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Video-Sharing UGC Platforms and A/B Tests
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• MAU in billions (53.6% of world population).

• Revenue in hundreds of billions of USD per year.

• Highly individualized big data.

A/B Testing: The Decision Engine



Multiple A/B Tests on Large-Scale Platforms
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• A large-scale platform launches hundreds of A/B tests
everyday to fast iterate their operations and
marketing strategies.
• Usually under the orthogonal design.

• Users are independently treated by thousands of
different A/B tests simultaneously.

How to estimate and infer the combined treatment effect of multiple A/B tests?

Treatment A:
“Get Rewards”

Baseline: Nothing Treatment B:
“Send Gift”



Solution 1: Linear Addition
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• Effect of “Get Rewards + Send Gift”= Effect of “Get Rewards”+ Effect of “Send Gift”

Control Treatment A Treatment B

No button Get Rewards Send Gift

Limitations:
• Non-linearity: The effect of the combined treatment may not equal the sum of each.

• Decreasing marginal return: (+7min) < (+3min) + (+5min)
• Increasing marginal return: (+15min) > (+6min) + (+7min)

• Heterogeneity: The effect of the combined treatment may vary for different users.



Solution 2: Factorial Experiment
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• Run an experiment with treatment combinations “Get Rewards”, “Send Gift” and “Get
Rewards + Send Gift”.

Control Treatment A Treatment B Treatment AB

No button Get Rewards Send Gift Get Rewards and Send Gift

Limitation:

• 𝑚 interventions generate 2! treatment combinations. 

• It is impossible to even assign only 1 user to each single treatment combination if 𝑚 > 30.



Solution 3: End-to-End Deep Learning
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• Directly predict the outcome of each user under each treatment combination using end-to-end
(e2e) deep learning (DL).

Limitations:

• With unobserved treatment combinations, we cannot do causal inference with e2e DL (or any
other pure machine learning methods such as uplift modeling).
• Hard to obtain any economic and managerial insights.

• How about the generalized random (causal) forests (Athey et al. 2019)?
• Given the unobservable treatment combinations, causal trees/forests are essentially (locally) linear.

Control Treatment A Treatment B

No button Get Rewards Send Gift



Key Research (and Business) Questions

Only observing the outcomes of a subset of treatment combinations:

• How to estimate and infer the effect of any treatment combination (i.e., ATE)
under multiple A/B tests on the platform?

• How to identify the optimal treatment combination (i.e., best-arm identification)?
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Deep neural network
(DNN) captures

individual heterogeneity.

Double machine
learning (DML)

ensures valid inference.



Related Literature

• Double/de-biased machine learning (DML): Correct the bias of a plug-in estimator through Neyman-orthogonal score functions.
• Newey (1994), Chernozhukov et al. (2018, 2022), Farrell et al. (2020, 2021), Athey et al. (2018), Ellickson et al. (2022), Fan et al. (2022), etc.

• Valid estimation and inference under experimentation: Variance reduction and de-biasing.
• Azevedo et al. (2020), Dasgupta et al. (2015), Athey et al. (2021), Johari et al. (2021), Bojinov et al. (2021), Candogan et al. (2021), Xiong et

al. (2022), etc.

• Experiments on online platforms: Evaluating and optimizing the strategies of a large-scale online platform.
• Ye et al. (2022), Zeng et al. (2022), Zhang et al. (2020), Cui et al. (2019, 2020), Feldman et al. (2021), Schwartz et al. (2017), etc.
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Highlight of Main Contributions

• Theory

• A new DL+DML framework.
• Theoretical validity (consistency and normality) via Neyman orthogonality.

• Implementation for real large-scale A/B tests on a video-sharing platform.
• Better performance than the linear and DL benchmarks in ATE estimation and best-arm identification.

• Practical validations of DL+DML with data from large-scale field experiments (N>2,000,000).
• Inspirations for future researchers and practitioners to apply DL+DML.
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• Empirics

• Practice
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Deep Learning Framework: Setup

• The platform runs 𝑚 A/B tests, each with a binary treatment. Use 𝒕 ∈ {0,1}! to denote a treatment combination.
• For example,𝑚 = 4, 𝒕 = 0, 0, 1, 0 ! represents that the user is in the control condition of A/B test A, B, and D, and in the

treatment condition of A/B test C.

• Outcome 𝑌 ∈ ℝ and feature 𝑿 ∈ ℝ"! .

• Assume the data generating process (DGP):

𝔼 𝑌 𝑿 = 𝒙, 𝑻 = 𝒕 = 𝐺(𝜽∗ 𝒙 , 𝒕)

• 𝐺(𝜽, 𝒕) is the link function with a known (parametric) structure, mappingℝ"!×{0,1}# → ℝ
• 𝜽∗ 1 is the (true) nonparametric function capturing HTE and obtained by 𝜽∗ 1 = arg min

%∈'
𝔼[𝑙(𝑌, 𝐺(𝜽 𝑿 ,𝑻))], where 𝑙(. , . ) is

the loss function (squared error).

• The parameters we are interested in estimating and inferring:
• Average treatment effect (ATE): 𝜇 𝒕 = 𝔼 𝐻 𝑿,𝜽∗ 𝑿 ; 𝒕 = 𝔼 𝐺 𝜽∗ 𝑿 , 𝒕 − 𝐺 𝜽∗ 𝑿 , 𝒕( , for all 𝒕 ∈ {0,1}# , where 𝒕( =

0,0,… , 0 !.
• Best-arm identification: 𝒕∗ = argm𝑎𝑥

𝒕∈{+,-}"
𝜇 𝒕 .

• Two-stage procedure: (a) training; (b) estimation & inference.
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Structured Deep Neural Nets
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𝒕
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… … …

• Empirical estimator of 𝜽∗(. ) :
9𝜽(. ) = arg min

𝜽∈ℱ%&&

'
(
∑)*'
( 𝑙(𝑦) , 𝐺(𝜽 𝒙) , 𝒕))),

which is obtained by SGD or Adam.

Structured Deep Neural Network

𝒙

𝑦
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Outcome
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Note: The DL architecture is inspired by Farrell et al. (2020).



Link Function and Convergence

• We adopt the following link function 𝐺 . , . to approximate the true DGP:
• Generalized Sigmoid Function: 

𝐺 𝜽∗ 𝒙 , 𝒕 =
𝜃!+'∗ (𝒙)

1 + exp(− 𝜃,∗ 𝒙 + 𝜃'∗ 𝒙 𝑡' + ⋯+ 𝜃!∗ 𝒙 𝑡! )
• 𝜽 𝒙 !𝒕: The HTE of treatment combination 𝒕 with respect to different 𝒙.
• The generalized sigmoid function captures both diminishing marginal return and/or increasing marginal return, and any

possible ranges of potential outcomes (by 𝜃#7-∗ (. )).
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Theorem. Under some regularity and network size assumptions
on ℱ-.. and the treatment assignment mechanism (with m+2

observable combinations) of the A/B tests, 9𝜽 converges to 𝜽∗
sufficiently fast o(𝑛/'/1) for inference (with subsequent debias).

L2 - Norm

Sample Average
• p: Smoothness of the DNN class.



Debias with Neyman Orthogonal Score

• The plug-in (PI) estimator for ATE:

�̂�23(𝒕) =
1
𝑛
P

)*'

(
𝐻 𝒙) , 9𝜽 𝒙) ; 𝒕 =

1
𝑛
P

)*'

(
[𝐺 9𝜽 𝒙) , 𝒕 − 𝐺 9𝜽 𝒙) , 𝒕4 ]

• A critical issue with the PI estimator: Insufficient convergence speed to the true ATE (we need root-N consistency).
• Additional biases and inconsistencies from perturbations of J𝜽 . because of regularization and/or the variations in 𝑿.

• Solution: Neyman Orthogonal Score.
• Moment conditions: 𝔼 𝜓 𝑾,𝜇, 𝜽∗ = 0 (𝜓 is the score function, 𝑾= (𝑌, (𝑿, 𝑻)′)′ is the data, 𝜇 is the ATE, and 𝜽∗ is the true

parameter).
• Neyman Orthogonality: 𝜕𝜽𝔼 𝜓 𝑾,𝜇, 𝜽 |𝜽8𝜽∗ = 0.
• Under Neyman orthogonality, even though J𝜽 slightly perturbs from the true value 𝜽∗, it does not affect the moment

conditions.
• The bias of $𝜽 will not affect the moment conditions, so it will not significantly change the subsequent estimator �̂�.
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Theorem. Under nonrestrictive regularity assumptions, 𝜓 𝒘, 𝜽, 𝜦; 𝒕 − 𝜇 𝒕 is a Neyman Orthogonal score, where

𝜓 𝒘, 𝜽, 𝜦; 𝒕 = 𝐻 𝒙, 𝜃 𝒙 ; 𝒕 − 𝜕𝜽𝐻 𝒙, 𝜽 𝒙 ; 𝒕 𝚲 𝒙 /'𝜕𝜽𝑙 𝑦, 𝐺 𝜽 𝒙 , 𝒕 , with 𝜦 𝒙 = 𝔼[𝜕𝜽5𝑙 𝑦, 𝐺(𝜽 𝑿 , 𝒕) |𝑿 = 𝒙].

Influence
Function

Plug-In
Estimator

De-bias Term

• Remark: The influence function is derived based on the pathwise derivative approach in semi-parametric statistics (Newy 1994, Chernozhukov et al. 2018, Farrell et al. 2020).

• 𝒕: In the data.
• 𝒕: Want to estimate.



Cross-Fitting and Asymptotic Normality

• To avoid over-fitting, we apply cross-fitting:
• The training set is split into 𝑆 non-overlapping subsets 𝑆-, 𝑆9… 𝑆:. J𝜽𝒔 is trained on 𝑆<=, the complement of 𝑆<.

𝜓 𝒘, 𝜽, 𝜦; 𝒕 = 𝐻 𝒙, 𝜃 𝒙 ; 𝒕 − 𝜕𝜽𝐻 𝒙, 𝜽 𝒙 ; 𝒕 𝚲 𝒙 /'𝜕𝜽𝑙 𝑦, 𝐺 𝜽 𝒙 , 𝒕

�̂�(𝒕) =
1
𝑆
P
)*'

6

�̂�7 𝒕 , �̂�7(𝒕) =
1
|𝑆7|

P
8∈6'

𝜓(𝒘8 , 9𝜽7 𝒙8 , 9𝚲7 𝒙8 ; 𝒕)

9Ψ(𝒕) =
1
𝑆
P
)*'

6

9Ψ7 𝒕 , 9Ψ7(𝒕) =
1
|𝑆7|

P
8∈6'

(𝜓(𝒘8 , 9𝜽7 𝒙8 , 9𝜦7 𝒙8 ; 𝒕) − �̂�(𝒕))5
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Theorem. Under nonrestrictive regularity assumptions,

𝑛/9Ψ(𝒕) �̂�(𝒕) − 𝜇(𝒕) →" 𝒩(0,1)

• ATE Estimator: �̂�(𝒕).

• 1 − 𝛼 -Confidence Interval: [�̂� 𝒕 − 𝑧'/()
9: 𝒕
(
, �̂� 𝒕 + 𝑧'/()

9: 𝒕
(
].

• Partial observability: 𝒕 can be an unobservable treatment combination.

We call the entire framework as Debiased Deep Learning (DeDL).



Best-Arm Identification

• The true best-arm: 𝒕∗ = arg m𝑎𝑥
𝒕∈{,,'}*

𝜇 𝒕 ; the estimated best-arm: d𝒕∗ = arg m𝑎𝑥
𝒕∈{,,'}*

�̂� 𝒕 .

• The advantage of d𝒕∗ over 𝒕: 𝜏 𝒕 ≔ 𝜇 d𝒕∗ − 𝜇 𝒕 ; the estimator for 𝜏 𝒕 : �̂� 𝒕 = �̂� d𝒕∗ − �̂� 𝒕 .

• The influence function for 𝜏 𝒕 : 𝜓 𝒘, 𝜽, 𝜦; d𝒕∗ − 𝜓 𝒘, 𝜽, 𝜦; 𝒕 , via which the SE of �̂� 𝒕 can be derived.
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Theorem. Under nonrestrictive regularity assumptions, �̂� 𝒕 is a consistent estimator of 𝜏 𝒕 , and 𝑛 (�̂� 𝒕 − 𝜏 𝒕 )
converges to a normal distribution.

• To verify d𝒕∗ = 𝒕∗, it suffices to do one-sided tests for the Hypotheses 𝜏 𝒕 > 0, where 𝒕 ∈ {0,1}!.

• The DeDL framework can be applied to estimating and inferring a wide rage of quantities of interest, with the
influence function properly (re-)derived. Examples:
• ATE of a personalized policy to adopt (estimated) optimal treatment combination Q𝒕∗ for each user.
• Policy evaluation for any personalized policy 𝜋 that maps a user feature 𝒙 to a distribution on the treatment space {0,1}#.
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Field Setting
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• A Chinese online short-video sharing platform (referred to as Platform
O hereafter).

• 350 million+ DAU, half-billion+ MAU, 20 million+ USD advertising
revenue per day.

• Platform O launches hundreds of A/B tests everyday to fast iterate
their business operations.

• We consider𝑚 = 3major A/B tests on the algorithmic upgrades of
the 3 pages on the left.

Objective: (a) Estimate and infer ATE; (b) Best-arm identification.

Live Page Discover Page For You Page



A/B Tests, Data, and Ground-Truth
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• Duration: Jan 10, 2021-Feb. 01, 2021.

• Sample size: 2,066,606 (roughly 258,325 under each 𝒕 ∈ {0,1}>)

• 𝑌 = Total video-watching time of a user per day.

• 𝑿 =User demographics (e.g., gender) and pre-treatment behaviors (e.g., the number
of active days 1 week before the experiment).

• Randomization checks are passed, so users under different treatment combinations
are comparable.

Live Page Discover Page For You Page

Treatment Combination (𝒕) Ground-Truth ATE (Scaled) Observable? Number of Users

(0,0,0) 0.000% Observable 258,249

(0,0,1) 1.091%** Observable 258,340

(0,1,0) -0.267% Observable 258,367

(1,0,0) 0. 758%* Observable 258,321

(1,1,1) 2.121%**** Observable 258,375

(1,1,0) 0.689% Unobservable 258,480

(1,0,1) 2.299%**** Unobservable 258,305

(0,1,1) 1.387%*** Unobservable 258,172

Note:
• Observable means observable for the estimators.
• The relative ATEs are reported to protect sensitive data.
• True best-arm: 𝒕∗ = (1,0,1)
• *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.



Implementation of the DeDL Framework

• DGP: 𝔼 𝑌 𝑿 = 𝒙,𝑻 = 𝒕 = 𝐺 𝜽∗ 𝒙 , 𝒕 = %$∗(𝒙)
-7?@A B(%%∗ 𝒙 7%&∗ 𝒙 C&7%'∗ 𝒙 C'7%(∗ 𝒙 C()
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• The DNNs are trained with data from the observable treatment combinations.

• One DNN for T𝜃+ (dropout rate=0.1) and the other for ( T𝜃-, T𝜃9, T𝜃>) (dropout rate=0.2). Each has 3 hidden layers; each layer has 20
nodes. All use ReLU as the activation function.

• The third DNN for T𝜃D is trained as a linear layer.



Benchmarks

• Linear Addition (LA): Assume that the ATE of different individual treatments are linearly and independently
additive.
• Effect of “Get Rewards + Send Gift”= Effect of “Get Rewards”+ Effect of “Send Gift”

• Linear Regression (LR): Regress 𝑌 on (𝑇?, 𝑋′)′ and predict the outcomes of unobservable treatment combinations by
linear extrapolation.
• Still a linear approach, but better leverages the user features.

• Pure Deep Learning (PDL): Apply a generic DNN with (𝑇?, 𝑋′)′ as the inputs to predict the outcomes of
unobservable treatment combinations.
• Fully leverages the predictive power of DNN but without valid inference.

• Structured Deep Learning (SDL): Apply the same DNN as DeDL without debias to predict the outcomes of
unobservable treatment combinations.
• Comparing DeDL with SDL highlights the value of bias correction through DML.
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ATE Estimation and Inference

• The performance metrics are evaluated against the ground truth ATE with
respect to 3 (resp. 7) unobservable (resp. all) treatment combinations.

• Correct Direction = Correctly identifying the statistical significance and sign
of ATE.

• Key insights:
• The empirical results validate DeDL in a field setting!
• Naive application of DNNs does NOT outperform linear benchmarks.
• Bias-correction via Neyman orthogonality substantially improves the

performance of DNNs for every treatment combination.
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Best-Arm Identification

• DeDL and SDL can reliably identify the optimal treatment combination, *𝒕∗ = 𝒕∗ = (1,0,1).

• DeDL outperforms the benchmarks for better inferring the advantage of *𝒕∗ over other treatment combinations.
• 𝜏 𝒕 ’s are more accurately predicted by DeDL.
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Note:
• We report the CDR, MAPE and MAE of estimating 𝜏 𝒕 against the ground-truth for LA, LR, PDL, SDL, and DeDL.



From Training to Inference
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• If the DNN is not designed and/or not well-trained, the ATE estimation via DeDL will have a terrible performance (MAPE>60%).

• If the DNN performs well, DeDL will consistently beat linear and DL benchmarks without debiasing.

• The DNN training error serves as an important indicator for the quality of second-stage estimation leveraging debiasing.



Insights from Synthetic Data

Good News

• The advantage of DeDL expands when the number of
A/B tests 𝑚 is larger.

• If the link function 𝐺(. , . ) is correctly specified, DeDL
performs well even when additional biases are
introduced in the training procedure.

26

Bad News

• If the link function 𝐺(. , . ) is seriously misspecified, DeDL
may perform poorly.
• Vulnerability under model misspecification.
• Model misspecification can be detected by DNN training

error.
• Recipe: (i) abandon the debias term; (ii) auto-debias

(Chernozhukov et al. 2022).



Takeaways

• DeDL framework: A new DL+DML framework to estimate and infer the causal effects
of multiple A/B tests on large-scale platforms with unobservable outcomes.
• Theoretical valid for inference via Neyman orthogonality.
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• Implementation: Real large-scale A/B tests (N>2,000,000) on Platform O.
• Better performance than the linear and DL benchmarks in ATE estimation and best-arm

identification.

• Practice: Inspirations for future researchers and practitioners to apply DL+DML in other important settings for
program evaluation with experimental or observational data.

Code: https://github.com/zikunye2/deep_learning_based_causal_inference_for_combinatorial_experiments

https://github.com/zikunye2/deep_learning_based_causal_inference_for_combinatorial_experiments

