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Video-Sharing UGC Platforms and A/B Tests

A Typical Video-Sharing
UGC Platform
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MAU in billions (53.6% of world population).

Revenue in hundreds of billions of USD per year.

Highly individualized big data.
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A/B Testing: The Decision Engine




A large-scale platform launches hundreds of A/B tests
everyday to fast iterate their operations and
marketing strategies.

* Usually under the orthogonal design.

TTT—— * Users are independently treated by thousands of
— ' different A/B tests simultaneously.

Baseline: Nothing Treatment A: Treatment B:
“Get Rewards” “Send Gift”

How to estimate and infer the combined treatment effect of multiple A/B tests?




Solution 1: Linear Addition

You're going to the fridge to get
your 17th drink today

* Effect of

Limitations:

“Get Rewards + Send Gift” = Effect of

“Get Rewards” + Effect of

“Send Gift”

Control

Treatment A

Treatment B

No button

Get Rewards

Send Gift

« Non-linearity: The effect of the combined treatment may not equal the sum of each.
*  Decreasing marginal return: (+7min) < (+3min) + (+5min)
* Increasing marginal return: (+15min) > (+6min) + (+7min)
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*  Heterogeneity: The effect of the combined treatment may vary for different users.




Solution 2: Factorial Experiment f:?:

BUSINESS SCHOOL

* Run an experiment with treatment combinations “Get Rewards” , “Send Gift” and “Get
Rewards + Send Gift” .

Control Treatment A Treatment B Treatment AB

No button Get Rewards Send Gift Get Rewards and Send Gift

Limitation:
* m interventions generate 2" treatment combinations.

* ltisimpossible to even assign only 1 user to each single treatment combination if m > 30.

You're going to the fridge to get
your 17th drink today




Solution 3: End-to-End Deep Learning

* Directly predict the outcome of each user under each treatment combination using end-to-end
(e2e) deep learning (DL).

Control Treatment A Treatment B

No button Get Rewards Send Gift

Limitations:

With unobserved treatment combinations, we cannot do causal inference with e2e DL (or any
other pure machine learning methods such as uplift modeling).
* Hard to obtain any economic and managerial insights.

How about the generalized random (causal) forests (Athey et al. 2019)?
» Given the unobservable treatment combinations, causal trees/forests are essentially (locally) linear.




Key Research (and Business) Questions

Only observing the outcomes of a subset of treatment combinations:

 How to estimate and infer the effect of any treatment combination (i.e., ATE)
under multiple A/B tests on the platform?

* How to identify the optimal treatment combination (i.e., best-arm identification)?

Deep neural network Double machine
(ODNN) captures learning (DML)

individual heterogeneity. ensures valid inference.
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Correct the bias of a plug-in estimator through
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Variance reduction and de-biasing.
Azevedo et al. (2020), Dasgupta et al. (2015), Athey et al. (2021), Johari et al. (2021), Bojinov et al. (2021), Candogan et al. (2021), Xiong et
al. (2022), etc.

: Evaluating and optimizing the strategies of a large-scale online platform.
Ye et al. (2022), Zeng et al. (2022), Zhang et al. (2020), Cui et al. (2019, 2020), Feldman et al. (2021), Schwartz et al. (2017), etc.




Highlight of Main Contributions

* Theory

* Anew DL+DML framework.
* Theoretical validity (consistency and normality) via Neyman orthogonality.

Empirics

* Implementation for real large-scale A/B tests on a video-sharing platform.
« Better performance than the linear and DL benchmarks in ATE estimation and best-arm identification.

Practice

* Practical validations of DL+DML with data from large-scale field experiments (N>2,000,000).
* Inspirations for future researchers and practitioners to apply DL+DML.
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Deep Learning Framework: Setup

The platform runs m A/B tests, each with a binary treatment. Use t € {0,1}"" to denote a treatment combination.
* Forexample,m = 4,t = (0,0,1,0) represents that the user is in the control condition of A/B test A, B, and D, and in the
treatment condition of A/B test C.

Outcome Y € R and feature X € R%x,
Assume the data generating process (DGP):
E[Y|X = x,T =t] = G(6*(x),t)

« G(0,1) is the link function with a known (parametric) structure, mapping R%x x{0,1}™ - R
* 07(:) is the (true) nonparametric function capturing HTE and obtained by 8*(-) = arg min E[I(Y, G(0(X), T))], where I(.,.) is
6€e

the loss function (squared error).

The parameters we are interested in estimating and inferring:
:u(t) = E[HX,0*(X); )] = E[G(0*(X),t) — G(6*(X),t,)], forall t € {0,1}", where t, =

: t* = arg max u(t).
te{o,1}m

: (a) training; (b) estimation & inference.
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Structured Deep Neural Nets

Structured Deep Neural Network

Treatment
Combination

]

Outcome
Feature

X
O Z
:;,
Data Inputs

* Empirical estimator of 8*(.) :

which is obtained by SGD or Adam.

Note: The DL architecture is inspired by Farrell et al. (2020).
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Link Function and Convergence

*  We adopt the following link function G(.,.) to approximate the true DGP:
» Generalized Sigmoid Function:

G(B*(x), t) — . Qm;l-l(x) .
1+ exp(—(@o (x) + 61 (x)tl + -+ gm(x)tm))
* 0(x)'t: The HTE of treatment combination t with respect to different x.
» The generalized sigmoid function captures both diminishing marginal return and/or increasing marginal return, and any
possible ranges of potential outcomes (by 6,,,,(.)).

Theorem. Under some regularity and network size assumptions
- on Fpyny and the treatment assignment mechanism (with m+2
 Donevecrsmodincion | observable combinations) of the A/B tests, 8 converges to 8*
05 | sufficiently fast o(n~'/*) for inference (with subsequent debias).
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* p: Smoothness of the DNN class.
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Debias with Neyman Orthogonal Score

The plug-in (Pl) estimator for ATE:

1n . 1n _ .
o ® == > H(x, 8@ 0) == > [6(B(x),t) - 6(B(x),t,)]
n i=1 n i=1
: Insufficient convergence speed to the true ATE (we need ).
« Additional and from perturbations of 8(.) because of and/or the
Solution: .
: E[Y(W, 1, 0%)] = 0 (¢ is the score function, W = (Y, (X, T)")' is the data, u is the ATE, and 6* is the true
parameter).
: aBE[lp(W; W, 0)] |0=0:: = 0.
* Under Neyman orthogonality, even though @ from the true value 8™, it does not affect the moment
conditions.

+  The bias of 8 will not affect the moment conditions, so it will not significantly change the subsequent estimator .

. Under nonrestrictive regularity assumptions, ¥ (w, 0, A; t) — u(t) is a Neyman Orthogonal score, where
Y(w,0,4;t) = H(x,0(x); t) — dgH (x,0(x); )A(x)"1051(y, G(8(x), 1)), with A(x) = E[95L(y, G(6(X),t))|X = x].

e t:Inthe data.

Influence Plug-In De-bias Term « t: Want to estimate.

Function Estimator

Remark: The influence function is derived based on the pathwise derivative approach in semi-parametric statistics (Newy 1994, Chernozhukov et al. 2018, Farrell et al. 2020).




Cross-Fitting and Asymptotic Normality

+ To avoid over-fitting, we apply cross-fitting:
The training set is split into S non-overlapping subsets S;,S,-++ Sg. O is trained on S¢, the complement of S;.

YW, 0,4;t) = H(x,0(x); t) — dgH (x, 0(x); ) A(x) " 10p1(y, G(O(x), 1))

S
1 1 ~ —~
O =5 ) A®, a0 =75 > bowy, B:(x), Rul(x):
i=1 s

JESs

S

_ I ~ 1 L

D) = z T, PO =7 Z W w;, 8,(%), A,(x;); £) — A(D)?
i=1 S

JESs

. Under nonrestrictive regularity assumptions,

/P ) — k() ~a N (O1)
L f1(0).
(1-a- 180 — 2y« (O, a0) + 2, o 7O

: t can be an treatment combination.

We call the entire framework as
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Best-Arm ldentification

« The true best-arm: t* = arg max u(t); the estimated best-arm: * = arg max fi(t).
te{0,1}m te{0,1}m

« The advantage of t* over t: 1(t) :== u(t*) — u(t); the estimator for (¢t): t(t) = A(t*) — a(t).

e The influence function for t(t): , via which the SE of 7(t) can be derived.

. Under nonrestrictive regularity assumptions, £(t) is a consistent estimator of 7(t), and vn (£(t) — 7(t))
converges to a normal distribution.

« To verify t* = t*, it suffices to do , where t € {0,1}™.

« The DeDL framework can be applied to estimating and inferring a wide rage of quantities of interest, with the
. Examples:

* ATE of a personalized policy to adopt t* for each user.
* Policy evaluation for 7 that maps a user feature x to a distribution on the treatment space {0,1}™.
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Field Setting <,
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£, etherealin.e
‘& 510.2K likes.

* A Chinese online short-video sharing platform (referred to as Platform
O hereafter).

« 350 million+ DAU, half-billion+ MAU, 20 million+ USD advertising
revenue per day.

VAR * Platform O launches hundreds of A/B tests everyday to fast iterate

her. He sorta added some Q thelr bUSineSS Oper‘ations.
steps @

Sigzrsuonly 3 © We consider m = 3 major A/B tests on the algorithmic upgrades of

#fyp #POSitivity # TurboTaxAndRelax

#ByeByeSundayBluesi# #ImoniCarly s the 3 pages on the Ieft.

& Sunroof - @Nicky YoUreiaazy

s = 2

Live Page Discover Page For You Page

Objective: (a) Estimate and infer ATE; (b) Best-arm identification.
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A/B Tests, Data, and Ground-Truth f:?:
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* Duration: Jan 10, 2021-Feb. 01, 2021.
= + Sample size: 2,066,606 (roughly 258,325 under each t € {0,1}3)

"9 \\\\\;X@: * Y = Total video-watching time of a user per day.

\ \\}-ierasguﬁposed\to
R AR \'
calmly approach\his N\ X

owner and sitiin front of

S c * X = User demographics (e.g., gender) and pre-treatment behaviors (e.g., the number
T of active days 1 week before the experiment).

* Randomization checks are passed, so users under different treatment combinations
are comparable.

Live Page Discover Page  For You Page

Treatment Combination (t) | Ground-Truth ATE (Scaled) Observable? Number of Users
(0,0,0) 0.000% Observable 258,249
(0,0,1) 1.091%** Observable 258,340
(0,1,0) -0.267% Observable 258,367 Note:
* Observable means observable for the estimators.
(1,0,0) 0. 758%* Observable 258,321 » The relative ATEs are reported to protect sensitive data.
* Truebest-arm: ¢ = (1,0,1)
(].],]) 2.1219 > Observable 258.375 . a‘cp<o'05; >‘<>‘:p<o'o‘l: a‘:a‘::‘:p<o'oo‘l; :‘<>‘o’n‘:p<0.000‘l.
(1,1,0) 0.689% Unobservable 258,480
(1,0,1) 2.2999%*** Unobservable 258,305
O,1,1) 1.387%*** Unobservable 258,172
20




Implementation of the DeDL Framework =
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. — — — * _ 01 (%)
DGP: E[Y]X =xT =t] = G(8"(x),8) = 1+exp(— (05 (1) +0; (x)t1+603 ()t +65(X)t3))
Feature Input Layer Hidden Layers of DNN 1
87 nodes 20 nodes per layer
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The DNNs are trained with data from the observable treatment combinations.

One DNN for 8, (dropout rate=0.1) and the other for (8;,8,, 85) (dropout rate=0.2). Each has 3 hidden layers; each layer has 20
nodes. All use ReLU as the activation function.

The third DNN for 8, is trained as a linear layer. .




Benchmarks

: Assume that the ATE of different individual treatments are

o Effect of “Get Rewards + Send Gift” = Effect of “Get Rewards” + Effect of “Send Gift”

Regress Y on (T', X")' and predict the outcomes of unobservable treatment combinations by
« Still a linear approach, but better leverages the user features.
Apply a with (T', X")" as the inputs to predict the outcomes of

unobservable treatment combinations.
* Fully leverages the predictive power of DNN but without valid inference.

: Apply to predict the outcomes of

unobservable treatment combinations.
* Comparing DeDL with SDL highlights
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ATE Estimation and Inference i
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MAPE MAE
35.00% 4.5
30.06% 4 4032
30.00%
3.5
25.00% 3
20.00% 17.37% 25 2.271 2398
13.859% 14.71% 14.76% 14.03% 5 1.855  1.838 1728 : 1.804
15.00% 12.02% 1.343 :
10.00% v :
o 4.90% o 1 0.737
s 0% 75 . ]
0.00% - | - 0
Unobserved All Unobserved All
mlA mlR mPDL mSDL mDeDL mHlA mLR mPDL mSDL mDeDL
Correct Direction Rate «  The performance metrics are evaluated against the ground truth ATE with
1) respect to 3 (resp. 7) unobservable (resp. all) treatment combinations.
1
6/7 /7 N . e e :
4/ . «  Correct Direction = Correctly identifying the statistical significance and sign
23 23 23 23 of ATE.
3/5
s *  Key insights:
*  The empirical results validate DeDL in a field setting!
1/5 *  Naive application of DNNs does NOT outperform linear benchmarks.
*  Bias-correction via Neyman orthogonality substantially improves the
0 Unobserved Al performance of DNNs for every treatment combination.
mlA mlR mPDL mSDL mDeDL
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Best-Arm ldentification i
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Correct Direction Rate —— MAPE MAE
100% 100%
100.00% 25.00% 5799 3.5 3.001
95.00% 20.00% 17.45% ’ 2.442
2.5
90.00% 15.00% 12.83% 1.839
85.71%  8571%  85.71% ’ 11.86% 0 2 1727
85.00% 10.00% 1.5
5.97% 1 0.78
80.00% 5.00%
NIE C
75.00% 0.00% 0
LA LR PDL SDL DeDL LA LR PDL DL DeDL LA LR PDL DL DeDL
Note:

*  We report the CDR, MAPE and MAE of estimating () against the ground-truth for LA, LR, PDL, SDL, and DeDL.

DeDL and SDL can reliably identify the optimal treatment combination, t* = ¢ = (1,0,1).

DeDL outperforms the benchmarks for better inferring the advantage of i* over other treatment combinations.
« 7(t)’s are more accurately predicted by DeDL.
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From Training to Inference

2000- 0
—+— Training MSE 100%
1750 —— DeDL MAPE
— — SDLMAPE  80%
m 1500\ "\ LR MAPE E
/]
= 1250 60% =
= g
€ 1000- =
s 40% &
= 2
750- 0
20%
500-
250 === ===

Training Epoch

* If the DNN is not designed and/or not well-trained, the ATE estimation via DeDL will have a terrible performance (MAPE=60%).
* If the DNN performs well, DeDL will consistently beat linear and DL benchmarks without debiasing.

« The DNN training error serves as an important indicator for the quality of second-stage estimation leveraging debiasing.
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Insights from Synthetic Data

Good News

The advantage of DeDL expands when the number of
A/B tests m is larger.

If the link function G (.,.) is correctly specified, DeDL
performs well even when additional biases are
introduced in the training procedure.

Bad News

If the link function G(.,.) is seriously misspecified, DeDL
may perform poorly.

Vulnerability under model misspecification.

Model misspecification can be detected by DNN training

error.

Recipe: (i) abandon the debias term; (ii) auto-debias
(Chernozhukov et al. 2022).
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Takeaways

DeDL framework: A new DL+DML framework to estimate and infer the causal effects
of multiple A/B tests on large-scale platforms with unobservable outcomes.
*  Theoretical valid for inference via Neyman orthogonality.

Implementation: Real large-scale A/B tests (N>2,000,000) on Platform O.
*  Better performance than the linear and DL benchmarks in ATE estimation and best-arm
identification.

Practice: Inspirations for future researchers and practitioners to apply DL+DML in other important settings for
program evaluation with experimental or observational data.

Code: https://github.com/zikunye2/deep learning based causal inference for combinatorial experiments
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https://github.com/zikunye2/deep_learning_based_causal_inference_for_combinatorial_experiments

