d,1 ≤ j ≤m) as the feature
matrix, and the m dimensional vector Yi(tr) := (Yi,j(tr) : 1 ≤ j ≤m) as the label. For each item i,
the decentralized estimator is given by:

β̂i(Dec,Di(tr)) =(Xi(tr)
TXi(tr))

−1Xi(tr)
TYi(tr)

=(Xi(tr)
TXi(tr))

−1Xi(tr)
T (Xi(tr)βi + ϵi)

=βi +(Xi(tr)
TXi(tr))

−1Xi(tr)
Tϵi,

(58)
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where the first equality follows from Yi(tr) =Xi(tr)βi+ϵi. We are now ready to evaluate the variance
of the Dec estimator:
Vi(Dec) =E

(∑
l∈D

β̂i(Dec,Di(tr))X
l
i,mi+1 −E

[∑
l∈D

β̂i,l(Dec,Di(tr))X
l
i,mi+1

])2

=E
[
(XT

i,mi+1(Xi(tr)
TXi(tr))

−1Xi(tr)
T )ϵiϵ

T
i (X

T
i,mi+1(Xi(tr)

TXi(tr))
−1Xi(tr)

T )T
]

=E
[
Eϵi

[
(XT

i,mi+1(Xi(tr)
TXi(tr))

−1Xi(tr)
T )ϵiϵ

T
i (X

T
i,mi+1(Xi(tr)

TXi(tr))
−1Xi(tr)

T )T
∣∣∣∣Xi,mi+1,Xi(tr)

]]
=σ2E

[
(XT

i,mi+1(Xi(tr)
TXi(tr))

−1Xi(tr)
T )(XT

i,mi+1(Xi(tr)
TXi(tr))

−1Xi(tr)
T )T

]
=σ2E

[
XT

i,mi+1(Xi(tr)
TXi(tr))

−1Xi,mi+1

]
=

σ2

mi
E
[
XT

i,mi+1

( 1

mi
Xi(tr)

TXi(tr)
)−1

Xi,mi+1

]
,

where the second equality follows from Eq. (58), the third from the law of iterated expectations, and
the fourth from the fact that ϵi,j are i.i.d. with mean 0 and variance σ2. By the strong law of large
numbers and the dominated convergence theorem, we have lim

mi↑+∞
1
mi

Xi(tr)
TXi(tr) = Idd and we can

interchange the limit and expectation operators, where Idd is the identity matrix with dimension d,
observing that the features are i.i.d. with mean 0 and variance 1. Thus, we have

lim
mi↑+∞

mi ·Vi(Dec) = σ2E
[
XT

i Xi

]
= σ2 · d(= σ2 · (ds + dn + dc)),

where the second equality follows from the fact that Xi,mi+1 has d features which are i.i.d. with
mean 0 and variance 1. For item i, mi =mτi, so we obtain

lim
m↑+∞

m ·Vi(Dec) =
σ2d

τi
. (59)

Hence, by plugging Eqs. (57) and (59) into Eq. (54), we conclude that Eq. (14) holds. This proves
Proposition 6(a).

Part (b). We decompose the proof of this part into several steps.
• Step 1. For the aggregate estimator b̂a, the generalized error satisfies

lim
m↑+∞

m ·
(
GE i(Agg)−σ2

)
=
( d∑

l=1

1

τ(i, l)

)
·σ2, for i= 1,2, ..., n. (60)

Without loss of generality, we assume that the first ds features {1,2, ..., ds} are at the aggregate
level, the next dn features {ds +1, ds +2, ..., ds + dn} are at the individual level, and the remaining
dc features {dn+ds+1, dn+ds+2, ..., d} are at the cluster level. For item i, we denote by Xs

i (tr) =

(X l
1,j(tr) : 1 ≤ l ≤ ds,1 ≤ j ≤ mi) the feature matrix at the aggregate level, Xn

i (tr) = (X l
i,j(tr) :

ds + 1≤ l ≤ ds + dn,1≤ j ≤mi) the feature matrix at the individual level, and Xc
i (tr) = (X l

i,j(tr) :

ds + dc +1≤ l≤ d,1≤ j ≤mi) the feature matrix at the cluster level.
We next analyze the aggregate model (55). To evaluate Vi(Agg), we define an auxil-

iary dx-dimensional random vector for each item i, X̃i,mi+1 follows the same distribution
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as the
i−1∑
j=1

mj + 1 row of X̃(tr). We also denote the non-zero entries of X̃i,mi+1 as X̃i =

((X̃s
i,mi+1)

T , (X̃n
i,mi+1)

T , (X̃c
i,mi+1)

T )T ∈Rd. We are now ready to compute Vi(Agg):

Vi(Agg) =E
( dx∑

l=1

ˆ̃
βi(Agg,Di(tr))X̃

l
i,mi+1 −E

[ dx∑
l=1

ˆ̃
βi,l(Agg,Di(tr))X̃

l
i,mi+1

])2
=E
[
(X̃T

i,mi+1(X̃i(tr)
T X̃i(tr))

−1X̃i(tr)
T )ϵ̃iϵ̃

T
i (X̃

T
i,mi+1(X̃i(tr)

T X̃i(tr))
−1X̃i(tr)

T )T
]

=E
[
Eϵ̃i

[
(X̃T

i,mi+1(X̃i(tr)
T X̃i(tr))

−1X̃i(tr)
T )ϵ̃iϵ̃

T
i (X̃

T
i,mi+1(X̃i(tr)

T X̃i(tr))
−1X̃i(tr)

T )T
∣∣∣∣X̃i,mi+1,X̃i(tr)

]]
=σ2E

[
X̃T

i,mi+1(X̃i(tr)
T X̃i(tr))

−1X̃i,mi+1

]
=
σ2

τm
E
[
X̃

T

i

( 1

τm
M̂i(tr)

)−1

X̃i

]
,

(61)

where the second equality follows from Eq. (56), the third from the law of iterated expectations,
and the fourth from the fact that ϵi,j are i.i.d. with mean 0 and variance σ2. We now compute the
matrix M̂i(tr). By the strong law of large numbers, Ẑi := lim

m↑+∞
1

τm
M̂i(tr) is a diagonal matrix with

the following properties: (i) if l ∈Ds, then

(Ẑi)l,l = lim
m↑+∞

1

τm

n∑
i′=1

(X l
i′(tr))

TX l
i′(tr) = 1; (62)

(ii) if l ∈Dn, then
(Ẑi)l,l =

τi
τ
· lim
m↑+∞

1

τim
(X l

i(tr))
TX l

i(tr) =
τi
τ
; (63)

(iii) if l ∈Dc, then

(Ẑi)l,l =
τ(i, l)

τ
· lim
m↑+∞

1

τ(i, l)m

∑
i′∈C(i,l)

(X l
i′(tr))

TX l
i′(tr) =

τ(i, l)

τ
. (64)

Hence, (Ẑi)
−1 is also diagonal with ((Ẑi)

−1)l,l = ((Ẑi)l,l)
−1. Therefore, by the dominated convergence

theorem, we plug Eqs. (62), (63), and (64) into Eq. (61) and interchange the limit and expectation
operators to obtain

lim
m↑+∞

m ·Vi(Agg) = σ2 ·

(
ds
τ

+
dn
τi

+
∑
l∈Dc

1

τ(i, l)

)
= σ2 ·

(
d∑

l=1

1

τ(i, l)

)
. (65)

Thus, by plugging Eqs. (57) and (65) into Eq. (54), we conclude that Eq. (60) holds, and this proves
Step 1.

• Step 2. The generalization error of the DAC estimator satisfies Eq. (15).
We consider the three cases defined in the proof of Propositions 3 and 4: (i) E1 (i.e., data aggregation

levels and cluster structures are correctly identified by DACα), (ii) E2 (Type-I error made but no Type-
II error made by DACα), and (iii) E3 (Type-II error made by DACα). We define β̄ as the maximum
possible value of the coefficients for all items and all features.
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We quantify Bi(DACα) and Vi(DACα) separately. Since P
[
E1 ∪E2 ∪E3

]
= 1, we have

Bi(DACα)≤E
[(∑

l∈D

βi,lX
l
i,mi+1 −E

[∑
l∈D

β̂i,l(DACα,Dtr)X
l
i,mi+1

])2
1E1

]
+E

[(∑
l∈D

βi,lX
l
i,mi+1 −E

[∑
l∈D

β̂i,l(DACα,Dtr)X
l
i,mi+1

])2
1E2

]
+E

[(∑
l∈D

βi,lX
l
i,mi+1 −E

[∑
l∈D

β̂i,l(DACα,Dtr)X
l
i,mi+1

])2
1E3

]
=

3∑
j=1

E
[(∑

l∈D

βi,lX
l
i,mi+1 −E

[∑
l∈D

β̂i,l(DACα,Dtr)X
l
i,mi+1

])2∣∣Ej

]
·P
[
Ej

]
≤4dβ̄2P

[
E3
]
,

(66)

where the first inequality follows from the union bound, the second from the fact that OLS is
unbiased for a correctly specified model and the definition of β̄, and the equality from the definition of
conditional expectation. Therefore, by inequality (34) in the proof of Proposition 3 and inequality (66)
, we have

lim
m↑+∞

Bi(DACα)≤ lim
m↑+∞

4dβ̄2mP [E3]≤ 4dβ̄2 · lim
m↑+∞

[
mc1 exp(−c2m)

]
= 0. (67)

We next evaluate Vi(DACα) using a similar strategy:

Vi(DACα)≤E
[(∑

l∈D

β̂i,l(π,Dtr)X
l
i,mi+1 −E

[∑
l∈D

β̂i,l(π,Dtr)X
l
i,mi+1

])2
1E1

]
+E

[(∑
l∈D

β̂i,l(π,Dtr)X
l
i,mi+1 −E

[∑
l∈D

β̂i,l(π,Dtr)X
l
i,mi+1

])2
1E2

]
+E

[(∑
l∈D

β̂i,l(π,Dtr)X
l
i,mi+1 −E

[∑
l∈D

β̂i,l(π,Dtr)X
l
i,mi+1

])2
1E3

]
=

3∑
j=1

E
[(∑

l∈D

β̂i,l(π,Dtr)X
l
i,mi+1 −E

[∑
l∈D

β̂i,l(π,Dtr)X
l
i,mi+1

])2∣∣∣∣Ej

]
·P
[
Ej

]
≤E
[(∑

l∈D

β̂i,l(π,Dtr)X
l
i,mi+1 −E

[∑
l∈D

β̂i,l(π,Dtr)X
l
i,mi+1

])2∣∣∣∣E1] ·P[E1]
+E

[(∑
l∈D

β̂i,l(π,Dtr)X
l
i,mi+1 −E

[∑
l∈D

β̂i,l(π,Dtr)X
l
i,mi+1

])2∣∣∣∣E2] ·P[E2]
+4dβ̄2P

[
E3
]
,

(68)

where the first inequality follows from the union bound, the second from the definition of β̄, and
the equality from the definition of conditional expectation.

We now bound each of the three terms in Eq. (68). By Proposition 3 (inequality (7) in particular),
Eqs. (59), (65) and, P [E1] +P [E2]≤ 1, we have

lim
m↑+∞

m ·E
[(∑

l∈D

β̂i,l(π,Dtr)X
l
i,mi+1 −E

[∑
l∈D

β̂i,l(π,Dtr)X
l
i,mi+1

])2∣∣∣∣E1] ·P[E1]
+ lim

m↑+∞
m ·E

[(∑
l∈D

β̂i,l(π,Dtr)X
l
i,mi+1 −E

[∑
l∈D

β̂i,l(π,Dtr)X
l
i,mi+1

])2∣∣∣∣E2] ·P[E2]
≤p(α) · d ·σ

2

τi
+(1− p(α)) ·

( d∑
l=1

1

τ(i, l)

)
·σ2.

(69)
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Plugging inequalities (69) and (67) into inequality (68) implies that

lim
m↑+∞

m ·Vi(DACα)≤ p(α) · d ·σ
2

τi
+(1− p(α)) ·

( d∑
l=1

1

τ(i, l)

)
·σ2. (70)

By combining inequalities (67) and (70) with the bias-variance decomposition from Eq. (54), we
conclude that inequality (15) holds. This completes the proof of Step 2, and, thus, the proof of
Proposition 6(b).

Part (c). By subtracting Eq. (14) from Eq. (15), we have

lim
m↑+∞

m ·
(
GE i(Dec)−GE i(DACα)

)
> (1− p(α)) ·

(
ds

( 1

τi
− 1

τ

)
+
∑
l∈Dc

( 1

τi
− 1

τ(i, l)

))
·σ2,

where the inequality follows from the fact that, if a Type-I error occurs, it may still identify some (if
not all) of the identical coefficients. Since 0< p(α)< 1 (by Proposition 3), τ > τi, and τ(i, l)≥ τi for
each i and l, for a sufficiently large m, we have

m ·
(
GE i(Dec)−GE i(DACα)

)
> (1− p(α)) ·

(
ds

(
1

τi
− 1

τ

)
+
∑
l∈Dc

( 1

τi
− 1

τ(i, l)

))
·σ2 > 0,

namely, Eq. (16) holds. Finally, by taking the first- and second-order partial derivatives of gi(τ ) we
obtain, for i′ ̸= i,

∂gi(τ )

∂τi
< 0,

∂gi(τ )

∂τi′
> 0,

∂2gi(τ )

∂2τi
> 0, and ∂2gi(τ )

∂2τi′
< 0.

This suggests that gi(τ ) is convexly decreasing in τi and concavely increasing in τi′ . We have thus
completed the proof of Proposition 6(c). □
Appendix D: Additional Plots for Section 5

In this section, we report the simulation results to evaluate the performance of the DAC algorithm to identify
the data aggregation levels of the features and recover the cluster structure of the items with respect to
cluster-level features. The simulation details are presented in Section 5.1.

In Figure 7(a), we compute the aggregation performance (i.e., the capability to correctly identify the
data aggregation levels of the features), whereas in Figure 7(b), we compute the clustering performance
(i.e., the capability to accurately recover the cluster structure of the items with respect to cluster-level
features). As discussed in Section 5.1, the aggregation performance is captured by the Accuracy metric and
the clustering performance by the Rand index (more details about these two metrics including the formulas
can be found in Section 5.1). Figure 7 reports the values of these two metrics (in the form of a histogram) for
the instances presented in Table 1. Specifically, the y-axis represents the proportion and the x-axis reports
the value obtained for each instance. Both the Accuracy and the Rand index metrics are evaluated at the
problem instance level. More specifically, for each problem instance specified in Table 1, we evaluate the
Accuracy as the proportion of the d features that our DAC algorithm correctly identifies their aggregation
levels (i.e., among the d features, how many of them are correctly classified in terms of their aggregation
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level). Likewise, for each problem instance specified in Table 1, we evaluate the Rand index as the proportion
of item-pairs that our DAC algorithm correctly identifies (i.e., whether they are in the same cluster or not).
In our simulation, we set the cluster structure invariant with respect to different features.

(a) Identifying aggregation levels (b) Recovering the cluster Structure

Figure 7 Performance in identifying aggregation levels and recovering the cluster structure.
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(a) Varying the number of items n (b) Varying the number of features d

(c) Varying the noise magnitude σ (d) Varying the number of clusters k

(e) Varying the number of observations m

Figure 8 Sensitivity analysis on the DAC performance.
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(a) Varying the number of items n (b) Varying the number of features d

(c) Varying the number of observations m (d) Varying the number of clusters k

(e) Varying the noise magnitude σ

Figure 9 Comparing DAC with the k-means benchmark.


