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Randomized experiments are the gold standard for causal inference but face significant challenges in busi-

ness applications, including limited traffic allocation, the need for heterogeneous treatment effect estimation,

and the complexity of managing overlapping experiments. These factors lead to high variability in treat-

ment effect estimates, making data-driven policy roll-out difficult. To address these issues, we introduce the

data-pooling treatment roll-out (DPTR) framework, which enhances policy roll-out by pooling data across

experiments rather than focusing narrowly on individual ones. DPTR can effectively accommodate both

overlapping and non-overlapping traffic scenarios, regardless of linear or nonlinear model specifications. We

demonstrate the framework’s robustness through a three-pronged validation: (a) theoretical analysis shows

that DPTR surpasses the traditional difference-in-mean and ordinary least squares methods under non-

overlapping experiments, particularly when the number of experiments is large; (b) synthetic simulations

confirm its adaptability in complex scenarios with overlapping traffic, rich covariates and nonlinear specifica-

tions; and (c) empirical applications to two experimental datasets from real-world platforms, demonstrating

its effectiveness in guiding customized policy roll-outs for subgroups within a single experiment, as well as

in coordinating policy deployments across multiple experiments with overlapping scenarios. By reducing

estimation variability to improve decision-making effectiveness, DPTR provides a scalable, practical solution

for online platforms to better leverage their experimental data in today’s increasingly complex business

environments.

Key words : Randomized Experiments, Data Pooling, Roll-out Policies, Experimentation on Online

Platforms, Decision-aware Estimation.

1. Introduction

Randomized experiments have long been regarded as the gold standard for estimating causal effects

across a wide range of scientific disciplines. The adoption of randomized experiments in business,

especially in the tech sector, has gained significant momentum in recent years. Online platforms

routinely use randomized control trials (RCTs) to shape a wide array of decisions, including the

1



Peng et al.: Data-Pooling for Treatment Selection
2

product design, UI, recommendation algorithms, Ad placement, and pricing strategies (Luca and

Bazerman 2021). The need for rapid validation and deployment has led companies to run hundreds

or even thousands of RCTs concurrently. At Bing, for example, the number of completed experi-

ments increased from fewer than 50 per week in 2008 to more than 300 per week by 2014 (Kohavi

and Thomke 2017). Booking runs in excess of 1,000 concurrent experiments at any given moment

across different products and target groups (Booking 2019). The widespread implementation of

RCTs is not incidental: Kohavi et al. (2020) report that companies such as Microsoft, Google, and

LinkedIn now conduct over 20,000 experiments annually.

A central issue faced by randomized experiments is data scarcity. Despite the large overall user

base of many platforms, the amount of experimental traffic that can be allocated to any single

treatment is often constrained, either due to operational limitations or risk concerns. As a result,

the effective sample size for each experiment may be quite limited. For instance, Lewis and Rao

(2015) examine 25 digital advertising RCTs conducted by large retailers and financial service firms.

Their findings show that the median confidence interval for return on investment (ROI) is over

100 percentage points wide, making it nearly impossible for advertisers to distinguish between

campaigns with a 50% ROI difference. This problem becomes more acute in the context of tar-

geted experimentation and personalization, which are now standard practices in digital marketing.

When experiments are stratified by user attributes to tailor interventions to specific segments, the

resulting sample sizes for each subgroup can become vanishingly small, undermining the statistical

power of the experiment (e.g., Athey and Imbens 2016, Lada et al. 2019). Furthermore, orthogonal

experimental designs, often used to enable efficient estimation across high-dimensional treatment

spaces, can exacerbate the issue by creating treatment combinations that are either underrep-

resented or completely unobserved in practice (see, Ye et al. 2025). These factors together pose

a major barrier to identifying effective policy interventions and learning from past experiments,

especially in fast-paced environments where decisions must be made with limited data and high

uncertainty.

Given these challenges, our central research question is: when running a large number of experi-

ments and observing limited data for each, how should we improve the experiment roll-out decisions

under data scarcity? We propose a novel data-pooling treatment roll-out framework (DPTR).

Instead of analyzing each experiment in isolation, DPTR integrates data across multiple experi-

ments to enhance experiment roll-out decisions, where the “roll-out decision” refers to the policy

selection in this paper, aiming at reducing variance with a tolerable increase in bias. In other

words, this approach determines whether a policy should be implemented by leveraging both the

data collected from its own experiment and the pooled data from other experiments. Specifically,

the treatment effect estimation is conducted by combining an individual estimator and an anchor
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estimator, defined as the average of all individual estimators, via a data-driven scale parameter.

More importantly, the proposed DPTR framework is flexible and can be adapted to handle various

experimentation scenarios, which differ along two dimensions: whether the experiments involve

overlapping traffic and whether the underlying model is nonlinear. Beyond estimating average

treatment effects (ATEs) by pooling data across experiments, the DPTR framework, by design,

is also capable of accounting for heterogeneous treatment effects (HTEs) within subgroups in a

single experiment. This enables DPTR framework to be broadly applicable to real-world business

contexts, where experimentation scenarios are increasingly complex and data availability is limited.

(a) All ATEs equal to 1. (b) ATEs across experiments 1–7: -1,-1, 0, 0, 1, 1, 1.

Figure 1 An simple numerical case study with seven experiments.

Notes. Each experiment includes 10 observations, with 5 assigned to the control group and 5 to the treatment

group. The noise term has a standard deviation of 3. We use the Difference-in-Means method for hypothesis

testing.

A case study. We illustrate the advantage of DPTR framework over the conventional individ-

ual hypothesis testing (IHT) through a running example where seven experiments are conducted

simultaneously. Each experiment collects 10 observations, and we compute confidence intervals of

ATEs using both IHT and DPTR methods. We begin with the case with homogeneous ATEs, that

is, all ATEs equal to 1. As shown in Figure 1 (a), the limited sample size causes IHT to pro-

duce excessively wide confidence intervals, with five lower bounds falling below zero. This implies

that such a method fails to effectively identify experiments with positive ATEs. In contrast, our

DPTR method significantly narrows the confidence intervals and enables effective identification of

each experiment. Next, we consider a heterogeneous setting where ATEs differ across experiments,

including both positive and negative values. As shown in Figure 1 (b), although our method may

introduce some bias and occasionally misclassify non-positive ATEs as positive, the roll-out deci-

sions guided by our method result in an improvement in overall reward compared to those based
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on IHT. In particular, compared to IHT, DPTR successfully rolls out the 5th and 6th experiments

with positive ATEs, although it fails to rule out the 1st experiment with a negative ATE.

The Bayesian framework offers a natural and principled method for aggregating evidence, and

thus, similar to the proposed DPTR framework, can be employed to support data pooling across

experiments to improve estimation efficiency at the level of individual experiments or targeted

subgroups. Despite this alignment, the two frameworks differ fundamentally in their conceptual

basis. The proposed DPTR framework, from a frequentist perspective, treats ATEs as fixed but

unknown values, in contrast to the Bayesian approach that models ATEs as random variables.

Moreover, the DPTR framework is more flexible in accommodating various data availability and

model specifications: overlapping and non-overlapping experiment settings, as well as linear and

nonlinear models. More importantly, the DPTR framework is decision-aware. That is, estimation

and inference are directly aligned with downstream decisions, such as treatment roll-out decisions,

by incorporating thresholds or significance levels into the analysis. This decision-centric design can

lead to substantial performance gains in real-world deployment scenarios, where the goal is not

merely to estimate effects accurately but to identify and implement effective interventions.

We demonstrate the value of the proposed DPTR framework from three perspectives. First, we

theoretically examine DPTR’s performance in the case with non-overlapping experiments and lin-

ear model specifications. We show that DPTR outperforms the conventional approach, which are

based on IHT, when the number of experiments is sufficiently large. Second, we evaluate DPTR’s

performance using synthetic data across a variety of complex scenarios, including those involv-

ing nonlinear model specifications and overlapping experiments. Finally, we apply DPTR to two

experimental datasets from real-world platforms, demonstrating its effectiveness in guiding cus-

tomized policy roll-outs for subgroups within a single experiment, as well as in coordinating policy

deployments across multiple experiments under overlapping scenarios.

Our contributions are threefold:

1. A general data-pooling treatment roll-out framework. We propose a novel framework

that enhances treatment selection by integrating data across multiple experiments. The treatment

roll-out decision leverages both the data collected from its own experiment and the pooled data from

other experiments. More importantly, the DPTR framework is decision-aware. That is, estimation

and inference are directly aligned with downstream decisions, such as treatment roll-out decisions,

by incorporating significance levels into the analysis. This framework is also broadly applicable,

as it can handle overlapping and non-overlapping experiments, linear and nonlinear models, and

supports personalized roll-out decisions. This general and flexible design makes DPTR well-suited

for modern online platforms facing data scarcity and high-dimensional experimentation.
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2. Analysis and performance guaranetee. We provide theoretical guarantees that DPTR

outperforms IHT, particularly as the number of experiments increases. Specifically, we find that

the average rewards associated with roll-out decisions derived by DPTR method with the optimal

scale parameter are strictly higher than those of the IHT method. This implies that DPTR strikes

a delicate balance between bias and variance by deriving the optimal scale parameter for shrink-

age. We further construct a consistent estimator of the optimal scale parameter, which guarantees

the superior performance of the proposed approach as the number of experiments increases. This

ensures the robust performance of the proposed approach under data-driven settings. These analy-

ses establish DPTR as a theoretically grounded method for improving the roll-out of experiments.

3. Empirical validation and case studies with real-world data. Through extensive numer-

ical studies using synthetic data, we demonstrate the practical values of DPTR. Across diverse sce-

narios, DPTR consistently yields higher rewards and better decision quality than IHT and Bayesian

benchmarks. In particular, the benefit of DPTR becomes more pronounced when the expected ATE

is large, the number of experiments is large, and the sample size is small. In scenarios with covariate

information and non-overlapping experiments, the personalized estimators prescribed by DPTR can

yield additional improvements. Furthermore, we demonstrate the robustness of the DPTR method

under model misspecification. Finally, the implementation of DPTR method to two datasets from

real-world platforms shows that DPTR enables effective subgroup targeting and coordination across

concurrent experiments, confirming its scalability and impact in real-world experimentation.

The rest of the paper is organized as follows. In Section 2, we review the related literature. In

Section 3, we present our data-pooling treatment roll-out framework and prescribe implementation

details of DPTR in four experimentation scenarios. In Section 4, we theoretically validate the

proposed DPTR in the case with non-overlapping experiments under linear model specifications. In

Section 5, we conduct comprehensive synthetic experiments to demonstrate the superior and robust

performance of our proposed framework. In Section 6, we implement the framework to analyze

real-world experiments. Section 7 concludes the paper.

2. Literature Review

Our work is related to two streams of literature: causal inference and its applications on online

platforms, and small-data prediction and decision-making.

2.1. Causal inference and its application on online platforms

Randomized experiments have long been considered as the gold standard for estimating causal

effects in social science research (e.g., Angrist and Pischke 2009). However, their implementation

can be costly, and firms may sometimes face challenges in obtaining large sample sizes. To improve

the efficiency of treatment effect estimation and reduce mean squared error (MSE), Rosenman
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et al. (2023) and Gui (2024) propose a weighted sum that combines estimates from randomized

experiments with secondary data. In addition, integrating experimental and secondary data offers

additional advantages, such as aiding identification for estimating long-term effects (Athey et al.

2025, Imbens et al. 2025). While this line of research focuses on leveraging diverse data sources

tied to a single policy, our approach aggregates data across multiple experimental policies.

Another approach to addressing the challenge of small sample sizes is Bayesian inference. The

Bayesian approach offers several advantages, including its ability to handle uncertainty, incorporate

prior knowledge, and model complex data structures. Recently, Bayesian approaches for causal

inference have attracted growing attention (e.g., Imbens and Rubin 2015, Hahn et al. 2020). A

number of studies have applied Bayesian methods to guide roll-out decisions (e.g., Abadie et al.

2023, Simester et al. 2025, Tetenov 2016). To ensure comparability with hypothesis testing from

the frequentist perspective, Raftery (1995) proposed that a policy should be implemented in the

Bayesian setting only when the posterior evidence is sufficiently strong, analogous to meeting a

predefined significance level in the frequentist approach. The key distinction between our DPTR

method and the Bayesian approach lies in the implementation of shrinkage: our method adopts a

frequentist perspective, and explicitly incorporates the significance level into the shrinkage proce-

dure applied to an unbiased estimator.

Our work is also related to the stream of studies on inference with multiple experiments. Con-

ventional approaches for analyzing multiple experiments rely on factorial designs (e.g., Box et al.

1978, Wu and Hamada 2011). Recent works propose the potential outcome framework to facilitate

causal inference across multiple experiments (Dasgupta et al. 2015, Pashley and Bind 2023). How-

ever, as pointed out by Ye et al. (2025), factorial designs become impractical in modern large-scale

A/B testing environments, where the number of experiments is hundreds or thousands. Even if

one adopts the fractional factorial design, only a limited number of treatment combinations are

testable. To address this challenge, Ye et al. (2025) proposes a double machine learning framework

that can infer all 2m treatment combinations using m+ 2 observed combinations. However, even

when the ATEs are linear, the growing number of experiments on online platforms often leads

to insufficient traffic per experiment. To address this, our paper focuses on how to make roll-out

decisions with a large number of experiments and limited observations per experiment.

Our paper also contributes to the applications of causal inference to online platforms. The recent

decade has witnessed a growing body of research on this topic. From an empirical perspective, field

experiments on large-scale online platforms enable causal inference to empower decision making in

a wide variety of business settings (e.g., Cheung et al. 2017, Cui et al. 2020, Zeng et al. 2023, Zhan

et al. 2024). On the theoretical side, scholars develop novel methods to overcome challenges arising

from experimentation and causal inference on online platforms, such as two-sided randomization
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(e.g., Nandy et al. 2021, Johari et al. 2022, Ye et al. 2022), sequential experiments (e.g., Song and

Sun 2024, Bojinov et al. 2023, Xiong et al. 2023, Ni et al. 2023, Ni 2025), block randomization

(Candogan et al. 2021), multiple experiments (Ye et al. 2025), and personalized policy learning

(Zhang et al. 2025). We contribute to this literature by proposing a new method to effectively pool

data from multiple experiments and improve experiment roll-out decisions for online platforms.

2.2. Small-data prediction and decision-making

The pioneering work by Stein (1956) introduces the idea of data pooling for the simultaneous

estimation of multiple Gaussian means and demonstrates its benefit over the decoupled approach,

a result known as Stein’s phenomenon. This finding has spurred extensive follow-up research aimed

at explaining and contextualizing Stein’s result (e.g., Brown 1971, Efron and Morris 1977). Building

on this foundation, Gupta and Kallus (2022) extend Stein’s method to data-driven optimization

problems, proposing a shrinkage-based approach that improves upon the decoupled approach by

shrinking individual-level data to an anchor distribution. Lei et al. (2024) proposes to treat the

aggregated top-level sales information as a regularization for fitting the individual-level prediction

model, which improves forecasting performance. Chen et al. (2024) empirically investigate how data

aggregation and sharing via a digital platform can enhance the analytics based on individual-level

data for small retailers. A critical distinction lies in the nature of the data used: while problems like

the newsvendor problem rely on observable labels such as random demand and cost parameters

as direct inputs for optimization, our framework addresses situations where individual treatment

effects are inherently unobservable. The lack of labeled outcomes calls for a tailored methodological

approach to address the unique challenges of causal estimation and policy decision-making.

Our work is also related to multitask learning, which aims to learn both shared and task-specific

representations across different tasks (Caruana 1997). In a similar vein, our work leverages obser-

vations across multiple experiments to improve estimation accuracy. While multi-task learning is

primarily designed for predictive tasks, our method focuses on causal inference and is tailored

towards decision-rule optimization. A related paradigm is transfer learning, a special case of multi-

task learning, that improves a learner from one target domain by transferring information from a

related source domain. Recently, transfer learning has been adopted to enhance the efficiency of

operational decision-making (Bastani 2021, Nabi et al. 2022, Feng et al. 2023). The transfer learn-

ing approach relies on sufficient information from the related source domain to enhance predictions

or decisions in the target domain. In contrast, our work involves multiple experiments, each with

limited observations, and aims to improve the roll-out decisions for all experiments.
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3. General Framework of Data Pooing in Experiment Roll Out

We now develop a new framework leveraging data pooling to improve the effectiveness of experiment

roll-out decisions for online platforms. Suppose that a platform runs K independent A/B tests

concurrently, each designed to evaluate the ATE of a distinct policy1. Without loss of generality,

we assume each experiment is fully randomized, with users assigned to treatment and control

conditions with equal probability. With multiple experiments, the interaction across overlapping

treatments may exist. However, empirical evidence often finds that the interactions are relatively

rare (Kohavi et al. 2013, Chan 2021, Microsoft 2023). Even if such interaction exists, the magnitude

is relatively small, and thus, it does not overrule the main effect and affect the roll-out decisions

(Chan 2021). Following the common practice of online platforms to balance speed and accuracy

(CXL 2020), we assume that the policy ATEs are linearly additive2. Furthermore, we assume that

the standard stable unit treatment value assumption (SUTVA) holds.

The goal of the platform is to identify and roll out all policies with a positive ATE. Let Y ∈R

denote a key outcome variable the platform cares about (e.g., whether the user clicks the rec-

ommended advertisement), and Dk ∈ {0,1} denote the treatment assignment of experiment k,

capturing whether all the users are under the treatment or control condition. Define X ∈Rdx as

the dx-dimensional covariate vector of a user. Since the treatment effects of different policies are

linearly separable, the ATE of policy k can be defined as:

τk =E[Y |Dk = 1]−E[Y |Dk = 0],

where the expectation is taken with respect to (Y,X). If the platform knows the ground-truth

ATEs, τ1, τ2, ...τK , it will roll out policy k if and only if τk > 0. Hence, the optimal per-experiment

reward of the platform is:

r∗ =
1

K

∑
τk>0

τk.

In practice, the ground-truth ATEs, τ1, · · · , τK , are unobservable to the platform, so it runs A/B

tests to estimate them and make roll-out decisions accordingly. Let S denote the resulting exper-

imental dataset, whose generation depends on the problem setting and experimentation method.

For instance, when the K experiments are conducted independently, each user is assigned to either

the treatment or the control condition of one experiment. In this case, if each experiment has N

observations, the dataset can be represented as S = {(Yk,i,Dk,i,Xk,i) : 1≤ k≤K,1≤ i≤N} where

1 Alternatively, one could consider a single experiment designed to estimate HTEs across K different subgroups,
aiming to determine whether the policy should be rolled out for each subgroup. Throughout this paper, except in
Section 6.1, we adopt the notation of K experiments to illustrate DPTR framework. In Section 6.1, we demonstrate
how this framework can be applied to roll out decisions across different subgroups using data from a single experiment.

2 We also consider the case where the linear additivity does not hold to test the robustness of our framework in
Section 5.5 and Section 6.2.
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Yk,i, Dk,i and Xk,i represent the individual outcome, treatment assignment status and covariate

vector for subject i in experiment k, respectively. As another example, the platform may adopt an

orthogonal experiment design in which a user may be simultaneously targeted by multiple experi-

ments (e.g., Tang et al. 2010, Xiong et al. 2020). With a total of N users in the experiments, the

dataset can be represented as S = {(Yi,Di,Xi) : 1≤ i≤N}, where Di = (D1,i,D2,i, . . . ,DK,i) is the

vector of treatment assignments across all K experiments for user i. Yi and Xi denote the observed

outcome and covariate vector for subject i under the joint realization of treatment assignments

from all experiments.

Given the dataset S, the platform typically relies on classical hypothesis testing to decide whether

or not to roll out each experiment k. Specifically, the commonly adopted approaches to estimate

and infer the ATEs of the policies include, e.g., difference-in-mean (DM) (e.g., Section 1.1 in

Wager 2024), ordinary least squares (OLS) (e.g., Section 1.2 in Wager 2024), double machine

learning (DML) (e.g., Chernozhukov et al. 2018, Farrell et al. 2020, Ye et al. 2025), etc. We

provide the general procedure of such a standard decision-making framework for online platforms

in Algorithm 1. Without loss of generality, we denoteM(·) as a general hypothesis testing method

for the null hypothesis H0: τk = 0, which maps the experimental dataset S and significance level

α to the point estimate τ̂k and the (1-α)-confidence interval [τ̂ lbk , τ̂
ub
k ]. For example, in the special

case where τ̂k ∼N (τk, σ
2
k) and σ2

k is known, we have τ̂ lbk = τ̂k − z1−α/2σk and τ̂ubk = τ̂k + z1−α/2σk,

where z1−α/2 is the (1-α
2
)-fractile quantile z-score of a standard normal distribution.

Algorithm 1 Individual Hypothesis Testing (IHT)

Require: Set of policies [K] = {1,2, · · · ,K}; experimental dataset S; significance level α; the

classical hypothesis testing methodM(·).

1: ÂIHT←{}; //Initialize the roll-out decision as an empty set.

2: for k ∈ [K] do

3: RunM(S, k,α) to obtain the point estimate τ̂k and the (1-α)-confidence interval [τ̂ lbk , τ̂
ub
k ].

4: if τ̂ lbk > 0 then

5: ÂIHT←ÂIHT

⋃
{k}

6: end if

7: end for

Ensure: ÂIHT: Roll out policy k if and only if k ∈ ÂIHT.

The experiment roll-out strategy based on the IHT method (Algorithm 1) generates a realized

per-experiment reward, which is given by:

r̂IHT =
1

K

∑
k∈ÂIHT

τk.
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The IHT will have great performance if the sample size of each experiment, N , is large. However,

if N is small, the variance of ATE estimator τ̂k of experiment k, will be too large, resulting in

a poor performance of per-experiment reward for the IHT method. To address this challenge, we

design a new estimator that combines data from different experiments to lower its variance, at

the cost of a higher bias. Based on the idea of shrinkage (e.g., Gupta and Kallus 2022), the new

estimator of τk is parametrized by an anchor τ and a scale parameter β ≥ 0:

τ̄k =
N

N +β
τ̂k +

β

N +β
τ. (1)

Based on the new estimator (1), we devise the platform roll-out decision according to a new

null hypothesis H̄0 :
N

N+β
τk +

β
N+β

τ = 0 at the significance level α. Therefore, the (1-α)-confidence

interval for the new point estimate τ̄k is given by [τ̄ lbk , τ̄
ub
k ] where τ̄ lbk = N

N+β
τ̂ lbk + β

N+β
τ and τ̄ubk =

N
N+β

τ̂ubk + β
N+β

τ . Here, we set τ = τ̂0 :=
1
K

∑
k τ̂k, as this choice is a least squares estimator of central

tendency among all individual estimators τ̂k. Next, we are ready to propose a general framework

to identify proper values for β, so as to optimize the experiment roll-out decisions, as detailed in

Algorithm 2.

Algorithm 2 Data-Pooling Treatment Roll-Outs (DPTR)

Require: Set of policies [K] = {1,2, · · · ,K}; experimental dataset S; significance level α; the

classical hypothesis testing methodM(·).

1: ÂDPTR←{}; //Initialize the roll-out decision as an empty set.

2: {(τ̂k, τ̂ lbk , τ̂ubk ) : k ∈ [K]}← {M(S, k,α) : k ∈ [K]}. //Implement the classical hypothesis testing

3: Obtain data-driven parameters τ̂0← 1
K

∑
k τ̂k and β̂(S,M)

4: for k ∈ [K] do

5: τ̄ lbk ← N

N+β̂(S,M)
τ̂ lbk + β̂(S,M)

N+β̂(S,M)
τ̂0, τ̄

ub
k ← N

N+β̂(S,M)
τ̂ubk + β̂(S,M)

N+β̂(S,M)
τ̂0. //Construct the new lower

bound and upper bound

6: if τ̄ lbk > 0 then

7: ÂDPTR←ÂDPTR

⋃
{k}

8: end if

9: end for

Ensure: ÂDPTR: Roll out policy k if and only if k ∈ ÂDPTR.

Algorithm 2 provides a general hypothesis testing procedure with data pooling to roll out exper-

iments. In Algorithm 2, when constructing the confidence interval for the new estimator τ̄k, we

ignore the randomness of τ̂0 and β̂(S,M), which are obtained from the data of all K experiments.

When K is large, the variances of τ̂0 and β̂(S,M) are orders of magnitude smaller than that of
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τ̂k. Moreover, Algorithm 2 does not specify the formula of β̂(S,M), which depends on the spe-

cific context, the dataset S, and the hypothesis testing method M. Intuitively, β̂(S,M) is larger

when (1) The variation in individual treatment effects within each experiment is large, i.e., the

individual ATE estimates (τ̂k’s) are more volatile and less credible; (2) The treatment effects of dif-

ferent experiments (τk’s) are concentrated, so that the data-driven anchor τ̂0 effectively aggregates

information across different experiments, thus significantly enhancing the reliability of τ̄k. This

intuition is formally derived in Theorem 1 and Theorem 2, where we consider the simplest case

with no overlapping traffic, no covariate information and linear model specifications. Furthermore,

β̂(S,M) may vary across experiments due to differences in experiment-specific covariate informa-

tion, assuming there is no overlapping traffic. This intuition is formally established in Theorem 4

and Theorem 5. In addition, throughout Sections 3.1 to 3.4, we present the corresponding formulas

of β̂(S,M) for experiments with overlapping and nonoverlapping subjects as well as linear and

nonlinear model specifications. Given β̂(S,M) and τ̂0, the experiment roll-out strategy based on

the DPTR method (Algorithm 2) generates a realized per-experiment reward:

r̂DPTR =
1

K

∑
k∈ÂDPTR

τk.

3.1. Scenario 1: Non-Overlapping Experiments With Linear Specifications

We begin by examining a scenario where K experiments are conducted in K separate subject

pools, with each pool exclusively assigned to a single experiment. In this scenario, we consider

linear model specifications. Specifically, we assume the following data-generating process (DGP):

Yk,i = ak + τkDk,i + ϵk,i, k= 1,2, . . . ,K, i= 1, . . . ,N, (2)

where τk represents the ATE of policy k, ϵk,i is the i.i.d. random noise with zero mean and variance

σ2
k, and ak denotes the expected outcome under control condition for experiment k.

For each experiment, suppose the platform allocates exactly N users exclusively to it, with N/2

randomly assigned to the treatment condition and N/2 to the control condition. The total dataset

in this scenario can be represented as S = {S1,S2, . . . ,SK}, where Sk = {(Yk,i,Dk,i) : 1≤ i≤N}. In
this case, the classic hypothesis testing methodM(·) can be the unbiased DM estimator:

τ̂k :=
2

N

∑
Dk,i=1

Yk,i−
2

N

∑
Dk,i=0

Yk,i. (3)

It is straightforward to derive that Var(τ̂k) =
4σ2

k
N

. Furthermore, the unbiased estimator for variance

σ2
k in experiment k can be expressed as:

s2k =
1

N − 2

∑
j∈{0,1}

∑
Dk,i=j

(Yk,i−
2

N

∑
Dk,i=j

Yk,i)
2.
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Thus, for any experiment k, we have the central limit theorem (CLT):

√
N(4s2k)

−1/2(τ̂k− τk)→dN (0,1),

where →d refers to convergence in distribution. Based on the estimators {τ̂1, · · · , τ̂K} and

{4s21, · · · ,4s2K}, we construct β̂(S,M) as follows:

β̂ =
1
K

∑
k 4s

2
k

1
K

∑
k(τ̂k− τ̂0)2−

1
KN

∑
k 4s

2
k

+
z1−α/2

√
N 1

K

∑
k 4s

2
k

τ̂0
. (4)

In the first term of β̂, the numerator 1
K

∑
k 4s

2
k is an unbiased estimator of 1

K

∑
k 4σ

2
k, capturing the

average variation of all individual estimators τ̂k. Hence, more variable estimations of the treatment

effects for individual experiments lead to a larger β̂, which in turn shrinks the new estimator τ̄k

(recall Eqn. (1)) more towards τ̂0. The denominator 1
K

∑
k(τ̂k − τ̂0)2 −

1
KN

∑
k 4s

2
k is an unbiased

estimator for 1
K

∑
k(τk −

1
K

∑
k τk)

2 (see Theorem 2), capturing the variability of different experi-

ments’ ATEs. When the ATEs across different experiments are more concentrated, the aggregated

information provided by τ̂0 becomes more valuable, so the scale parameter β̂ is larger and τ̄k is

shrunk to τ̂0 further. The second term of β̂ functions as a necessary adjustment for hypothesis

testing. We relegate the derivation for β̂’s formula as Eqn. (4) to Theorem 1 (see Section 4.1).

Next, we incorporate covariate information into the OLS model specification and DGP as follows:

Yk,i = ak + τkDk,i +θ⊤
k Xk,i + ϵk,i,1≤ k≤K,1≤ i≤N. (5)

We denote I = [0,1, · · · ,0] ∈ R2+dx , Yk = [Yk,1, · · · , Yk,N ]
⊤, ϵk = [ϵk,1, · · · , ϵk,N ]⊤ and tk =

[(1,Dk,1,Xk,1), · · · , (1,Dk,N ,Xk,N)]
⊤. Thus, we can obtain the estimator τ̂k by OLS as follows:

τ̂k = I⊤(t⊤k tk)
−1t⊤k Yk = τk + I⊤(t⊤k tk)

−1t⊤k ϵk. (6)

It is straightforward to derive that Var(τ̂k) = σ2
kI

⊤(t⊤k tk)
−1I. Furthermore, the unbiased estimator

for variance σ2
k in experiment k can be expressed as:

s2k =
1

N − 2− dx
(Yk− tk(t

⊤
k tk)

−1t⊤k Yk)
⊤(Yk− tk(t

⊤
k tk)

−1t⊤k Yk).

For any experiment k, we have the following CLT:

√
N(b2ks

2
k)

−1/2(τ̂k− τk)→dN (0,1), (7)

where bk =
√
NI⊤(t⊤k tk)

−1I. Similarly, according to the Eqn. (4), one can construct the same

β̂(S,M) for all experiments as follows:

β̂ =
1
K

∑
k b

2
ks

2
k

1
K

∑
k(τ̂k− τ̂0)2−

1
KN

∑
k b

2
ks

2
k

+
z1−α/2

√
N 1

K

∑
k b

2
ks

2
k

τ̂0
. (8)
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Furthermore, we can observe that {b2k : k ∈ [K]} are different across experiments and they can be

derived from the training covariate vectors, which are known prior to making the roll-out decision.

Thus, we can derive a personalized β̂(S,M) for experiment k as follows:

β̂k =
b2k(

1
K

∑
k
′ s2

k
′ )

1
K

∑
k
′ (τ̂k′ − τ̂0)2−

1
N
( 1
K

∑
k
′ b2

k
′ · 1

K

∑
k
′ s2

k
′ )
+
z1−α/2bk

√
N 1

K

∑
k
′ s2

k
′

τ̂0
. (9)

We defer the derivation of the formula for β̂k, presented in Eqn. (9), to Theorem 4 (see Section 4.2),

and demonstrate that the personalized β̂k performs even better than the shared β̂ in Eqn. (8) using

simulations with synthetic data (see Section 5.1).

3.2. Scenario 2: Non-Overlapping Experiments With Nonlinear Specifications

Building upon the scenario outlined in Section 3.1, we now introduce a second scenario that consid-

ers nonlinear model specifications, extending the framework to a partial linear model. Specifically,

we assume the following DGP:

Yk,i = gk(Xk,i)
⊤tk,i + ϵk,i, k= 1,2, . . . ,K, i= 1, . . . ,N,

where gk(·) :Rdx→R2 represents the true response function for experiment k, and tk,i = [1,Dk,i]
⊤

is the treatment vector, which includes the constant term. The term ϵk,i denotes i.i.d. random

noise with zero mean and variance σ2
k. All functions {g1, g2, . . . , gK} belong to the same function

class F . Consequently, the total dataset in this scenario is given by S = {S1,S2, . . . ,SK}, where

Sk = {(Yk,i,Dk,i,Xk,i) : i= 1, . . . ,N}. The ATE for experiment k is denoted as τk = E[gk(Xk)
⊤t∗],

where t∗ = [0,1]⊤.

Building on the partial linear framework, we employ the double machine learning method (Farrell

et al. 2020) asM in this scenario. To begin, we define the loss function for estimation and inference

function as:

ℓ(Y, t, f(X)) = (Y − f(X)⊤t)2. H(X,f(X) : t∗) = f(X)⊤t∗.

Here, for each experiment k, we apply the cross-fitting techniques (Chernozhukov et al. 2018, Farrell

et al. 2020) to obtain the estimator τ̂k. Specifically, we define,

ψ(Y,X, t, f(·),Λ)=H(X,f(X) : t∗)−Hf (X,f(X) : t∗)Λ(X)−1ℓf (Y, t, f(X)), (10)

where Hf and ℓf are the gradients of H and ℓ with respect to f , and Λ(X) =E[ℓff (Y, t, f(X))|X]

represents the conditional expectation of the Hessian of ℓ. The expectation of H(X,f(X); t∗)

represents the true ATE we aim to estimate. However, in practice, due to the complexity and

regularization of f(X), the sample mean of H(X,f(X); t∗) does not yield an unbiased estimator.

Therefore, the second term in Eqn. (10) was introduced to correct the bias.
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The estimation and experiment roll-out process can be summarized as follows. First, the data

set Sk is split into S subsets with equal size, denoted by Sk,s where s ∈ {1, · · · , S}. Let Sc
k,s

be the complement of Sk,s. Then, for each s ∈ {1, · · · , S}, we use Sc
k,s to estimate Λk(Xk) =

E[ℓff (Yk, tk, gk(Xk))|Xk] and gk(·). We denote ĝk,s(·) and Λ̂k,s(·) as the estimators for gk,s(·) and

Λk,s(·), respectively. Then, based on Eqn. (10), the final estimator τ̂k can be written as:

τ̂k =
1

S

S∑
s=1

τ̂k,s, τ̂k,s =
1

|Sk,s|
∑

i∈Sk,s

ψ(Yk,i,Xk,i, tk,i, ĝk,s(Xk,i), Λ̂k,s(Xk,i)).

The estimator for variance of τ̂k can be written as:

Ψ̂k =
1

S

S∑
s=1

Ψ̂k,s, Ψ̂k,s =
1

|Sk,s|
∑

i∈Sk,s

(
ψ(Yk,i,Xk,i, tk,i, ĝk,s(Xk,i), Λ̂k,s(Xk,i))− τ̂k

)2

.

Based on Theorem 3 of Farrell et al. (2020), as long as the nuisance parameter estimator ĝk(·)

converges to gk(·) sufficiently fast, we have:

√
NΨ̂

−1/2
k (τ̂k− τk)→dN (0,1). (11)

Based on the estimators {τ̂1, · · · , τ̂K} and {Ψ̂1, · · · , Ψ̂K}, we can construct the scale parameter

β̂(S,M) following the same intuition as Eqn. (8):

β̂ =
1
K

∑
k Ψ̂k

1
K

∑
k(τ̂k− τ̂0)2−

1
KN

∑
k Ψ̂k

+
z1−α/2

√
N 1

K

∑
k Ψ̂k

τ̂0
. (12)

Similar to Eqn. (9), we can also construct the heuristic personalized scale parameter β̂k’s in this

setting. First, we can compute bk =
√
NI⊤(t⊤k tk)

−1I using the covariate information. Second, by

comparing Eqn. (7) and (11), we can find that b2ks
2
k and Ψ̂k play the same role and we can construct

s2k =
Ψ̂k

b2
k
. Thus, we can derive a personalized β̂(S,M) for experiment k as follows:

β̂k =

b2k(
1
K

∑
k
′
Ψ̂

k
′

b2
k
′
)

1
K

∑
k
′ (τ̂k′ − τ̂0)2−

1
N
( 1
K

∑
k
′ b2

k
′ · 1

K

∑
k
′
Ψ̂

k
′

b2
k
′
)
+

z1−α/2bk

√
N 1

K

∑
k
′
Ψ̂

k
′

b2
k
′

τ̂0
. (13)

3.3. Scenario 3: Overlapping Experiments With Linear Specifications

In this subsection, we examine the scenario that a user may be simultaneously targeted by multiple

experiments. Similarly, we first examine the scenario with linear model specifications, followed by

an extension that considers nonlinear model specifications in the next subsection. Specifically, we

assume the following DGP:

Yi = a+
∑
k∈K

τkDk,i + ϵi, i= 1,2, ...,N, (14)
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where τk represents the ATE of policy k, ϵi is the i.i.d. random noise with zero mean and variance

σ2, and a represents the expected outcome if a subject receives the control status in all experiments.

Furthermore, Dk,i’s are i.i.d. Bernoulli random variables with P[Dk,i = 1] = P[Dk,i = 0] = 0.5.

In this scenario, the dataset can be represented as S = {(Yi,Di) : i = 1, · · · ,N} where Di =

[D1,i,D2,i, . . . ,DK,i]
⊤ denotes the treatment status vector across all experiments. We define τ =

[a, τ1, τ2, · · · , τK ]⊤ as the average treatment effect vector. The classical hypothesis testing method

M(·) in this scenario adopts OLS to estimate τ .

To proceed, we define ti = [1,Di]
⊤. Let Y = [Y1, Y2, . . . , YN ]

⊤ and T = [t1, t2, . . . , tN ]
⊤. Thus, the

OLS estimator of τ is given by:

τ̂ = (T ⊤T )−1T ⊤Y .

In addition, we have, E(τ̂ ) = τ and V(τ̂ |T ) = σ2(T ⊤T )−1. To estimate the variance σ2, we use

σ̂2 =
∑

i(Yi−τ̂⊤ti)
2

N−K−1
. Next, let Ik be the (K+1)-dimensional vector where the (k+1)th component is

equal to 1, and all other components are equal to 0. The estimate of the average treatment effect

for experiment k is given by, τ̂k = I⊤k τ̂ . The standard error (SE) of τ̂k is, SEk =
√
I⊤k σ̂

2(T ⊤T )−1Ik,

and we denote s2k =
N
4
SE2

k. Similarly, by Greene (2003), we can conclude that:

√
N(4s2k)

−1/2(τ̂k− τk)→dN (0,1).

Similar to Section 3.1, we can derive the scale parameter β̂(S,M) as:

β̂ =
1
K

∑
k 4s

2
k

1
K

∑
k(τ̂k− τ̂0)2−

1
KN

∑
k 4s

2
k

+
z1−α/2

√
N 1

K

∑
k 4s

2
k

τ̂0
. (15)

When covariate vectors are incorporated in the OLS model with the following DGP:

Yi = a+
∑
k

τkDk,i +θ⊤Xi + ϵi,1≤ i≤N, (16)

the OLS estimator for each experiment k, τ̂k, is asymptotically normal estimator, so Algorithm 2

can be applied with the scale parameter defined by Eqn. (15).

3.4. Scenario 4: Overlapping Experiments With Nonlinear Specifications

Finally, we consider the setting with overlapping experiments and nonlinear model specifications.

Similar to Section 3.2, we adopt the partial linear model framework, and the DGP is given by:

Yi = g(Xi)
⊤ti + ϵi, i= 1, . . . ,N, (17)

where g(·) : Rdx → RK+1 is the true response function and ti = [1,Di]
⊤ is the treatment vector

including the intercept. ϵi denotes the i.i.d. random noise with zero mean and variance σ2. The



Peng et al.: Data-Pooling for Treatment Selection
16

dataset in this scenario can be represented as S = {(Yi,Xi, ti) : i= 1, · · · ,N}. The ATE for exper-

iment k can be denoted as τk = E[g(X)⊤t∗k] where t∗k is a K + 1 dimension vector of which the

(k+1)th component is equal to 1 and other components are equal to zero.

The overlapping scenario does not affect the validity of Theorem 3 in Farrell et al. (2020). Similar

to Section 3.2, we obtain the ATE estimator τ̂k and the corresponding variance estimator Ψ̂k, along

with the asymptotic normality result:

√
NΨ̂

−1/2
k (τ̂k− τk)→dN (0,1).

Then, we can construct the scale parameter similar to Eqn. (12):

β̂(S) =
1
K

∑
k Ψ̂k

1
K

∑
k(τ̂k− τ̂0)2−

1
KN

∑
k Ψ̂k

+
z1−α/2

√
N 1

K

∑
k Ψ̂k

τ̂0
.

For the rest of this paper, we will demonstrate that the decisions derived from hypothesis testing

based on the DPTR method in Algorithm 2 outperform those obtained using the traditional IHT

method in Algorithm 1 across various scenarios, through a multi-facet analysis, including theoretical

proofs, numerical experiments, and empirical applications.

4. Theoretical Analysis

In this section, we derive the optimal scale parameter β and provide the theoretical justification for

the DPTR framework. To this end, we focus on the simplest scenario, non-overlapping experiments

under linear model specifications (see Section 3.1 for details). Specifically, we first prove that, in the

case without covariate information, i.e., the DGP follows Eqn. (2), the DPTR experiment roll-out

method generates a higher reward than the IHT method. We then extend this result to the setting

with covariates (see Eqn. (5)). The following assumption is made throughout this section.

Assumption 1. τk is drawn from a normal distribution, N (τ0, σ
2
0). Furthermore, the i.i.d. ran-

dom noise ϵk,i follows a normal distribution, N (0, σ2).

In practice, when the platform conducts a randomized field experiment to test a specific policy,

it will typically do some pilot study to assess its potential value. In most cases, the platform will

proceed with the field experiment only if the policy’s ATE is likely to be positive. Therefore, in

general, the expected ATE across all field experiments should be positive, i.e., τ0 > 0.

4.1. Model Without Covariates

In this subsection, we theoretically justify our proposed method for the setting without covariates.

In this setting, the DM estimator (see Eqn. (3)) follows a normal distribution with mean τk and

variance 4σ2/N under Assumption 1.
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Suppose that the variance σ2 is known. The platform uses z−statistics to construct the confidence

level inM(·). We define the per-experiment reward of DPTR with scale β and anchor τ as follows:

r̃(β, τ) =
1

K

∑
τ̄k>

N
N+β

2σz1−α/2√
N

τk. (18)

It follows that r̃(0, ·) = r̃(0, τ0) = r̂IHT. Define R(β, τ) := lim
K↑+∞

E[r̃(β, τ)] as the expected per exper-

iment reward when the number of experiments K→∞. Our analysis begins with identifying the

optimal value of β that maximizes the expected per-experiment reward when τ = τ0.

Theorem 1. Suppose that Assumption 1 holds and σ is known. If τ = τ0, the optimal value of

β is:

β∗ := argmax
β≥0

R(β, τ0) =
4σ2

σ2
0

+
2
√
Nz1−α/2σ

τ0
. (19)

In particular, R(β∗, τ0)>R(0, τ0) = lim
K↑+∞

E[r̂IHT].

Theorem 1 characterizes the optimal scale parameter β∗ that maximizes the expected per-

experiment reward of the DPTR roll-out method when the anchor is set at τ = τ0. As a conse-

quence, our proposed DPTR method with the optimal scale parameter outperforms the classical

DM method, highlighting the potential value of data pooling for multiple A/B tests.

We can treat τ̂k as the signal from experiment k, and τ0 as the aggregate information across all

experiments. Based on Eqn. (1), we observe that, when N is fixed, a larger value of β results in less

weight being assigned to the individual signal under the DPTR method. Eqn. (19) prescribes that

β∗ consists of two positive terms 4σ2

σ2
0

and
2
√
Nz1−α/2σ

τ0
. The first term is proportional to the ratio of

the variance of noise within an experiment to the variance of treatment effects across experiments.

When this ratio is large, it indicates that the aggregate information from all experiments is more

reliable than the individual signal. In this case, less weight should be placed on the individual signal.

The second term may seem counterintuitive at the first glance: why does a smaller τ0 imply less

weight being placed on the individual signal? In fact, the weight on the individual signal depends

on the relative ratio of τ0 to σ. If the individual signals have a small variance, they may be more

informative than the aggregate signal τ0. Therefore, when the individual signal is more precise,

it remains more beneficial to assign greater weight to it, even when τ0 is small. Although β∗ is

increasing in N , Eqn. (1) also implies that the weight placed on the individual signal also increases

with N under DPTR.

While the parameters τ0, σ
2, and σ2

0, which are used for deriving the optimal scale parameter, are

unobservable in practice, one can leverage the pooled data from all experiments to estimate them.

Thus, a natural estimator of the optimal scale parameter is one that replaces these parameters in

Eqn. (19) by their estimates, as formally stated in Theorem 2.
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Theorem 2. Suppose Assumption 1 holds. Define s2k := 1
N−2

∑
j∈{0,1}

∑
Dk,i=j(Yk,i −

2
N

∑
Dk,i=j Yk,i)

2 and

β̂∗ :=
1
K

∑
k 4s

2
k

1
K

∑
k(τ̂k− τ̂0)2−

1
KN

∑
k 4s

2
k

+
z1−α/2

√
N 1

K

∑
k 4s

2
k

τ̂0
. (20)

We have, as K ↑∞, τ̂0→p τ0 and β̂∗→p β
∗, where →p refers to convergence in probability.

As shown in Theorem 2, the proposed data-driven estimator for the optimal scale parameter

is consistent even when σ is unknown. Next, we show that the DPTR method, as specified in

Algorithm 2, with τ̂0 and β̂(S,M) = β̂∗, will generate the same expected reward per experiment as

the baseline case where σ, σ0, and τ0 were known. We now introduce the expected per-experiment

reward of the DPTR method with the estimated variance σ̂2 = 1
K

∑
k s

2
k:

r̄(β, τ) =
1

K

∑
τ̄k>

N
N+β

2σ̂z1−α/2√
N

τk.

Theorem 3. Suppose Assumption 1 holds. As K ↑∞, we have r̄(β̂∗, τ̂0)→pR(β∗, τ0).

Combining Theorem 1 and Theorem 3 implies that the DPTR method with data-driven parame-

ters can achieve an even higher reward than the IHT method with known σ, as long as the number

of experiments K is sufficiently large. The key driving force behind this result is the delicate bal-

ance between bias and variance achieved by the DPTR method. The anchor τ̂0 leverages pooled

data from a large number of experiments, significantly reducing variance compared to the indi-

vidual signal τ̂k. At the same time, our proposed DPTR method carefully controls bias through

the optimally chosen scale parameter β̂∗, ensuring an effective trade-off between bias and variance.

Our method not just improves the estimation efficiency but also specifically optimizes the roll-out

decision to maximize the expected reward.

Another commonly adopted approach to pool data from multiple experiments is the Bayesian

method (Abadie et al. 2023). In Scenario 1, the ATE of experiment k, τk, follows the prior distri-

bution N (τ0, σ
2
0). The outcome Yk is sampled from

Yk,i ∼N (ak + τkDk,i, σ
2
k), i= 1, · · · ,N.

For each experiment k, the platform randomly assigns N/2 to the treatment condition and N/2 to

the control condition. Direct application of the Bayes rule implies the posterior distribution of τk

given the DM estimator τ̂k:

τk|τ̂k ∼N

(
τ̂k

N

N +βbayes
k

+ τ0
βbayes
k

N +βbayes
k

,
N

N +βbayes
k

4σ2
k

N

)
, where βbayes

k =
4σ2

k

σ2
0

.
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Similarly, in the data-driven setting, we apply the data pooling technique to estimate the prior

mean τ0 and variance σ2
0. As shown in the proof of Theorem 2, we can obtain the same unbiased

estimators for τ0 and σ2
0, i.e., τ̂0 =

1
K

∑K

k=1 τ̂k and σ̂2
0 =

1
K

∑
k(τ̂k− τ̂0)2−

1
KN

∑
k 4s

2
k where the s2k is

the unbiased estimator for σ2
k defined in Theorem 2. Then the data-driven scale parameter β̂bayes

k

can be written as:

β̂bayes
k =

4s2k
1
K

∑
k
′ (τ̂k′ − τ̂0)2−

1
KN

∑
k
′ 4s2

k
′
. (21)

Comparing the scale parameters in Eqn. (20) and Eqn. (21) reveals insights on how our DPTR

method differs from the Bayesian method. First, in the Bayesian method, the shrinkage param-

eter varies across different experiments, while in our method, it remains uniform, enhancing the

effect of pooling data from different experiments. Second, the shrinkage parameter in our method

includes an additional term that accommodates the significance level α, making it decision-aware.

To empirically compare the DPTR method with the Bayesian method, we follow Table 6 in Raftery

(1995) and assumes the platform rolls out treatment k if the posterior probability of τk > 0 is at

least 1−α/2, in line with a two-sided test with significance level α in the frequentist framework.

The numerical experiments and empirical applications are presented in detail in Sections 5 and 6,

respectively.

4.2. Model with Covariates

In this subsection, we prove the DPTR method yields a higher expected reward than IHT for the

OLS model with covariates. In this setting, based on Eqn. (6), the ATE estimator of treatment k

is given by

τ̂k = I⊤(t⊤k tk)
−1t⊤k Yk = τk + I⊤(t⊤k tk)

−1t⊤k ϵk.

Under Assumption 1, τ̂k follows a normal distribution with mean τk and variance σ2b2k/N , where

bk =
√
NI⊤(t⊤k tk)

−1I. By Algorithm 2, we construct the new ATE estimator τ̄k = N
N+β(bk)

τ̂k +
β(bk)

N+β(bk)
τ parametrized by scale β(bk) and anchor τ . The DPTR method then determines whether

policy k will be rolled out based on τ̄k. Different from the setting without covariates, the scale

parameter depends on the treatment and covariate vector tt through the parameter bk.

Similar to the model without covariates, we first assume that the variance σ2 is known. The

platform uses z−statistic to construct the confidence bounds with the methodM(·). We define the

per-experiment reward in this setting:

r̃(β(·), τ) = 1

K

∑
τ̄k>

N
N+β(bk)

σbk√
N

z1−α/2

τk. (22)

It follows that r̃(0, ·) = r̃(0, τ0) = r̂IHT. Define R̃(β(·), τ) := lim
K↑+∞

E[r̃(β(·), τ)] as the expected per-

experiment reward when τ = τ0. Our analysis begins with identifying the optimal scale parameter

β(·) that maximizes the expected per-experiment reward when τ = τ0 and K→∞.
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Theorem 4. Suppose Assumption 1 holds and σ is known. If τ = τ0, and the optimal scale

function β(·) is:

β∗(bk) := argmax
β≥0

R̃(β, τ0) =
σ2b2k
σ2
0

+

√
Nz1−ασbk

τ0
.

In particular, R̃(β∗(·), τ0)≥ R̃(0, τ0) = lim
K↑+∞

E[r̂IHT].

Theorem 4 characterizes the optimal scale parameter function β∗(·) that maximizes the expected

per-experiment reward of the DPTR roll-out method when the anchor is set at τ = τ0. Unlike

in Theorem 1, the scale parameter in this setting varies across experiments and depends on bk.

This dependency ensures that the scale parameter effectively leverages the diverse heterogeneous

information (b2k) obtained from different experiments. The sensitivity analysis for the parameters

σ2, σ2
0, and τ0 remains the same as in the discussion following Theorem 1. Readers may refer to

the previous subsection for details.

Similarly, in practice, the parameters τ0, σ
2, and σ2

0 are unobservable by the platform. Hence,

we estimate these parameters with the pooled data from all experiments and derive the estimator

for function β∗(·). With estimated variance σ̂2 = 1
K

∑
k s

2
k, we define the expected per-experiment

reward under the DPTR method:

r̄(β(·), τ) = 1

K

∑
τ̄k>

N
N+β(bk)

σ̂bk√
N

z1−α/2

τk.

Theorem 5. Suppose Assumption 1 holds. Define s2k := 1
N−2−dx

(Yk − tk(t
⊤
k tk)

−1t⊤k Yk)
⊤(Yk −

tk(t
⊤
k tk)

−1t⊤k Yk), τ̂0 =
1
K

∑
k τ̂k and,

β̂∗(bk) :=
b2k(

1
K

∑
k
′ s2

k
′ )

1
K

∑
k
′ (τ̂k′ − τ̂0)2 − 1

N

(
1
K

∑
k
′ s2

k
′ · 1

K

∑
k
′ b2

k
′

) +
z1−α/2bk

√
N 1

K

∑
k
′ s2

k
′

τ̂0
.

We have, as K ↑ ∞, τ̂0 →p τ0 and for any bk, β̂
∗(bk) →p β

∗(bk). Furthermore, we have,

r̄(β̂∗(·), τ̂0)→pR(β∗(·), τ0).

Theorem 4 and Theorem 5 together prove that, when the number of experiments K is sufficiently

large, the DPTR method outperform the IHT method with covariates under the OLS specification.

5. Synthetic Experiments

In this section, we demonstrate the advantage of our proposed DPTR method over commonly

adopted benchmarks such as the traditional IHT method and the Bayesian method using synthetic

experiments across various scenarios outlined in Section 3.1 to Section 3.4. All relevant code can

be found at GitHub.3

3 See https://github.com/shoucheng666/Data-Pooling-Treatment-Roll-Outs.

https://github.com/shoucheng666/Data-Pooling-Treatment-Roll-Outs
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We introduce two key metrics to evaluate the our methods: Optimality Ratio (OR) and Value

of Data Pooling (VDP). OR measures the relative performance of a roll-out method (e.g, DPTR,

Bayesian method or IHT) compared to the oracle per-experiment reward r∗, while VDP quantifies

the relative reward improvement of DPTR or Bayesian method over IHT. Formally, we define:

Optimality Ratio (OR) of Method z=
r̂z
r∗
, Value of Data Pooling (VDP)=

r̂z
r̂IHT
− 1,

where r̂z is the per-experiment reward generated by method z.

To provide a more comprehensive evaluation of our proposed method, we also frame the treat-

ment roll-out decision problem as a classification task. Specifically, for each experiment k, if τk > 0,

it is labeled as a positive case; otherwise, it is labeled as a negative case. This classification per-

spective allows us to analyze DPTR and IHT as different classification algorithms. Thus, we further

evaluate both methods using four standard classification metrics: Accuracy, Recall, Specificity, and

Precision, each derived from the confusion matrix. These metrics are formally defined as:

Accuracy =
TP +TN

TP +TN +FP +FN
, Recall =

TP

TP +FN
, Specificity =

TN

TN +FP
, Precision =

TP

TP +FP
,

where TP (True Positives) denotes the number of correctly identified positive cases; TN (True Neg-

atives) denotes the number of correctly identified negative cases; FP (False Positives) denotes the

number of negative cases incorrectly classified as positive; FN (False Negatives) denotes the num-

ber of positive cases incorrectly classified as negative. Unless otherwise specified, all experiments

in this paper use a default significance level of α= 0.05.

5.1. Non-overlapping Experiments and Linear Specification

When experiments are non-overlapping and model specifications are linear, results in Section 4

have already theoretically demonstrated how the DPTR method outperforms the IHT method by

effectively balancing the bias-variance tradeoff in experiment roll-out decisions. In this subsection,

we use synthetic experiments to illustrate the substantial edge of our proposed method even when

the number of experiments is small or moderate.

5.1.1. Without Covariate Information. We set up the basic experimental setting as fol-

lows: the platform conducts K = 100 experiments. The ground-truth ATE, τk, is randomly sampled

from a normal distribution N (1,32). Each experiment has N = 10 observations. The noise term

ϵk,i follows a normal distribution, ϵk,i ∼N (0,32).4 Hereafter, we refer to this configuration of ATE

4 In reality, each experiment typically contains a much larger number of observations, at the magnitude of hundreds
of thousands or even millions, for a large-scale online platform (Kohavi et al. 2020). In this case, due to significant
heterogeneity among users, σ is also orders of magnitude higher than σ0. In our experiments, we proportionally scale
down N and σ, while still capturing the key characteristics of the real-world scenario with reduced computational
burden.
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and outcome both following normal distributions as the normal-normal setting. We first compare

DPTR (Bayesian method) and IHT with respect to different metrics: OR, Accuracy, Recall, Speci-

ficity, and Precision. We simulate 1,000 iterations and apply both methods in each iteration for

the roll-out decision.

(a) Metric differences with 95% middle results:

DPTR (Bayesian method) minus IHT.

(b) Performance comparisons for different significance level α

Figure 2 Performance comparisons for non-overlapping experiments without covariates.

Figure 2(a) depicts the intervals that cover the middle 95% of the differences in the five metrics

between the DPTR (Bayesian method) and IHT methods across 1,000 iterations. A positive differ-

ence indicates that DPTR (Bayesian method) outperforms IHT, and vice versa. We find that DPTR

and Bayesian methods consistently generate higher rewards than IHT, suggesting the superior per-

formance of data pooling methods in roll-out decisions. A more careful look at the performance

metrics reveals that the DPTR and Bayesian methods could make correct experiment roll-out deci-

sions with a higher chance. Furthermore, DPTR and Bayesian methods significantly improve the

recall. Compared to IHT, they can better identify the experiments that should be rolled out. On

the other hand, such improvement is also at the cost of lower specificity and precision. This is

because DPTR and Bayesian methods may mistakenly roll out some experiments with a negative

treatment effect.

We compare the performance of the DPTR method with the Bayesian method. First, we observe

that both data-pooling methods exhibit similar trends across all metrics, indicating that the core

ideas and insights behind DPTR method are closely aligned with those of the Bayesian method.

Second, the DPTR method achieves greater improvements in the optimality ratio, accuracy, and

recall, albeit at the cost of slightly lower specificity and precision. This trade-off arises because our

method is more decision-aware and places a stronger emphasis on maximizing reward, as discussed

in Section 4.1.

It is useful to investigate the robustness of our method with respect to different significance

levels α. Specifically, we vary α from 0.05 to 0.25 in increments of 0.05 and plot the OR metric for
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DPTR , IHT and the Bayesian method. As shown in Figure 2(b), our DPTR method consistently

achieves higher OR values across all tested α’s and, notably, the performance gap remains significant

regardless of the significance levels. Therefore, our proposed method strikes a delicate balance

between statistical power and decision quality.

(a) Normal-normal distribution (b) Uniform-uniform distribution

(c) Different number of experiments K (d) Different sample size N

Figure 3 Performance comparisons for non-overlapping experiments without covariates

We proceed to further examine the robustness of DPTR under varying distributions, numbers

of experiments and sample sizes. As shown in Figure 3, DPTR outperforms the IHT and Bayesian

benchmarks regardless of prior ATE mean τ0, the distributions of prior ATE and noise terms, the

number of experiments K, and the sample size N . This sensitivity analysis reveals our proposed

method is particularly effective when the prior ATE mean τ0 is small, the sample size N is small,

or the number of experiments K is large. In these cases, DPTR assigns a high weight on the anchor

τ̂0 estimated from data of multiple experiments, fully leveraging the benefit of data pooling. In

particular, the finding related to sample size N provides a theoretical explanation for the empir-

ical evidence presented in Chen et al. (2024), which shows that incorporating aggregate market

information benefits small retailers more than large ones, likely due to the limited data available

to smaller retailers.
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5.1.2. With Covariate Information. We set up the experimental setting as follows: the

number of covariates is set to dx = 4, with covariate values sampled from xj
k,i ∼U(0,1). The inter-

cept ak and the coefficients θk are randomly drawn from U(−0.3,0.5). The number of experiments

(K), the sample size (N), and the distributions of τk and noise ϵk,i are the same as in the previous

subsection on non-overlapping experiments without covariates.

In this subsection, we test two variations of our method against the IHT and Bayesian bench-

marks: (a) DPTRmethod using the common scale parameter β̂ defined in Eqn. (8), and the DPTR-P

method using personalized scale parameters β̂k defined in Eqn. (9). Similar to the case without

covariate information, we focus on comparing OR of different methods. The results are presented

in Figure 4.

(a) Normal-normal distribution (b) Uniform-uniform distribution

(c) Different number of experiments K (d) Different sample size N

Figure 4 Performance comparisons for non-overlapping experiments with covariates

On one hand, the results are consistent with those in the case without covariates shown in Figure

3, demonstrating the robustness of our proposed method when incorporating covariate information.

On the other hand, we further show that DPTR-P could achieve an even higher performance than

DPTR with a shared scale parameter, which is well aligned with our theoretical results (Theorems

4 and 5), demonstrating the value of leveraging personalized information.
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5.2. Non-overlapping Experiments and Non-linear Specification

In this subsection, we conduct a series of numerical experiments to evaluate the performance of

DPTR under non-overlapping experiments and non-linear specification, as introduced in Section 3.2.

We consider the following experimental setup: the platform runs K = 100 experiments, each with

N = 100 observations. The noise ϵk,i follows a normal distribution, ϵk,i ∼ N (0,32). We set the

number of covariates as dx = 4, with covariate values sampled from xj
k,i ∼U(0,1). The ground-truth

response function is defined as gk(Xk,i) = [γ⊤
k,0Xk,i, γ

⊤
k,1Xk,i]

⊤, where the components of γk,0 and γk,1

are independently drawn from the distribution U(−0.3,0.5). To estimate the nuisance parameter,

we use a two-layer fully connected neural network with 10 units per layer and ReLU activations,

without dropout, as the function class F . As illustrated in Section 3.2, double machine learning

and cross-fitting techniques are applied to estimate the ATE of each experiment k, denoted by τ̂k.

Similar to Section 5.1.1, we also run the simulation for 1,000 iterations and show the middle

95% of the differences in five metrics between DPTR and IHT in the five metrics (OR, Accuracy,

Recall, Specificity and Precision), as shown in Figure 5. It is clearly illustrated in Figure 5 that the

results are consistent with those of DPTR method in the setting of non-overlapping experiments

and non-linear specification (see Figure 2(a)).

Figure 5 DPTR vs. IHT: Non-overlapping experiments and non-linear specification

Next, we incorporate the personalized scale parameter β̂k defined in Eqn. (13), and evaluate the

performance of our methods under two scenarios: one with a relatively large number of experiments

(K = 100), and the other with a relatively small number (K = 5). Under each situation, we vary

σ from 1 to 5 in increments of 1. For each parameter specification, we run the simulation for

1,000 iterations and report the average OR of each roll-out method in Table 1. Our simulation

results show that DPTR and DPTR-P consistently yield significant reward improvements over IHT,

regardless of the number of experiments K and noise variance σ2. The improvement is noticeably

greater when the number of experiments is larger. In this case, the estimation accuracy of β̂, β̂k,

and τ̂0 is higher, rendering data pooling via our methods more effective. We also observe that

DPTR-P consistently outperforms DPTR, except for the case where K is large and σ2 is small.
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Even though b2k is constructed based on a misspecified linear model, it still provides benefits when

the number of experiments is small or the variance is large.

K = 100 K = 5

Noise Variance (σ2) IHT DPTR DPTR-P IHT DPTR DPTR-P

12 0.4097 0.9214 0.8930 0.3804 0.6768 0.7476

22 0.1708 0.8394 0.8417 0.1662 0.4855 0.6728

32 0.1003 0.7123 0.7612 0.0990 0.3726 0.5882

42 0.0745 0.5831 0.7029 0.0739 0.3455 0.5357

52 0.0596 0.5349 0.6858 0.0468 0.2982 0.4951

Table 1 Performance comparison under OR: Non-overlapping experiments and non-linear specification

5.3. Overlapping Experiments and Linear Specification

We now numerically test the performance of DPTR under overlapping experiments and linear

specification, as described in Section 3.3. The experimental setup is as follows: the platform runs

K = 100 experiments, withN = 10+K observations. TheDk,i’s are i.i.d. Bernoulli random variables

with P[Dk,i = 1] = P[Dk,i = 0] = 0.5. The noise ϵk,i follows a normal distribution, ϵk,i ∼ N (0,32).

The ground-truth ATE, τk, is randomly sampled from a normal distribution N (1,32).

We repeat the experiment 1,000 times using the Bayesian, DPTR and IHT methods, and present

the middle 95% of the differences in five metrics (OR, Accuracy, Recall, Specificity, and Precision)

to compare their performance, as shown in Figure 6. The results closely mirror those in Figure 2

(a), even with overlapping experiments.

Figure 6 DPTR (Bayesian method) vs. IHT: Overlapping experiments and linear specification

We compare DPTR, IHT, and Bayesian methods and report OR and VDP in Figure 7. The

findings are closely aligned with those reported in Section 5.1. The results show that our DPTR

method remains competitive even when the number of experiments is small. In summary, the

proposed DPTR method has a robust performance under linear specification even when users are

treated by multiple experiments simultaneously.
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(a) K = 100 (b) K = 5

(c) K = 100 (d) K = 5

Figure 7 Performance comparisons under overlapping experiments and linear specification

5.4. Overlapping Experiments and Non-linear Specification

In this subsection, we test the performance of our method in the scenario introduced in Section 3.4.

We evaluate the performance of our method only when K is relatively small. The experimen-

tal setup is as follows: the platform runs K = 5 experiments, with N = 100 +K observations.

The noise ϵk,i follows a normal distribution, ϵk,i ∼ N (0,32). We set the number of covariates as

dx = 4, the covariate distribution as xj
k,i ∼ U(0,1), and the true response function as g(Xi) =

[γ⊤
0 Xi, γ

⊤
1 Xi, · · · , , γ⊤

KXi]
⊤, where the coefficients γ0, γ1, · · · , γK are randomly drawn from the dis-

tribution U(−0.3,0.5). The estimation is also based on double machine learning and cross-fitting.

To estimate the nuisance parameter g(·), we adopt the two-layer fully connected neural network

with K+10 units per layer and ReLU activations, without dropout, to estimate g(·). As reported

in Table 2, DPTR consistently outperforms IHT, demonstrating that our proposed data pooling

technique effectively combines data from multiple experiments even under overlapping experiments

and nonlinear specification.

5.5. Robustness under Model Misspecification

Our analysis so far has focused on the assumption that the policy ATEs are linearly additive. In

practice, however, this assumption does not hold in general (Ye et al. 2025). To understand how
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Noise Variance (σ2) IHT (OR) DPTR (OR)

12 0.3590 0.6897

22 0.1499 0.5257

32 0.0992 0.5008

42 0.0650 0.4438

52 0.0512 0.4344

Table 2 The comparison of OR under different σ2.

well our proposed data pooling method works when the treatment effects of different policies are

not linearly additive, we consider the Generalized Sigmoid Form II DGP in Ye et al. (2025):

Yi =
υ

1+ exp(−g(Xi)⊤ti)
+ ϵi, i= 1, . . . ,N, (23)

where g(·) :Rdx→RK+1 is the true response function, ti is the treatment vector which includes a

constant term, and ϵi denotes the i.i.d. random noise. Thus, the optimal reward the platform can

obtain is given by:

r∗ =max
t

E[Y |t]−E[Y |t0],

where t0 is the base treatment vector in which the treatment indicators for all experiments equal

to zero. While the data generating process follows Eqn. (23), we deliberately ignore the non-linear

model specifications and apply the same method in Section 5.4 to decide whether the experiment

k should be implemented. After implementing Algorithm 1 and 2, we obtain the roll-out decisions

ÂIHT and ÂDPTR. The reward obtained by the IHT and DPTR can be written as:

r̂IHT =E[Y |ÂIHT]−E[Y |t0], r̄(β, τ) =E[Y |ÂDPTR]−E[Y |t0].

The experimental setup is as follows: the error term is sampled from a normal distribution

N (0,32), and the number of experiments is set to K = 4. We draw υ from the uniform distribution

U(10,20), and define the function g(Xi) as g(Xi) =
{
γ⊤
0 Xi, γ

⊤
1 Xi, . . . , γ

⊤
KXi

}
where each vector

γ0, γ1, . . . , γK consist of components which are independently drawn from U(−0.3,0.5). The covari-

ate Xi is of dimension dx = 4, where each component is sampled independently from U(0,1). To

provide a more comprehensive comparison of the performance of the IHT and DPTR methods, we

vary the number of experiments from 4 to 7 with an increment of 1, and also vary σ from 3 to 5 in

increments of 1. We repeat each setting 1000 times and report the average OR values in Table 3.

N (0,32) N (0,42) N (0,52)

K IHT DPTR IHT DPTR IHT DPTR

4 0.0269 0.3754 0.0259 0.3862 0.0217 0.3862

5 0.0142 0.4267 0.0151 0.3913 0.0104 0.4043

6 0.0065 0.4641 0.0057 0.4346 0.0058 0.4301

7 0.0023 0.5133 0.0013 0.4864 0.0032 0.4945

Table 3 The performance comparison with OR under different K and variance of error term.
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First, we observe that the DPTR method consistently outperforms the IHT method, regardless

of the number of experiments or the magnitude of the error term. Second, due to the effect of

nonlinearity, the performance of both the DPTR and IHT methods does not show a strictly mono-

tonic decline as the variance of error term increases. Finally, an interesting phenomenon is that

when nonlinearity is ignored, increasing the number of experiments tends to amplify the degree

of nonlinearity. This, in turn, leads to deteriorating performance of the IHT method, while the

DPTR method continues to improve. This finding further demonstrates that the DPTR method is

capable of rolling out high-reward treatments even under model misspecification, highlighting its

robustness.

6. Applications to Real-world A/B Tests

In this section, we evaluate the performance of the DPTR method using the real-world A/B testing

data, covering both non-overlapping and overlapping scenarios. Section 6.1 reports experiment

results based on a publicly available dataset from Criteo (Diemert et al. 2018) to demonstrate the

performance of our proposed method in the non-overlapping scenario. In Section 6.2, we utilize the

experimental data from Ye et al. (2025), which includes multiple experiments, to demonstrate the

DPTR method’s effectiveness in the overlapping scenario.

6.1. Non-Overlapping A/B Testing

In this subsection, we will evaluate the performance of the DPTR method in a non-overlapping

scenario. The dataset5 used in this analysis originates from a randomized controlled trial (RCT),

conducted by Criteo, an advertising platform, as part of a large-scale randomized ad-targeting

campaign. In this RCT, a randomly selected portion of the population was deliberately excluded

from being targeted by advertisements. This RCT was initially released to benchmark uplift mod-

eling methods (Diemert et al. 2018) with “visits” as the outcome of interest. The dataset comprises

13,979,592 rows, each representing a user characterized by 12 covariates, a treatment indicator for

advertisement exposure, and a binary label indicating whether the user visited the advertised site.

The treatment rate is 85% and the average visit rate is 4.70%.

Unlike the synthetic data setting explored in Section 5, this dataset is from a single experiment

and contains user covariate information. Consequently, our focus shifts to determining customized

treatment rollouts, specifically, deciding whether personalized recommendations should be offered

to users. To validate the proposed approach using this dataset, we first group all samples based on

user covariates. Then, we estimate the “true” HTEs across different groups using the full dataset.

Next, we evaluate both DPTR and IHT methods, using random samples from the dataset associated

with each group. The detailed validation procedure is as follows:

5 The dataset can be accessed via the link https://ailab.criteo.com/criteo-uplift-prediction-dataset/.

https://ailab.criteo.com/criteo-uplift-prediction-dataset/
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1. Group Generation: We partition the dataset based on the medians of user covariates. Since

the covariate information in this dataset is encrypted, we cannot group the data based on specific

covariate values. Instead, we categorize each covariate into two groups based on its median value.

As many covariates have a large number of values equal to the median, we randomly assign samples

to ensure that both groups have equal sample sizes. Thus, we partition the entire dataset based

on the combinations formed by the realizations of the 12 covariates. Since the features are not

completely independent, the number of data points in the groups formed by splitting on the median

of each feature is not necessarily the same. Thus, to ensure each group has enough data for reliable

analysis, we exclude groups with fewer than 1,000 data entries. This results in 1,744 groups, that

is, K = 1,744.

2. “True” HTEs Calculation: For group k, let Dk,i ∈ {0,1} represent the treatment variable

for subject i, where Dk,i = 1 indicates the implementation of the personalized recommendation,

and Dk,i = 0 indicates no implementation. Let Yk,i denote the outcome, indicating whether the

user visits the recommended advertisement. The “true” HTE for group k is then given by: τk =

1
Nk,1

∑
Dk,i=1 Yk,i − 1

Nk,0

∑
Dk,i=0 Yk,i where Nk,1 and Nk,0 are the total number of subjects who

experienced and did not experience the treatment, respectively. The histogram of the “true” HTEs

across all groups, estimated from the entire dataset, is shown in Figure 8.

Figure 8 Histogram of true HTEs for all groups for Criteo dataset.

3. Random Sampling and Evaluation: For each group, we randomly select N users, with N/2

users drawn from the treatment group (Dk,i = 1) and N/2 users drawn from the control group

(Dk,i = 0) for every k. Using this randomly sampled sub-dataset, we apply both the IHT and DPTR

methods (Algorithms 1 and 2, respectively) to generate roll-out decisions. Here, we select the

difference-in-mean method asM(·) and set the significance level α= 0.05. Finally, we can compare

their performance by measuring different metrics.

Since the sample sizes vary across groups, we normalize τk when calculating the OR and VDP

values by multiplying it with the normalizing factor
Nk,0+Nk,1∑
k(Nk,0+Nk,1)

, which represents the proportion
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of group k’s data size relative to the total data size of all groups. We vary the sample size N from

10 to 30 in increments of 5 and repeat the experiment 1,000 times. The averaged results are shown

in Figure 9.

(a) OR (b) VDP (c) Recall and Specificity

Figure 9 Performance comparisons in different sample size N in Criteo dataset.

According to Figure 9(a), the DPTR method consistently outperforms the IHT method , irre-

spective of the sample size N . Additionally, as the sample size increases, the performance difference

between DPTR and IHT becomes larger. However, the Bayesian method performs almost on par

with the IHT method. The significant performance difference between DPTR method and the

Bayesian method hinges on how the shrinkage parameter β is constructed: while the one for DPTR

requires the average sample variance across experiments (Eqn. 20), the one for the Bayesian method

utilizes the individual-level sample variance (Eqn. 21). As reported in Figure 8, most true HTEs are

centered around zero, which may benefit most from shrinkage, yet their sample variances tend to be

relatively small. Thus, the associated shrinkage parameters β̂bayes
k are closer to zero, resulting in a

similar performance of the IHT method. In contrast, DPTR leverages the average sample variance,

which may significantly deviate from zero. This allows the shrinkage parameter to more effectively

guide decision-making and achieve superior OR values. In sum, these results further highlight that

our DPTR method is more decision-aware and robust than the Bayesian method.

Figure 9(b) further reveals that the relative performance advantage of the DPTR method over

the IHT method increases significantly as the amount of experimental data decreases. This find-

ing highlights that, when experimental data is limited, the DPTR method provides substantial

performance improvements.

Figure 9(c) shows that when N is small, the Recall value under the IHT method and Bayesian

method is closer to 0, indicating that few or no personalized recommendations are rolled out to

specific groups, even when these groups may be associated with positive ATEs. Because few groups

are treated with the personalized recommendation, the Specificity value is also higher under the

IHT and Bayesian methods. On the other hand, despite large variation in the estimated ATEs across

groups, the DPTR method mitigates this issue by pooling the estimates, which reduces variance
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and shifts the estimate towards a more positive range. As a result, the Recall value under the DPTR

method increases significantly. This comes at the cost of mistakenly selecting some groups for the

personalized recommendation. However, by balancing Recall and Specificity, the DPTR method

generates a much higher reward compared to the IHT and Bayesian methods when the personalized

roll-out decisions are involved. Finally, we remark that additional evaluation of the DPTR method

using Expedia’s experimental data in a similar non-overlapping setting is provided in Appendix B.

6.2. Overlapping A/B Tests

In this subsection, we will use the experimental data from Ye et al. (2025) to demonstrate the

performance of our DPTR method in the overlapping scenario. The dataset was collected from a

large-scale online short-video-sharing platform, which serves hundreds of millions of users globally

each day.

The dataset comprises a unique set of three A/B tests or treatments, each of which examines the

effect of a major adjustment to the video recommendation algorithm on one of three main pages

of the online platform: (i) the Discover Page (DP), (ii) the Live Page (LP), and (iii) the For You

Page (FYP). As with most A/B tests conducted on online platforms, the primary objective is to

enhance user engagement, which is well approximated by the amount of screen time a user spends

on the platform each day. Each experiment is randomized using a distinct hash function of user IDs,

ensuring that the treatment assignment mechanisms across experiments are mutually independent.

Ye et al. (2025) have demonstrated the presence of interaction effects across experiments in this

dataset. As a result, the three experiments yield eight distinct treatment combinations. Using

stratified sampling, Ye et al. (2025) construct a new dataset with approximately 258,325 users in

each treatment combination. We refer to the total data as population data. A detailed description

of the dataset and experiments can be found in Ye et al. (2025).

First, using the full population data, we compute the ground-truth ATEs for all treatment

combinations. The relative ATE values for the eight treatment combinations are reported in Table

2 of Ye et al. (2025). For combinations with statistically insignificant ATEs, we set the ground-

truth ATE to zero. Next, we randomly sample N users for each treatment combination from the

corresponding population data to construct a new dataset, which we refer to as the historical

experimental data. We then apply both the DPTR and IHTmethods to this dataset to make roll-out

decisions, and evaluate their performance using OR values calculated based on the ground-truth

ATEs. This sampling procedure is repeated 1,000 times, and we report the average OR values

across these iterations.

To more robustly demonstrate the advantage of the DPTR method over the IHT method, we vary

N across the values 1000, 5000, 10000, and 20000. For the method M, we consider the following
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four methods: (i) DM, (ii) OLS without covariate information, (iii) OLS with covariate information,

and (iv) DML. Next, we provide a detailed description of the implementation procedures for each

method as follows:

(i) DM: For this method, we focus on a non-overlapping scenario without covariate information.

Accordingly, we use only the data corresponding to the three treatment combinations: (1,0,0),

(0,1,0), and (0,0,1). The model assumed for this method follows the form of Eqn. (2).

(ii) OLS without covariate information: For this method, we consider an overlapping sce-

nario that utilizes data from all treatment combinations. However, covariate information is not

included, and the assumed model follows the form of Eqn. (14).

(iii) OLS with covariate information: For this method, we consider an overlapping scenario

and incorporate covariate information. The assumed model follows the form of Eqn. (16).

(iv) DML : For this method, we consider an overlapping scenario and use the DML approach to

estimate the ATEs. We assume that the policy ATEs are linearly additive, and the model follows

the form of Eqn. (17).

The averaged OR values of 1,000 instances for different methods M and sample size N are

reported in the Table 4. First, we observe that our DPTR method consistently outperforms the IHT

method with different methods and sample sizes. This confirms the effectiveness of our method for

prescribing roll-out decisions using real-world datasets. Second, for any given methodM, increasing

the sample sizeN improves the performance for both the DPTR and IHTmethods. This is consistent

with our intuition: a larger sample size typically results in a smaller variance. Furthermore, for

a fixed sample size, when adopting IHT method, we may observe that “OLS without covariate”

outperforms “OLS with covariate”, which, in turn, results in higher ORs than DML. This may

imply the potential risk of model misspecification. More importantly, regardless of whether model

misspecification exists, DPTR method outperforms the IHT method, demonstrating its robustness,

especially when model misspecification may arise in analyzing real-world datasets.

Method (M) Roll-out method 1,000 5,000 10,000 20,000

DM
IHT 0.0207 0.0408 0.0584 0.0732

DPTR 0.1610 0.2482 0.2780 0.3080

OLS without covariate
IHT 0.0568 0.1070 0.2281 0.3564

DPTR 0.2878 0.4213 0.5257 0.6926

OLS with covariate
IHT 0.0161 0.0853 0.1499 0.2667

DPTR 0.4342 0.5213 0.5437 0.6060

DML
IHT 0.0080 0.0398 0.1058 0.2145

DPTR 0.3654 0.4208 0.4845 0.5474

Table 4 The comparison of OR under different methods M and sample size N .
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7. Conclusion

In conclusion, we introduce the Data-Pooling Treatment Roll-Out (DPTR) framework to improve

decision-making in online experiments by aggregating data across multiple experiments. By

addressing challenges like limited traffic, heterogeneous treatment effects, and overlapping exper-

iments, DPTR effectively balances bias and variance in treatment effect estimation. Theoretical

analysis, synthetic experiments, and empirical validation with Expedia data show that DPTR con-

sistently outperforms traditional individual hypothesis testing (IHT), especially with small sample

sizes and many experiments. This study highlights the value of data pooling for policy roll-outs,

with potential future extensions to non-linear treatment effects and broader decision-making con-

texts.

In this paper, we focus on the case of binary treatments and propose a method that pools data

across multiple experiments to improve the per-experiment reward by shrinking the estimators

derived from individual datasets. Although our primary analysis is centered on binary treatments,

the underlying idea is broadly applicable. For example, it can be extended to settings with con-

tinuous treatments, such as pricing interventions in A/B testing, where the goal is to estimate

dose-response relationships (Zhang et al. 2025). Moreover, the approach can be applied to observa-

tional (non-experimental) data, where confounding may arise, offering a principled way to stabilize

estimates in the presence of such complexities (Jiang and Li 2025, Chitla et al. 2025). Furthermore,

our framework can be extended to optimization problems with uncertain objectives and prescribe

roll-out decisions, potentially subject to constraints (Natarajan et al. 2011).
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Appendix

A. Proofs

Proof of Theorem 1. First of all, because true ATE τk follows the normal distribution N (τ0, σ
2
0),

R(β, τ0) can be written as:
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We take the derivative of R(β, τ0) with respect to β as follows:
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We can observe that when β ≥ 0, the value of the derivative gradually changes from positive to negative.

Thus, R(β, τ0) reaches the maximum value when β takes the following value:

β∗ =
4σ2

σ2
0

+
2
√
Nz1−α/2σ

τ0
. (EC.1)

This concludes the proof.

Proof of Theorem 2. We have, by definition, τ̂0 =
1
K

∑
k τ̂k and first prove that τ̂0→p τ0. Specifically,

we have, ∣∣∣ 1
K

∑
k

τ̂k− τ0
∣∣∣≤ ∣∣∣ 1

K

∑
k

τ̂k−
1

K

∑
k

τk

∣∣∣+ ∣∣∣ 1
K

∑
k

τk− τ0
∣∣∣.

Since the ATE satisfies, τ̂k ∼ N (τk, σ
2), this implies τ̂k is a sub-Gaussian random variable. Thus, by the

concentration theorem of sub-Gaussian random variables (Proposition 2.5 in Wainwright (2019)), for any

t > 0, we have,
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Consequently, we have,
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∣∣∣→p 0 when K→∞.

In addition, we have, τk ∼N (τ0, σ
2
0), by the law of large numbers, we have
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∣∣→p 0. Combining

the above results, we can conclude that
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∣∣→p 0, and equivalently, τ̂0 →p τ0. Then, we can

conclude that τ̂0→p τ0.

In order to prove β̂∗→p β
∗, we first prove the following convergence results:
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We will first prove the convergence of variance for the treatment group as follows:
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Because the error term ϵk follow the normal distribution, Yk,i − 2
N

∑
Dk,i=j

Yk,i also follows the normal

distribution which makes that (Yk,i − 2
N

∑
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2 is a sub-exponential random variable according to

Lemma 5.14 of Vershynin (2010). Combining the fact that E
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the independence across all experiments, by applying the concentration theorem of sub-exponential random

variables (Proposition 2.9 in Wainwright (2019)), we can prove that Eqn. (EC.2) holds. The analysis in the

control group is the same as the above one for the treatment group. Thus, we have,
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For the term 1
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0 , by the concentration theorem of sub-exponential

random variables (Proposition 2.9 in Wainwright (2019)), we obtain,
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Furthermore, combining the result in Eqn. (EC.3), we can conclude that:
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Finally, by Slutsky’s Theorem, we have,
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τ0
.

Thus, we have, β̂∗→p β
∗. This completes the proof.
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Proof of Theorem 3. We first prove that r̄(β̂∗, τ̂0)− r̃(β∗, τ0)→p 0 when K →∞. By definition, we

have,

r̄(β̂∗, τ̂0) =
1

K

∑
τ̄k>

N
N+β̂∗

2σ̂z1−α/2√
N

τk =
1

K

∑
k

1
{
τ̂k >

2σ̂z1−α/2√
N

− β̂∗τ̂0
N

}
τk,

r̃(β∗, τ0) =
1

K

∑
k

1
{
τ̂k >

2σz1−α/2√
N

− β∗τ0
N

}
τk.

Thus, we compute the difference between r̄(β̂∗, τ̂0) and r̃(β
∗, τ0),∣∣∣r̄(β̂∗, τ̂0)− r̃(β∗, τ0)

∣∣∣= ∣∣∣∣∣ 1K∑
k

τk

(
1
{
τ̂k >

2σ̂z1−α/2√
N

− β̂∗τ̂0
N

}
−1
{
τ̂k >

2σz1−α/2√
N

− β∗τ0
N

})∣∣∣∣∣ (EC.6)

≤ 1

K

∑
k

|τk| ·
∣∣∣1{τ̂k > 2σ̂z1−α/2√

N
− β̂∗τ̂0

N

}
−1
{
τ̂k >

2σz1−α/2√
N

− β∗τ0
N

}∣∣∣ (EC.7)

=
1

K

∑
k

|τk| ·1
{2σ̂z1−α/2√

N
− β̂∗τ̂0

N
< τ̂k ≤

2σz1−α/2√
N

− β∗τ0
N

}
(EC.8)

+
1

K

∑
k

|τk| ·1
{2σz1−α/2√

N
− β∗τ0

N
< τ̂k ≤

2σ̂z1−α/2√
N

− β̂∗τ̂0
N

}
. (EC.9)

We first analyze the indicator variable, |τk| ·1{
2σ̂z1−α/2√

N
− β̂∗τ̂0

N
< τ̂k ≤

2σz1−α/2√
N
− β∗τ0

N
}. By Markov’s inequality,

for any ξ > 0, we have:

P
(
|τk| ·1

{2σ̂z1−α/2√
N

− β̂∗τ̂0
N

< τ̂k ≤
2σz1−α/2√

N
− β∗τ0

N

}
≥ ξ
)

(EC.10)

≤ 1

ξ
Eτk,ϵ̂k,i

[
|τk|1

{2σ̂z1−α/2√
N

− β̂∗τ̂0
N

< τ̂k ≤
2σz1−α/2√

N
− β∗τ0

N

}]
, (EC.11)

where,

Eτk,ϵ̂k,i

[
|τk| ·1

{2σ̂z1−α/2√
N

− β̂∗τ̂0
N

< τ̂k ≤
2σz1−α/2√

N
− β∗τ0

N

}]
=Eτk

[
|τk| ·P

(2σ̂z1−α/2√
N

− β̂∗τ̂0
N

< τ̂k ≤
2σz1−α/2√

N
− β∗τ0

N

)]
.

We can find a function, τ2k +1, such that, for any K and τk,

|τk| ·P
(2σ̂z1−α/2√

N
− β̂∗τ̂0

N
< τ̂k ≤

2σz1−α/2√
N

− β∗τ0
N

)
≤ |τk| ≤ τ2k +1. (EC.12)

By Assumption 1, τ2k +1 is integrable. Thus, by the Dominated Convergence Theorem, we have

lim
K→∞

Eτk

[
|τk| ·P(

2σ̂z1−α/2√
N

− β̂∗τ̂0
N

< τ̂k ≤
2σz1−α/2√

N
− β∗τ0

N
)
]

=Eτk

[
|τk| · lim

K→∞
P
(2σ̂z1−α/2√

N
− β̂∗τ̂0

N
< τ̂k ≤

2σz1−α/2√
N

− β∗τ0
N

)]
.

Furthermore, based on the proof and results of Theorem 2, we have, σ̂→p σ and β̂∗→p β
∗. Thus, when

K→∞, we have,

P
(2σ̂z1−α/2√

N
− β̂∗τ̂0

N
< τ̂k ≤

2σz1−α/2√
N

− β∗τ0
N

)
→ 0. (EC.13)
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Therefore, we have,

Eτk

[
|τk| ·P

(2σ̂z1−α/2√
N

− β̂∗τ̂0
N

< τ̂k ≤
2σz1−α/2√

N
− β∗τ0

N

)]
→ 0. (EC.14)

Thus, combining Eqn. (EC.10) and (EC.14), we have,

|τk| ∗ 1{
2σ̂z1−α/2√

N
− β̂∗τ̂0

N
< τ̂k ≤

2σz1−α/2√
N

− β∗τ0
N
}→p 0. (EC.15)

The analysis for |τk| · 1{
2σz1−α/2√

N
− β∗τ0

N
< τ̂k ≤

2σ̂z1−α/2√
N

− β̂∗τ̂0
N
} is the same. In the Eqn. (EC.8) and

(EC.9), we take the average of the terms associated with indicator variables, and then, we can conclude that

|r̄(β̂∗, τ̂0)− r̃(β∗, τ0)| →p 0. Thus, the proof of r̄(β̂∗, τ̂0)− r̃(β∗, τ0)→p 0 is completed.

We next prove the convergence result, r̃(β∗, τ0)→pR(β∗, τ0). By definition, we have,

R(β∗, τ0) = lim
K→∞

E(r̃(β∗, τ0)) = lim
K→∞

1

K

∑
k

P
(
τ̂k >

2σz1−α/2√
N

− β∗τ0
N

)
τk. (EC.16)

Subsequently, we have the following:

1

K

∑
k

1
{
τ̂k >

2σz1−α/2√
N

− β∗τ0
N

}
τk−

1

K

∑
k

P
(
τ̂k >

2σz1−α/2√
N

− β∗τ0
N

)
τk→p 0

⇒ r̃(β∗, τ0)−
1

K

∑
k

P
(
τ̂k >

2σz1−α/2√
N

− β∗τ0
N

)
τk→p 0.

The above relationship holds because of the fact that 1{τ̂k >
2σz1−α/2√

N
− β∗τ0

N
} is a sub-Guassian random

variable and the concentration theorem of sub-Gaussian random variables (Proposition 2.5 in Wainwright

(2019)). Thus, combining the result r̄(β̂∗, τ̂0)− r̃(β∗, τ0)→p 0, we can conclude that:

r̄(β̂∗, τ̂0)−
1

K

∑
k

P
(
τ̂k >

2σz1−α/2√
N

− β∗τ0
N

)
τk→p 0. (EC.17)

In the proof of Theorem 1, we show that R(β∗, τ0) is a constant. By the definition of R(β∗, τ0), we

have, 1
K

∑
k
P(τ̂k >

2σz1−α/2√
N

− β∗τ0
N

)τk →p R(β∗, τ0). Thus, combining the result in Eqn. (EC.17), we have,

r̄(β̂∗, τ̂0)→pR(β∗, τ0). This completes the proof.

Proof of Theorem 4. First, the true ATE τk follows the normal distribution N (τ0, σ
2
0), and bk follows

the same distribution. Second, bk and τk are independent. Thus, R(β, τ0) can be computed as:

R(β, τ0) = lim
K→∞

1

K

∑
k∈[K]

τkP
(
τ̄k >

N

N +β

σbk√
N
z1−α/2

)
=Ebk

[∫ +∞

−∞

1√
2πσ0

e
− (τk−τ0)2

2σ2
0 Φ

(Nτk + τ0β√
Nσbk

− z1−α/2

)
τkd(τk)

]
.

Conditioning on bk, we take the derivative of the realized R(β, τ0) with respect to β(·) as follows:

exp
(
− (Nτ0+βτ0−

√
Nz1−α/2σbk)

2

2N(Nσ2
0+σ2b2

k)

)
τ0

(
−βτ0σ2

0 +σbk

(√
Nz1−α/2σ

2
0 + τ0σbk

))
bk
√
N
√
2πσ0

√
1
σ2
0
+ N

σ2b2
k
σ (Nσ2

0 + b2kσ
2)

.

We can observe that when β(bk)≥ 0 and increases, the value of the derivative gradually changes from positive

to negative. Thus, R(β(·), τ0) reaches the maximum value when β(·) takes the following value:

β∗(bk) =
σ2b2k
σ2
0

+

√
Nz1−ασbk

τ0
. (EC.18)

This concludes the proof.
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Proof of Theorem 5. We first prove that β̂∗(bk)→p β
∗(bk). We first prove that τ̂0 =

1
K

∑
k
τ̂k→p τ0 as

follows: ∣∣∣ 1
K

∑
k

τ̂k− τ0
∣∣∣≤ ∣∣∣ 1

K

∑
k

τ̂k−
1

K

∑
k

τk

∣∣∣+ ∣∣∣ 1
K

∑
k

τk− τ0
∣∣∣.

Since τ̂k ∼N (τk,
σ2b2k
N

), we have, τ̂k is a sub-Gaussian random variable. Thus, by the concentration theorem

of sub-Gaussian random variables (Proposition 2.5 in Wainwright (2019)), for any t > 0, we have,

P
(∣∣∣ 1
K

∑
k

τ̂k−
1

K

∑
k

τk

∣∣∣≥ t)≤ 2exp(−KNt2/(8σ2)).

We then deduce that,
∣∣∣ 1K ∑k

τ̂k− 1
K

∑
k
τk

∣∣∣→p 0 when K→∞.

Since τk ∼ N (τ0, σ
2
0), by the law of large numbers, we have,

∣∣∣ 1K ∑k
τk − τ0

∣∣∣→p 0. Combining the above

results, we can conclude that
∣∣∣ 1K ∑k

τ̂k−τ0
∣∣∣→p 0, which proves τ̂0→p τ0. This concludes the proof of τ̂0→p τ0.

In order to prove, β̂∗(bk)→p β
∗(bk) given bk, we first prove the following convergence results:

1

K

∑
k

s2k→p σ
2, (EC.19)

1

K

∑
k

(τ̂k− τ̂0)2→p σ
2
0 +

1
K

∑
k
b2kσ

2

N
. (EC.20)

In addition, s2k is proportional to the chi-squared distribution (see, Page 14 in Amemiya 1985),

s2k ∼
σ2

N − dx− 1
· X 2

N−dx−1. (EC.21)

Thus, we have E[s2k] = σ2 and s2k follows sub-exponential distribution (see, Example 2.4 in Wainwright 2019).

By applying the concentration theorem of sub-exponential random variables (Proposition 2.9 in Wainwright

(2019)), we have, 1
K

∑
k
s2k→p σ

2.

For the term 1
K

∑
k
(τ̂k− τ̂0)2, we can decompose it as follows:

1

K

∑
k

(τ̂k− τ̂0)2 =
1

K

∑
k

(τ̂k− τk)2 +
1

K

∑
k

(τk− τ̂0)2 +
1

K

∑
k

2(τ̂k− τk)(τk− τ̂0)

=
1

K

∑
k

(τ̂k− τk)2 +
1

K

∑
k

(τk− τ0)2 +
1

K

∑
k

2(τk− τ0)(τ0− τ̂0)

+ (τ0− τ̂0)2 +
1

K

∑
k

2(τ̂k− τk)(τk− τ̂0)

=
1

K

∑
k

(τ̂k− τk)2 +
1

K

∑
k

(τk− τ0)2 +
1

K

∑
k

2(τk− τ0)(τ0− τ̂0)

+ (τ0− τ̂0)2 +
1

K

∑
k

2τk(τ̂k− τk)− 2τ̂0
1

K

∑
k

(τ̂k− τk).

We know that E[(τ̂k − τk)2] = b2kσ
2

N
and E[(τk − τ0)2] = σ2

0 . Thus, by the concentration theorem of sub-

exponential random variables (Proposition 2.9 in Wainwright (2019)), we have,

1

K

∑
k

(τ̂k− τk)2→p

1
K

∑
k
b2kσ

2

N
,

1

K

∑
k

(τk− τ0)2→p σ
2
0 .
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The remaining three parts in the decomposition, (τ0 − τ̂0)2, 1
K

∑
k
2τk(τ̂k − τk), and 2τ̂0

1
K

∑
k
(τ̂k − τk) will

converge to zero in probability because of the fact that τ̂0→p τ0 and E[τ̂k− τk] = 0. Thus, we have,

1

K

∑
k

(τ̂k− τ̂0)2→p σ
2
0 +

1
K

∑
k
b2kσ

2

N
.

Furthermore, combining the result in Eqn. (EC.19), we can conclude that:

1

K

∑
k

(τ̂k− τ̂0)2−
1

N

( 1

K

∑
k

s2k ∗
1

K

∑
k

b2k

)
→p σ

2
0 .

Thus, by Slutsky’s Theorem, given bk, we can conclude that:

b2k
1
K

∑
k s

2
k

1
K

∑
k(τ̂k− τ̂0)2−

1
N

(
1
K

∑
k s

2
k ∗ 1

K

∑
k b

2
k

) →p

σ2b2k
σ2
0

,

z1−α/2bk

√
N 1

K

∑
k s

2
k

τ̂0
→p

√
Nbkz1−α/2σ

τ0
.

Thus, given bk, the proof of β̂∗(bk)→p β
∗(bk) is completed.

We next prove r̄(β̂∗(·), τ̂0) →p R(β∗(·), τ0). Given {b1, · · · , bK}, we first prove that r̄(β̂∗(·), τ̂0) −

r̃(β∗(·), τ0)→p 0 when K→∞. By definition, we have,

r̄(β̂∗(bk), τ̂0) =
1

K

∑
τ̄k>

N
N+β̂∗(bk)

σ̂bkz1−α/2√
N

τk =
1

K

∑
k

1
{
τ̂k >

σ̂bkz1−α/2√
N

− β̂∗(bk)τ̂0
N

}
τk,

r̃(β∗(bk), τ0) =
1

K

∑
k

1
{
τ̂k >

σbkz1−α/2√
N

− β∗(bk)τ0
N

}
τk.

We then compute the difference between r̄(β̂∗(bk), τ̂0) and r̃(β
∗(bk), τ0),∣∣∣r̄(β̂∗(bk), τ̂0)− r̃(bk), τ0)

∣∣∣
=

∣∣∣∣∣ 1K∑
k

τk

(
1
{
τ̂k >

σ̂bkz1−α/2√
N

− β̂∗(bk)τ̂0
N

}
−1
{
τ̂k >

σbkz1−α/2√
N

− β∗(bk)τ0
N

})∣∣∣∣∣
≤ 1

K

∑
k

|τk| ·
∣∣∣1{τ̂k > σ̂bkz1−α/2√

N
− β̂∗(bk)τ̂0

N

}
−1
{
τ̂k >

σbkz1−α/2√
N

− β∗(bk)τ0
N

}∣∣∣
=

1

K

∑
k

|τk| ·1
{ σ̂bkz1−α/2√

N
− β̂∗(bk)τ̂0

N
< τ̂k ≤

σbkz1−α/2√
N

− β∗(bk)τ0
N

}
(EC.22)

+
1

K

∑
k

|τk| ·1
{σbkz1−α/2√

N
− β∗(bk)τ0

N
< τ̂k ≤

σ̂bkz1−α/2√
N

− β̂∗(bk)τ̂0
N

}
. (EC.23)

We first analyze the term, |τk| · 1
{

σ̂bkz1−α/2√
N

− β̂∗(bk)τ̂0
N

< τ̂k ≤
σbkz1−α/2√

N
− β∗(bk)τ0

N
}. By Markov’s inequality,

for any ξ > 0, we have:

P
(
|τk| ·1

{ σ̂bkz1−α/2√
N

− β̂∗(bk)τ̂0
N

< τ̂k ≤
σbkz1−α/2√

N
− β∗(bk)τ0

N

}
≥ ξ
)

≤1

ξ
Eτk,ϵ̂k,i

[
|τk| ·1

{ σ̂bkz1−α/2√
N

− β̂∗(bk)τ̂0
N

< τ̂k ≤
σbkz1−α/2√

N
− β∗(bk)τ0

N

}]
, (EC.24)
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where

Eτk,ϵ̂k,i

[
|τk| ·1

{ σ̂bkz1−α/2√
N

− β̂∗(bk)τ̂0
N

< τ̂k ≤
σbkz1−α/2√

N
− β∗(bk)τ0

N

}]
=Eτk

[
|τk| ·P

( σ̂bkz1−α/2√
N

− β̂∗(bk)τ̂0
N

< τ̂k ≤
σbkz1−α/2√

N
− β∗(bk)τ0

N

)]
.

There exists a function τ2k +1, for any K and τk, such that

|τk| ·P
( σ̂bkz1−α/2√

N
− β̂∗(bk)τ̂0

N
< τ̂k ≤

σbkz1−α/2√
N

− β∗(bk)τ0
N

)
≤ |τk| ≤ τ2k +1. (EC.25)

By Assumption 1, τ2k +1 is integrable. Thus, by the Dominated Convergence Theorem, we have

lim
K→∞

Eτk

[
|τk| ·P

( σ̂bkz1−α/2√
N

− β̂∗(bk)τ̂0
N

< τ̂k ≤
σbkz1−α/2√

N
− β∗(bk)τ0

N

)]
=Eτk

[
|τk| · lim

K→∞
P
( σ̂bkz1−α/2√

N
− β̂∗(bk)τ̂0

N
< τ̂k ≤

σbkz1−α/2√
N

− β∗(bk)τ0
N

)]
.

Furthermore, based on the proof and results of Theorem 5, we have, σ̂→p σ and β̂∗(bk)→p β
∗(bk). Thus,

when K→∞, we have,

P
( σ̂bkz1−α/2√

N
− β̂∗(bk)τ̂0

N
< τ̂k ≤

σbkz1−α/2√
N

− β∗(bk)τ0
N

)
→ 0, (EC.26)

and

Eτk

[
|τk| ·P

( σ̂bkz1−α/2√
N

− β̂∗(bk)τ̂0
N

< τ̂k ≤
σbkz1−α/2√

N
− β∗(bk)τ0

N

)]
→ 0. (EC.27)

Thus, according to Eqn. (EC.24) and (EC.27), we have,

|τk| ·1
{ σ̂bkz1−α/2√

N
− β̂∗(bk)τ̂0

N
< τ̂k ≤

σbkz1−α/2√
N

− β∗(bk)τ0
N

}
→p 0. (EC.28)

The analysis for the term in Equation (EC.23), |τk| · 1{
σbkz1−α/2√

N
− β∗(bk)τ0

N
< τ̂k ≤

σ̂bkz1−α/2√
N

− β̂∗(bk)τ̂0
N
},

is the same. Following Eqn. (EC.22) and (EC.23), we take the average of terms associated with indicator

variables, and then, we have,
∣∣r̄(β̂∗(·), τ̂0)− r̃(β∗(·), τ0)

∣∣→p 0. Thus, the proof of r̄(β̂
∗(·), τ̂0)− r̃(β∗(·), τ0)→p 0

is completed.

We next prove r̃(β∗(·), τ0)→pR(β∗(·), τ0). By definition, we have,

R(β∗(·), τ0) = lim
K→∞

E(r̃(β∗(·), τ0)) = lim
K→∞

1

K

∑
k

P
(
τ̂k >

σbkz1−α/2√
N

− β∗(bk)τ0
N

)
τk. (EC.29)

Thus, we have,

1

K

∑
k

1
{
τ̂k >

σbkz1−α/2√
N

− β∗(bk)τ0
N

}
τk−

1

K

∑
k

P
(
τ̂k >

σbkz1−α/2√
N

− β∗(bk)τ0
N

)
τk→p 0

⇒ r̃(β∗(·), τ0)−
1

K

∑
k

P
(
τ̂k >

σbkz1−α/2√
N

− β∗(bk)τ0
N

)
τk→p 0.

The above relationship holds because of the fact that 1{τ̂k >
σbkz1−α/2√

N
− β∗(bk)τ0

N
} is a sub-Guassian random

variable and the concentration theorem of sub-Gaussian random variables (Proposition 2.5 in Wainwright

(2019)). Thus, combining the result r̄(β̂∗(·), τ̂0)− r̃(β∗(·), τ0)→p 0, we have,

r̄(β̂∗(·), τ̂0)−
1

K

∑
k

P
(
τ̂k >

σbkz1−α/2√
N

− β∗(bk)τ0
N

)
τk→p 0. (EC.30)

In the proof of Theorem 4, we show that R(β∗(·), τ0) is a constant. By the definition of R(β∗(·), τ0), we
have, 1

K

∑
k P(τ̂k >

σbkz1−α/2√
N

− β∗(·)τ0
N

)τk →p R(β∗(·), τ0). Thus, combining the result in Eqn. (EC.30), we

can deduce that r̄(β̂∗(·), τ̂0)→pR(β∗(·), τ0) and this completes the proof.
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B. Numerical Results with Expedia Experiment Data

In this dataset, we complement our analysis with an additional dataset to assess the performance of the DPTR

method in a non-overlapping setting. The dataset comes from a field experiment conducted by Expedia, the

world’s largest online travel agency. This publicly available dataset6 includes data from consumers searching

for hotels, who were randomly assigned to one of two groups: (i) those who viewed a personalized ranking,

where hotels were ordered according to their suitability for consumers based on Expedia’s internal ranking

algorithm, and (ii) those who viewed a random ranking, where hotels were listed in no particular order.

Following the data cleaning process outlined in Ursu (2018), we obtained a total of approximately 166 thou-

sands of consumer queries for hotels, along with their corresponding choices (clicks and purchases), spanning

an eight-month period ending in June 2013. This dataset includes approximately 4.5 million observations of

hotels displayed on Expedia.

In this dataset, we use the origin-destination pair (the country of the customer and the country of the

hotels being searched) to partition the whole dataset. To ensure each group has enough data for reliable

analysis, we exclude groups with fewer than 250 queries. This results in 119 groups, that is, K = 119. The

histogram of the “true” HTE across all groups, estimated from the entire dataset, is shown in Figure EC.1.

Figure EC.1 Histogram of true HTEs for all groups of the Expedia dataset.

Considering that in real-world scenarios, platforms incur costs τmin for both the design and maintenance

of algorithms. Thus, for any policy k, the actual reward obtained by the platform is given by, (τk − τmin)

. We assess the impact of implementation costs in this example by considering two frictional cost values,

τmin = 0.05 and 0.17. Since the data sizes vary across groups, we normalize (τk− τmin) when calculating the

OR and VDP values by multiplying it by the parameter
Nk,0+Nk,1∑
k(Nk,0+Nk,1)

, which represents the proportion of

group k’s data size relative to the total data size of all groups.

Besides the OR and VDP metrics, we also report Recall rate which measures the ratio of correct decisions

made by the roll-out method (IHT or DPTR) across all experiments where the roll-out should occur and

6 www.kaggle.com/c/expedia-personalized-sort/data

7 This does not imply that the actual implementation cost of recommendation algorithms reaches this level, although
sophisticated recommendations may increase webpage response times, potentially leading to long-term negative out-
comes for the platform, as webpage speed is an important factor for online consumers (Gallino et al. 2023).
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Specificity which measures the ratio of correct decisions made by the roll-out method (IHT or DPTR) across

all experiments where the roll-out should not occur.

(a) OR under τmin = 0.05 (b) VDP (τmin = 0.05) (c) Recall and Specificity (τmin = 0.05)

(d) OR (τmin = 0.1) (e) VDP (τmin = 0.1) (f) Recall and Specificity (τmin = 0.1)

Figure EC.2 Performance comparisons under different sample size N and τmin in Expedia dataset.

Furthermore, for any τmin, we vary the sample size N from 10 to 30 in increments of 5 and repeat the

experiment 1,000 times. The averaged results are shown in Figure EC.2. As depicted in the figure, we first

observe that, regardless of the value of τmin, the trends across all indicators remain largely consistent, with

no significant fluctuations. This suggests that the choice of τmin has minimal impact on the comparison

between the IHT and DPTR methods.

According to Figure EC.2(a) and (d), the DPTR method consistently outperforms the IHT and Bayesian

methods, irrespective of the sample size N . Additionally, as the sample size increases, the reduction in

estimator variance leads to a corresponding increase in OR values for both methods. Figure EC.2(b) and

(e) further reveal that the relative performance advantage of the DPTR and Bayesian methods over the IHT

method increases significantly as the amount of experimental data decreases. This finding highlights that,

when experimental data is limited, the data-pooling methods, such as DPTR and Bayesian methods, can

provide substantial performance improvements.

Finally, Figure EC.2(c) and (f) show that when N is small, the Recall value under the IHT method is closer

to 0, indicating that few or no personalized recommendations are rolled out to specific groups. Since few or

no groups launch the personalized recommendation, the Specificity value is higher under the IHT method.

On the other hand, despite large variation in the estimate of the benefit of personalized recommendations

in each group, the pooled estimate in the DPTR and Bayesian methods reduce this variation, pushing the
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estimate towards a more positive region. As a result, the Recall value under the DPTR and Bayesian methods

increases significantly. This comes at the cost of some groups being incorrectly selected for the personalized

recommendation. However, overall, by balancing Recall and Specificity, the DPTR and Bayesian methods

generate a much higher reward compared to the IHT method in this tailored roll-out decision situation.

We observe that the IHTmethod has a very low Recall value and a high Specificity value. This phenomenon

suggests that traditional methods (IHT) tend to exclude experiments that should not be rolled out, even if

this tendency results in the exclusion of many experiments that should actually be rolled out. In contrast,

our proposed DPTR method maximizes the reward from the final roll-out decision by balancing the trade-off

between Recall and Specificity.

Furthermore, we test the performance of our method when different groups have different sample sizes. We

denote ρ as the sample proportion with respect to the total data size, which means we will randomly select

ρ× (Nk,1 +Nk,0) customer queries as sample size for group k. We vary ρ from 0.05 to 0.25 in increments of

0.05 while keeping τmin = 0.1 fixed. Similarly, we repeat the experiment 1,000 times and present the averaged

results in Figure EC.3. We observe that variations in sample sizes across different groups do not affect the

performance of our DPTR method.

(a) OR (b) VDP (c) Recall and Specificity

Figure EC.3 Performance comparisons under different sample proportion ρ in Expedia dataset.
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