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Large-scale online platforms launch hundreds of randomized experiments (a.k.a. A/B tests) every day to
iterate their operations and marketing strategies. The combinations of these treatments are typically not
exhaustively tested, which triggers an important question of both academic and practical interest: With-
out observing the outcomes of all treatment combinations, how does one estimate the causal effect of any
treatment combination and identify the optimal treatment combination? We develop a novel framework
combining deep learning and doubly robust estimation to estimate the causal effect of any treatment com-
bination for each user on the platform when observing only a small subset of treatment combinations. Our
proposed framework (called debiased deep learning, DeDL) exploits Neyman orthogonality and combines
interpretable and flexible structural layers in deep learning. We show theoretically that this framework yields
efficient, consistent, and asymptotically normal estimators under mild assumptions, thus allowing for identi-
fying the best treatment combination when observing only a few combinations. To empirically validate our
method, we collaborated with a large-scale video-sharing platform and implemented our framework for three
experiments involving three treatments where each combination of treatments is tested. When observing
only a subset of treatment combinations, our DeDL approach significantly outperforms other benchmarks
to accurately estimate and infer the average treatment effect of any treatment combination, and to identify
the optimal treatment combination.

Key words : Deep Learning, Double Machine Learning, Causal Inference, Field Experiments,
Experimentation on Online Platforms

1. Introduction
Large-scale online platforms have penetrated the daily lives of billions of people. As of January 2021,
more than 53% of the world population (about 4.2 billion people) are active social media users.1

People connect on social network platforms such as Facebook and TikTok, shop online on e-commerce
platforms such as Amazon and Alibaba, and hail a ride on ride-sharing platforms such as Uber and
Lyft. These platforms create tremendous value—the firms that develop and own such businesses are

1 See https://datareportal.com/reports/digital-2021-global-overview-report.
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now worth more than USD 2 trillion. For example, in November 2024, the market value of Amazon
was USD 2.1 trillion, that of Alphabet was USD 2.0 trillion, and that of Microsoft was USD 3.1
trillion. McKinsey & Company estimates that the total market value of platform-based tech firms
will reach more than 30% of the annual global gross economic outcome within the next ten years.2

Equipped with mountains of user data and advanced information technology, online platforms base
their critical business decisions on data analytics techniques. Of central importance are randomized
experiments (a.k.a. A/B tests or field experiments; we use A/B tests and experiments interchangeably
hereafter), which are widely considered the gold standard for causal inference and policy evaluation.
Under an A/B test, a platform randomly assigns its users to different groups and applies a different
treatment to users in each group. The controlled randomization enables the platform to credibly
attribute the outcome differences of different user groups to the treatment effect of the strategies.

Because of the online nature of their business and their vast user traffic, platforms can conveniently
run A/B tests to evaluate and optimize their product design, pricing, and recommendation strategies
(Kohavi et al. 2020). Usually, the analyst casts a policy change in these aspects as a treatment and
compares it with the existing policy through an A/B test. Leading online platforms such as Facebook,
Amazon, Google, and TikTok each run more than 10,000 online experiments annually, many of which
engage millions of their users (Kohavi and Thomke 2017).

To quickly iterate its business operations, a large-scale online platform typically runs hundreds of
A/B tests concurrently (see, e.g., Xiong et al. 2020). The sheer number of tests makes it difficult
to test the joint effect of different treatments. In particular, due to limited user traffic, a standard
online experimentation method for the platform is the orthogonal traffic-assignment design (Tang
et al. 2010, Xiong et al. 2020): The treatment assignments of different individual A/B tests are
independent. As a consequence, each user of the platform may be treated by numerous A/B tests
simultaneously. On the one hand, the orthogonal experiment design utilizes the user traffic of the
platform more efficiently. Orthogonality ensures noninterference among experiments, so the platform
gets a credible causal estimate for each treatment in each experiment. On the other hand, it largely
ignores the joint effects caused by the combination of treatments in practice. It does not allow the
platform managers to find the best combination of treatments for each user.

In practice, platform managers typically assume that the treatment effects of different A/B tests
are linearly additive. Hence, the decision on whether and how to expand the traffic of one treatment,
for example, to all platform users, is irrespective of other concurrent experiments. Such a decision
paradigm is particularly prevalent due to organizational reasons. For example, different stakeholders
in a firm (e.g., the machine learning (ML) engineers and product managers) often manage their own

2 See https://www.mckinsey.com/capabilities/growth-marketing-and-sales/our-insights/
prime-day-and-the-broad-reach-of-amazons-ecosystem.
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set of A/B tests, and often there is little coordination. The combined effects of multiple experiments
are largely treated in a simple manner with the linear additivity assumption made.

Combining different treatments can create synergistic or antagonistic effects, depending on how
different treatments interact with each other. It is usually difficult, without a formal test, to predict
which one is in effect. In the worst case, two treatments that both benefit the platform can in fact
hurt the platform once combined.

To empirically illustrate that the interactions between different treatments should not be ignored,
we collaborate with a large-scale online video-sharing platform (referred to as Platform O hereafter).
We plot in Figure 1 the relationships between the treatment effects of two concurrent treatments
(more institutional details will be provided in Section 4). We observed the causal effects of all four
treatment combinations (2 × 2) in this example, because the experiments are run under the full
factorial design. To investigate the heterogeneous responses to the treatments with respect to user
covariates, we divide the experimented users into 1,254 subgroups based on their pretreatment co-
variates, including gender, age, location, and degree of activeness. Each observation in Figure 1
represents one such subgroup. Figure 1(a) plots, for each subgroup, the true observed effect size in the
experiment, as well as the calculated effect size, if we assume these two effects are linearly additive.
It clearly reveals the substantial gap from the ground-truth to simply adopt the linear addition rule
in policy evaluation with multiple experiments. Figure 1(b) illustrates that different user groups have
drastically diverse responses toward the treatments, some with increasing marginal returns/losses
and others with decreasing marginal returns/losses.

Given these observations, in this paper, our main research question is: When conducting multiple
A/B tests and observing only a small subset of treatment combinations, how does one estimate and
infer the causal effect of all treatment combinations, and how does one identify the optimal treatment
combination? As discussed earlier, the most commonly adopted approach to solving this problem is to
run individual experiments independently and infer the combined treatment effect by assuming linear
additivity of treatment effects, an assumption not supported by our data and sensibly questionable
in practice. An alternative solution is the factorial experiment design, which directly tests the causal
effect of each treatment combination (Box et al. 1978, Wu and Hamada 2011, Dasgupta et al. 2015).
However, for full factorial design, the user traffic required to obtain reliable estimation and inference
results grows exponentially in the number of treatments, making this approach infeasible for a large-
scale online platform that runs hundreds of experiments concurrently. Another tempting approach
might be to predict the outcome of each user under each treatment combination via an end-to-end
ML model, such as a deep neural network (DNN), in which one incorporates treatments as inputs.
Such an approach is generally not amenable to the inference of causal effects. The inherent bias due
to regulation or overfitting leads to an insufficient convergence to the true causal effects (i.e., average
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Figure 1 Heterogeneous Response to Two Experiments

Note: In the left subfigure, x-axis represents the true combined treatment effect of each subgroup, and y-axis

represents the calculated treatment effect of each subgroup under the linear addition assumption. The

45-degree red solid line represents the equivalence of two effects, and the blue dashed line represents

the linear fit of these two effects. The distinction between the blue dashed line and the red solid line

elucidates that linear addition does not accurately recover the actual cumulative effect of the two

treatments.

treatment effect, ATE) and, consequently, undesired statistical properties, which hinders effective
inference (see, e.g., Chernozhukov et al. 2018).

The main goal of this paper is to develop a new theoretically sound and practically feasible method
to estimate the causal effect of any treatment combination when observing the outcome of only a
small subset of combinations. To this end, following the recent cutting-edge research of combining
semiparametric statistics and deep learning (DL) for inference, namely the double/debiased ma-
chine learning (DML), we propose a statistical framework (called debiased deep learning, DeDL). We
highlight the following contributions of our paper.

A DML-based modeling framework for multiple A/B tests with mild identification

requirement and valid inference. We propose a DeDL framework with theoretical guarantees for
researchers and practitioners to analyze treatment effects in concurrent experiments and identify the
optimal treatment combination. Our framework, unlike factorial designs that require observing an
exponential number of treatment combinations, requires observing only a linear number of treat-
ment conditions. Our main theoretical contribution is modeling treatment effect interactions as a
non-parametric function (i.e., DNN) of user characteristics and treatment vectors within the double
machine learning framework (Chernozhukov et al. 2018, Farrell et al. 2020). We advocate for using
a generalized sigmoid link function to map semi-parametrically the treatment vector and nuisance
parameters, such as user characteristics, to the outcome. In Theorem 1, we establish a new approx-
imation bound showing that the approximation error of our proposed link function, combined with
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the non-parametric DNN for nuisance parameters, decreases at a square-root rate with the number
of unique user characteristics, regardless of the data generation process for average treatment effects.
Furthermore, we show that the abstract theoretical assumptions of the DML framework translate
into easily verifiable and practically satisfied conditions in this context. With these conditions verified
in practice, following Farrell et al. (2020), we demonstrate that our method produces asymptotically
normal (and thus naturally

√
n-consistent) estimators, enabling valid inference.

Empirical validation of our framework. To demonstrate the practicality of our DeDL frame-
work, we implement it in a large-scale multiple-experiment setting (N > 2,000,000) on Platform O.
We persuaded the company to conduct a costly full-factorial design with 3 treatment conditions
(i.e., 23 = 8 treatment combinations), allowing us to observe the ground-truth causal effects of any
treatment combination for comparison. We compare our DeDL approach against a set of benchmarks,
including linear regression and DL-based methods. Our results show that DeDL provides significantly
more accurate estimates of the ATE and more precise identification of the optimal treatment com-
bination. To the best of our knowledge, this is the first paper to validate the practical effectiveness
of theoretically elegant DML methods through large-scale field experiments in the absence of unob-
served endogenous variables. While recent literature (Gordon et al. 2023) highlights the limitations of
the DML framework when omitted variables are present, we demonstrate its core strength: accurately
approximating flexible treatment and outcome functions, by showcasing its superior performance in
the absence of omitted variables. This evidence is increasingly relevant as more empirical researchers
adopt DML methods, especially given the difficulty of verifying key technical assumptions, such as
the first-stage convergence rate o(n−1/4) of the ML algorithm. Furthermore, through comprehensive
synthetic data in further simulation studies, we demonstrate the robustness of our DeDL framework
in the presence of large biases in DNN training, a misspecified model layer, and highlight the covariate
imbalance issue.

A Practitioner’s Guide to DML-based Causal Inference with DNNs. Our work builds
on the latest advances in the DML literature (Chernozhukov et al. 2018, Farrell et al. 2020). While
this literature is theoretically elegant and powerful, it leaves many practical details and challenges
for model implementation unaddressed. Our third contribution is to provide practical guidance and
hands-on summaries for using DML in causal inference with DNNs. On the theoretical side, in Sec-
tion 3, we outline the key steps for establishing a robust framework of using DML in various settings,
including selecting an appropriate link function, training the DNN model, verifying the identifi-
ability and convergence of nuisance parameters, constructing influence functions, and performing
cross-fitting. On the practical implementation side, in Section 5, we provide critical checkpoints and
guidance for successful empirical implementation of the DML algorithm. For example, we emphasize
the importance of addressing covariate imbalance through stratified sampling and underscore the



Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
6

value of DNN training error as a key indicator for evaluating goodness-of-fit when estimating nuisance
parameters in practice. Finally, we also conduct comprehensive synthetic experiments to demonstrate
the robustness of our proposed methods under various conditions (see Section 6). With these detailed
demonstrations, we aim to bridge the gap between theory and practice, offering researchers and prac-
titioners a clear roadmap for applying DML with DNNs to causal inference problems effectively and
reliably.

The rest of this paper is organized as follows. In Section 2, we review the relevant literature.
In Section 3, we present our DeDL framework to infer treatment effects and identify the optimal
treatment combination. In Section 4, we apply the framework to analyze real-world experiments. In
Section 5, drawing from our own learning, we provide a detailed discussion of some crucial issues
in practical implementation, aiming to guide similar applications in other empirical contexts. In
Section 6, we conduct comprehensive synthetic experiments to demonstrate the robust performance
of our proposed framework. Section 7 concludes. All proofs are relegated to the Appendix. All codes
regarding Section 6 can be accessed in the GitHub repository 3.

2. Literature Review
In this section, we review several streams of literature closely connected to our work.

The theory and applications of DML. The proposed DeDL framework stems from the re-
cent advances in the semiparametric estimation and inference, the DML method in particular (e.g.,
Chernozhukov et al. 2018). Combining ML with Neyman orthogonality, the DML method performs
remarkably well in estimating the parameters of interest in the presence of regularization and/or over-
fitting biases to estimate the nuisance parameter(s). In particular, Farrell et al. (2021) establish novel
nonasymptotic high-probability bounds for nuisance parameter estimation with deep feedforward
neural nets. Chiang et al. (2022) extend the DML framework by proposing a multiway cross-fitting al-
gorithm suitable for multiway clustering sampled data such as panel data. Chernozhukov et al. (2022)
develop an automatic DML framework using Lasso to learn the debiased term that often presents
in the influence function directly from data. Combining DML with optimization further promotes
its theoretical development in the context of an operation. For example, Qi et al. (2022) propose a
personalized pricing algorithm by maximizing the expected revenue estimated using DML. We con-
tribute to this literature by adapting the DML framework in the combinatorial experiment setting.
Our DeDL framework is most related to Farrell et al. (2020), in which authors extend the partial linear
model in Chernozhukov et al. (2018) into a more general semiparametric form (a pre-specified model
layer on the top of neural networks) combining nuisance parameters and high dimension treatments.

3 See https://github.com/zikunye2/deep_learning_based_causal_inference_for_combinatorial_
experiments.git

https://github.com/zikunye2/deep_learning_based_causal_inference_for_combinatorial_experiments.git
https://github.com/zikunye2/deep_learning_based_causal_inference_for_combinatorial_experiments.git
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While their approach is broadly applicable, the generality of their framework leaves the identification
requirements under specific settings ambiguous. Their method presupposes the identification holds
under the current observational data, enabling valid extrapolation on unobserved treatments, but
this assumption is not directly applicable in our combinatorial experiment context. To address this
gap, we tailor their method by explicitly identifying the easy-to-check technical conditions required
for identification and the convergence of DNN for our application. The inference result of our ATE
estimator constructed from the cross-fitting follows Chernozhukov et al. (2018) straightforwardly.
Furthermore, we derive the estimator and inference result for the best treatment identification, the
technique of which could be extended to broader decision-making problems based on DML estimators.

The DML is not solely the subject of extensive theoretical research; The DML has been extensively
applied in many empirical settings for heterogeneous treatment effects. For example, Knaus (2020)
employs DML to evaluate the effectiveness of four labor programs in Switzerland. Dube et al. (2020)
utilize DML to obtain debiased estimators for the effects of rewards for MTurk workers on project
duration to investigate monopsony in online labor markets. Farbmacher et al. (2022) apply DML
combined with causal mediation analysis to study the effect of health insurance coverage on general
health. Fan et al. (2022) explore the causal effect of maternal smoking on the birth weight of newborn
babies via the DML estimator. Leveraging hundreds of experiments on Facebook, Gordon et al.
(2023) find that DML implemented with observational data under the selection of ads for users
may have substantial biases from the ground truth. While all applications beyond Gordon et al.
(2023) use observational data, our research is the first to provide evidence on the performance of the
DML method with the data from a set of large-scale field experiments such that the fundamental
unconfoundedness assumption is guaranteed. Contrary to the conclusion form Gordon et al. (2023)
that DML estimates are far from experimental results, we show that our debiased estimators are
accurate and valid for inference, significantly outperforming other benchmarks. Our documented
strong empirical validation and comprehensive discussions of the DML method can benefit both
researchers and practitioners.

Estimation and inference with multiple experiments. Conventionally, researchers examine
multiple-experiment settings through the lens of factorial design (i.e., full or fractional factorial
designs). Interested readers are referred to Box et al. (1978) and Wu and Hamada (2011) for detailed
discussions of these classical approaches. Recent works (e.g., Dasgupta et al. 2015, Pashley and Bind
2019) marry such design strategies with the potential outcome framework (Imbens and Rubin 2015)
for the study of causal inference. However, factorial design is hardly applicable to large-scale A/B
testing platforms, where the number of experiments m can potentially be hundreds or even thousands.
It is next to impossible to obtain the 2m treatment groups, as required by the full-factorial design.
Even with the fractional factorial design, the sheer number of treatments implies that practically
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one can only test O(m) treatment combinations, suggesting that only O(m) direct or interaction
effects are identifiable. The vast majority of the effects are, however, aliased away. Therefore, factorial
design methods are rarely employed on large-scale A/B testing platforms. Proposing a new strategy
to deal with the inference problem in such settings, our work applies the DML framework to the
empirical analysis in the multiple-experiment setting and requires looser identification conditions.
With an appropriately specified form of the response function to the treatment for each individual,
we only need to observe m+ 2 treatment combinations for the treatment effect inference of all 2m

combinations. We also apply this framework to a real multiple-experiment setting on Platform O and
show the empirical success of the framework in this setting.

Causal inference and its applications to online platforms. Causal inference has long been
a central topic in many fields, including economics, psychology, medical science, marketing, and
operations (e.g., see Angrist and Pischke 2009, Wooldridge 2010). Recent advances in ML and high-
dimensional statistics have enabled substantial development in this area. To name a few, Xie and
Aurisset (2016) and Guo et al. (2021) propose variance-reduction techniques that use covariates to
adjust estimators and obtain more precise ones with fewer data. Farias et al. (2021) compute debiased
estimators of treatment effects under general intervention patterns, which subsume the synthetic
control paradigm. Goli et al. (2022) propose a theoretical framework to overcome the bias due to the
interference in a ranking experiment on travel websites. Kallus et al. (2018) use matrix factorization
and bound the estimation errors for ATEs to reduce the noise and measurement error in covariates.
Lee and Shen (2018) estimate the winner’s-curse bias and use it to correct the final estimator for
treatment effects. Athey et al. (2018) propose a two-stage approximate residual balancing algorithm
to eliminate the bias in estimators obtained through sparse linear models. Arkhangelsky et al. (2021)
propose a synthetic difference-in-differences estimator to deal with panel data, which possesses unbi-
asedness and consistency under regularity assumptions. Zhang and Politis (2022) improve the ridge
regression estimator by adding a correction part to debias the original estimator. They use a wild-
bootstrap algorithm to construct a confidence interval. An influential school of works combines ML
methods with causal inference (Athey and Imbens 2016, Wager and Athey 2018). Among this liter-
ature, as discussed above, DML (Chernozhukov et al. 2018, Farrell et al. 2020) has received much
attention. Furthermore, operations researchers also apply optimization techniques such as robust
optimization (e.g., see Lim et al. 2006) to study the estimation in causal inference (e.g., Bertsimas
et al. 2022).

In particular, our paper speaks to the applications of causal inference to online platforms. With
a large amount of data available on online platforms, works in this area have proliferated in recent
years. On the empirical side, field experiments on large-scale online platforms enable causal inference
in a variety of business settings (e.g., Burtch et al. 2015, Cheung et al. 2017, Edelman et al. 2017,
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Zhang et al. 2020, Zeng et al. 2022). On the theoretical side, researchers propose innovative methods
to overcome challenges arising from online platforms, such as two-sided randomization (e.g., Nandy
et al. 2021, Johari et al. 2022, Ye et al. 2022), sequential experiments (e.g., Song and Sun 2021,
Bojinov et al. 2022, Xiong et al. 2022), and block randomization (Candogan et al. 2021). Whereas
this literature typically focuses on the single-experiment setting, we study the inference problem with
multiple experiments.

3. Debiased Deep Learning (DeDL) Framework
In this section, we introduce the DL-based framework following Chernozhukov et al. (2018) and
Farrell et al. (2020) for estimating and inferring treatment effects in our multiple experiments setting.4

As discussed in the introduction, one may view our work as a “playbook” for implementing DNN-
backed DML for causal inference in broader settings, and in this section we outline the theoretical
foundations using multiple treatment effect estimation as an example. Whereas the procedural details
are specifically tailored to address our research questions in the multiple experiment setting, they
underscore the critical elements that are broadly essential. For researchers and practitioners interested
in other causal inference problems using DML, following a similar procedure is expected to yield the
construction of desired estimators. We also emphasize that this section focuses on the theoretical
side, and the guidelines for practical implementation are deferred to Section 5.

Our framework comprises 3 steps, starting with determining the setting and specifying the data
generation process (DGP), as detailed in Section 3.1 and 3.2. Training the DL model is the second
critical step, which requires careful design of a specialized model layer that enables accurate ap-
proximation of any ATE function with finite samples (Section 3.3). In the third step, we develop
√
n-consistent DML-type estimators for inference and optimal treatment combination identification

(Section 3.4).

3.1. The Setup

Building on the recent advances ML-powered causal inference, we consider the DL-based inference
framework for multiple experiments on a large platform. There are m concurrent field experiments on
the platform, each with binary treatment levels, represented by T ∈ {0,1}m.5 Without loss of gener-
ality, we focus on the binary treatment case, which is a common practice for A/B tests on large-scale
online platforms, but our framework can be readily extended to continuous and discrete treatment

4 We use “multiple experiments,” “multiple treatments,” and “combinatorial experiments” interchangeably.
5 On notations: Throughout the paper, vectors and matrices are in boldface. Vectors are written as column vectors,
and v′ represents the transpose of vector v. Random variables are represented by capital letters, and their realizations
by lowercase letters. The L2 norm of function f(·) is defined as ||f(x)||L2(X) := E[f(X)2]1/2. We use En to denote
the sample average and M ≻ 0 to denote that matrix M is positive-definite.
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levels. The platform can observe the individual-level response to the treatment Y ∈ R,6 along with
the individual-level pretreatment covariates X ∈ RdX and treatment level T . The treatment assign-
ment mechanism is denoted by the conditional distribution ν(· | ·), i.e., ν(t |x) = P[T = t |X =x] for
any t∈ {0,1}m given any x.

In this setting, we address the following two essential questions of both academic and practical
values: (a) What is the ATE for each treatment combination? (b) Which treatment combination is
the most valuable for the platform (i.e., with the highest ATE)? We refer to the second question as
the best treatment identification problem.

3.2. Structured Deep Learning: Specify the Data Generation Process (DGP)

In the first step, following Farrell et al. (2020), we postulate that the data-generating process (DGP)
has the semiparametric form

E[Y |X =x,T = t] =G(θ∗(x), t), (1)

given any x and t∈ {0,1}m. G(·, ·) is the known link function and θ∗(·) :RdX 7→Rdθ are the unknown
nuisance parameters as functions of covariates x.7 In particular, θ∗(·) characterizes the heterogeneity
in outcomes, and we shall predict them by ML models such as DNNs. The prespecified link function
G(·, ·) allows for the flexibility and interpretability of the relationship between the outcome Y and
the treatment combination t. For example, if the link function is linear in t but with heterogeneous
coefficients, i.e., E[Y |X = x,T = t] = θ∗(x)′t, the effect of any treatment combination equals the
linear sum of each individual treatment effect therein. Combining the interpretability of the link
function and the generalizability of ML, our framework not only provides practitioners with accurate
inferences for the experimental outcome, but also delineates the interactions between treatments.

Before we explain the link function in detail, several remarks are in order. First, with slight ad-
justments, the DGP can be extended to general DML settings for causal inference. Specifically,
treatments can still be represented by t, accommodating multiple treatment levels or even continuous
treatments depending on the application. The researcher selects the G function that fits the context,
such as a logistic function for a binary outcome (Farrell et al. 2020) or a partially linear specification
(Chernozhukov et al. 2018). In some cases, where the economic interpretation of the G function is
well understood, this selection process is straightforward; in others, it requires careful consideration.
Our subsequent discussion in this section offers an illustrative example. In particular, the choice of

6 For expositional ease, we focus on the one-dimensional outcome setting throughout this paper. In practice, online
platforms could be interested in multiple outcome metrics (e.g., the number of active users and revenue); and the
extension of our framework to the case where Y ∈ RdY (dY > 1) is straightforward.
7 Throughout this paper, we make a regularity assumption commonly used in the DNN-estimation literature (e.g.,
Yarotsky 2017), i.e., Assumption 3 in Appendix A.2, which requires true parameter θ∗(·) is uniformly bounded and
sufficiently smooth.
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G function needs to balance the modeling power (see Sections 3.2.1 and 3.2.2) and nice statistical
properties to reduce the difficulty of estimating nuisance parameters (see Proposition 1).

Second, it should be noted that in our setting, an alternative, more straightforward method would
involve building a pure neural network without any parametric structure, i.e., DNN(x, t), which,
however, does not ensure valid inferences and is prone to overfitting the observed combinations.
Consequently, a standard pure DNN may not work well because of its potentially poor out-of-sample
performance, even with meticulous regularization. We demonstrate in Appendix D that standard
regularizations such as dropout layer and Lasso regularization are ineffective for our. In essence, the
G function we utilize is a variant of a regularized DNN that has been specifically tailored for our
application, drawing upon prior knowledge of interaction patterns. Given that a suitably predefined
G function is critical in our application, our study focuses primarily on selecting an appropriate G
beyond Farrell et al. (2020), with theoretical underpinnings, strong approximation capabilities, and
easy-to-validate and easy-to-satisfy identification conditions. Regarding estimation and inference, the
procedures we adopt are straightforward and align with the standard DML (Chernozhukov et al.
2018).

Third, here we also give a brief overview of subsequent theoretical development: having specified
the DGP, our framework involves the following two stages. In the first training stage, we adopt DL to
obtain a consistent estimator of the unknown parameter θ∗(·), which is denoted by θ̂(·). In the second
estimation and inference stage, based on the trained parameter θ̂(·), we construct asymptotically
normal estimators for the quantities of managerial interest (e.g., ATE), thus yielding valid inferences.

3.2.1. Choose the Link Function. As discussed, we capture the richness of individual het-
erogeneity with the nonparametric function θ∗(·), while given θ∗(·), we essentially assume that the
individual outcomes are fully structured and described by G(·, ·). In our setting, the link functions
G may take many different forms. For example, the most straightforward choice of G is the lin-
ear function of t with heterogeneous coefficients, i.e., G(θ(x), t) = θ0(x) + θ1(x)t1 + · · · + θm(x)tm.
Although this simple linear form only requires m+ 1 linear independent (1, t′) observed treatment
vectors for identification, it clearly fails to capture the treatment interactions. Another extreme is
G(θ(x), t) = θ0(x) +

∑m
i=1 θi(x)ti +

∑
i ̸=j θij(x)titj + ...+ θ12···m(x)t1t2 · · · tm, which contains all het-

erogeneous high-order interaction terms. Although this is the most accurate link-function form for
our application, it also requires the strongest identification condition, i.e., non-zero assignment prob-
ability for all treatment combinations, which is infeasible in practice. Thus, the choice of the link
function should, on the one hand, reflect the economic nature of the multiple A/B tests business
context and, on the other hand, be associated with the proper treatment assignment mechanisms to
ensure the identifiability and convergence of the estimates θ̂(·). To enhance the depth of discussion,
we propose the following concrete link functions with clear economic interpretations.
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Assumption 1 (Link Functions). We consider the following link functions G(θ(x), t) where

θ(·) :RdX 7→Rdθ .

(a) Multiplicative Form. G(θ(x), t) = θ0(x)(1 + θ1(x)t1) . . . (1 + θm(x)tm), and µ ≤ 1 + θk(x) ≤

M, k= 1, . . . ,m, uniformly in x, for some M >µ> 0.

(b) Standard Sigmoid Form. G(θ(x), t) = a/
(
1+exp(−(θ0(x)+θ1(x)t1 + · · ·+θm(x)tm))

)
+b, where

a ̸= 0 and b are known constants.

(c) Generalized Sigmoid Form I. G(θ(x), t) = θm+1(x)/
(
1 + exp(−(θ1(x)t1 + · · · + θm(x)tm))

)
.

(d) Generalized Sigmoid Form II. G(θ(x), t) = θm+1(x)/
(
1 + exp(−(θ0(x) + θ1(x)t1 + · · · +

θm(x)tm))
)
.
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Figure 2 Illustration of Generalized Sigmoid Form II With Two Types Platform Users: Marginal Decreasing
(Left) and Marginal Increasing (Right)

All four link functions in Assumption 1 capture the heterogeneity with respect to different co-
variates x. The link function of the Multiplicative Form (Assumption 1(a)) assumes multiplicative
relative effect size for different individual treatments, e.g., if each of two treatments increases the
effect by 10%, then combined treatment increases by (1 + 10%)(1 + 10%) − 1 = 21%. However, the
Multiplicative Form can characterize only the increasing marginal effect, due to its global convexity.

The link function of the sigmoid forms (Assumption 1(b), (c), and (d)) leverages the convex-concave
structure of the sigmoid function, thus capturing both increasing and decreasing marginal effects
at the individual level. As a result, it is able to capture both marginal increasing and decreasing
effects in ATE. We illustrate the coexistence of decreasing and increasing marginal effects with the
Generalized Sigmoid Form II through an example. We consider two experiments (ti ∈ {0,1}2) and
two user types, as shown in Figure 2, where the y-axis represents an individual’s average outcome
E[Yi|Xi,Ti] follows the Generalized Sigmoid Form II (Assumption 1(d)). Under the control condition
(i.e., t = t0 = (0,0)′), the expected outcome of both user types is 5 (i.e., E[Yi|Xi,T = (0,0)′] = 5
for all i), whereas the treatment effect of each experiment on each user type is 2 (i.e., E[Yi|Xi,T =
(1,0)′] = E[Yi|Xi,T = (0,1)′] = 7 for all i). For the first (resp. second) user type, θm+1 = 10 (resp.
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θm+1 = 20). Straightforward calculation implies that E[Yi|Xi,T = (1,1)′] = 8.5 (thus, the individual
treatment effect is 8.5 − 5 = 3.5< 2 + 2 = 4, suggesting the decreasing marginal effects) for the first
user type and E[Yi|Xi,T = (1,1)′] = 9.3 for the second user type (thus, the individual treatment
effect is 9.3 − 5 = 4.3> 4, suggesting the increasing marginal effects). Therefore, if the first type of
users takes more (resp. less) than 36% of the entire population, the platform will have a decreasing
(resp. an increasing) marginal ATE.

The Standard Sigmoid Form with known constants a and b may be restrictive and cannot model
the different outcome ranges across individuals. The Generalized Sigmoid Forms I and II resolve
this issue by incorporating the parameter θm+1(x). Comparing three sigmoid link functions, one can
notice that the Standard Sigmoid Form (Assumption 1(b)) and the Generalized Sigmoid Form I
(Assumption 1(c)) are special cases of the Generalized Sigmoid Form II (Assumption 1(d)). Hence,
we adopt the link function of Generalized Sigmoid Form II in our empirical study.

3.2.2. Justify the Link Function: Universal Approximation. To better illustrate the ex-
pressive power of our proposed Generalized Sigmoid Form II to capture ATEs, we present a coun-
terintuitive example in Table 1, where the ATE of the individual treatments has a different sign
from that of the combined treatment. There are two heterogeneous individuals and two individual
experiments. We assume the individual response follows our Generalized Sigmoid Form II with the
specific parameters detailed in the note of Table 1. It is apparent that, in this example, the ATEs
for the first and second individual treatments are −0.04 and −0.06, respectively. However, the com-
bined treatment effect has a different sign, i.e., 0.11. As a structured sigmoid function with only
O(m) parameters, our individual-level link function seems restrictive at the first glance, but the ATE
averaging over the whole population can be quite flexible.

Furthermore, to highlight our proposed link function is indeed of practical interest, we develop
the following bound on the approximation power of the Generalized Sigmoid Form II in Theorem 1,
which shows that this link function can be used to approximate arbitrary ATEs with a provable finite-
sample error bound. This result echoes the well-established expressive capabilities of the sigmoid
function, as evidenced in both the theoretical and empirical studies of neural networks. This result
confirms that the use of sigmoid function adds great versatility to our model. Interested readers may
refer to the proof of the theorem for details in Appendix A.

Theorem 1 (Universal Approximation of Generalized Sigmoid Link Function).
Given a population that contains K ≥ 1 distinct feature vectors {xℓ ∈RdX : ℓ= 1, . . . ,K} such that
X =xℓ with probability p(ℓ)> 0 for all ℓ= 1, . . . ,K, where

∑K
ℓ=1 p(ℓ) = 1, and any outcome function

f(t) : {0,1}m 7→R, there exists a feature mapping {θ(xℓ) : ℓ= 1, . . . ,K} such that 1
2m

∑
t∈{0,1}m

(f(t) −EX [G(θ(X), t)])2

 1
2

≲
1√
K
,
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Table 1 Counterintuitive Example under Generalized Sigmoid Form II

Treatment Combination t′ HTE of Individual 1 HTE of Individual 2 ATE
(1,0) 0.92 -1.00 -0.04
(0,1) 0.49 -0.60 -0.06
(1,1) 1.27 -1.05 0.11

Note: Parameter θ′ = (θ0, θ1, θ2, θ3) for the first individual is (0, 1, 0.5, 4), θ′ for the second individual is (−1, −3, −1, 4).

where G(·, ·) is the Generalized Sigmoid Form II of individual response G(θ(x), t) = θm+1(x)/
(
1 +

exp(−(θ0(x) + θ1(x)t1 + · · · + θm(x)tm))
)
.8

We comment on several observations. First, the omitted constant in Theorem 1 depends on the
function f(·) and m and is independent of K. This result highlights how the approximation power
of our proposed individual-level sigmoid model, i.e., Generalized Sigmoid Form II, improves as the
number of distinct feature vectors K increases: it proves that one can use this link function to
approximately construct any ATE function and captures arbitrary interactions among individual
treatments, with an error of order O(K−1/2). We interpret K as the number of individuals with
distinct features, suggesting that an increase in the number of distinct individual profiles in the
population enhances the potential for a more precise approximation of the ATE function.

Second, this theoretical development is motivated by the classical idea of approximating continuous
functions using sigmoid activation units in neural networks (e.g., see Hornik et al. 1989). Specifically,
the result is deeply rooted in the classical mathematical theory of Fourier transformation. In our
setting, where treatments are modeled as Boolean variables, the Fourier transformation of f(t) can be
expressed using indicator functions, which can be effectively approximated by sigmoid functions, given
sufficient flexibility in the feature space. This underscores the modeling power of our link function—we
are not aware of similar approximation results with other link functions, such as multiplicative or
simple linear ones.

Third, we acknowledge that such an approximation result does not ensure the practical realizability
of the nuisance parameters θ(·) proven to exist by Theorem 1, nor does it assure a precise estimate
of the ATE. This limitation may be attributed to several factors. The first is that the link function
G(·, ·) can indeed be misspecified. The model misspecification issue is further investigated and dis-
cussed in our synthetic experiments in Section 6. Second, as is well-documented in the computer
science literature (e.g., Adcock and Dexter 2021), there exists a large gap between the theoretical
approximation ability of DNNs and their actual performance, which may be resolved by designing
better DNN architectures and training algorithms. The third factor is that the nuisance parameters
may not be identifiable under the assignment mechanism of the A/B tests, especially when the fo-
cus is too narrow on specific treatment combinations without sufficient explorations. We discuss the

8 The notation “≲" means less than or equal to up to a constant independent of K.
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detailed identification conditions of our proposed link functions, including the Generalized Sigmoid
Form II following Proposition 1.

Finally, a closer examination on the proof of Theorem 1 reveals the deliberate and intricate design
of our Generalized Sigmoid Form II, compared with the Standard Sigmoid Form and the Standard
Sigmoid Form I. Incorporating a feature-dependent scale parameter, θm+1(x) and intercept, θ0(x)
appears crucial for realizing the expressive power emphasized in Theorem 1. Moreover, while we could
generalize the link function to include more terms, such as G(θ(x), t) = θm+1(x)/

(
1+exp(−(θ0(x)+

θ1(x)t1 + · · · + θm(x)tm))
)

+ θm+2(x), the proof also indicates that this additional complexity does
not deliver significantly better approximations of the ATEs. From an empirical point of view, such
additional complexity also makes identifying the nuisance parameters more challenging, which may
not be justified by the increased challenge in identification.

3.3. Training Stage

In the second step – training stage, we use DNNs to approximate the unknown parameter θ∗(·),
motivated by our DGP (1). We add a model layer to represent the link function on top of the
DNNs to connect the outcome with the estimated parameters θ̂(·) and treatment level t. Figure 3
illustrates the whole model from X and T to Y (see also Figure 2 in Farrell et al. 2020). We use
{(yi,x

′
i, ť

′
i)′ : 1 ≤ i≤ n} to denote the realization of random vector (Y,X ′,T ′)′, i.e., the observed data

from experiments. We use the check symbol over the treatment ť to represent the realized treatment
level in experiments to avoid confusion by the notation t∈ {0,1}m representing any target treatment
in ATE as defined in (3).

3.3.1. Specify the Loss Function. The loss function measures the quality of the estimated
nuisance parameter, and plays an important role in the training stage. Depending on the application,
different loss function can be used. For example, the maximum log-likelihood can used in case of
binary outcomes. As a general guideline, certain smoothness assumption is needed (e.g., Assumption
1 in Farrell et al. 2020) to obtain a theoretical guarantee (e.g., Proposition 1 in our setting). Our
DGP (1) suggests that the true parameter functions solve θ∗(·) ∈ arg minθ(·) E[(Y −G(θ(X),T ))2].
Consequently, we use the squared error, denoted by ℓ(yi, ť

′
i,θ(xi)) = (yi −G(θ(xi), ť′

i))2 as the per-
observation loss function used to train the estimator θ̂(·). The estimators of θ∗(·) can be obtained
by minimizing the empirical loss on the training data set

θ̂(·) := arg min
θ(·)∈FDNN

1
n

n∑
i=1

ℓ(yi, ťi,θ(xi)) := 1
n

n∑
i=1

(yi −G(θ(xi), ťi))2, (2)

where FDNN is the set of fully connected neural nets with bounded outputs. Note that we use DNNs
to approximate θ(x) for two reasons. (1) DNNs are easier to engineer with a general link function G,
and one can leverage off-the-shelf packages (e.g., PyTorch and TensorFlow) to train models at scale.
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(2) DNNs have better approximation and prediction power in general compared to other ML models.
Our framework can be readily applied to other ML models to get θ̂(x) as long as the convergence
rate is upperbounded by o(n−1/4).
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Figure 3 Illustration of Deep Neural Network with the Structured Model Layer

3.3.2. Identifiability and Convergence of Feature Mappings. With our proposed link
functions, we are ready to show the identifiability and convergence rate of the DNN in our framework.
The proof strategy largely builds on the approach in Farrell et al. (2020). Our primary theoretical
contribution here is the introduction of practical, primitive conditions in out setting that ensure
the identifiability of our model and facilitate the verification of the convergence conditions outlined
in Farrell et al. (2020). Using multiple experiment treatment effect estimation as a test bed, we
demonstrate the type of analysis required to provide theoretical guarantees for the DML framework.
Specifically, for identifiability, we further assume the treatment assignment mechanism is sufficiently
“regular” (see Assumption 4 in Appendix A.2). For convergence, the additional assumption on the
data observations being i.i.d., bounded, and θ∗(x) being sufficiently smooth is also imposed (see
Assumption 3 in Appendix A.2). Formally, we have the following proposition, the proof of which is
relegated to Appendix A.4.

Proposition 1 (Identifiability and Convergence). The following statements hold.
(a) Under Assumptions 1 and 4 (in Appendix A.2), the parameter function θ∗(x) can be nonpara-

metrically identified in DGP (1).
(b) Under Assumptions 1, 3 (in Appendix A.2), and 4 (in Appendix A.2), if the structured DNN

as illustrated in Figure 3 has width H = O(ndX/2(p+dX ) log2 n) and depth L = O(logn), there
exists a positive constant C that depends on the fixed quantities in Assumption 3, such that with
probability at least 1 − exp(n−dX/(p+dX ) log8 n), it holds that

∥θ̂k −θ∗
k∥2

L2(X) ≲ n
− p

p+dX log8 n+ log logn
n

,

for each k ∈ [dθ] when n is large enough.
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The key step to prove Proposition 1 is translating the convergence of DNN estimation on outcomes
Y into that of the parameter function estimates θ̂(·) under the treatment assignment mechanism
sufficient for identification. The convergence rate given by Proposition 1 may not be tight (see Farrell
et al. 2021), but it is sufficiently fast for the subsequent inference in our setting if p > dX .

Another important implication of Proposition 1 is that, for our link functions in Assumption 1, it
suffices to observe m+ 2 treatment combinations (see Assumption 4 in Appendix A.4 for details),
which is orders of magnitude smaller than 2m, to ensure the identifiability and sufficiently fast con-
vergence. In other words, suppose there are 10 different treatments, and in turn 210 = 1024 possible
treatment combinations. Our framework needs to observe only 10 + 2 = 12 combinations to estimate
the parameter function θ̂(·) with sufficient convergence, which is only 12/1024 = 1.2% of the total
possible combinations. It should be noted that the requirement for m+ 2 combinations is not ar-
bitrary. Take the Generalized Sigmoid Form II for example. We first stipulate that E[T̃ T̃ ′|X] ≻ 0
almost uniformly everywhere—that is, its smallest eigenvalue is uniformly lower bounded away from
0 across all X, except on a set of zero probability. Specifically, this condition is readily met under
a common and lenient treatment assignment rule: Each of the m individual treatment condition,
as well as the full control condition, are assigned with a positive probability. In other words, we
assign t= (0,0, . . . ,0)′ and (1,0, . . . ,0), (0,1, . . . ,0)′, . . . , (0,0, . . . ,1) each with a positive probability.
This assumption is relatively mild. The m + 1 linearly independent combinations (1, t′) integrate
seamlessly because the link function includes a linear component θ0(x) + θ1(x)t1 + · · · + θm(x)tm+1.
Beyond these m+ 1 combinations, we note that with a total of m+ 2 unknown parameters in the
Generalized Sigmoid Form II, at least one additional treatment combination should be assigned with
a positive probability for identification. For example, if two conditions t = (1,0,0,0)′ and (0,1,0,0)′

are already assigned when m= 4, only one additional overlapping condition (1,1,0,0)′ is required to
identify the nuisance parameter θm+1(x) in the numerator. Such modest requirement for identifica-
tion stems from the well-structured nature of the proposed link function. More generally, proposing
a more complex link function would entail a more demanding identification challenge.

3.4. Estimation and Inference Stage
In the estimation and inference stage, the key is to construct estimators for (a) the ATE of any
treatment combination and (b) the improvement in ATE for the identified best treatment over any
other treatment combination. We first define the advantage function of the treatment combination
t1 ∈ {0,1}m over the treatment combination t2 ∈ {0,1}m as

H(x,θ(x); t1, t2) := G(θ(x), t1) −G(θ(x), t2).

Thus, the ground-truth ATE of any treatment combination t∈ {0,1}m can be written as

µ(t) = E[G(θ∗(X), t)] −E[G(θ∗(X), t0)] = E[H(X,θ∗(X); t, t0)]. (3)
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Denote µ̂(t) as our proposed estimator for µ(t), we show that µ̂(·) is asymptotically normal and
semiparametric efficient. Analogously, the ATE increment of the best treatment t∗ over any t ∈

{0,1}m is written as

τ(t) := µ(t∗) −µ(t) = E[G(θ∗(X), t∗)] −E[G(θ∗(X), t)] = E[H(X,θ∗(X); t∗, t)]. (4)

Notice that identifying the best treatment boils down to identifying the ATE increment of each
treatment combination. For the validity of inference of identified best treatment, we also test the
one-sided hypothesis τ(t) ≥ 0 for all t. Letting τ̂(t) := µ̂(t̂∗) − µ̂(t) be an estimator of τ(t) for each
t∈ {0,1}m, we can also show that our proposed estimator τ̂(·) is also

√
n-consistent, and the empirical

best treatment agrees with the true best treatment with probability approaching one. We mention
that for brevity, this subsection focuses on ATE estimation and inference discussion, whereas the
detailed discussion of best treatment identification is relegated to Appendix A.8.

3.4.1. Construct the Influence Function. One cannot directly use the plug-in estimator
µ̂(t) = 1

n

∑n
i=1H(xi, θ̂(xi); t, t0) for ATE; this estimator is generally not

√
n-consistent due to the

large bias of ML models. Intuitively, the issue with this naïve estimator is that the error of nuisance
parameter is accounted for. To solve this, the inference with DML is mainly built upon the semipara-
metric technique—influence function (a.k.a. Neyman orthogonal score)—which implies the first order
insensitive to perturbations in the nuisance parameters. We refer interested readers to Newey (1994)
and Subsection 2.2.5 in Chernozhukov et al. (2018) for more discussion of influence functions and
Neyman orthogonality. Similar to other works using influence function in semiparametric statistics,
we make the following assumption.

Assumption 2. For all t∈ {0,1}m, the following conditions hold uniformly with respect to all x:

(i) The DGP (1) holds; (ii) Λ(x) := 2E[Gθ(θ(x),T )Gθ(θ(x),T )′|X = x] is invertible with bounded

inverse, where Gθ(θ, t) is the gradient of G(θ, t) with respect to θ; and (iii) The ATE µ(t) is identified

and pathwise differentiable.

We remark that Assumption 2 imposes several regularity conditions, which are standard and
not restrictive in the literature on semiparametric statistics. The invertibility of Λ(x) is commonly
assumed for deriving the influence function, and it can be easily satisfied in our setting. As shown in
Appendix A.6, this invertibility condition can be translated into a lenient one under the Generalized

Sigmoid Form II. Finally, the identification of µ(t) immediately follows Proposition 1(a), and the
pathwise differentiability of µ(t) is a standard regularity condition. Such assumptions should be
considered as standard in applications of DML. They facilitate the construction of the influence
function, whose idea is attributed to Farrell et al. (2020), and we adapt it to our context.
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Proposition 2 (Influence Function). Suppose Assumptions 1, 2, 3 (in Appendix A.2), and

4 (in Appendix A.2) hold, then, the influence function for µ(t) is ψ(z,θ,Λ; t, t0) −µ(t) with,

ψ(z,θ,Λ; t, t0) =H(x,θ(x); t, t0) −Hθ(x,θ(x); t, t0)′Λ(x)−1ℓθ(y, ť,θ(x)), (5)

where z = (y,x′, ť′)′ is observed data, Λ(x) := 2E[Gθ(θ(x),T )Gθ(θ(x),T )′|X =x], Gθ is gradient of

G with respect to θ, Hθ(x,θ(x); t, t0) :=Gθ(θ(x), t) −Gθ(θ(x), t0) is the gradient of H with respect

to θ, and ℓθ(y, ť,θ(x)) := 2Gθ(θ(x), ť)(G(θ(x), ť) − y) is gradient of ℓ with respect to θ.

The influence function defined by (5) contains a plug-in term H(x,θ(x); t, t0) and a debiasing
term −Hθ(x,θ(x); t, t0)′Λ(x)−1ℓθ(y, ť,θ(x)). Therefore, we call the framework the debiased deep

learning (DeDL). The computation of Λ(x) is straighforward under the known treatment assignment
mechanism ν(· |x).

3.4.2. Complete the Framework: Asymptotic Normality. Based on this influence function
and the cross-fitting technique (e.g., Chernozhukov et al. 2018, Farrell et al. 2020), we can construct
estimators as illustrated in Algorithm 1. We refer interested readers to Appendix A.7 for the details
of constructing the estimators µ̂DeDL(t) by (33) and Ψ̂DeDL(t;µ) by (34), and the confidence interval
ĈIDeDL(t;µ) by (35).

Algorithm 1 Implementing DeDL with Cross-fitting
1: (Cross-fitting) Split data samples into S nonoverlapping folds Ss, s= 1, . . . , S.
2: (Training) For each fold s, use the complement of Ss to train DNN to get θ̂s(·) based on (2), and

compute Λ̂s(·) = 2E[Gθ(θ̂s(x),T )Gθ(θ̂s(x),T )′|X =x].
3: (ATE Estimation and Inference) For each t ∈ {0,1}m, leverage the influence function ψ and use

data S to construct the ATE estimator µ̂DeDL(t) and variance estimator Ψ̂DeDL(t;µ). Conduct
ATE inference based on µ̂DeDL(t) and Ψ̂DeDL(t;µ).

4: (Best Treatment Identification) Find empirical best treatment t̂∗ := arg maxt µ̂(t). Similarly, use
influence function ψ and cross-fitting to construct estimators τ̂DeDL(t) and Ψ̂DeDL(t; τ) (see Ap-
pendix A.8) for the inference on best treatment identification.

We now present Theorem 2 on the asymptotic normality.

Theorem 2 (Asymptotic Normality). Suppose Assumptions 1, 2, 3 (in Appendix A.2), and

4 (in Appendix A.2) hold and Λ̂s(xi) is uniformly invertible. Furthermore, we assume for all sub-

samples s = 1,2, . . . , S, the estimators obey ∥θ̂sk − θ∗
k∥L2(X) = o(n−1/4), k ∈ {1, . . . , dθ}, which holds

under the assumptions and regularity conditions (for the structured DNN) of Proposition 1(b).
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(a) For any treatment level t∈ {0,1}m,

√
n
(
Ψ̂DeDL(t;µ)

)−1/2(µ̂DeDL(t) −µ(t)) →d N (0,1).

(b) Furthermore suppose the best treatment t∗ := arg max
t∈{0,1}m

µ(t) is unique. We have t̂∗ = t∗ with prob-

ability approaching one as the sample size goes to infinity, and for any treatment level t∈ {0,1}m,

√
n
(
Ψ̂DeDL(t; τ)

)−1/2(τ̂DeDL(t) − τ(t)) →d N (0,1).

The formal proof of Theorem 2 can be found in Appendix A.8. Importantly, the probability of
failing to identify the true best treatment vanishes as the sample size grows large. Therefore, Theorem
2 establishes the valid inference for ATE and best treatment identification under our DeDL framework.
For the rest of this paper, we validate this framework with both experimental and synthetic data,
and we demonstrate its superior performance over commonly used benchmarks.

As a concluding remark of this section, we summarize the key checkpoints for conducting DML-
based causal inference using DNNs that are generically applicable to other settings. The first step
involves specifying the DGP (Section 3.2). Particular attention should be given to designing the link
function G (Section 3.2.1) to balance modeling power (Section 3.2.2) and the statistical properties
that enhance the estimation of the nuisance parameters (see Proposition 1). In the second step, the
DNN is trained using the available data and the link function as the top layer of the network (Section
3.3). Here, it is crucial to choose a loss function that possesses favorable theoretical properties for
training (Section 3.3.1). If the link function G and the loss function are both appropriately specified,
one can expect theoretical guarantees for the convergence of the nuisance parameters (Proposition
1). For robustness, cross-fitting is commonly applied (Algorithm 1). This technique splits the data
into overlapping folds, with each fold’s complement used to train a separate DNN estimator of the
nuisance parameters. In the third step, where treatment effect estimation and inference are performed
(Section 3.4), influence functions are constructed to mitigate the bias from machine learning errors
(Proposition 2). Using these influence functions and the estimated nuisance parameters from cross-
fitting, one construct the treatment effect estimator and the associated confidence interval (Algorithm
1). If each step is carefully carried out, one can show that the final estimator of the treatment effect
is asymptotically normal, which enables statistical inference (Theorem 2).

4. Application to Field Experiment Data
In this section, we conduct field experiments to test our theory. We apply our DeDL framework
to the experimental data from Platform O. The empirical results highlight that, in the presence
of unobserved treatment combinations, our approach more accurately estimates the ATE of any
treatment combination, and identifies the optimal combination, than the commonly used benchmarks.
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4.1. Field Setting, Experiments, and Data
In this section, we introduce the setup of our empirical setting. This empirical application highlights a
unique experiment setting that allows us to verify the success of our DeDL framework with observable
ground truth. To our knowledge, this is the first large-scale empirical validation based on large-scale
field experiment.

4.1.1. Platform O and the Experimental Background. To empirically validate our pro-
posed framework, we collaborate with Platform O, which features interactive short videos. Platform
O, one of the largest short-video platforms, serves billions of users globally every day. Its users
(referred to as “she” hereafter) may view the short videos on different product pages.

In our empirical analysis, we focus on three main pages of Platform O. To better illustrate, we
refer to similar pages on TikTok: (i) the Discover Page (DP), (ii) the Live Page (LP), and (iii) the
For You Page (FYP) (see Figure 4). On the DP, the platform generates trendy hashtags and videos
based on users’ preferences. On the LP, users are exposed to live streams. On the FYP, the platform
recommends the best-performing videos (measured by, e.g., total click-throughs, total watch-time
duration, like rate, and forward rate) that fit each user’s idiosyncratic interests. Users of Platform O
can easily switch to any of these pages at any time they are using the platform.

(b) Live Page (LP)(a) Discover Page (DP) (c) For You Page (FYP)

Figure 4 An Illustration of the Three Pages

Like all other large-scale UGC platforms such as Facebook and TikTok, Platform O runs hundreds
of A/B tests daily to evaluate and optimize its product designs and recommendation algorithms.
For most of these A/B tests, the platform’s main objective is to improve user engagement, which
can be well approximated by the amount of screen time a user spends on the platform per day.
Each experiment is randomized based on a distinct hash function of user IDs, which ensures that the
treatment assignment mechanisms from any two experiments are independent.
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In this paper, we focus on a unique set of three A/B tests or treatments, each of which examines
the effect of a major adjustment to the video recommendation algorithm on one of three main pages
of Platform O (i.e., DP, LP, and FYP).9 This set of experiments has one unique feature that the
other sets of experiments on Platform O do not have: since these three experiments were run on
the same population, the outcomes of the users under all 23 = 8 possible treatment combinations
are all observable. The main reason that the algorithm team in Platform O decided to test all three
experiments on the same population is precisely that they want to understand how much money
they have left on the table by running each experiment independently and not finding the best
combination. Although we admit three is the smallest number of individual treatments that could
be interesting, we highlight our orthogonal-experiment data set is of large scale and high quality,
delivering trustworthy empirical evidence on the performance of double machine learning in the real
setting. To validate the applicability of our framework to a larger number of experiments, we conduct
simulations with synthetic data for m= 10 in Appendix D.2. If the number of experiments is even
larger, e.g., m = 100 or 1000, we suggest first reducing m by filtering out insignificant treatments,
which take a large proportion in practice. Another widely adopted practice is combining some similar
experiments as one synthetic larger experiment.

With this unique setting, we can use this set of experiments to quantify the ground-truth ATE of
any treatment combination, thus greatly facilitating our analysis to provide convincing validations
of our DeDL framework against commonly adopted benchmarks. Throughout our empirical analysis,
we use a three-dimensional binary vector T ∈ T := {0,1}3 to represent the (random) treatment
combination applied to a user, where the first component refers to whether the user is treated on DP,
the second refers to whether she is treated in on LP, and the third refers to whether she is treated
on FYP. Denote t∈ T as the realization of T . For example, a treatment vector t= (1,0,0)′ indicates
that the user has received treatment on DP but is in the control group on LP and FYP.

This set of three experiments targeted 4,449,470 users in total between January 10, 2021, and
February 1, 2021. Throughout our analysis, we use the total screen time of all three pages per day
for each user as the outcome variable, consistent with the platform’s primary objective to boost
user engagement. To fully leverage the power of our DeDL framework, we have also collected the
pretreatment covariate data for the users targeted by the experiments. The covariates adopted in
our analysis include 16 discrete variables (such as gender, frequent residence area, age range, and the
user’s degree of activeness) and 10 continuous variables (such as the video-watching duration on each
page per day in the 10 days right before the experiments). Table A1 (in Appendix B.1) describes all
the covariates used in our analysis.
9 For the sake of simplicity, we refer to the changes of several parameters in recommendation algorithm as major
adjustment. In practice, the major adjustment could be adding weights for videos created by popular authors, in-
creasing exposure of live streams viewed by nearby users, changing the degree of diversity of videos in users’ feeds,
and so on.
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4.1.2. Treatment Assignment and Ground Truth Treatment Effects. For each experi-

ment, any targeted user, regardless of her pretreatment covariates, was independently and randomly

assigned to the treatment group (i.e., the new algorithm on the respective page was applied) with

the probability of 0.6 and to the control group (i.e., the baseline algorithm was applied) with the

probability 0.4 in each experiment. Therefore, because all treatment assignments are orthogonal,

each targeted user with covariates x was assigned to the treatment combination t ∈ {0,1}3 with

probability

ν(t|x) = P[T = t|X =x] =
3∏

k=1

(
0.4 · I[tk = 0] + 0.6 · I[tk = 1]

)
.

The ATE under treatment combination t is simply the expected outcome y under t compared to

that under t0 = (0,0,0)′ over the same population X. For a fair comparison of ATEs over different

treatment combinations, we need to keep the user covariates similarly distributed under different

treatment combinations in T . Hence, we adopt stratified sampling to balance the covariates observed

in different treatment groups, which is explained in detail in Section 5.1.

Table 2 documents the ground-truth ATE of all treatment combinations on the total screen time

of all three pages per day benchmarked against the case where the baseline algorithm is applied in all

three pages (i.e., µ(t) for all t∈ T ). To protect the sensitive data of Platform O, we report only the

relative ATEs (see column (1) of Table 2). We emphasize that the orthogonal deployment of these

three experiments enables us to observe the ground-truth ATE of all seven treatment combinations

and, thus, to provide ground-truth ATEs for us to validate our DeDL framework.

To validate our DeDL framework, we assume that some treatment conditions are unobserved; we

use our framework to recover these “unobserved" conditions, and we compare our results with the

ground truth. In practice, different engineer and product teams launch the individual experiments

independently (most likely in an asynchronous and uncoordinated fashion), and the centralized plat-

form manager runs a back-test to check the treatment effect of the combined experiment (i.e., t =

(1,1,1)′) at the end. Following this business practice, we assume that the outcomes are observable for

the baseline case, the three individual experiments, and the combined experiment, and unobservable

otherwise (see column (2) of Table 2). We denote To := {t ∈ T : t1 + t2 + t3 ∈ {0,1,3}} as the set of

observable treatment combinations and Tu := {t ∈ T : t /∈ To} as the set of unobservable treatment

combinations. Table 2 shows that the ground-truth ATE of some unobserved treatment combination

(e.g., t= (1,1,0)′) is insignificant (at α= 0.05).

4.2. DeDL Framework on Experimental Data

In this subsection, we present the key steps in applying our DeDL framework to estimate and infer

the ATE of each treatment combination (i.e., µ(t) defined by (3) for all t ∈ T ), whose ground-truth
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Table 2 Ground-Truth ATE and Best Treatment Identification of Eight Treatment Combinations

Treatment Relative Effect Size Observed or Not Number of Users
Combination t′ (1) (2) (3)

(0, 0, 0) -0.000%∗∗∗∗ Observable 258,249
(0, 0, 1) -1.091%∗∗∗∗ Observable 258,340
(0, 1, 0) -0.267%∗∗∗∗ Observable 258,367
(1, 0, 0) -0.758%∗∗∗∗ Observable 258,321
(1, 1, 1) -2.121%∗∗∗∗ Observable 258,375
(1, 1, 0) -0.689%∗∗∗∗ Unobservable 258,480
(1, 0, 1) -2.299%∗∗∗∗ Unobservable 258,305
(0, 1, 1) -1.387%∗∗∗∗ Unobservable 258,172

Note: To protect sensitive data, ATE is proportionally rescaled to relative effect size. The optimal treatment combination
(i.e., best treatment) is t∗ = (1, 0, 1)′. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001; ∗∗∗∗p<0.0001.

value is documented in Table 2 column (1). The implementation details are provided in Appendix
5.2. First, we consider the following model specification of DGP:

E[Y |X =x,T = t] =G(θ∗(x), t) = θ∗
4

1 + exp(−(θ∗
0(x) + θ∗

1(x)t1 + θ∗
2(x)t2 + θ∗

3(x)t3)) . (6)

The link function G, as a sigmoid function, can capture either “diminishing marginal return” or
“increasing marginal return” of the experiments for different users, both of which we have observed
in our data sample (see Figure 1). Here, we are using a simplified version of the Generalized Sigmoid

Form II (Assumption 1(d)) to avoid overfitting. The parameter θ∗
4 can be thought of as the maximum

possible video-watching time of any user.
Figure 6 in Appendix 5.2 illustrates our DNN architecture. We use two DNNs with three hid-

den layers per network (20 nodes in each layer) to approximate the parameters θ∗
0(·) and θ∗

k(·), for
k ∈ {1,2,3}, respectively. For each layer, the ReLU function (i.e., ReLU(x) = max{0, x}) is used as
the activation function. We then concatenate the last layers of two DNNs, take the linear combi-
nation (u = θ0(x) + θ1(x)t1 + θ2(x)t2 + θ3(x)t3) as the input of a sigmoid function layer, and add
another linear layer (no intercept, the slope approximates θ∗

4) to output y. We implement our DNN in
TensorFlow and train the DNN by Adam algorithm (Kingma and Ba 2014) under the mean squared
loss. We emphasize that the details of cross-fitting and DNN implementation are critical for empirical
success. Accordingly, we defer this discussion and dedicate Section 5.2 specifically to it.

After obtaining the fitted estimator θ̂(·), we estimate and infer the ATE of each treatment com-
bination t using the stratified sample with our influence function ψ(z, θ̂, Λ̂; t, t0) defined by (5).
Specifically, we apply the estimators µ̂DeDL(·) and ĈIDeDL(·;µ) defined by (33) and (35) to the strat-
ified sample under each (observable or unobservable) treatment combination t ∈ T to obtain the
estimated value and confidence interval of µ(t). We remark that Λ̂(x) as the estimator of Λ(x) =
E[ℓθθ(Y,T ,θ(X))|X = x] can be directly computed once θ̂(·) is obtained, because the distribution
of the treatment combination T is known. See Section 5.2 for details.
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Finally, we apply our DeDL framework to identify the treatment combination with the highest ATE,
t∗ := arg maxt∈T µ(t). Specifically, we identify the “best treatment" as t̂∗

DeDL := arg maxt∈T µ̂DeDL(t).
Define µ̂∗

DeDL := maxt∈T µ̂DeDL(t) as the ATE of the best treatment identified by our DeDL framework.
We construct the estimators of ATE increment from treatment combination t to “best treatment"
as τ̂DeDL(·) := µ̂∗

DeDL − µ̂DeDL(·) and ĈIDeDL(·; τ) defined by (36) and (40) to each treatment combi-
nation t ∈ T and select the treatment combination(s) t with τ̂DeDL(t) insignificant from 0 as best
treatment(s).

4.3. Benchmarks

To evaluate the performance of our DeDL framework to (i) estimate and infer ATE and (ii) identify
the optimal treatment combination, we consider five commonly used approaches as benchmarks: (a)
the linear addition (LA) approach; (b) the linear regression (LR) approach; (c) the pure deep learning
(PDL) approach; and (d) the structured deep learning (SDL) approach. For implementation details
of all four benchmarks, see Appendix C.

The LA approach assumes that ATE is linearly additive (i.e., µ(t1 + t2) = µ(t1) + µ(t2) for any
t1, t2 ∈ T ) and, thus, predicts the ATE of an unobservable treatment combination using those of the
observable individual experiments. This approach is intuitive, convenient, and scalable, thus widely
adopted by most large-scale online platforms in practice, such as Platform O. The standard error
of an LA estimator for any treatment combination is estimated by assuming that the estimators
for individual experiments are independent. For best treatment identification, the LA approach is
equivalent to selecting all treatments that have a positive significant ATE.

Under the LR approach, we first predict the unobservable outcomes using a linear regression model
trained on the observed sample by regressing the outcome y on t and x. The estimation and inference
of ATE for each treatment combination t are based on the pair-wise t-test between the outcome
predictions under t and those under the baseline combination t0. The LR approach identifies the
best treatment by selecting the treatment combination with the highest ATE based on the predicted

outcomes of all treatment combinations. We remark that the LA and LR approaches inherently assume
that the treatment effects are linearly additive and homogeneous.

The PDL approach employs a DNN with a similar structure as DeDL that predicts the outcome
variable y as a function of both x and t. Unlike DeDL that has concrete link function to describe the
relationship of t to y conditional on x, PDL treats both x and t as network inputs and in turn, allows
more flexible relationship from t and x to y. The PDL approach uses the same pair-wise t-test as the
LR approach on the predicted outcomes for inference of ATE. The identification of the best treatment
depends on the highest ATE among all treatment combinations. The PDL estimator fully leverages
the predictive power of DNN (potentially more powerful than DeDL, which assumes a concrete link
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function) but cannot use the influence function to debias the DL estimation as DeDL does. Therefore,
the comparison between PDL and DeDL provides insights into the trade-off between the flexibility of
DL models and the ability to construct influence functions with debiasing.

The SDL approach is exactly the same as the DeDL approach with only one distinction: Unlike
DeDL, which uses the influence function to debias the estimation from DL, the SDL approach simply
uses the prediction from the DL to construct plug-in estimator µ̂(t) = 1

n

∑n
i=1H(xi, θ̂(xi); t, t0).

Similar to the LR and PDL estimators, the SDL approach estimates and infers the ATE for each
treatment combination t by running the pair-wise t-test on the predicted outcomes. Likewise, the
optimal treatment combination is identified as the one with the highest ATE based on the predicted
outcomes of all treatment combinations. The comparison between SDL and PDL reveals the trade-
off between economic interpretations and predictive power, whereas that between SDL and DeDL
highlights the value of bias correction in our framework.

For any approach π ∈ {LA,LR,PDL,SDL,DeDL}, we use µ̂π(t) (resp., ĈIπ(t;µ)) to denote the ATE
estimator (resp., the confidence interval of µ̂π(t)) generated by π for the treatment combination t ̸= t0.
Likewise, we denote τ̂π(t) (resp., ĈIπ(t; τ)) to denote the estimator for the ATE difference between
the optimal treatment t∗ and the experiment combination t ̸= t0 (resp., the confidence interval for
such ATE difference) generated by π.

4.4. Results on ATEs

We first compare the DeDL approach with the four benchmarks presented in Section 4.3 to estimate
and infer the ATE of each “unobserved" treatment combination t ∈ T u. As discussed above, the
assignment mechanism of the three experiments on Platform O enables the observation of the ground-
truth ATE of each treatment combination, based on which we assume that three treatment conditions
are not observed by the algorithm and evaluate the performance of all approaches on these unobserved
conditions. In particular, we document the following performance metrics:

• Correct Direction Ratio (CDRu). For any estimation and inference approach π, we denote T cd(π)
as the set of all treatment combinations with correct direction identification, i.e., the treatment
combinations t ∈ T whose ground-truth ATE µ(t) have been correctly identified by π in terms
of both (i) sign and (ii) statistical significance. Define T cd

u (π) := T cd(π) ∩ Tu as the set of unob-
servable treatment combinations with correct direction identification for π. Define the CDR for
unobservable treatment combinations (CDRu) of π as CDRu(π) = |T cd

u (π)|
|Tu| × 100%.

• Mean Absolute Percentage Error (MAPEu). The MAPE of any estimation and inference ap-
proach π is the average percentage error for unobserved treatment combinations with a significant
ground-truth ATE. In other words, the MAPE of π for unobservable treatment combinations
(MAPEu) is defined as MAPEu(π) := 1

|T s
u |
∑

t∈T s
u

|µ(t)−µ̂π(t)|
|µ(t)| × 100%.
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Table 3 Comparison of Different Estimators of ATE

Estimator Unobserved Treatment Combinations
CDRu MAPEu MSEu MAEu

(1) (2) (3) (4)
LA 2/3 30.06% 18.597 4.032
LR 2/3 04.90% 5.303 1.855

PDL 2/3 06.86% 4.876 1.838
SDL 2/3 14.71% 5.623 2.271

DeDL 3/3 01.75% 4.095 1.343

Estimator All Treatment Combinations
CDR MAPE MSE MAE
(5) (6) (7) (8)

LA 7/8 12.02% 7.966 1.728
LR 7/8 17.37% 6.551 2.348

PDL 6/8 14.76% 4.962 2.031
SDL 6/8 14.03% 3.840 1.804

DeDL 8/8 03.07% 1.845 0.737

Notes: The calculation of MSE, MSEu, MAE, and MAEu are based on the scaled outcome variable (see Table 2, column
(1)). MSE and MSEu are scaled by multiplying a constant. MAE and MAEu are scaled by multiplying another constant.

• Mean Squared Error (MSEu). The MSE of π for unobservable treatment combinations (MSEu)
is defined as 1

|Tu|
∑

t∈Tu

(µ(t) − µ̂π(t))2.
• Mean Absolute Error (MAEu). The MAE of π for unobservable treatment combinations (MAEu)

is defined analogously as 1
|Tu|

∑
t∈Tu

|µ(t) − µ̂π(t)|.
To give a clear picture of the comparisons among all eight (observable and unobservable) treatment
combinations and identify the best treatment of them (see Section 4.5), we present the estimated
treatment effects of all treatment combinations in Figure 5. In Table 3, we also calculate the above
four metrics evaluated on both unobserved treatment combinations and all treatment combinations.

Table 3 documents the comparison of our DeDL approach against the LA, LR, SL, PDL, and SDL
benchmarks with respect to the four performance metrics described above. The punchline message
of the empirical analysis is that our DeDL estimator substantially outperforms all five benchmarks
with any of these performance metrics, providing evidence that the proposed framework accurately
estimates and infers the ATE of any treatment combination for multiple A/B tests on a large-scale
online platform. More notably, we highlight that, to our best knowledge, this is the first rigorous
empirical validation of the DML methodology in a practical setting with data from large-scale field
experiments.

As emphasized above, the unique concurrent orthogonal-design deployment of the three experi-
ments on Platform O has made such validation possible by revealing the ground-truth ATE of each
possible treatment combination. A key advantage of our DeDL approach to adopt DL in causal in-
ference is its ability to capture the user-heterogeneity and nonlinearity for the combined treatment
effect of multiple A/B tests on a large-scale online platform, the observation of which has motivated
this study (see Figure 1). As expected, such an advantage stems from the strong predictive power
of deep neural networks. As aforementioned, the comparison between our DeDL framework and the
SDL estimator provides more insights into how bias correction (i.e., influence function) affects the
final causal inference performance. To provide more insights, in Figure 5, we visualize these two
approaches’ ATE estimates and the 95% confidence interval for each treatment combination (i.e.,
µ̂π(t) and ĈIπ(t;µ) for π ∈ {SDL,DeDL} and t ∈ T ). Figure 5 shows that the bias correction can
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Figure 5 Detailed Comparisons Between the SDL and DeDL Estimators (bars represent confidence intervals)

help causal inference in two significant ways: First, by correcting the bias due to the variabilities

of the training data from the plug-in estimator, the DeDL approach is able to accurately identify

the confidence interval of the ATEs, while the SDL approach is always underestimating the standard

error of ATE. This means that, without bias correction, the analysis leads to potentially more Type-I

errors and higher false discovery rates for the platform. Second, DeDL provides a more accurate ATE

estimate than SDL does, empirically confirming the advantage of the former for more accurate causal

inference.

Moreover, the comparison between SDL and PDL in Table 3 shows that the pure DNN without

assuming the link function can improve the performance of predicting the treatment effects (i.e.,

MAPEu reduced from 14.71% to 6.86%). This shows that, by specifying a concrete link function,

we indeed sacrifice some prediction accuracy for the ability to derive bias correction terms and

allow economic interpretation. However, since the performance of our DeDL estimator significantly

outperform that of the PDL approach in all metrics, it shows that this sacrifice is justified in the

context of causal inference. In other words, the benefit of assuming a concrete link function and

applying the corresponding DML bias correction will outweigh the cost of a less flexible relationship

between the treatment conditions and the outcome.

Last, we have also tested the standard logit model proposed by Farrell et al. (2020) such that

G(θ(x), t) = 1
1+exp(−(θ0(x)+θ1(x)

∑m

i=1 ti)) . Despite the first-stage cross-validation losses being similar

for both the standard logit model and our DeDL, with the scaled Mean Squared Error (MSE) values

of 0.0087 and 0.0086, respectively, we observe that the latter significantly outperforms the former

in ATE estimation. The limited flexibility of the standard logit function weakens its effectiveness in

accurately estimating ATE.
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Table 4 Comparison of Different Estimators of Best Treatment Identification

Estimator CDR MAPE MSE MAE
(1) (2) (3) (4)

LA 7/8 21.92% 15.539 3.091
LR 7/8 11.86% 3.232 1.727

PDL 7/8 12.83% 4.053 1.839
SDL 8/8 17.45% 7.186 2.442

DeDL 8/8 05.97% 1.995 0.780

Notes: The calculations of MSE and MAE are based on the scaled outcome variable (see Table 2, column (4)). MSE is scaled
by multiplying a constant. MAE is scaled by multiplying another constant.

4.5. Results on Best Treatment Identification
This subsection applies our DeDL framework to identify the optimal treatment combination with the
highest ATE. By the ground-truth ATE estimates (Table 2 column (1)), the “true” optimal treatment
combination is t∗ = (1,0,1)′. We compare different estimators for best treatment identification in
Table 4, and we report the same set of performance metrics defined in Section 4.4. In particular, we
focus on the comparison between τ(t) and τ̂(t), the ground-truth treatment-effect increment and its
estimator. Among eight treatment combinations, the treatment-effect increment of the “true” optimal
treatment combination over both (1,0,1) and (1,1,1) insignificantly differ from 0. Column (1) in
Table 4 indicates that only SDL and DeDL correctly identify both sign and statistical significance
of all treatment-effect increments. Table 4 shows that DeDL estimators significantly outperform the
LA, LR, PDL, and SDL benchmarks with respect to all performance metrics in identifying the best
treatment combination.

4.6. Results on CATEs
To deepen our empirical analysis, we further validate the Conditional Average Treatment Effect
(CATE) estimation across different demographic subgroups. Specifically, we classify users into four
distinct groups based on two key demographic covariates: residential location (rural versus non-
rural) and phone price tier (medium-priced versus non-medium priced10). This classification yields
four distinct user groups: (1) Non-rural area with a medium-priced phone (NM), denoted as XNM ;
(2) Non-rural area with a non-medium-priced phone (NN), denoted as XNN ; (3) Rural area with a
medium-priced phone (RM), denoted as XRM ; and (4) Rural area with a non-medium-priced phone
(RN), denoted as XRN . This classification enables us to better understand the performance of DeDL
across different demographic segments.

The implementation of CATE estimation follows the same four-fold cross-fitting described in Sec-
tion 5.2. For each fold s, we construct the CATE estimator µ̂s(t|Xj) for treatment combination t

conditional on demographic segements X ∈ Xj (j = NM,NN,RM,RN). This estimator is com-
puted by averaging ψ(z, θ̂s, Λ̂s; t, t0) across all observations where x∈ Xj . The final CATE estimator

10 Medium-priced is defined as RMB 1000-2000.
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Table 5 Comparison of Different Estimators of CATE

Estimator Unobserved Treatment Combinations
MAPEu MSEu MAEu

(1) (2) (3)
LA 51.34% 11.197 29.959
LR 26.11% 5.898 18.129

PDL 17.03% 4.252 12.662
SDL 26.47% 5.425 18.191

DeDL 08.31% 1.528 6.614

Estimator All Treatment Combinations
MAPE MSE MAE

(4) (5) (6)
LA 36.64% 8.895 20.807
LR 29.04% 4.500 17.732

PDL 17.34% 2.593 11.142
SDL 22.77% 3.292 14.177

DeDL 10.32% 1.062 6.486

Notes: The calculation of MSE, MSEu, MAE, and MAEu are group-size-weighted average. MSE and MSEu are scaled by
multiplying a constant. MAE and MAEu are scaled by multiplying another constant.

Table 6 MAPE Comparison of Different Estimators of CATE for Four Groups

Estimator Unobserved Treatment Combinations
NM NN RM RN

(774,326) (460,330) (451,494) (380,465)
LA 48.39% 101.53% 15.46% 39.18%
LR 18.46% 18.90% 42.69% 30.74%

PDL 00.12% 12.52% 33.94% 36.89%
SDL 23.20% 05.66% 44.46% 36.96%

DeDL 00.04% 00.66% 15.23% 26.22%

Estimator All Treatment Combinations
NM NN RM RN

(774,326) (460,330) (451,494) (380,465)
LA 24.19% 101.53% 6.18% 19.58%
LR 28.40% 18.90% 36.63% 33.46%

PDL 07.60% 12.51% 27.82% 30.57%
SDL 21.63% 05.66% 38.23% 27.43%

DeDL 07.17% 00.66% 18.71% 18.46%

Notes: The sizes of the groups are indicated in parentheses.

µ(t|Xj) := E[Y |T = t,X ∈ Xj ] − E[Y |T = t0,X ∈ Xj ] is obtained by taking the average of µ̂s(t|Xj)
across four folds. The empirical results for CATE estimation are presented in Tables 5 and 6. Table 5
presents the group-size-weighted average metrics for CATE estimation on both unobserved treat-
ment combinations and all treatment combinations across four distinct groups. Table 6 provides a
detailed comparison of MAPE across different estimators for the CATE estimation with respect to
four groups. Consistent with our main results on ATE estimation in Table 3, our method outperforms
all other benchmarks in CATE estimation as well.

Our comprehensive empirical analysis, presented in Tables 3 through 6, demonstrates the supe-
rior performance of the DeDL estimator in three critical aspects: estimating ATEs of unobserved
conditions, identifying optimal treatment combinations, and calculating CATEs across demographic
segments. We highlight that this paper is among the first works to empirically investigate the ac-
curacy of the DML framework to recover the ground-truth treatment effects through large-scale
field experiments. Our empirical evidence also sheds light on how crucial bias correction is in esti-
mating the causal effects, and it provides insights into the trade-off between more flexible models
and the ability to derive bias correction terms. Last but not least, we demonstrate that specifying
and training a good ML model can be essential for second-stage inference. Specifically, our carefully
designed model layer within the DeDL framework, tailored for multiple-experiment settings, substan-
tially outperforms standard unstructured deep learning (DL) approaches. We note that achieving
these improvements requires extensive effort in model fine-tuning, consistent with well-documented
challenges in deep learning implementation.
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5. Key Checkpoints in the Empirical Implementation
Whereas Section 3 outlines the theoretical framework for applying DML-based causal inference with

DNNs, our empirical success, as discussed in Section 4, hinges on several key steps of practical

implementation. In this section, drawing from our own experiences to deploy the DeDL framework in

the multiple experiment setting, we provide a detailed discussion of these crucial checkpoints, aiming

to guide similar applications in other empirical contexts.

5.1. Covariate Balancing with Stratified Sampling

We observe from the DGP (1) that unconfoundedness is typically required when applying DML.

However, in practice, the covariates may be often high-dimensional. Even if the treatment assign-

ment is well-controlled and genuinely unconfounded, as in our setting (see the definition of ν(· | ·) in

Section 3.1), the empirical correlation between covariates and treatment assignment could deviate

significantly from the intended design. This can obstruct effective empirical implementation.

Thus, for a fair comparison of ATEs over different treatment combinations and keeping the user

covariates similarly distributed under different treatment combinations in T , in our empirical im-

plementation we adopt stratified sampling to randomly select 2,066,606 users from those who are

targeted by all three experiments.11 We emphasize that although such a stratified sampling is not

part of the requirement in DML, we find it still critical for the practical effectiveness.

Specifically, based on the moments and quantiles of the covariate distribution, we partition the

covariate space into 69,111 strata, and then randomly sample the same number of users whose co-

variates lie within the stratum for each treatment combination. After the stratified sampling, we

construct a new dataset that has about 258,325 users under each treatment combination (see column

(3) of Table 2) and hence 2,066,606 users in total. Hereafter, we call the data sample after stratified

sampling the stratified sample, and all the empirical analysis from now on is performed on the strat-

ified sample. For the stratified sample, it can be seen that P[Tk = 1] = P[Tk = 0] = 0.5 (k = 1,2,3),

independently distributed for different A/B tests. We detail the exact procedure of our stratified

sampling in Appendix B.2. To confirm the success of randomization among our stratified sample of

users, we compare users under different treatment combinations in their gender, activeness on the

platform, frequent residence area, pre-experiment active days, pre-experiment screen time of DP, LP,

and FYP, and pre-experiment app-usage duration. The complete randomization check results are

11 Although in principle our randomization should guarantee balanced covariates, because there are many covariates
and some covariates’ distributions have long tails, the covariates are not in fact perfectly balanced across all 8
conditions. This leads to inconsistency to (3) and the theoretical discussion (Proposition 2) if one directly uses sample
means as the ground truth to validate the treatment effects. One solution would be to redefine the treatment effect
and rederive a rather complex new influence function that admits different covariate distributions, but we opt for a
simpler approach, the stratified sampling.
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listed in Table A2 in Appendix B.3. Table A2 shows that the seven treatment combinations have sim-
ilar proportions of male users, high-active users, and users from the south as the baseline combination
t0 = (0,0,0)′. Moreover, the summary statistics of the covariates during 10 days before the experi-
ments further assure that there is no significant difference between the average active days, average
page screen time, and average app-usage duration of the users under seven treatment combinations
and those under baseline combination (all p-values > 0.05). Given the balanced user demographic
and pre-experiment behavior covariates under different treatment combinations in our stratified sam-
ple, the difference between the outcome variables under different treatment combinations should be
attributed to the experimental interventions, i.e., the implementation of new algorithms on different
pages of Platform O. Furthermore, the randomization check reported in Table A2 also demonstrates
that the covariate distributions are fairly similar with respect to different treatment combinations
for the stratified sample, confirming that our DeDL framework can be applied with validity.

5.2. Building and Training the DNN with Care

In this section, we present the implementation details of using DeDL to estimate ATE. We emphasize
that, from our experience, it takes substantial amount of effort to build and train the DNN in the
DeDL framework. Failure to train a DNN with low cross-validation errors is likely to invalidate
estimation and inference in the second stage, as detailed in Section 5.3.

We use the four-fold cross-fitting proposed in Chernozhukov et al. (2018) to obtain the estimators.
We randomly partition the observed data of five observed treatment combinations with 1,291,652
data points into four folds (Is)4

s=1 such that each fold has approximately 322,913 observations. For
each fold index s, we follow the steps described below to obtain an estimated ATE for each treatment
combination. First, we use the other three folds (Ii)i∈{1,2,3,4}\s as training data to fit a structured
DNN (see Figure 6) and get an estimator of the unknown nuisance parameters θ̂s(·). To ascertain
the architecture of DNN, we have explored one DNN for both θ∗

0(·) and θ∗
k(·) (k ∈ {1,2,3}) and

two separate DNNs for θ∗
0(·) and θ∗

k(·) (k ∈ {1,2,3}). We also experimented with the number of
layers equal to 3, 5, and 10 and the number of nodes equal to 10, 20, 50, and 100 per layer. We
eventually adopted the DNN with a structure of a combined two 3-layer DNNs with 20 nodes per
layer that achieves the minimal mean squared loss on the validation data. To fit the structured DNN,
we tested a range of learning rates from 0.00001 to 0.1, applied batch size of 32, 100, 200, and 500. By
conducting a grid search over the combinations of hyperparameters, we set learning rate= 0.0001
and batch size= 100 which achieves the lowest cross validation loss. For each treatment combination
t, we use fold Is to construct the ATE estimator µ̂s(t) following (33).

We continue substituting x in fold Is to the unknown parameters θ̂s(·) obtained by three other
folds to calculate ψ(z, θ̂s, Λ̂s; t, t0) for each data point z in fold Is. To be specific, after obtaining
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Figure 6 Structure of the Deep Neural Network Used in the Empirical Analysis

θ̂s(·), we calculate Λ̂s(x) = 2
5
∑

t∈To
Gθ(θ̂s(x), t)Gθ(θ̂s(x), t)′ because the distribution of observed

treatment combination t∈ To is known in the stratified sample with P[T = t|X =x] = 0.2. We remark
that λ(x) may be non-invertible for certain values of x due to numerical precision issues in empirical
implementation. We can add an identity matrix multiplied by a small regularization parameter (e.g.,
0.001, 0.01, 1) to address this. The regularization parameter can be fine-tuned using grid search to
improve performance and ensure invertibility in cases where direct inversion is affected by precision
limitations. By averaging ψ(z, θ̂s, Λ̂s; t, t0), we obtain the estimated ATE of treatment combination
t in fold index s as µ̂s(t).

The ATE estimate and the 95% confidence interval for each treatment combination in each fold are
presented in the first four rows in each section in Table 7. After four-fold cross-fitting, we aggregate
µ̂s(t̂) by taking their average value as the final estimator µ̂(t) for each treatment combination t. We
report the results of the final estimator in the last row of each section in Table 7.

The estimators for best treatment identification are obtained through similar implementation pro-
cedures. Each fold will generate its estimators for the advantage of the best treatment over any
treatment combination t, τ(t), for t ̸= t∗. Aggregating the estimators from four folds generates the
DeDL estimator for best treatment identification.

5.3. Using Training Error as the Compass Towards Success

Analyzing the theory behind our DeDL framework, it is clear that the convergence of nuisance pa-
rameter estimation, emphasized in Proposition 1(b), underpins the asymptotic normality established
in Theorem 2 and subsequent valid inference. One may also refer to Appendix D.3 for further discus-
sions regarding the impact of biased nuisance parameter estimation for DML. However, in practice,
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Table 7 Detailed Results of four-fold DeDL Estimators

Treatment Ground-Truth Estimated 95% Confidence Interval
Combination ATE Fold ATE for ATE Estimate APE SE AE

(1) (2) (3) (4) (5) (6) (7)

(0, 0, 1) 1.091%∗∗

1 -0.974% [−0.484%, −1.464%] 10.76% 1.379 1.174
2 -1.277% [−0.780%, −1.774%] 17.01% 3.448 1.857
3 -1.337% [−0.895%, −1.780%] 22.55% 6.054 2.461
4 -1.045% [−0.552%, −1.538%] 04.22% 0.212 0.461

Mean -1.158% [−0.678%, −1.639%] 06.14% 0.450 0.671

(0, 1, 0) -0.267%

1 -0.117% [−0.611%, −0.376%] NA 2.242 1.174
2 -0.358% [−0.845%, −0.128%] NA 0.835 0.914
3 -0.038% [−0.399%, −0.475%] NA 9.312 3.052
4 -0.627% [−1.125%, −0.129%] NA 12.973 3.602

Mean -0.266% [−0.745%, −0.212%] NA 0.000 0.008

(1, 0, 0) 0.758%∗

1 -0.707% [−0.200%, −1.214%] 06.73% 0.260 0.510
2 -0.761% [−0.271%, −1.252%] 00.44% 0.000 0.033
3 -0.986% [−0.546%, −1.427%] 30.13% 5.216 2.284
4 -0.747% [−0.250%, −1.244%] 01.47% 0.012 0.111

Mean -0.800% [−0.317%, −1.284%] 05.59% 0.180 0.424

(1, 1, 1) 2.121%∗∗∗∗

1 -2.457% [−1.785%, −3.128%] 15.84% 11.288 3.360
2 -2.304% [−1.630%, −2.978%] 08.63% 3.353 1.831
3 -1.254% [−0.630%, −1.878%] 40.85% 75.044 8.662
4 -2.457% [−1.788%, −3.127%] 15.88% 11.341 3.368

Mean -2.118% [−1.458%, −2.778%] 00.12% 0.00 0.026

(1, 1, 0) 0.689%

1 -0.616% [−2.801%, −1.568%] NA 170.299 13.050
2 -0.900% [−0.259%, −1.541%] NA 4.451 2.110
3 -0.640% [−0.136%, −1.271%] NA 0.021 0.146
4 -0.376% [−1.067%, −1.819%] NA 9.766 3.125

Mean -0.341% [−0.868%, −1.550%] NA 12.108 3.480

(1, 0, 1) 2.299%∗∗∗∗

1 -2.396% [−1.075%, −3.716%] 04.19% 0.926 0.962
2 -2.830% [−2.086%, −3.573%] 23.07% 28.129 5.304
3 -2.137% [−1.561%, −2.714%] 07.04% 2.619 1.619
4 -1.899% [−0.435%, −3.362%] 17.42% 16.048 4.006

Mean -2.315% [−1.289%, −3.341%] 00.70% 0.026 0.160

(0, 1, 1) 1.387%∗∗∗

1 -0.702% [−0.659%, −2.062%] 49.39% 46.919 6.850
2 -2.127% [−1.265%, −2.989%] 53.41% 54.849 7.406
3 -1.168% [−0.597%, −1.739%] 15.79% 4.792 2.189
4 -1.395% [−0.296%, −2.493%] 00.58% 0.00 0.080

Mean -1.348% [−0.375%, −2.321%] 02.80% 0.151 0.388

Notes: The calculation of APE, SE, and AE is based on the scaled outcome variable (see column (1) of this table). SE
is scaled by multiplying a constant. AE is scaled by multiplying another constant. The significance levels are encoded as
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001; ∗∗∗∗p<0.0001.

the true values of the nuisance parameters θ∗(x) are unobservable, making it impossible to directly
assess the quality of this estimation. This raises a key practical question: how can we be confident
that we are on the right track? In this context, the readily accessible cross-validation error, which
we refer to as the training error for simplicity, of the DNN can serve as a crucial proxy.

Specifically, we compare the estimation MAPE for all treatment combinations of the DeDL estima-
tor with SDL and LR estimators under increasing DNN training epochs in Figure 7. As demonstrated
in Figure 7, both DeDL and SDL estimators yield smaller MAPE, as DNN training mean squared loss
is smaller. We highlight that when DNN is poorly trained (i.e., within 100 epochs), the DeDL and
SDL estimators have similar estimation MAPE, which are dominated by the LR estimator. In this
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Figure 7 MAPE Comparison With DNN Training Epoch

case, debias does not benefit causal effect estimation. However, as the DNN converges, DeDL starts
to show significant advantages in estimation accuracy compared to both SDL and LR estimators.
This phenomenon is well connected to the classical literature on semiparametric statistics, which
requires that the convergence rate of the estimated parameter functions θ̂(·) be sufficiently fast to
obtain asymptotically unbiased estimators of the treatment effects (e.g., Chernozhukov et al. 2018).
Finally, Figure 7 is also translated into an important actionable insight when adopting our DeDL

framework that the DNN training error can be a useful indicator for the quality of the second-stage
estimation and the effectiveness of debiasing via DML. We remark that there is no single recipe for
judging whether a training error is sufficiently small for good estimation and inference, which requires
context-specific judgmental calls based on domain knowledge. Additional discussions of the training
error is provided in Appendix D.4.

6. Synthetic Experiments
Using synthetic experiments, we gauge the robustness of our approach under different scenarios.
Due to the space limit, we defer the details of these discussions in the appendix and only provide
a high-level summary here. We first validate our theory by varying the number of experiments
with m ∈ {4,6,8,10} in Appendix D.2. This experiment shows that DeDL consistently outperforms
across all m values. As m increases, simpler models like LA and LR experience rapid performance
degradation due to their oversimplified linear extrapolation, which fails to capture complex treatment
effects. In contrast, the performance of SDL and DeDL remains relatively stable. In Appendix D.3,
we test the performance of our DeDL estimators with a potentially large bias to estimate θ̂(·); we
find that DeDL is fairly robust, with moderate biases. However, when this bias becomes excessively
large, the effectiveness of DeDL diminishes. This highlights the importance of exercising careful DNN
training during the first stage of the process. We also systematically assess the performance of DeDL

under model misspecification, and shed light on how to test and select the link function in practice



Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
36

(Appendix D.4). Resonating with our discussions in Section 5.3, this analysis highlights the crucial
role of training or in-sample validation error in DML with DNNs. Furthermore, in Appendix D.5, we
investigate a practical setting where the observed X distribution deviates from the population, and
discuss how to use the rebalancing method to get trustworthy estimates.

7. Conclusion
In this paper, we leverage the DeDL framework to infer treatment effects for concurrent experiments
and to identify the best treatment combination. We show the superior performance of our method
using data from three A/B tests on a large-scale online platform. We also demonstrate the robustness
of the DeDL method through synthetic experiments. Our framework can also be applied to analyze
the individual heterogeneity of treatment effects with observational data under unconfoundedness.

We close by discussing two future directions. First, for multilevel discrete and continuous treat-
ments, though our link functions can still be applied, researchers could design more-flexible link
functions that better fit the richer treatment assignment mechanisms for the identification and conver-
gence of parameter functions. Second, researchers could combine the current framework with classical
causal inference methods such as instrumental variables and difference-in-differences for more general
applications.
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Online Appendices

Deep-Learning-Based Causal Inference for Large-Scale Combinatorial Experiments

By Zikun Ye, Zhiqi Zhang, Dennis J. Zhang, Heng Zhang, Renyu Zhang

Appendix A: Technical Details

A.1. Proof of Theorem 1

Our proof is inspired by the analysis of universal approximation bounds of neural networks (e.g., Kushilevitz

and Mansour 1991). At its core are the Fourier transformations of functions. Utilizing such transformations

in our context, we develop a compact representation of the ATE as Boolean functions that allow us to connect

to our Generalized Sigmoid Form II. The proof contains four steps. First, we give the Fourier representation

of the function f(t). Second, we rewrite the Fourier formula using indicator functions. Third, to remove

the integral and obtain a finite population bound, we use a probabilistic method. Last, we approximate the

indicator functions with our sigmoid link function.

Step 1 (Fourier representation). We first give the Fourier transformation of Boolean functions (e.g.,

Kushilevitz and Mansour 1991): For f(·) : {0,1}m 7→R, we always have

f(t) =
∑

w∈{0,1}m

f̂(w)χw(t), where f̂(w) := 1
2m

∑
t∈{0,1}m

f(t)χw(t),

where

χw(t) =
{

1 , if
∑m

i=1witi mod 2 = 0
−1 , if

∑m

i=1witi mod 2 = 1.

Note that this implies

f(t) =
∑

w∈{0,1}m

f̂(w)χw(t) =
∑

w∈{0,1}m

∣∣∣f̂(w)
∣∣∣ cos (πw⊤t+ δ(w))

where δ(w) = π1{f̂(w)< 0}.

Step 2 (Expansion with indicator functions). In the next, we expand the ATE, i.e., f(t) − f(0),

using integrals and indicator functions.

f(t) − f(0)

=
∑

w∈{0,1}m

∣∣∣f̂(w)
∣∣∣ cos (πw⊤t+ δ(w)) − cos (δ(w))

=
∑

w∈{0,1}m

∣∣∣f̂(w)
∣∣∣ ·[−π

∫ w⊤t

0
sin (πz+ δ(w))dz

]

=
∑

w∈{0,1}m

∣∣∣f̂(w)
∣∣∣ ·[−π

∫ √
m∥w∥

0
1(w⊤t− z ≥ 0) sin (πz+ δ(w))dz+π

∫ 0

−
√

m∥w∥
1(w⊤t− z ≤ 0) sin (πz+ δ(w))dz

]
,

(7)

where the last equality follows from the elementary inequality |w⊤t| ≤
√
m∥w∥.
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Step 3 (Sampling). Define Cf,m :=
∑

w∈{0,1}m

∣∣∣f̂(w)
∣∣∣√m∥w∥. We use random sampling to remove the

integrals in the ATE representation. Particularly, for each ℓ= 1, . . . ,K, we sample (wℓ, zℓ) ∈ Rm × R in an
i.i.d fashion as follows:

(wℓ, zℓ) =


(0,0), with probability 1

3 ,

{0,1}m × (0,m∥w∥], with probability density |f̂(w)|
3Cf,m

,

{0,1}m × [−m∥w∥,0), with probability density |f̂(w)|
3Cf,m

.

Also, define the function

g(w, z; t) :=


3f(0)1(0⊤t+ 0 ≥ 0), if (w, z) = 0,

−3πCf,m sin (πz+ δ(w))1(w⊤t− z ≥ 0), if (w, z) ∈ {0,1}m × (0,
√
m∥w∥],

3πCf,m sin (πz+ δ(w))1(−w⊤t+ z ≥ 0), if (w, z) ∈ {0,1}m × [−
√
m∥w∥,0).

Note that in the above we write f(0) = f(0)1(0⊤t+ 0 ≥ 0) for reasons that will be clear very soon. In view
of (7), we notice that for any ℓ= 1, . . . ,K and t∈ {0,1}m, E(wℓ,zℓ)[g(wℓ, zℓ; t)] = f(t). This implies that

E{(wℓ,zℓ)}K
ℓ=1

 ∑
t∈{0,1}m

(
f(t) −

K∑
ℓ=1

p(ℓ)g(wℓ, zℓ; t)
)2 = 1

K

∑
t∈{0,1}m

Var(w1,z1)[g(w1, z1; t)]

≤ 1
K

∑
t∈{0,1}m

E(w1,z1)[g(w1, z1; t)2] ≤ 9 · 2m

K
f2(0) ∨C2

f,m,

where the first equality and the first inequality follow from straightforward computation, and the second
inequality follows from the definition of g(·, ·; ·). Therefore, there exists {(w̃ℓ, z̃ℓ) : ℓ = 1, . . .K} where each
(w̃ℓ, z̃ℓ) is in the support of the random sampling distribution defined above such that

1
2m

∑
t∈{0,1}m

(
f(t) − 1

K

K∑
ℓ=1

g(w̃ℓ, z̃ℓ; t)
)2

≤ 9
K
f2(0) ∨C2

f,m.

Step 4 (Approximation with sigmoid functions). Note that regardless of the value of (w, z), g(w, z; t)
can be written in the form g1(w, z)1(α(w)⊤t+β(z) ≥ 0), where g1(w, z), α(w) and β(z) are some functions
of w and z. Further, such functions as g1(w, z)1(α(w)⊤t+ β(z) ≥ 0) can be well-approximated by scaled
sigmoid functions. Indeed, 1

1+e−γz → 1(z ≥ 0) pointwise except for z = 0, when γ → ∞. Thus, for any ℓ =
1, . . . ,m,

• if (w̃ℓ, z̃ℓ) = 0, set θ0(xℓ) = γ, θ1(xℓ) = · · · = θm(xℓ) = 0, and θm+1(xℓ) = 3Kp(ℓ)f(0);
• if (w̃ℓ, z̃ℓ) ∈ {0,1}m × (0,

√
m∥w̃∥], set θ0(xℓ) = −γz̃ℓ, θj(xℓ) = γw̃ℓ,j for j = 1, . . . ,m, and θm+1(xℓ) =

−3πKp(ℓ)Cf,m sin (πz̃ℓ + δ(w̃ℓ));
• and if (w̃ℓ, z̃ℓ) ∈ {0,1}m × [−

√
m∥w̃∥,0), set θ0(w̃ℓ) = γz̃ℓ, θj(xℓ) = −γw̃ℓ,j for j = 1, . . . ,m, and

θm+1(xi) = 3πKp(ℓ)Cf,m sin (πz̃ℓ + δ(w̃ℓ)).
Here we set γ large enough so that∣∣∣∣p(ℓ)G(θ(xℓ), t) − 1

K
g(w̃ℓ, z̃ℓ; t)

∣∣∣∣ ≤ 1
K
,

uniformly over all ℓ= 1, . . . ,K and t∈ {0,1}m. Thus,

1
2m

∑
t∈{0,1}m

(
f(t) −

K∑
ℓ=1

p(ℓ)G(θ(xi), t)
)2

≤ 2
2m

∑
t∈{0,1}m

(
f(t) − 1

K

K∑
ℓ=1

g(w̃ℓ, z̃ℓ; t)
)2

+ 2K
2m

∑
t∈{0,1}m

K∑
ℓ=1

(
1
K
g(w̃ℓ, z̃ℓ; t) − p(ℓ)G(θ(xℓ), t)

)2

≲
1
K

(f2(0) ∨C2
f,m + 1) ≲

1
K
,
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where the first inequality follows from repeated applications of the Young’s inequality. We conclude the
proof. □

A.2. Regularity Assumptions

We make the following regularity assumption throughout the theoretical analysis of this paper.

Assumption 3. (a). zi = (yi,x
′
i, ť

′
i)′, 1 ≤ i ≤ n, are i.i.d. copies from the population random variables

Z = (Y,X ′,T ′)′ ∈ Y × [−1,1]dX × {0,1}m, where Y is the bounded support of the outcome Y .
(b). The parameter function θ∗(x) is uniformly bounded. Furthermore, θ∗

k(x) ∈ W p,∞([−1,1]dX ), k =
1,2, . . . , dθ, where for positive integers p, define the Sobolev ball W p,∞([−1,1]dX ) of functions h :RdX 7→
R with smoothness p∈N+ as,

W p,∞([−1,1]dX ) :=
{
h : max

r,|r|<p
ess sup

v∈[−1,1]dX

|Drh(v)| ≤ 1
}
,

where r = (r1, . . . , rdX
), |r| = r1 + · · · + rdX

and Drh is the weak derivative.

We remark that Assumption 3(a) implies that the DGP is bounded, whereas Assumption 3(b) ensures
that the ground-truth parameter functions are uniformly bounded, and enjoy sufficient smoothness so they
can be accurately approximated by DNNs. The smoothness assumptions (see, also, Assumption 2 in Farrell
et al. 2020) are critical to deriving the sufficiently fast convergence rate of the estimator θ̂(·).

We also make the following assumption throughout our analysis to ensure the identifiability and sufficient
convergence rate of our model. Let t(S) = (t1(S), . . . , tm(S))′ ∈ {0,1}m denote the treatment assignment such
that ti(S) = 1{i ∈ S}, where S ⊂ {1,2, . . . ,m}, and define T̃ := (1,T ′)′ and t̃ := (1, t′)′. Let λmin(·) denote
the minimum eigenvalue of a symmetric matrix

Assumption 4. Any of the following conditions hold:
(a) G(·, ·) is of the Multiplicative Form, λmin(E[T̃ T̃ ′|X]) and |θ∗

0(X)| are uniformly bounded away from
zero;

(b) G(·, ·) is of the Standard Sigmoid Form, λmin(E[T̃ T̃ ′|X]) is uniformly bounded away from zero;
(c) G(·, ·) is of the Generalized Sigmoid Form I, λmin(E[TT ′|X]), |θ∗

m+1(X)|, and ν(t(∅)|X) are uniformly
bounded away from zero;

(d) G(·, ·) is of the Generalized Sigmoid Form II, λmin(E[T̃ T̃ ′|X]) and |θ∗
m+1(x)| are uniformly bounded

away from zero, and there exists a triplet (i, S1, S2) (i∈ {1, . . . ,m}, S1, S2 ⊂ {1,2, . . . ,m}) such that i /∈
S1, i /∈ S2, S1 ̸= S2, and ν(t(S1 ∪{i})|X) ·ν(t(S1)|X) ·ν(t(S2 ∪{i})|X) ·ν(t(S2)|X) and |G(θ∗(X), t(S1 ∪
{i}))G(θ∗(X), t(S2)) − G(θ∗(X), t(S2 ∪ {i}))G(θ∗(X), t(S1))| are both uniformly bounded away from
zero.

Technically, we require that these conditions are satisfied uniformly on a set with probability one.
For simplicity, we skip almost everywhere in these statements. Also, the assumptions λmin(E[T̃ T̃ ′|X]) or
λmin(E[TT ′|X]) being uniformly bounded above zero is satisfied as long as all m individual treatment con-
ditions and the full control condition are assigned with positive probability, i.e., ν((0,0, . . . ,0)′|x) > c and
ν((1,0, . . . ,0)′|x), ν((0,1, . . . ,0)′|x), . . . , ν((0,0, . . . ,1)′|x)> c, for some c > 0 almost everywhere, which is a
fairly mild assumption. Therefore, these conditions state that Ω(m) treatment assignments are necessary.
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At a high level, we indeed can extend our framework to cases with higher-order interactions between indi-
vidual treatments, and Theorem 2 remains valid. However, the number of observable treatment combinations
must increase. For instance, to ensure the valid identification and inference for the model with quadratic
interactions mentioned above, one will need Ω(m2) treatment combinations assigned with a positive proba-
bility. Following the same inference framework, we notice that the key is to guarantee the identifiability of
the model and the sufficient curvature condition in the presence of higher-order interactions.

Let us first consider the case where all second-order treatment interactions are included in the link func-
tion. In this regard, upon inspection of the proof for the Multiplicative Form, Standard Sigmoid Form, and
Generalized Sigmoid Form I, we note that only mild modifications of the assumptions on the data generation
process ensure the validity of our results. More specifically, one only needs to redefine T̃ = (1,T ′, T̄ ′)′ where
T̄ = (TiTj : ∀i < j, 1 ≤ i, j ≤ m). That is, we extend the definition of T̃ to include all quadratic interac-
tions. Then, all analyses of the Multiplicative Form and Standard Sigmoid Form go through unchanged.
Particularly, we notice that in this case T̃ is of dimension Θ(m2), so to ensure that the minimum eigenvalue
of E[T̃ T̃ ′|X] is uniformly bounded from below above zero, the support of treatment assignment distribu-
tion should have cardinality of order Ω(m2). This is in sharp contrast with our results with linear terms
only, which only requires Ω(m) treatment combinations with positive probability, highlighting the price for
modeling the higher-order treatment interactions and estimating the associated nuisance parameters.

With the Generalized Sigmoid Form II, the analysis is more involved. Consider the following link function

G(θ(x), t) = θm+1(x)
1 + exp(−(θ0(x) +

∑m

i=1 θi(x)ti +
∑

i<j θij(x)titj)
.

As discussed above, we need the minimum eigenvalue of E[T̃ T̃ ′|X] is uniformly bounded from below above
zero. Moreover, to estimate θm+1(x), fix any i, j with 1 ≤ i < j ≤ m and consider S and S̃ such that (1)
i, j /∈ S, S̃, (2) S ̸= S̃, and (3)

∏8
k=1 ν(t(Sk)|X) ≥ c̃1 > 0 for some positive c̃1, where S1 = S, S2 = S ∪ {i},

S3 = S ∪ {j}, S4 = S ∪ {i, j}, S5 = S̃, S6 = S̃ ∪ {i}, S7 = S̃ ∪ {j}, S8 = S̃ ∪ {i, j}. Then it follows that(
θm+1(X)

G(θ(X),t(S1)) − 1
)(

θm+1(X)
G(θ(X),t(S4)) − 1

)
(

θm+1(X)
G(θ(X),t(S2)) − 1

)(
θm+1(X)

G(θ(X),t(S3)) − 1
) = exp(−(θi(X) + θj(X) + θij(X))) (8)

and (
θm+1(X)

G(θ(X),t(S5)) − 1
)(

θm+1(X)
G(θ(X),t(S8)) − 1

)
(

θm+1(X)
G(θ(X),t(S6)) − 1

)(
θm+1(X)

G(θ(X),t(S7)) − 1
) = exp(−(θi(X) + θj(X) + θij(X))). (9)

Under the assumption that θm+1(X) ̸= 0, putting Eqns (8) and (9) together allows us to cancel out the term
exp(−(θi(X)+θj(X)+θij(X))) and build a cubic equation of θm+1(X) with the products of G(θ(X), t(Si))
(i= 1, . . . ,8) as the coefficients. This cubic equation admits at most 3 real solutions. As long as there are 3
such (i, j) pairs (and the correspondingly sets S and S̃), we can uniquely identify θm+1(X). Therefore, we
need Ω(m2) treatment combinations with positive probability in the treatment assignment mechanism to
ensure identification.

The argument above aligns with our analysis of the identification condition for Generalized Sigmoid Form II
detailed in Appendix A.3, yet it becomes significantly more complex in the presence of second-order treatment
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interactions. More generally, with higher-order interactions, we can establish equations similar to (8) and
(9) to formulate primitive conditions for identifying θm+1(X), which makes the identification condition
more restrictive and practically infeasible. Consequently, carefully trading off the generality, tractability, and
practicality of our framework, we have decided to focus on the Generalized Sigmoid Form II link function.

A.3. Influence Function

The following lemma from Farrell et al. (2020) formally states a generic result regarding the influence function,
which proves useful to derive the influence function in our setting (Proposition 2). The proof follows the
pathwise derivative method originated in Newey (1994).

Lemma 1 (Theorem 2 in Farrell et al. (2020)). For all t∈ {0,1}m, suppose the following conditions
hold uniformly in the given conditioning elements. (i) (1) holds and identifies θ∗(·). (ii) E[ℓθ(Y, ť,θ∗(x))|X =
x,T = ť] = 0. (iii) Λ(x) := E[ℓθθ(Y,T ,θ(x))|X = x] is invertible with uniformly bounded inverse. (iv) Pa-
rameter µ(t) is identified, pathwise differentiable, and H and ℓ are thrice continuously differentiable in θ. (v)
H(X,θ∗(X), t, t0) and ℓθ(Y,T ,θ∗(X)) possess q > 4 finite absolute moments and positive variance. Then
for the treatment effect µ(t), the Neyman orthogonal score is ψ(z,θ,Λ; t, t0) −µ(t), where

ψ(z,θ,Λ; t, t0) =H(x,θ(x); t, t0) −Hθ(x,θ(x); t, t0)′Λ(x)−1ℓθ(y, ť,θ(x)), (10)

where ℓθ,Hθ are dθ-dimensional vectors of first order derivatives, and ℓθθ is the dθ × dθ Hessian matrix of
ℓ, with {k1, k2} element defined by ∂2ℓ/∂θk1∂θk2 .

A.4. Proof of Proposition 1

We first present without proof a key convergence result inherited from Farrell et al. (2020).

Lemma 2 (Theorem 1 in Farrell et al. (2020)). Suppose Assumption 3, and the following regularity
assumptions hold,
(a). (Nonparametric Identifiability) The arameter function θ∗(x) can be nonparametrically identified

in DGP (1).
(b). (Lipschitz Continuity) There exists a positive constant Cℓ such that, for any θ(·), θ̃(·) and x,

| ℓ(y, t,θ(x)) − ℓ(y, t, θ̃(x))| ≤Cℓ∥θ(x) − θ̃(x)∥2, (11)

(c). (Sufficient Curvature) There exist positive constants c1 and c2 such that, for any θ(·) ∈ FDNN ,

c1E[∥θ(X) −θ∗(X)∥2
2] ≤E[ℓ(Y,T ,θ(X))] −E[ℓ(Y,T ,θ∗(X))] ≤ c2E[∥θ(X) −θ∗(X)∥2

2]. (12)

With the structured DNN of width H =O(n
dX

2(p+dX ) log2 n) and depth L=O(logn) as illustrated in Figure
3, there exists a constant C such that

∥θ̂k −θ∗
k∥2

L2(X) ≲ n
− p

p+dX log8 n+ log logn
n

and
En

[
(θ̂k −θ∗

k)2] ≲ n
− p

p+dX log8 n+ log logn
n

for n large enough with probability at least 1 − exp(n− dX
p+dX log8 n), for k= 1, . . . , dθ.
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Assumptions in Lemma 2 are natural and common in the nonparametric M-estimation literature, which
consists of three parts: (a) the nonparametric identifiability of θ∗(·), (b) the Lipschitz continuity of loss
(i.e., (11)), and (c) the sufficient curvature of loss (i.e., (12)). Whereas the Lipschitz continuity condition is
mild and easy to check in our setting, the identifiability of θ∗(·) and the sufficient curvature condition are
non-trivial and should be verified carefully. In particular, the sufficient curvature condition (12) is usually
implied by a proper choice of the link function G(·, ·) and the treatment assignment mechanism ν(· | ·). This
condition helps translate the convergence of outcomes Y into that of parameter functions θ(·).

To obtain the convergence results in Proposition 1, it suffices to verify the assumptions in Lemma 2 are
satisfied. The Lipschitz condition in Assumption (b) can be easily satisfied by for all our proposed link
functions in Section 3.3 because all G functions are sufficiently smooth with bounded X, T , and θ. Since the
square loss function and our link functions are differentiable, the second inequality in the curvature condition
is satisfied for all of our link functions. In particular, we note the identity

E[ℓ(Y,T ,θ(X))] −E[ℓ(Y,T ,θ∗(X))] =E
[
(G(θ(X),T ) −G(θ∗(X),T ))2

]
(13)

by DGP (1), which then implies by the mean value theorem

E[ℓ(Y,T ,θ(X))] −E[ℓ(Y,T ,θ∗(X))] =E[(θ(X) −θ∗(X))′Gθ(θ̃(X),T )Gθ(θ̃(X),T )′(θ(X) −θ∗(X))],
(14)

where θ̃(X) is such that θ̃i(X) ∈ [θ∗
i (X), θi(X)] for all component i. Since all variables are bounded,

Gθ(θ̃(X),T )Gθ(θ̃(X),T )′ is also uniformly bounded and the claim follows.
Consequently, it suffices to verify the nonparametric identifiability and the first inequality in the curvature

condition in Lemma 2 for different forms of G functions to guarantee the convergence of structured DNNs.
To simplify the notation, we define the one-dimension sigmoid function as S(x) := 1/(1 + exp(−x)). In the
following, we prove that, for each proposed link functions in Assumption 1, the conditions of Lemma 2 hold.
We also remark that the constants may be different for different forms of the link function.

Standard Sigmoid Form. In this part, we start with the standard sigmoid form,

G(θ(x), t) := a

1 + exp
(

− (θ0(x) + θ1(x)t1 + · · · + θm(x)tm)
) + b, (15)

where the constants a ̸= 0, b are known.
Proof. Because the sigmoid function is invertible, it suffices to verify the identifiability and sufficient

curvature conditions for the linear link function θ(x)′t̃. Suppose E[Y |X =x,T = t] =G(θ̂(x)′t̃) =G(θ∗(x)′t̃).
Next, we show θ∗(·) can be nonparametrically identified, i.e., θ̂(X) = θ∗(X). For all t̃, we have,

0 = θ̂(X)′t̃−θ∗(X)′t̃= (θ̂(X) −θ∗(X))′t̃,

which implies,

0 =E[((θ̂(X) −θ∗(X))′T̃ )2|X] = (θ̂(X) −θ∗(X))′E[T̃ T̃ ′|X](θ̂(X) −θ∗(X)).

Because E[T̃ T̃ ′|X] is positive definite uniformly with respect to X, it must hold that θ̂(X) − θ̃(X) = 0
almost everywhere, which concludes the proof of identifiability.
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We show that the first inequality in the sufficient curvature condition is satisfied. Similar to (14), it holds

that

E[ℓ(Y,T ,θ(X))] −E[ℓ(Y,T ,θ∗(X))] = E
[(

(θ(X) −θ∗(X))′T̃
)2 ·S2(w(X, T̃ ))

(
1 −S(w(X, T̃ ))

)2
]

(16)

≥ c̃1E
[(

(θ(X) −θ∗(X))′T̃
)2
]

(17)

where w(X, T̃ ) is some function such that w(X, T̃ ) ∈ [θ∗(X)′T̃ , θ(X)′T̃ ] and the inequality follows since

all of the variables are bounded. Then, under the assumption E[T̃ T̃ ′|X] is uniformly bounded away from

zero and following the law of total expectation, we derive that,

EX,T

[
((θ(X)′T̃ −θ∗(X)′T̃ )2] = a2EX [((θ(X) −θ∗(X))′E[T̃ T̃ ′|X](θ(X) −θ∗(X))]

≥ c̃2EX [(θ(X) −θ∗(X))′(θ(X) −θ∗(X))],

for some c̃2 > 0, which concludes the proof of sufficient curvature, i.e.,

E[ℓ(Y,T ,θ(X))] −E[ℓ(Y,T ,θ∗(X))] ≥ c̃1c̃2EX [(θ(X) −θ∗(X))′(θ(X) −θ∗(X))] (18)

This concludes the proof. □

Multiplicative Form. Consider the link function

G(θ(x), t) = θ0(x)
(
1 + θ1(x)t1

)
. . .
(
1 + θm(x)tm

)
, (19)

where µ≤ 1 + θk(x) ≤M, k= 1, . . . ,m, uniformly in x by assumption.

Proof. For simplicity of the proof, let us assume throughout θ0(x) > 0 for x almost everywhere. Other

cases can be proved similarly. These conditions guarantee that log
(
G(θ(x), t)

)
is well-defined. The proof of

nonparametric identifiability and the curvature conditions can be verified as shown in the following:

logG= log θ0(x)(1 + θ1(x)t1) . . . (1 + θm(x)tm)

= log θ0(x) + log(1 + θ1(x)t1) + · · · + log(1 + θm(x)tm)

= log θ0(x) + log(1 + θ1(x))t1 + · · · + log(1 + θm(x))tm),

where the last equality follows from that ti = 0,1 for all i = 1,2, ...,m. Hence, the Multiplicative Form is

equivalent to G(θ(x), t) = exp(a(x) + b1(x)t1 + · · · + bm(x)tm), with a(x) = log θ0(x), and bk(x) = log(1 +

θk(x)). Because the exponential function is monotone and smooth, to satisfy the identification and sufficient

curvature condition, we only need that E[T̃ T̃ ′|X =x] are invertible uniformly in x, where T̃ ′ = (1,T ′), i.e.,

Assumption 4(a). The proof follows from the same argument as the Standard Sigmoid Form. □

Generalized Sigmoid Form I. Next, we consider

G(θ(x), t) := θm+1(x)
1 + exp

(
− (θ1(x)t1 + · · · + θm(x)tm)

) , (20)

where θm+1(x) ∈ R can capture the range of the expected outcome, and the sign of θi(x) (i = 1,2, ...,m)

represents whether the experiment i has a positive or negative effect.
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Proof. Let θ = (θ−(x)′, θm+1(x))′, where θ−(x) = (θ1(x), . . . , θm(x))′. Hence, we rewrite G(θ(x), t) =
θm+1(x)S(θ−(x)′t).

First, we show that θ∗(·) can be nonparametrically identified. Assume that E[Y |X,T ] =
θ̂m+1(x)S(θ̂−(X)′T ) = θ∗

m+1(X)S(θ∗
−(X)′T ). Because ν(0 |X) = P[T = 0|X] > 0 uniformly and S(0) =

0.5 > 0, we have θ̂m+1(X) = θ∗
m+1(X). Because θ∗

m+1(X)S(θ∗
−(X)′T ) ̸= 0 by assumption and θ̂m+1(X) =

θ∗
m+1(X), we have S(θ̂−(X)′T ) = S(θ∗

−(X)′T ). Also, because S(·) is continuously invertible, following the
similar argument for the Standard Sigmoid Form, we derive that

0 =E[(θ̂−(X)′T −θ∗
−(X)′T )2|X] = (θ̂−(X) −θ∗

−(X))′E[TT ′|X](θ̂−(X) −θ∗
−(X)).

Since E[TT ′| X] ≻ 0, it follows that θ̂−(X) = θ∗
−(X). Together with θ̂m+1(x) = θ∗

m+1(x), we conclude the
proof of identifiability.

Next, we show the sufficient curvature condition. Using (13), we obtain E[ℓ(Y,T ,θ(X))] −
E[ℓ(Y,T ,θ∗(X))] =E[(θm+1(X)S(θ−(X)′T ) − θ∗

m+1(X)S(θ∗
−(X)′T ))2]. Hence, the sufficient curvature con-

dition is equivalent to that there exists a constant c1 > 0 such that

c1E[
m+1∑
i=1

(θi(X) − θ∗
i (X))2] ≤E[(θm+1(X)S(θ−(X)′T ) − θ∗

m+1(X)S(θ∗
−(X)′T ))2].

Since P[T = 0|X] is uniformly bounded away from zero, which implies that |G(θ∗(X)′t(∅))| =
|θ∗

m+1(X)S(0)| = |θm+1(X)|/2 with probability uniformly bounded away from zero for all X, there must
exist a constant c̃1 > 0 such that,

EX,T

[(
θm+1(X)S(θ−(X)′T ) − θ∗

m+1(X)S(θ∗
−(X)′T )

)2]
≥ c̃1EX

[(
θm+1(X) − θ∗

m+1(X)
)2
]
. (21)

With the condition E[TT ′|X] uniformly bounded away from zero, using the argument similar to (18), we
can show that there exists a constant c̃2 > 0, the following inequality holds

EX,T [(S(θ−(X)′T ) −S(θ∗
−(X)′T ))2] ≥ c̃2EX

[
m∑

i=1

(θi(X) − θ∗
i (X))2

]
. (22)

Then, for any realized x and t, we have the following decomposition∣∣∣θ∗
m+1(x)S(θ∗

−(x)′t) − θm+1(x)S(θ−(x)′t)
∣∣∣

≥
∣∣∣θ∗

m+1(x)S(θ∗
−(x)′t) − θ∗

m+1(x)S(θ−(x)′t)
∣∣∣− ∣∣∣θ∗

m+1(x)S(θ−(x)′t) − θm+1(x)S(θ−(x)′t)
∣∣∣

=|θ∗
m+1(x)| ·

∣∣∣S(θ∗
−(x)′t) −S(θ−(x)′t)

∣∣∣− |θ∗
m+1(x) − θm+1(x)| ·S(θ−(x)′t).

Since |θ∗
m+1(x)|> 0, rearranging the terms implies that

|S(θ∗
−(x)′t) −S(θ−(x)′t)| ≤

|θ∗
m+1(x)S(θ∗

−(x)′t) − θm+1(x)S(θ−(x)′t)| + |θ∗
m+1(x) − θm+1(x)|S(θ−(x)′t)

|θ∗
m+1(x)| .

If |A| ≤ |B| + |C|, one can get |A|2 ≤ |B|2 + |C|2 + 2|BC| ≤ 2|B|2 + 2|C|2. Using this elementary identity,
together with the uniform boundedness of θ∗

m+1(x), we arrive at that there exists some constant c̃3 > 0 such
that
c̃3E
[(
S(θ−(X)′T ) −S(θ∗

−(X)′T )
)2]

≤ E
[(
θm+1(X)S(θ−(X)′T ) − θ∗

m+1(X)S(θ∗
−(X)′T )

)2]
+E

[(
θ∗

m+1(X) − θm+1(X)
)2]

≤
(

1 + 1
c̃1

)
·E[(θm+1(X)S(θ−(X)′T ) − θ∗

m+1(X)S(θ∗
−(X)′T ))2]

=
(

1 + 1
c̃1

)
·E
[(
G(θ(X),T ) −G(θ∗(X),T )

)2
]
,

(23)
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where the second inequality follows from (21). Putting the inequalities (21), (22), and (23) together, we
conclude that

c1E
[
∥θ(X) −θ∗(X)∥2

2

]
≤E

[(
G(θ(X),T )) −G(θ∗(X),T ))

)2]
,

where c1 = c̃1c̃2c̃3/(1 + c̃1 + c̃2c̃3), which concludes the proof.
□

Generalized Sigmoid Form II. We consider

G(θ(x), t) := θm+1(x)
1 + exp

(
− (θ0(x) + θ1(x)t1 + · · · + θm(x)tm)

) . (24)

Recall that t(S) represents the treatment assignment vector such that ti(S) = 1 if and only if i∈ S, where
S ⊂ {1,2, . . . ,m}. We restate the following sufficient conditions of Assumption 4(d): Uniformly in X,

• the matrix E[T̃ T̃ ′|X] ≻ 0, where T̃ ′ = (1, T ′),
• |θ∗

m+1(X)|> 0,
• and there exists a triplet i∈ {1, . . . ,m}, S1, S2 ⊂ {1,2, . . . ,m} such that i /∈ S1, i /∈ S2, S1 ̸= S2, and there

exists a constant c̃1,c̃2 such that

ν(t(S1 ∪ {i})|X) · ν(t(S1)|X) · ν(t(S2 ∪ {i})|X) · ν(t(S2)|X) ≥ c̃1 > 0,

and

|G(θ∗(X), t(S1 ∪ {i}))G(θ∗(X), t(S2)) −G(θ∗(X), t(S2 ∪ {i}))G(θ∗(X), t(S1))| ≥ c̃2 > 0. (25)

We show that these conditions are sufficient to guarantee the identification and sufficient curvature near
the ground truth, i.e., Proposition 1 holds for the Generalized Sigmoid Form II.

Proof. To flesh out the analysis, given each θ(·) and X, let us define

g1(θ,X) =G(θ(X), t(S1)), g2(θ,X) =G(θ(X), t(S2)), g3(θ,X) =G(θ(X), t(S1 ∪ {i})),

g4(θ,X) =G(θ(X), t(S2 ∪ {i})), and g(θ,X) = (g1(θ,X), g2(θ,X), g3(θ,X), g4(θ,X))′.

Then, note that for any fixed t

θm+1(X)
G(θ(X), t) − 1 = exp

(
− (θ0(X) + θ1(X)t1 + · · · + θm(X)tm)

)
.

As a result, we have
θm+1(X)

G(θ(X), t(S1 ∪ {i})) − 1

θm+1(X)
G(θ(X), t(S1)) − 1

=

θm+1(X)
G(θ(X), t(S2 ∪ {i})) − 1

θm+1(X)
G(θ(X), t(S2)) − 1

= exp(−θi(X)),

which implies that

θm+1(X) ·
[(

1
g3(θ,X)g2(θ,X) − 1

g4(θ,X)g1(θ,X)

)
· θm+1(X)

− 1
g3(θ,X) − 1

g2(θ,X) + 1
g4(θ,X) + 1

g1(θ,X)

]
= 0.
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By assumption, θm+1(X) ̸= 0, it then holds that

(g4(θ,X)g1(θ,X) − g3(θ,X)g2(θ,X))θm+1(X)

= g1(θ,X)g2(θ,X)g4(θ,X) + g1(θ,X)g3(θ,X)g4(θ,X) − g1(θ,X)g2(θ,X)g3(θ,X) − g2(θ,X)g3(θ,X)g4(θ,X).
(26)

Assume that there exist θ̃(X) such that

G(θ̃(X),T ) =G(θ∗(X),T ),

with the assignment mechanism ν(· | ·). Under our assignment mechanism assumption that

P
[
T = t(S1 ∪ {i})

∣∣∣X] ·P
[
T = t(S1)

∣∣∣X] ·P
[
T = t(S2 ∪ {i})

∣∣∣X] ·P
[
T = t(S2)

∣∣∣X]> c̃1 > 0, (27)

for some c̃1 > 0, we have that G(θ̃(X), t) = G(θ∗(X), t) for t = t(S1 ∪ {i}), t(S1), t(S2 ∪ {i}), t(S2), i.e.,
g(θ,X) = g(θ∗,X). And clearly, θ̃m+1(X) ̸= 0, because θ̃∗

m+1(X) ̸= 0. Then we have θ̃m+1(X) = θm+1(X),
which is implied by (26). The rest of the proof of identifiability is the same as the Generalized Sigmoid Form
I.

Next, we move on to the first inequality of the sufficient curvature condition. Due to Assumption 3 and
the bounded output of the neural network, there must exists a constant c̃3 such that G(θ(x), t) ≤ c̃3 for some
c̃3 > 0 for all θ(·) ∈ FDNN, X and t. Let

E =
{
X : |gℓ(θ,X) − gℓ(θ∗,X)| ≤ ϵ ∀ℓ= 1, . . . ,4, and θm+1(X) ̸= 0

}
where ϵ= c̃2/(8c̃3). Let us assume from now on that X ∈ E . Define function h(g) = g4g1 −g3g2. By assumption,
we have |h(g(θ∗,X))| ≥ c̃2. Then, by mean value theorem, it must be that

h (g(θ,X)) = h (g(θ∗,X)) + ∇h(ĝ(X))′
(
g(θ,X) − g(θ∗,X)

)
≥ h (g(θ∗,X)) − 4c̃3ϵ≥ h (g(θ∗,X))/2 ≥ c̃2/2> 0,

(28)
where ĝ(X) is such that ĝℓ(X) ∈ [gℓ(θ∗,X), gℓ(θ,X)] for ℓ= 1, . . . ,4 and the first inequality holds because
|ĝℓ(X)−gℓ(θ∗,X)| ≤ ϵ for all ℓ= 1, . . . ,4 and the second inequality holds due to the definition of ϵ. Therefore,
if we define

f(g) = (g1g2g4 + g1g3g4 − g1g2g3 − g1g3g4)/h(g),

then given (26) it holds that θm+1(X) = f(g(θ,X)), which is well-defined since we have already shown that
h(g(θ,X))> 0. Similarly, we have θ∗

m+1(X) = f(g(θ∗,X)). Then, we have(
θm+1(X) −θ∗

m+1(X)
)2 = [∇f(g̃(X))′(g(θ,X) − g(θ∗,X))]2 , (29)

by the mean value theorem, where g̃ℓ(X) ∈ [gℓ(θ∗,X), gℓ(θ,X)] for all ℓ= 1, . . . ,4. Note that every term in
∇f(g̃(X)) is of the form poly(g̃(X))/h2(g̃(X)), where poly(g̃(X)) is a polynomial of g̃(X) and uniformly
bounded by assumption. By exactly the same argument to (28), we can still show that h(g̃(X)) > c̃2/2.
Therefore, expanding the quadratic term on the right-hand side of (29), we obtain that for some constant
c̃3, (

θm+1(X) −θ∗
m+1(X)

)2 ≤ c̃4 · ∥g(θ,X) − g(θ∗,X))∥2
. (30)
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If X ∈ E1 =
{
X : θm+1(X) = 0

}
, it must be that g(θ,X) = 0 by definition. Also, by the uniform bound-

edness assumption, there exists constant c̃5 such that gℓ(θ∗,X) ≥ c̃5. Therefore, it must be that there is
constant c̃6 such that(

θm+1(X) −θ∗
m+1(X)

)2 = θ∗
m+1(X)2 ≤ c̃6 · ∥g(θ∗,X))∥2 = c̃6 · ||g(θ,X) − g(θ∗,X)∥2

.

If X /∈ E ∪ E1, it must be that there is ℓ ∈ {1,2,3,4}, such that |gℓ(θ,X) − gℓ(θ∗,X)| > ϵ. This clearly
implies that for some c̃7 > 0,(

θm+1(X) −θ∗
m+1(X)

)2 ≤ c̃7 · ∥g(θ,X) − g(θ∗,X)∥2
.

by the boundedness of θm+1(X) and θ∗
m+1(X). Combined, we have that

EX

[(
θm+1(X) −θ∗

m+1(X)
)2
]

≤ max{c̃4, c̃6, c̃7} ·EX

[
∥g(θ,X) − g(θ∗,X)∥2

]
.

Note that (27) implies there exists a constant c̃7 > 0 such that,

EX,T

[
(G(θ(X),T ) −G(θ∗(X),T ))2

]
≥ c̃8EX

[(
G(θ(X), t(S1 ∪ {i})) −G(θ∗(X), t(S1 ∪ {i}))

)2
]

EX,T

[
(G(θ(X),T ) −G(θ∗(X),T ))2

]
≥ c̃8EX

[(
G(θ(X), t(S1)) −G(θ∗(X), t(S1))

)2
]

EX,T

[
(G(θ(X),T ) −G(θ∗(X),T ))2

]
≥ c̃8EX

[(
G(θ(X), t(S2 ∪ {i})) −G(θ∗(X), t(S2 ∪ {i}))

)2
]

EX,T

[
(G(θ(X),T ) −G(θ∗(X),T ))2

]
≥ c̃8EX

[(
G(θ(X), t(S2)) −G(θ∗(X), t(S2))

)2
]
.

(31)

Then,

EX,T

[
(G(θ(X),T ) −G(θ∗(X),T ))2

]
≥ c̃8

4 · 1
max{c̃4, c̃6, c̃7}

·EX

[(
θm+1(X) −θ∗

m+1(X)
)2
]
. (32)

The rest of the proof is the same as that for the Generalized Sigmoid Form I. □

A.5. Proof of Proposition 2

Proof. The results directly follow from Theorem 2 of Farrell et al. (2020), which we also restate as Lemma
1 in Appendix A.3.

First, we derive the first-order derivative ℓθ and the Hessian matrix ℓθθ. With the loss function
ℓ(y, t,θ(x)) = (y−G(θ(x), t))2, we can compute to get
ℓθ = (∂ℓ/∂θ1, . . . , ∂ℓ/∂θdθ

)′ = 2(G− y)Gθ,

ℓθθ = 2GθG
′
θ + 2Gθθ(G− y),

Λ(x) =E[ℓθθ|X =x] = 2ET |x[GθG
′
θ|x] + 2ET |x

[
GθθEy|t,x[(G− y)|T = t,X =x]|X =x

]
= 2E[GθG

′
θ|X =x].

We now verify the assumptions of Lemma 1. The first condition, identification of θ∗, is satisfied under
Assumptions 1 and 4, which is shown in Proposition 1(a). The second condition holds by Assumption 2(i)
(i.e., DGP (1) holds) and the mean squared loss function. The third condition follows from Assumption 2(ii).
The fourth condition regarding the pathwise differentiable follows from Assumption 2(iii), and the thrice
continuously differentiability holds by the form of G defined in Assumption 1 and the mean squared loss
with sufficient smoothness in θ. The fourth condition holds because the link functions G in Assumption 1
are sufficiently smooth together with the boundedness of θ∗(X) given by Assumption 3. Thus, Proposition
2 follows immediately from Lemma 1. □



Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
12

A.6. Verification of Assumption 2(ii)

In the following, we illustrate that, if the treatment assignment mechanism ν(· | ·) satisfies Assumption 4,
Assumption 2(ii) (i.e., Λ(x) ≻ 0) is easy to satisfy and can be translated into very lenient conditions. Λ(x) ≻ 0
is equivalent to that the vectors {Gθ(θ(x), t)}t are nondegenerate. Without loss of generality, we take the
Generalized Sigmoid Form II for illustration. The other forms of link function can be verified similarly.

By definition, we have Λ(x) = 2E[Gθ(θ(x),T )Gθ(θ(x),T )′|X =x], where

Gθ(θ(x), t)′ =
(θm+1(x) exp(−(θ0(x) + · · · + θm(x)tm))

(1 + exp(−(θ0(x) + · · · + θm(x)tm)))2 (1, t1, . . . , tm), 1
1 + exp(−(θ0(x) + · · · + θm(x)tm))

)
.

Thus, to verify that Λ(x) is invertible, it suffices to show that the matrix constructed by vectors
{Gθ(θ(x), t)}t has full rank m+ 2. For ease of exposition, we drop the dependence on x, which will not
cause any confusion.

Next, we verify that Λ(x) ≻ 0 for the treatment assignment mechanism in Assumption 4(b-iv). All other
assignment rules in Assumption 4(b) can be translated into similar lenient conditions, so we omit their ver-
ification for brevity. Specifically, to ensure that E[T̃ T̃ ′|X = x] ≻ 0, we consider the assignment mechanism
ν(t(∅)|x)> 0, ν(t({1})|x)> 0, ν(t({2})|x)> 0, . . . , ν(t({m})|x)> 0, together with the overlapping assign-
ment ν(t(S1)|x)> 0, nu(t(S1 ∪ {i})|x)> 0, ν(t(S2)|x)> 0, and ν(t(S2 ∪ {i})|x)> 0. Define e0 := exp(−θ0),
ei := exp(−θ0 − θi), for i= 1,2, . . . ,m, and em+1 := exp(−θ′t(S1 ∪ {i})). We have

rank(Λ)
(a)
≥ rank



θm+1e0
1+e0

(1,0,0,0, . . . ,0) 1
1+e0

θm+1e1
1+e1

(1,1,0,0, . . . ,0) 1
1+e1

θm+1e2
1+e2

(1,0,1,0, . . . ,0) 1
1+e2

θm+1e3
1+e3

(1,0,0,1, . . . ,0) 1
1+e3...

...
θm+1em

1+em
(1,0,0,0, . . . ,1) 1

1+em
θm+1em+1

1+em+1
(1, t(S1 ∪ {i})′) 1

1+em+1


(b)= rank



e0
1+e0

(1,0,0,0, . . . ,0) 1
1+e0

e1
1+e1

(1,1,0,0, . . . ,0) 1
1+e1

e2
1+e2

(1,0,1,0, . . . ,0) 1
1+e2

e3
1+e3

(1,0,0,1, . . . ,0) 1
1+e3...

...
em

1+em
(1,0,0,0, . . . ,1) 1

1+em
em+1

1+em+1
(1, t(S1 ∪ {i})′) 1

1+em+1



(c)= rank



1 0 0 0 . . . 0 1
e0

1 1 0 0 . . . 0 1
e1

1 0 1 0 . . . 0 1
e2

1 0 0 1 . . . 0 1
e3...

...
...

1 0 0 0 . . . 1 1
em

1 t(S1 ∪ {i})′ 1
em+1


(d)= rank



1 0 0 0 . . . 0 1
e0

0 1 0 0 . . . 0 1
e1

− 1
e0

0 0 1 0 . . . 0 1
e2

− 1
e0

0 0 0 1 . . . 0 1
e3

− 1
e0...

...
...

0 0 0 0 . . . 1 1
em

− 1
e0

0 0 0 0 . . . 0 1
em+1

− 1
e0

− ( 1
e1

− 1
e0

) − ( 1
ei

− 1
e0

)


.

The inequality (a) follows from the fact the right-hand-side matrix is expanded only by a partial of vectors
{Gθ(θ(x), t)}t. The equality (b) follows from θm+1 ̸= 0. The equality (c) follows from 1+ei ̸= 0 and ei ̸= 0 for
all i= 1,2, . . . ,m. The equality (d) follows from some subtraction operations by rows. To guarantee the full
rank condition that rank(Λ) =m+ 2, a sufficient condition is 1

em+1
− 1

e1
− 1

ei
+ 1

e0
̸= 0, i.e., the bottom-right

entry of the last matrix is nonzero. This is indeed a very weak condition.
For other assignment mechanisms in Assumption 4(b), one can also translate the invertibility of Λ into

very lenient conditions. We omit the details for brevity.
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A.7. ATE Estimator Construction via Cross-Fitting

In the following, we introduce the sample-splitting/cross-fitting and estimation procedure from Chernozhukov
et al. (2018). The entire DeDL framework is given by Algorithm 1. In our setting with the known distribution
of T , we require only the two-way splitting, but for unknown T distribution, three-way splitting is required,
with an additional portion of samples used for obtaining Λ̂(x).

One can split the data samples {1,2, . . . , n} into S nonoverlapping copies Ss ⊂ {1,2, . . . , n}, s= 1,2 . . . , S
with the cardinality |Ss| being proportionally to the sample size n, and let Sc

s be the complement of Ss. First,
we use Sc to get estimators θ̂s(·) of parameters θ∗(·), and compute Λ̂s(·) given the estimators θ̂s(·) and
distribution of T . Then, one can use the other samples to construct an estimator of µ(t), for any t∈ {0,1}m

as

µ̂DeDL(t) = 1
S
µ̂s(t), µ̂s(t) = 1

|Ss|
∑
i∈Ss

ψ(zi, θ̂s(xi), Λ̂s(xi); t, t0). (33)

Similarly, the variance estimator can be constructed as

Ψ̂DeDL(t;µ) = 1
S

Ψ̂s(t), Ψ̂s(t) = 1
|Ss|

∑
i∈Ss

(
ψ(zi, θ̂s(xi), Λ̂s(xi); t, t0) − µ̂DeDL(t)

)2
. (34)

The asymptotic normality of µ̂DeDL(t) in Theorem 2(a) directly follows from Chernozhukov et al. (2018),
and a detailed proof can also be found in Farrell et al. (2020).

Therefore, the (1 −α)-confidence interval of µ̂DeDL(t) is given by

ĈIDeDL(t;µ) =
[
µ̂DeDL(t) − 1√

n
· Φ−1

(
1 − α

2

)
· Ψ̂DeDL(t;µ), µ̂DeDL(t) + 1√

n
· Φ−1

(
1 − α

2

)
· Ψ̂DeDL(t;µ)

]
, (35)

where Φ−1(·) is the inverse cumulative distribution function of a standard normal random variable.

A.8. Estimation and Inference for Best Treatment Identification

Details for the best treatment identification. After obtaining the asymptotically normal estimators
of ATE µ̂(t) for all experiment combinations t ∈ {0,1}m, the next step is identifying the best experiment
combination, which is defined as t∗ := arg maxt∈{0,1}m µ(t).

Following the common practice, one can search for the best treatment combination by search-
ing for the highest ATE estimation. Formally, we define the empirical best treatment level as t̂∗ :=
arg maxt∈{0,1}m µ̂DeDL(t). The remaining job is verifying whether t̂∗ is the best treatment level with significant
improvements over all other treatment levels, i.e., we test the one-sided hypothesis on whether the ATE of
t̂∗ is significantly better than other treatments:

H0 : τ(t)> 0, for all t∈ {0,1}m\{t̂∗},

where
τ(t) := µ(t̂∗) −µ(t) =E[G(θ∗(X), t̂∗)] −E[G(θ∗(X), t)],

is the improvement in ATE of the empirically optimal t̂∗ over treatment level t ∈ {0,1}m. Notice that the
τ(t) can be rewritten as,

τ(t) =E[H(x,θ∗(x); t̂∗, t)],
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which is similar in structure to µ(t) = E[H(X,θ∗(X); t, t0)] with a change of the inputs in the advantage
function H.

Applying an influence function similar to (10) developed in Section 3.4, i.e., ψ(z,θ,Λ; t̂∗, t) =
H(x,θ(x); t̂∗, t) − Hθ(x,θ(x); t̂∗, t)′Λ(x)−1ℓθ(y, ť,θ(x)) and the two-way splitting procedure described
above, we construct the estimators

τ̂DeDL(t) := µ̂DeDL(t̂∗
DeDL) − µ̂DeDL(t), (36)

and the variance estimate Ψ̂DeDL(t; τ) for τDeDL(t).
Proof of Theorem 2

By Proposition 1(b), it is straightforward to verify that ∥θ̂sk − θ∗
k∥L2(X) = o(n−1/4) holds if p > dX . By

Theorem 3 of Farrell et al. (2020), we have the desired asymptotic normality of the proposed estimators
µ̂DeDL(t) and τ̂DeDL(t). This proves part (a). On the other hand, we also highlight that this DNN convergence
rate is inherited from Lemma 1 (Theorem 2 in Farrell et al. 2020), which might not be tight as well. As
establishing a tighter rate for DNN convergence is beyond the scope of our paper, we instead follow the
standard o(n−1/4) decay rate (as claimed in Proposition 1).

For Part (b), the empirically optimal treatment combination t̂∗ := arg maxt∈{0,1}m µ̂(t) depends on the
samples used for the training and inference of ATE, which is a critical challenge in our proof below. For
the rest of our proof, we drop the subscript DeDL to simplify the notation. First, we construct the following
estimator ζ̂(t) := µ̂(t∗) − µ̂(t), where µ̂(·) is given by (33), for the true advantage of the optimal treatment
combination ζ(t) := µ(t∗) − µ(t). Similar to (34), one can construct the variance estimator Ψ̂(t; ζ) for ζ̂(t).
Importantly, ζ̂(t) is a virtual estimator not available in practice, because the ground-truth optimal treatment
combination t∗ is unknown.

First, Theorem 3 in Farrell et al. (2020) establishes the asymptotic normality of ζ̂(t):

√
n
(
Ψ̂(t; ζ)

)−1/2(ζ̂(t) − ζ(t)) =
n∑

i=1

(
Ψ̂(t; ζ)

)−1/2(
ψ(zi,θ

∗(xi),Λ(xi), t∗, t) − ζ(t)
)
/
√
n+ op(1) →d N (0,1).

(37)
Next, we show that, with probability going to 1, the optimal treatment combination is correctly identified,

i.e., lim
n→∞

P[t̂∗ = t∗] = 1, when the dependence on sample size n is dropped for brevity. By Part (a), we have
µ̂(t∗) →p µ(t∗) and µ̂(t) →p µ(t) for any t ̸= t∗. Because the max operator is continuous with respect to the
L1 norm, we have

|µ̂(t∗) −µ(t∗)| ∨ |µ̂(t) −µ(t)| →p 0,

where “∨" denote the maximum of two real numbers. Since the optimal treatment combination t∗ is unique,
as the sample size n goes to infinity,

|µ̂(t∗) −µ(t∗)| ∨ |µ̂(t) −µ(t)| ≤ µ(t∗) −µ(t)
4 , (38)

with a probability going to 1.
Furthermore, (38) implies,

µ̂(t∗) − µ̂(t) = [µ(t∗) − (µ(t∗) − µ̂(t∗))] − [µ(t) − (µ(t) − µ̂(t))] ≥ µ(t∗) −µ(t)
2 > 0.
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Therefore, with the probability going to 1, we have µ̂(t∗) > µ̂(t) as the sample size n goes to infinity.
Taking the union bound over (2m − 1) treatment combinations, we have µ̂(t∗) > maxt ̸=t∗ µ̂(t), i.e., t̂∗ =
arg maxt µ̂(t) = t∗, with a probability going to 1 as the sample size n goes to infinity.

If t̂∗ = t∗, by definition,
√
n
(
Ψ̂(t; ζ)

)−1/2(ζ̂(t) − ζ(t)) −
√
n
(
Ψ̂(t; τ)

)−1/2(τ̂(t) − τ(t)) = 0

Hence, we have that for any ε > 0,

lim
n→∞

P[|
√
n
(
Ψ̂(t; ζ)

)−1/2(ζ̂(t) − ζ(t)) −
√
n
(
Ψ̂(t; τ)

)−1/2(τ̂(t) − τ(t))|< ε] = 1. (39)

Combining (39) with the asymptotic normality (37), by Slutsky’s theorem, we have

√
n
(
Ψ̂(t; τ)

)−1/2(τ̂(t) − τ(t)) =
n∑

i=1

(
Ψ̂(t; τ)

)−1/2(
ψ(zi,θ

∗(xi),Λ(xi), t∗, t) − τ(t)
)
/
√
n+ op(1) →d N (0,1),

which concludes the proof. □

Given the asymptotic normality, the (1 −α)-confidence interval for τ̂DeDL(t) is given by

ĈIDeDL(t; τ) =
[
τ̂DeDL(t) − 1√

n
· Φ−1

(
1 − α

2

)
· Ψ̂DeDL(t; τ), τ̂DeDL(t) + 1√

n
· Φ−1

(
1 − α

2

)
· Ψ̂DeDL(t; τ)

]
. (40)

Appendix B: Empirical Analysis With Field Experiment Data

B.1. User Covariates Used in Section 4

Table A1 presents all the user covariates used in our empirical analysis in Section 4.

B.2. Stratified Sampling Details

We employ a three-step stratified sampling to keep the user covariates balanced with respect to eight different
treatment combinations. First, we categorize 10 continuous variables in Table A1 by their quantile ranges
[0%,25%), [25%,50%), [50%,75%), and [75%,100%]. Specifically, we assign 1, 2, 3, and 4 as new values
for values in each quantile interval respectively for each continuous variable. After all the variables are
discretized, we proceed to divide the population into subpopulations according to imbalanced covariates.
To check for diversely distributed covariates, we utilize a pairwise t-test between the baseline combination
(0,0,0) and seven treatment combinations for covariates in Table A1. Among the 26 covariates, 16 discrete
covariates show no significant difference between the baseline combination (0,0,0) and the other seven
treatment combinations, while 10 continuous variables are imbalanced-distributed. Therefore, we divide users
into 69,111 strata by the value of imbalanced covariates. Namely, users with the same value in all imbalanced
covariates are grouped together. For each stratum, we set the minimum number of users among all treatment
combinations as its target size and then randomly sample this many individuals for each combination as
the stratified sample. Therefore, the stratified sample has a similar number of users in each treatment
combination, and the treatment assignment mechanism satisfies P[Ti = 1|X = x] = P[Ti = 0|X = x] = 0.5
(i= 1,2,3) for any x.

B.3. Complete Randomization Check Results

Table A2 presents complete randomization check results of the stratified samples used in our empirical
analysis in Section 4.
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Table A1 User Covariates Used in the DeDL Framework

Variable Description

Disc-
rete
Var.

Age Range Age range of user: young, mid-age, senior, old, or unknown
Gender Gender of user: male, female, or unknown
Operating System OS of user’s device: Android, IOS, or other
Product Version Version used: lite, express, or regular
Phone Price Range Price range of device: luxury, expensive, affordable, or unknown
User Activeness Degree Activeness of user: high-, mid-, low-active, or new user
User Active-Deepness Degree Active-deepness of user: deep-, shallow-active, or new user
Feed Mode Preferred mode of app interface:

video stream, video cover stream, or unknown
Number of Followers Interval of the user’s number of followers:

<10, 10 - 10k, 10k - 100k, >100k
Influencer Level Mainly determined by the number of followers:

micro, midtier, or macro influencer
Number of Mutual Followers Interval of the user’s number of mutual followers (friends):

<10, 10 - 10k, 10k - 100k, >100k
Sociableness Level Mainly determined by the number of

mutual followers (friends): low-, mid-, or high-sociable
Frequent Residence Area Region in which the user is frequently on the platform:

South, North, or unknown
Frequent Residence City Level Level of city in which the user is frequently on the platform:

large city, big city, medium city, small city, or unknown
Frequent Residence City Type Type of city in which the user is frequently on the platform:

city, town, rural, or unknown
Active Engagement City Level Level of city in which the user is always active:

large city, big city, medium city, small city, or unknown

Conti-
nuous
Var.

Average App Usage Duration User’s average usage duration on platform per day
Average Video Watching Time User’s average time on watching videos on platform per day
Average Live Watching Time User’s average time on watching live on platform per day
Average DP Video Watching Time User’s average time on watching videos on Discover Page per day
Average LP Video Watching Time User’s average time on watching videos on Live Page per day
Average FYP Video Watching Time User’s average time on watching videos on For You Page per day
Average FP Video Watching Time User’s average time on watching videos on Following Page per day
Average DP Screen Time User’s average time on Discover Page per day
Average LP Screen Time User’s average time on Live Page per day
Average FP Screen Time User’s average time on Following Page per day

Table A2 Randomization Check

Treatment Combination t′ (0, 0, 0) (0, 0, 1) (0, 1, 0) (1, 0, 0) (1, 1, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1)

User De-
mographics

Proportion of 60.51% 60.63% 60.31% 60.49% 60.40% 60.36% 60.30% 60.31%
Male Users (0.41) (0.13) (0.85) (0.40) (0.26) (0.11) (0.15)

Proportion of 29.67% 29.65% 29.60% 29.73% 29.77% 29.65% 29.80% 29.66%
High-Active Users (0.88) (0.55) (0.62) (0.44) (0.85) (0.34) (0.91)

Proportion of Users 39.83% 39.64% 39.90% 39.80% 39.85% 39.68% 39.69% 39.74%
from the South (0.16) (0.63) (0.88) (0.90) (0.26) (0.29) (0.48)

User
Behaviors
10 Days
Prior to
the Experi-
ments

Average Active -0.0003 -0.0010 0.0012 -0.0006 -0.0011 0.0001 0.0011 0.0008
Days per User (0.78) (0.59) (0.91) (0.75) (0.88) (0.61) (0.69)

Average DP Screen 0.0173 0.0144 0.0151 0.0152 0.0140 0.0145 0.0152 0.0157
Time per User (0.31) (0.45) (0.46) (0.25) (0.34) (0.46) (0.58)

Average LP Screen 0.0126 0.0091 0.0146 0.0104 0.0136 0.0145 0.0103 0.0159
Time per User (0.21) (0.49) (0.42) (0.75) (0.52) (0.42) (0.25)

Average FYP Screen 0.0048 0.0022 0.0033 0.0044 0.0010 0.0033 0.0015 0.0024
Time per User (0.36) (0.62) (0.91) (0.18) (0.61) (0.25) (0.41)

Average App Usage 0.0129 0.0111 0.0114 0.0114 0.0104 0.0103 0.0120 0.0117
Duration per User (0.55) (0.62) (0.61) (0.39) (0.37) (0.76) (0.69)

Note: p-values of t-tests between the baseline combination t0 = (0, 0, 0)′ and other treatment combinations are reported in
parentheses. To protect sensitive data, the reported metrics of active days, screen time, and app-usage duration are rescaled.
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Appendix C: Implementation Details of Benchmarks

In this section, we present the implementation details of using linear addition (LA), linear regression (LR),
pure deep learning (PDL), and structured deep learning (SDL) as our benchmark to estimate ATE. For LR,
PDL, and SDL estimation, we follow the same four-fold cross-fitting described in Appendix 5.2.

C.1. Linear Addition (LA) Estimator

To obtain the LA estimator for each treatment level, we use the ATE of five observed treatment combinations
to calculate the ATE of unobserved treatment combinations. For observed treatment combinations, their esti-
mated ATE and significance level are the same as the ground truth. For unobserved treatment combinations,
we use the linear addition of ATE of individual observed treatment combinations as the estimated ATE.
Furthermore, we estimate the standard error of the estimated ATE for unobserved treatment combinations
by assuming that the estimators for individual experiments are independent.

We report the LA estimators in the first row in each section of treatment combination in Table A3.
The top four treatment combinations are observable, and therefore the LA estimator yields zero error (see
columns 5–7 in Table A3). The estimators for the ATE of the bottom-three treatment combinations use
the ATE of individual treatment combinations, i.e., (0,0,1), (0,1,0), and (1,0,0), to calculate the final
results µ̂(t) = µ̂(t1) + µ̂(t2), where t = t1 + t2. The standard deviation of the estimator follows σ̂(µ̂(t)) =√
σ̂(µ̂(t1))2 + σ̂(µ̂(t2))2.

C.2. Linear Regression (LR) Estimator

The LR estimator uses the regression coefficients as the estimated ATE. The regression is defined as

y= β1t1 +β2t2 +β3t3 +αx, (41)

where t1, t2, and t3 denote three experiments for pages DP, LP, and FYP, respectively, and x denotes the
user covariates in Table A1. We fit the linear regression model (41) with 1,291,652 data points with the five
observed treatment combinations. The estimator for βi, β̂i, captures the ATE of treatment ti. Similar to LA
estimators, LR estimators assume the linear additivity of the ATEs. To maintain a fair comparison between
the estimators, we adopt a four-fold cross-fitting described in Appendix 5.2 to obtain the LR estimator as
well. Specifically, we fit the linear regression model with 75% of the training data. For the second-stage
inference, we predict the potential outcome of each user given the covariates x under treatment combination
t∈ T using the trained linear regression. The estimation and inference of each ATE is obtained through the
standard pairwise t-test for each treatment combination with the predicted outcomes on the last data fold.
The average values of estimated ATEs for each treatment combination are presented in the second row in
Table A3.

C.3. Pure Deep Learning (PDL) Estimator

Similar to the implementation of DeDL approach in Appendix 5.2, we apply the four-fold cross-fitting pro-
cedure to reduce overfitting when implementing the PDL estimators. Specifically, we evenly partition the
observed data of five treatment combinations into four random folds. For each data fold, we use the data
from three other folds as the training data to approximate y = f(x, t), where f(·, ·) is a fully-connected
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three-layer DNN with 20 nodes in each layer. We call this approach the “pure” deep learning estimator
because no constraints are imposed on the DNN f(·, ·). The DNN is trained with the Adam optimizer and
the mean squared error as the loss function. We then use the trained DNN f̂(·, ·) to predict the potential
outcomes under eight treatment combinations for each user the covariates x on the last fold. Similar to the
LR estimator, pairwise t-tests with the predicted outcomes between any treatment combination t and the
control t0 provide the ATE estimate and its corresponding standard error, whereas the final estimates are
the average value of all four data folds. The fourth row for each treatment combination in Table A3 shows
the estimated ATE of the PDL approach.

C.4. Structured Deep Learning (SDL) Estimator

The SDL approach adopts the same structured DNN and four-fold cross-fitting as DeDL as documented in
Appendix 5.2, but without the debiasing term. For each treatment combination t ∈ T , we use the trained
structured DNN to predict the potential outcome given the covariates x: H(x, θ̂s(x); t, t0) :=G(θ̂s(x), t) −

G(θ̂s(x), t0). Similar to the LA and PDL approaches, t-tests with the predicted outcomes provide the ATE
estimates under SDL. We remark that the SDL approach underestimates the standard errors because it
ignores the noises in fitting θ̂(·) caused by the variations in the training data. The estimation results of SDL
for each treatment combination are reported in the last row in Table A3.

Appendix D: Details of Synthetic Experiments

In this section, we provide details of the synthetic experiments designed to assess several factors we have
identified that could potentially influence the performance of the DeDL estimators in practice. We first
validate our theory by varying the number of experiments m ∈ {4,6,8,10} in Appendix D.2. In Appendix
D.3, we test the performance of our DeDL estimators with a potentially large bias of estimating θ̂(·); we
find that DeDL is fairly robust, with moderate biases. We also systematically assess the performance of
DeDL under model misspecification, and we shed light on how to test and select the link function in practice
in Appendix D.4. Furthermore, in Appendix D.5, we investigate a practical setting where the observed X

distribution deviates from the population, and discuss how to use the rebalancing method to get trustworthy
estimates.

D.1. Simulation Setup

Throughout Sections D.2 and D.3, we assume that the link function G is correctly specified. Consistent with
our empirical study in Section 4, we use the Generalized Sigmoid Form II, i.e., for each data point i, we have

yi =
θ∗

m+1

1 + exp(θ∗
0(xi) + θ∗

1(xi)ti1 + θ∗
2(xi)ti2 + · · · + θ∗

m(xi)tim) + ϵi, (42)

where ϵi is the i.i.d. random noise with zero mean.
We assume there are m concurrent field experiments, each with a binary treatment. We sample θ∗

m+1

from the uniform distribution U(10,20) throughout, while generating θj(x), j = 0,1, . . . ,m, differently in
different subsequent sections. We generate data points zi = (yi,x

′
i, t

′
i)′ as i.i.d. copies of the random vector

Z = (Y,X ′,T ′)′. The random perturbation ϵ follows a uniform distribution U(−0.05,0.05). Without loss of
generality, we generate covariates x as follows: (1) the dimension of covariates X satisfies dX = 10; (2) the
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Table A3 Detailed Results of Benchmark Estimators

Treatment Ground-Truth Estimated
Combination ATE Estimator ATE CD APE SE AE

(1) (2) (3) (4) (5) (6) (7)

(0, 0, 1) 1.091%∗∗

LA -1.091% 1 00.00% 0.000 0.000
LR -1.329% 1 21.79% 5.657 2.379

PDL -1.247% 1 14.24% 2.417 1.555
SDL -1.179% 1 08.00% 0.763 0.873

(0, 1, 0) -0.267%

LA -0.267% 1 NA 0.000 0.000
LR -0.013% 1 NA 6.460 2.542

PDL -0.036% 0 NA 5.353 2.314
SDL -0.072% 0 NA 3.792 1.947

(1, 0, 0) 0.758%∗

LA -0.758% 1 00.00% 0.000 0.000
LR -1.079% 1 42.29% 10.028 3.206

PDL -1.043% 1 37.60% 8.126 2.851
SDL -0.978% 1 28.95% 4.816 2.195

(1, 1, 1) 2.121%∗∗∗∗

LA -2.121% 1 0 0.00% 0.000 0.000
LR -2.395% 1 12.95% 7.539 2.746

PDL -2.326% 1 09.67% 4.209 2.052
SDL -2.040% 1 03.78% 0.642 0.801

(1, 1, 0) 0.689%

LA -0.491% 1 NA 3.902 1.975
LR -1.066% 0 NA 14.233 3.773

PDL -1.030% 0 NA 11.625 3.410
SDL -0.902% 0 NA 4.543 2.132

(1, 0, 1) 2.299%∗∗∗∗

LA -1.850% 1 19.56% 20.229 4.498
LR -2.408% 1 04.72% 1.178 1.085

PDL -2.333% 1 01.46% 0.112 0.336
SDL -2.148% 1 06.59% 2.297 1.516

(0, 1, 1) 1.387%∗∗∗

LA -0.824% 0 40.58% 31.670 5.628
LR -1.316% 1 05.08% 0.495 0.704

PDL -1.217% 1 12.26% 2.890 1.700
SDL -1.070% 1 22.84% 10.030 3.167

Notes: The calculation of APE, SE, and AE is based on the scaled outcome variable (see column (1) of this table). SE
is scaled by multiplying a constant. AE is scaled by multiplying another constant. The significance levels are encoded as
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001; ∗∗∗∗p<0.0001.

different components of X are i.i.d. following the uniform distribution U(0,1). We remark that larger random

perturbations, higher dimensional covariates, and/or more complicated joint distributions of X can be easily

incorporated into the simulation. We adopt the current setting for ease of model training and efficiency of

experiments.

To ensure that the identifiability and sufficient curvature conditions (i.e., Assumption 4) are met, we adopt

the following treatment assignment mechanism ν(· | ·). We assume the independence between X and T ,

whose distribution we denote as ν(t) = P[T = t]. Furthermore, in the training stage, with equal probability,

we randomly assign each experimental unit to one of m+ 2 different treatment combinations with equal

probability, i.e., ν(t) = 1/(m+ 2) if t ∈ {t ∈ {0,1}m :
∑m

i=1 ti = 0 or 1} ∪ {(1,1,0, . . . ,0)′} and ν(t) = 0 for

other treatment combinations. In other words, we assume the partially observed outcome setting with only
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m + 2 observable treatment combinations, while other treatment outcomes are masked for gauging the
performance of estimators.

Our neural network structure to estimate θ∗
j (x), j = 0,1, . . . ,m, is prespecified as two-layer perceptrons

with ReLU activation functions and 10 nodes in hidden layers in all experiments throughout this section.
Because there are m + 2 unknown parameters, which linearly scale with the number of experiments m,
we generate 500m i.i.d. experimental data points zi for the DNN training, and another independent 500m
experimental data points for the inference stage. During the DNN training stage, we randomly split this data
set with 70% for training and the rest 30% for cross-validation. We adopt the MSE loss function and Adam
algorithm (Kingma and Ba 2014). In most experiments, we stop training when the loss on cross-validation
data is less than a fixed threshold of 0.3. We empirically tested various thresholds and found that the gain
from a smaller stopping threshold is marginal. Thus, we picked this threshold based on the computational
efficiency consideration. In the experiments with misspecified link functions and imbalanced data, which we
will discuss later, the cross-validation loss tends to increase. Hence, we adjust the threshold accordingly in
such cases. We also experiment with popular training strategies such as dropout or regularizing the weights,
but the gain is marginal, so we do not include them in this discussion.

At the inference stage, we independently generate a data sample with the same size as the training
data. To avoid the rare case where the empirical estimate Λ̂(x) is not invertible (e.g., θi(x) = θj(x) for all
i, j ∈ {1,2, . . . ,m}), we add a small regularization to Λ̂(x) so that (Λ̂(x) + 0.0005Idm+2)−1 is well-defined.
Similar regularization or trimming techniques based on the propensity score are quite common in practice
for numerical stability.

To calculate the true ATE over the population, we use the sample average of 2,000 independent samples
for each treatment combination, and use the standard t-test with a significance level of 0.05 to determine
whether the ATE of an experiment combination is statistically significant. To derive statistical metrics such
as confidence intervals, we replicate all experiments 200 times.

D.2. Validation of the DeDL Estimator under Large m

In this section, we aim at empirically validating the theoretical results in Section 3 and further demon-
strating the superior performance of our DeDL estimator in practice. Such experiments are necessary due
to the gaps between theory and practice. In particular, there are two potential inconsistencies between the
underlying theory (e.g., see Section 3) and practical settings. First, the key theoretical result Proposition 1 is
proved under the assumption that one obtains the estimator θ̂(x) by (almost) minimizing the empirical loss.
However, the loss of DNN is difficult to optimize globally, especially given our novel structured architecture
with a model layer. Second, the theoretical DNN width O(ndX/2(p+dX ) log2 n) and depth O(logn) required
in Proposition 1 are clearly too large for practical applications. Practitioners often fine-tune these hyper-
parameters at a much smaller scale. Given these practical issues, we find it necessary to conduct synthetic
experiments to demonstrate the performance of DeDL in general settings.

To generate the functions θ∗(x) in this subsection, we first define the coefficient matrix A∈R(m+1)×dX with
each component independently drawn from the uniform distribution U(−0.5,0.5) and write the j the row of
A as row vector A[j]. Then, we let θ∗

j (x) = (A[j+1]x)3, j = 0,2, . . . ,m. As mentioned, the parameter θ∗
m+1 is
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randomly generated from the uniform distribution U(10,20). To facilitate numerical experiments, we choose

a relatively simple structure for the neural network, as discussed previously. However, the more complex

function θ∗(x) can be readily incorporated and tested in our synthetic experiments, and DNN training-

related hyperparameters (e.g., width, depth, and training algorithm) should be fine-tuned to accommodate

such cases.

We summarize the main result here while deferring more details into Appendices D.2.1 and D.2.2. There,

we report complete simulation results in Table A4 and Table A5, along with more observations made.

In Figure A1(a), we evaluate the performance of different estimators including LA, LR, PDL, SDL, and

DeDL with varying numbers of A/B tests, i.e., m ∈ {4,6,8,10}. We train these estimators with partially

observed outcomes, as discussed above. We note that the performance of MAE is highly correlated with

other performance metrics, so to keep the discussion simple, we mainly report and visualize the performance

comparison under MAE along with the 95% confidence interval, shown in Figure A1. We compute the

confidence interval using the 200 instances for each parameter combination. One can observe from panel

(a) that DeDL has the best performance under all m ∈ {4,6,8,10}. Increased values of m lead to quick

degradation of the performance of LA and LR. Such simple models relying on linear extrapolation are unable

to capture the rich treatment effects, but the performance of SDL and DeDL are relatively stable.

To highlight the issue that PDL can easily overfit the observed data and result in large biases in unobserved

treatments, we conduct a more detailed synthetic experiment focusing on PDLs with different network size

specifications and partially/fully observed data. Figure A1(b) displays the performance of different variants

of PDL estimators under different m values. For better visualization, we report the performance of PDL

with a different scale on the y-axis than that in Figure A1(a). Among these different PDL estimators, we

use subscripts s (small) and l (large) to represent different widths of neural nets, with 10 (small) and 40

(large) hidden nodes for all three hidden layers, respectively. All DNNs have three linear layers followed

by ReLU activation layers. The subscripts p and a represent the training samples generated from partially

observed treatments and all treatments, respectively. For a fair comparison to SDL and DeDL, we focus on

PDL_s_p with partially observed treatments and a similar DNN size to SDL. We observe that, with partially

observed combinations, both PDL_s_p and PDL_l_p perform poorly, mainly driven by the bad performance

under the unobserved treatments. Increased network size does not help much. However, when we incorporate

data from all treatment combinations for training, PDL_s_a and PDL_l_a obtain comparable performance

with the best estimator DeDL. Therefore, a structured DNN model allows us to capture the interaction of

experiments in practical settings, while the model flexibility in PDL helps only in unrealistic scenarios where

a large proportion of experimental combinations are observed. We refer interested readers to Appendix ?? for

more detailed comparisons, discussions, and additional simulations of incorporating regularizers into PDL.

Because all performance metrics show similar patterns under different m values, we maintain m= 4 for

computation efficiency in subsequent sections. Also, due to the inferior performance of PDL with partially

observed treatments, we do not report its performance in the following sections.
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Figure A1 MAE comparison among estimators under the increasing number of experiments m values. Panel (a) shows the
performance of LA,LR,SDL, and DeDL. Panel (b) presents the performance of PDLs with different network size specifications

and partially/fully observed data. Subscript s represents a small 10-width DNN while l represents a large 40-width DNN.
Subscript p represents that the training set contains partially observed treatment while a represents that the training set

contains all 2m treatments.

D.2.1. Detailed Results of the Comparison Among Estimators. We document the complete sim-
ulation results of Appendix D.2 in Table A4 and Table A5. We evaluate the performance of the estimators
under m ∈ {4,6,8,10} A/B tests and report the estimation results in Panels A to D. The first column
“Estimator” describes which estimator is tested. The second column “CDR” shows the proportion of treat-
ment combinations whose estimated ATE significance levels and signs are consistent with the ground truth.
The third column “MAPE” gives the mean absolute percentage error of ATE estimates over all treatment
combinations whose real average treatment effects are significant. In other words, we rule out insignificant
treatment combinations when calculating MAPE. Otherwise, those insignificant treatment effects would re-
sult in a close-to-zero value in the denominators to calculate APE, resulting in an undesired metric. Similarly,
column “MSE” and column “MAE” represent squared error and absolute error, respectively. In these two
columns, we do not exclude those insignificant combinations. Indeed, unlike MAPE, close-to-zero treatment
effects do not cause a problem for MSE and MAE. As a result, MAE and MSE over all combinations can
supplement MAPE. However, to better understand the scales of MSE and MAE errors, we also report in the
table notes 95% confidence intervals of average absolute treatment effects over all combinations. Finally, the
column “BTI” presents the results on best treatment identification. For each replication of the experiment,
we verify whether different methods can successfully identify the best treatment combination. The value in
this column shows the proportion of replications in which the optimal combination is correctly identified.

We observe the following consistent patterns across all panels in Table A4. First, DeDL outperforms LA,
LR, PDL_s_p, and SDL under all metrics, which validates our theory and provides strong evidence for the
advantage of our method. In particular, DeDL increases the success rate of both CDR and BTI, and decreases
MAPE, MSE, and MAE compared to SDL by a significant margin. This demonstrates the value of debiasing
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Table A4 Learning Estimator Validation Result

Panel A: Comparison of Different Estimators Under m = 4
Estimator CDR MAPE MSE MAE BTI

LA 92.40% 22.64% 0.070 0.123 79.5%
(91.02%, 93.78%) (20.10%, 25.17%) (0.023, 0.118) (0.103, 0.143) (73.9%, 85.1%)

LR 95.34% 15.30% 0.038 0.089 82.0%
(94.46%, 96.23%) (13.56%, 17.04%) (0.0179, 0.0582) (0.074, 0.105) (76.6%, 87.3%)

PDL_s_p 88.59% 68.83% 0.867 0.433 56.0%
(87.02%, 90.17%) (60.76%, 76.89%) (0.572, 1.163) (0.378, 0.488) (49.1%, 62.9%)

SDL 95.12% 16.12% 0.018 0.079 90.5%
(94.17%, 96.08%) (14.57%, 17.66%) (0.011, 0.024) (0.070, 0.087) (86.4%, 94.6%)

DeDL 97.53% 7.20% 0.008 0.040 93.5%
(96.90%, 98.15%) (6.45%, 7.95%) (0.004, 0.012) (0.033, 0.046) (90.1%, 96.9%)

Panel B: Comparison of Different Estimators Under m = 6
Estimator CDR MAPE MSE MAE BTI

LA 92.05% 27.35% 0.080 0.166 73.0%
(90.70%, 93.40%) (23.81%, 30.89%) (0.056, 0.105) (0.147, 0.186) (66.8%, 79.2%)

LR 94.88% 18.42% 0.073 0.136 75.5%
(94.10%, 95.67%) (16.61%, 20.24%) (0.038, 0.108) (0.118, 0.155) (69.4%, 81.6%)

PDL_s_p 84.23% 111.70% 2.172 0.874 28.0%
(82.54%, 85.93%) (98.07%, 125.33%) (1.736, 2.607) (0.793, 0.956) (21.7%, 34.3%)

SDL 93.07% 27.22% 0.051 0.150 68.0%
(92.17%, 93.96%) (25.16%, 29.29%) (0.037, 0.064) (0.136, 0.163) (61.5%, 74.5%)

DeDL 95.28% 13.33% 0.023 0.079 87.0%
(94.61%, 95.96%) (11.99%, 14.68%) (0.012, 0.033) (0.069, 0.090) (82.3%, 91.7%)

Panel C: Comparison of Different Estimators Under m = 8
Estimator CDR MAPE MSE MAE BTI

LA 93.83% 28.37% 0.196 0.247 65.0%
(92.74%, 94.92%) (24.98%, 31.75%) (0.135, 0.256) (0.218, 0.276) (58.3%, 71.7%)

LR 95.51% 22.49% 0.209 0.222 75.6%
(94.87%, 96.14%) (20.03%, 24.96%) (0.128, 0.289) (0.186, 0.258) (69.2%, 82.0%)

PDL_s_p 78.89% 140.60% 3.825 1.246 11.5%
(77.01%, 80.77%) (128.28%, 152.91%) (3.059, 4.591) (1.136, 1.355) (7.0%, 16.0%)

SDL 94.89% 22.18% 0.072 0.153 67.5%
(94.25%, 95.53%) (20.20%, 24.15%) (0.025, 0.120) (0.133, 0.174) (61.0%, 74.0%)

DeDL 95.53% 13.49% 0.049 0.099 82.0%
(94.92%, 96.15%) (11.82%, 15.15%) (0.007, 0.092) (0.079, 0.118) (76.6%, 87.4%)

Panel D: Comparison of Different Estimators Under m = 10
Estimator CDR MAPE MSE MAE BTI

LA 95.01% 31.54% 0.326 0.311 58.8%
(93.96%, 96.05%) (24.23%, 38.84%) (0.152, 0.500) (0.251, 0.371) (47.7%, 69.8%)

LR 95.51% 25.28% 0.359 0.305 62.0%
(94.87%, 96.14%) (21.73%, 28.83%) (0.146, 0.572) (0.240, 0.369) (52.3%, 71.7%)

PDL_s_p 77.27% 163.85% 5.360 1.563 5.0%
(75.50%, 79.03%) (151.47%, 176.22%) (4.527, 6.193) (1.448, 1.677) (2.0%, 8.0%)

SDL 94.27% 26.37% 0.077 0.195 56.2%
(93.21%, 95.33%) (22.97%, 29.78%) (0.054, 0.100) (0.171, 0.220) (45.1%, 67.4%)

DeDL 94.54% 16.59% 0.046 0.127 78.8%
(93.48%, 95.60%) (13.39%, 19.78%) (0.026, 0.067) (0.103, 0.150) (69.6%, 87.9%)

Notes: All experiments are replicated 200 times, with 95% CIs reported in parentheses. 95% CIs of average absolute treatment
effects are (0.68, 1.06), (1.09, 1.30), (1.45, 1.71), and (1.54, 2.03), respectively, in Panel A, Panel B, Panel C, and Panel D.
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Table A5 Performance of PDL Estimators

Panel A: Comparison of Different Estimators Under m = 4
Estimator CDR MAPE MSE MAE BTI

PDL_s_p 88.59% 68.83% 0.867 0.433 56.0%
(87.02%, 90.17%) (60.76%, 76.89%) (0.572, 1.163) (0.378, 0.488) (49.1%, 62.9%)

PDL_s_a 95.16% 16.01% 0.012 0.075 78.0%
(94.27%, 96.04%) (14.49%, 17.53%) (0.009, 0.016) (0.068, 0.083) (72.2%, 83.8%)

PDL_l_p 89.12% 60.15% 0.493 0.356 56.0%
(87.61%, 90.64%) (53.09%, 67.20%) (0.375, 0.610) (0.319, 0.393) (49.1%, 62.9%)

PDL_l_a 96.34% 12.55% 0.006 0.052 86.5%
(95.57%, 97.12%) (11.20%, 13.89%) (0.004, 0.007) (0.048, 0.057) (81.7%, 91.3%)

Panel B: Comparison of Different Estimators Under m = 6
Estimator CDR MAPE MSE MAE BTI

PDL_s_p 84.23% 111.70% 2.172 0.874 28.0%
(82.54%, 85.93%) (98.07%, 125.33%) (1.736, 2.607) (0.793, 0.956) (21.7%, 34.3%)

PDL_s_a 95.04% 20.03% 0.021 0.104 70.5%
(94.43%, 95.65%) (18.39%, 21.67%) (0.017, 0.024) (0.096, 0.113) (64.1%, 76.9%)

PDL_l_p 83.87% 111.37% 1.748 0.789 25.0%
(82.33%, 85.40%) (99.17%, 123.57%) (1.357, 2.138) (0.712, 0.866) (18.9%, 31.1%)

PDL_l_a 95.73% 16.91% 0.015 0.085 68.0%
(95.05%, 96.42%) (14.93%, 18.89%) (0.012, 0.019) (0.077, 0.093) (61.5%, 74.5%)

Panel C: Comparison of Different Estimators Under m = 8
Estimator CDR MAPE MSE MAE BTI

PDL_s_p 78.89% 140.60% 3.825 1.246 11.5%
(77.01%, 80.77%) (128.28%, 152.91%) (3.059, 4.591) (1.136, 1.355) (7.0%, 16.0%)

PDL_s_a 95.04% 20.03% 0.021 0.104 70.5%
(94.43%, 95.65%) (18.39%, 21.67%) (0.017, 0.024) (0.096, 0.113) (64.1%, 76.9%)

PDL_l_p 80.80% 125.38% 3.059 1.098 10.0%
(79.15%, 82.44%) (114.46%, 136.29%) (2.347, 3.770) (1.001, 1.195) (5.8%, 14.2%)

PDL_l_a 95.43% 20.24% 0.035 0.137 57.5%
(94.90%, 95.95%) (18.36%, 22.13%) (0.028, 0.041) (0.126, 0.148) (50.6%, 64.4%)

Panel D: Comparison of Different Estimators Under m = 10
Estimator CDR MAPE MSE MAE BTI

PDL_s_p 77.27% 163.85% 5.360 1.563 5.0%
(75.50%, 79.03%) (151.47%, 176.22%) (4.527, 6.193) (1.448, 1.677) (2.0%, 8.0%)

PDL_s_a 95.14% 24.87% 0.052 0.173 43.0%
(94.69%, 95.59%) (22.64%, 27.11%) (0.044, 0.061) (0.160, 0.185) (36.1%, 49.9%)

PDL_l_p 76.03% 159.58% 5.436 1.472 6.0%
(73.04%, 79.01%) (124.10%, 195.06%) (3.533, 7.339) (1.224, 1.720) (1.2%, 10.8%)

PDL_l_a 95.67% 19.66% 0.033 0.140 56.0%
(94.82%, 96.53%) (17.00%, 22.31%) (0.025, 0.041) (0.122, 0.157) (41.7%, 70.3%)

Note: All experiments are replicated 200 times, with 95% CIs reported in parentheses.

in the influence function (5). Second, LA and LR perform worse than SDL in general, demonstrating the

advantage of neural networks over linear methods, although SDL may still be asymptotically biased.

Comparing across different panels, we observe that the performance of all estimators becomes worse when

m grows larger. In particular, the performance of BTI worsens quickly due to the exponentially increased

number of combinations. Even so, DeDL can still successfully identify the best treatment among the 1,024

combinations with a relatively high probability of 78.8% when m= 10.
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We also remark on the underlying mechanisms of these degenerating performances. On one hand, intu-
itively, due to the sigmoid link function setup, when the number of field experiments gets larger, the treatment
effect becomes more nonlinear. It creates difficulty for the LA estimator. Therefore, the performance of LA

worsens due to its inherent lack of model richness. On the other hand, with the correct link function specifi-
cation, one may expect that the performance of SDL and DeDL should be relatively stable because of their
strong modeling power. However, since we fix the same DNN structure with a constant number of 10 hidden
nodes across all experiments for a fair comparison with LA, the model complexity of neural networks is
limited by design. We have verified that increasing the number of hidden nodes for m= 6,8,10 helps achieve
similar performance to that of m= 4. Indeed, the challenge of estimation and inference from an increased
m can be mitigated by increasing the size and complexity of the DNN. Therefore, without loss of generality,
for all experiments in this section, we keep m= 4 for computational efficiency.

D.2.2. A Closer Look at PDL. We report the performance of the PDL estimators in a separate table,
i.e., Table A5, to provide an anatomy of their bad performance. The subscripts s and l represent different
widths of neural nets, with 10 and 40 hidden nodes for hidden layers, resulting in the DNN structure
(dx + dt + 1)-10-ReLU-10-ReLU-10-ReLU-1 and (dx + dt + 1)-40-ReLU-40-ReLU-40-ReLU-1, respectively
The subscripts p and a represent the training samples generated from partially observed treatments or all
treatments. For a fair comparison to estimators in Table A4, we should focus on PDL_s_p with partially
observed treatments and similar DNN size as SDL. The training stopping criterion is set the same as SDL

with 0.3 validation loss threshold.
With partially observed combinations, both PDL_s_p and PDL_l_p perform worse than all other estima-

tors under all metrics. This is due to the bad performance of the out-of-sample test under the unobserved
treatments, rather than the bad approximation ability of DNN. When we increase the DNN width from 10
to 40, the performance only slightly increases. Also, PDL indeed has much better in-sample tests. Because
when we incorporate data from all treatment combinations in the training, the resulting estimators PDL_s_a

and PDL_l_a have comparable performance with the best estimator DeDL.
It is within our expectation that PDL with partially observed treatments has such bad performance be-

cause it can only access the data generated by base treatment level, m single experiment data, and only one
treatment level with interaction (1,1,0, . . . ,0). It means that it is almost impossible for PDL to learn interac-
tion between different experiments. Unlike LR and SDL, which impose parametric structures of experimental
interaction, PDL aims only at increasing the performance of in-sample outcome prediction, totally ignoring
the out-of-sample performance. One may argue that this is due to the over-fitting of PDL.

To explore in more detail why PDL performs badly, we investigate further. To simplify the discussion, we
conduct an extra synthetic experiment with m = 3; we report the result in Figure A2. Each point in the
scatter plots represents the values of real ATE (x-axis) and predicted ATE (y-axis). From left to right, we
visualize the performance of LR, PDL-base (i.e., PDL_s_p), PDL-dropout (i.e., PDL_s_p with p= 0.1 dropout
regularizer after each activation layer), and PDL-L1 (i.e., PDL_s_p with L1 regularization loss over DNN
parameters with fine-tuned weight 0.05).
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Table A6 Performance of PDL With Regularizers

Estimator CDR MAPE MSE MAE BTI

LA 93.56% 27.44% 0.705 0.408 89.0%
(92.06%, 95.07%) (22.60%, 32.29%) (0.504, 0.905) (0.359, 0.457) (84.6%, 93.4%)

LR 95.50% 26.01% 0.654 0.389 91.5%
(94.37%, 96.63%) (20.56%, 31.45%) (0.449, 0.859) (0.335, 0.443) (87.6%, 95.4%)

PDL-base 91.62% 52.68% 2.930 0.762 73.0%
(90.22%, 93.03%) (44.27%, 61.09%) (2.104, 3.756) (0.675, 0.849) (66.8%, 79.2%)

PDL-dropout 90.81% 35.74% 0.967 0.504 63.5%
(89.17%, 92.46%) (31.43%, 40.04%) (0.739, 1.195) (0.453, 0.555) (56.8%, 70.2%)

PDL-L1 92.00% 33.64% 1.274 0.426 84.5%
(90.25%, 93.75%) (27.96%, 39.32%) (0.513, 2.035) (0.354, 0.498) (79.4%, 89.6%)

Note: All experiments are replicated 200 times under m = 3, with 95% CIs reported in parentheses.

Four subfigures in the upper panel show the in-sample performance, while lower panel subfigures show
the performance under unobserved treatment combinations. Notice that PDL-base has better in-sample
performance than LR, as the data points are more concentrated around true line y = x, but PDL-base has
the worst out-of-sample performance. Although LR assumes linear extrapolation of treatment effects, in our
example, most scatter points in the out-of-sample test are still well concentrated around y = x except clear
patterns of overestimate when absolute ATE increases. When applying regularizations, PDL-dropout and
PDL-L1 have deteriorated in-sample performance with points less concentrated around the true line while
improving out-of-sample performance.

Generally, we do not know the out-of-sample ground-truth ATE in practice, which makes it difficult to
guide the selection of regularizers. We also try other regularizers, such as early stopping, L2 parameter
weights, and smaller network sizes, which, however, still perform badly comparable to LR. Due to the bad
performance of PDL with partially observed treatments, we do not report it in the following simulations.
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Figure A2 LR and PDL Estimator Comparison
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D.3. Robustness to the DNN Convergence Rate

As pointed out by the semiparametric estimation literature (e.g., Chernozhukov et al. 2018), in practice, it
is sometimes questionable whether DNN estimators θ̂(·) can achieve the o(n−1/4) convergence rate required
for the inference stage. To systematically illustrate the performance of the debiasing technique in learning
the treatment effects, we artificially control the biases in DNN estimators to evaluate the impact of such
biases in the second-stage inference.

Specifically, we use an approach with a similar spirit to Chernozhukov et al. (2018) by constructing θ̂(x)
with manually controlled biases. First, parameter functions are defined as θ∗

j (x) = A[j]x, for j = 0,1, . . . ,m,
where each component in the coefficient matrix A ∈ R(m+1)×dX is generated under independent and uni-
form distribution U(−0.5,0.5). The parameter θ∗

m+1 is randomly generated from the uniform distribution
U(10,20). Next, instead of training a DNN for estimation, we manually set the biased estimator θ̂j(x) =
(1+errj)θ∗

j (x), j = 0,1, . . . ,m+1, where all errj , j = 0,1, . . . ,m+1 terms independently follow the uniform
distribution U(−δ, δ). We set different levels of the bias range coefficient δ ∈ {0.1,0.2,0.3} to investigate the
effectiveness of DeDL with different levels of biases of the estimators θ̂. In the following discussion, we focus
on the MAE performance metric. We refer interested readers to Appendix ?? for a more detailed comparison
and discussion.

As documented in Figure A3, DeDL has much smaller MAEs than SDL, implying a significant performance
improvement with adding debias term. In all settings, DeDL performs better than LA and LR despite that
SDL may generate MAEs much larger than LA and LR, in particular, when δ = 0.3. This shows that the
DeDL estimator is fairly robust, with moderate biases in θ̂. However, we also point out that when the bias
from training is large, debiasing may not improve the performance, as we illustrated in Figure 7 in Section
4. In our simulation, we have a similar observation that, when δ increases to 1.0, DeDL may perform worse
than SDL under the MAPE metric. In such cases, it is critical to improve DeDL by training a better DNN
model, for example, through using a larger network. For completeness, we also document the detaild results
in Table A7, the columns of which are the same as Table A4. Insights similar to above can be infered from
the table.

D.4. Link Function Misspecification

In this subsection, we first investigate how a misspecified link function impairs the effectiveness of our
debiased estimator. Indeed, a key assumption of our framework is that the link function G is correctly
specified. In practice, however, it can be challenging to select the best link function. On the positive side, as
we will discuss, one may test the efficacy of the link function by checking the cross-validation errors in the
DNN training stage. For this subsection, we adjust our true DGP as,

yi =
θ∗

m+1

1 + exp(θ∗
0(xi) + θ∗

1(xi)ti1 + · · · + θ∗
m(xi)tim) + γ

(
β∗

0(xi) +β∗
1(xi)ti1 + · · · +β∗

m(xi)tim
)

+ ϵi, (43)

where parameter functions are defined as θ∗
j (x) =A[j]x, and β∗

j (x) =B[j]x, for j = 0,1, . . . ,m. The parameter
γ ≥ 0 captures the extent to which the true link function deviates from the Generalized Sigmoid Form II,
which we still adopt in our DeDL framework for estimating the treatment effect. The larger the γ, the more
misspecified our model is. We generate both the coefficient matrices A∈R(m+1)×dX and B ∈R(m+1)×dX with
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Table A7 DNN Convergence Violation Result

Panel A: Performance of Benchmarks
Estimator CDR MAPE MSE MAE BTI

LA 94.56% 19.93% 0.085 0.179 92.0%
(93.69%, 95.44%) (17.94%, 21.93%) (0.066, 0.104) (0.162, 0.195) (88.2%, 95.8%)

LR 96.88% 13.59% 0.046 0.127 94.0%
(96.21%, 97.54%) (12.11%, 15.08%) (0.036, 0.056) (0.115, 0.139) (90.7%, 97.3%)

Panel B: Comparison of Different Estimators Under δ = 0.1
Estimator CDR MAPE MSE MAE BTI

SDL 96.97% 4.98% 0.013 0.074 92.5%
(96.32%, 97.62%) (4.58%, 5.38%) (0.010, 0.015) (0.066, 0.083) (88.8%, 96.2%)

DeDL 98.56% 5.04% 0.003 0.031 97.0%
(98.12%, 99.01%) (4.32%, 5.76%) (0.002, 0.003) (0.028, 0.035) (94.6%, 99.4%)

Panel C: Comparison of Different Estimators Under δ = 0.2
Estimator CDR MAPE MSE MAE BTI

SDL 94.19% 11.06% 0.061 0.170 85.5%
(93.19%, 95.19%) (10.28%, 11.83%) (0.049, 0.072) (0.153, 0.186) (80.6%, 90.4%)

DeDL 96.31% 11.10% 0.016 0.078 95.5%
(95.50%, 97.12%) (9.46%, 12.74%) (0.012, 0.020) (0.069, 0.087) (92.6%, 98.4%)

Panel D: Comparison of Different Estimators Under δ = 0.3
Estimator CDR MAPE MSE MAE BTI

SDL 93.44% 15.53% 0.145 0.259 80.0%
(92.48%, 94.39%) (14.33%, 16.73%) (0.118, 0.173) (0.232, 0.286) (74.4%, 85.6%)

DeDL 94.63% 12.78% 0.032 0.108 92.5%
(93.74%, 95.51%) (11.05%, 14.50%) (0.024, 0.039) (0.095, 0.120) (88.8%, 96.2%)

Notes: All simulations are replicated 200 times, with 95% CIs reported in parentheses. 95% CIs of average absolute treatment
effect are (1.45, 1.65) in all panels.

independent entries, and each component follows the uniform distribution U(−0.5,0.5). The parameter θ∗
m+1

is again randomly generated from the uniform distribution U(10,20).
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We run synthetic experiments under different levels of model misspecification γ ∈ {0,1,3,5}. To illustrate
how the link function is skewed, we plot in Figure A5 the histograms of outcome y in (43). The x-axis
represents the experimental outcome y among the population in all 2m treatment combinations with equal
probability. Observe that when γ is large, e.g., γ = 5, the bias from using the sigmoid link function to
approximate the experimental outcome is likely to be large. Because the DGP defined by (43) may be too
restrictive in the sense of ATE representation, further in Appendix D.4.2, we conduct another synthetic
experiment where the true DGP has explicit higher-order interaction terms. The results show that debiasing
through Neyman orthogonality is fairly robust under such model misspecification.

Figure A5 Experimental Outcome of Misspecified Model

Defferring reporting the complete results in Appendix D.4.1, here we emphasize the main insights. We first
plot the comparison between different methods under model misspecification in Figure A4. This comparison
reveals that when the link function is more specified (i.e., larger γ), SDL and DeDL estimators perform
substantially worse, whereas the performances of the LA and LR estimators are relatively stable. Indeed, the
LA and LR estimators face no significant increases in MAPE as γ gets larger. Also, when γ is increased to 5,
DeDL performs worse than SDL, implying that debiasing via Neyman orthogonality hurts the performance
when the link function is not correctly specified.

In practice, however, it is difficult, if not impossible, to verify the true link function. Fortunately, one may
detect link function misspecification through large training errors. In other words, we can resort to checking
the cross-validation errors in the DNN training stage. To shed light on this point, we report the training
errors from our experiments. Specifically, we compare the errors induced by pure DNN without a sigmoid
link function (a three-layer perceptron in our case) and structured DNN (a two-layer perceptron followed by
a link function layer), respectively. Pure DNN takes treatment level t together with covariates x as inputs
to the first linear layer. In contrast, the structured DNN takes only covariates x to the first linear layer and
uses treatment level t in the final link function layer.

For a fair comparison, we set the pure DNN structure with a similar width and depth, i.e., (dx + dt + 1)–
10–ReLU–10–ReLU–10–ReLU–1. Equipped with higher flexibility, pure DNN is generally good at fitting
individual responses in the partially observed treatment combinations. Hence, we can use the pure DNN as a
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benchmark for the in-sample comparison to check whether the link function is reasonable. Adopting the same
Adam algorithm and training samples, we obtain the following 95% CIs of cross-validation mean squared
errors under different misspecification levels: (a) [0.044,0.053], [0.086,0.112], [0.116,0.159], [0.142,0.197] for
pure DNN under γ = 0,1,3,5 respectively; and (b) [0.012,0.014], [0.019,0.026], [0.076,0.106], [0.215,0.279]
for structured DNN under γ = 0,1,3,5 respectively. One can observe that when γ ∈ {0,1,3}, the structured
DNN has a smaller or comparable in-sample loss than the pure DNN, which indicates the reasonable per-
formance of the generalized sigmoid link function to approximate the outcome variable. However, when the
misspecification level γ = 5, the in-sample error from the generalized sigmoid form grows larger than that
of the pure DNN. Correspondingly, in Figure A4, we observe severe performance degradation for both SDL
and DeDL and a significant negative impact from the debiasing term. In this case, we suggest experimenting
with a different link function in the first DNN training stage and/or not using the debiased estimator. More
generally, as long as the in-sample loss of the structured DNN is on par with that of a pure DNN with similar
depth and width, we recommend adopting this structured DNN with debiasing.

D.4.1. Complete Results of the Experiments in Appendix D.4. Table A8 shows the complete
simulation results. Comparing across different panels representing different values of γ, one can observe that
when the link function gets more misspecified, SDL and DeDL estimators get worse under all metrics. While
the MAPE, MSE, and MAE performances of LA and LR are not significantly deteriorated, considering the
increased absolute treatment effects listed in table notes. When the model is not misspecified or marginally
misspecified, i.e., γ ∈ {0,1,3}, SDL and DeDL work no worse than LA in all performance metrics. When γ = 1,
DeDL can only marginally improve the performance of SDL for all metrics. However, when γ is increased to
3, we can observe that DeDL has worse MSE performance than SDL. Even worse, when γ is increased to 5,
DeDL is not better than SDL under all performance metrics. In summary, we still recommend using DeDL
when γ ∈ {0,1,3}.

D.4.2. Experiment on Model Misspecification under Higher-Order Treatment Interactions.
We conduct a new set of synthetic experiments on the model misspecification with explicit higher-order
interaction terms. Specifically, the true data-generating process with all higher-order terms is defined as

yi =θ∗
0(xi) + θ∗

1(xi)t1 + θ∗
2(xi)t2 + θ∗

3(xi)t3 + θ∗
4(xi)t4

+ θ∗
5(xi)t1t2 + θ∗

6(xi)t1t3 + θ∗
7(xi)t1t4 + θ∗

8(xi)t2t3 + θ∗
9(xi)t2t4 + θ∗

10(xi)t3t4

+ θ∗
11(xi)t1t2t3 + θ∗

12(xi)t2t3t4 + θ∗
13(xi)t3t4t1 + θ∗

14(xi)t4t1t2

+ θ∗
15(xi)t1t2t3t4 + ϵi,

(44)

where all parameters θ∗
i (x) = c′

ix (i= 0,1, . . . ,15) are linear in the covariate vector. We generate the coeffi-
cient c∈RdX with independent entries, and each component follows the uniform distribution U(0,0.5). Note
that our proposed Generalized Sigmoid Form II is largely misspecified compared to the above true DGP. We
run synthetic experiments under different levels of model misspecification by incorporating different terms
into the DGP. Specifically, we conduct four different tests. In the first test, we add all terms, i.e., 1st, 2nd,
3rd, and 4th-order interaction terms. In the second test, we only put 1st, 2nd, and 3rd-order terms in the
true DGP. In the third test, we have 1st and 2nd-order terms, while the last test only has linear terms.
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Table A8 Model Misspecification Result

Panel A: Comparison of Different Estimators Under γ = 0
Estimator CDR MAPE MSE MAE BTI

LA 94.78% 20.69% 0.074 0.167 94.5%
(93.80%, 95.76%) (18.30%, 23.08%) (0.056, 0.091) (0.151, 0.182) (91.3%, 97.7%)

LR 97.38% 12.81% 0.043 0.125 94.5%
(96.81%, 97.94%) (11.53%, 14.08%) (0.033, 0.053) (0.112, 0.138) (91.3%, 97.7%)

SDL 97.71% 10.07% 0.014 0.075 96.5%
(97.18%, 98.26%) (8.92%, 11.21%) (0.010, 0.018) (0.068, 0.081) (93.9%, 99.1%)

DeDL 99.28% 3.23% 0.002 0.024 99.0%
(98.99%, 99.57%) (2.68%, 3.78%) (0.001, 0.003) (0.021, 0.027) (97.6%, 100.4%)

Panel B: Comparison of Different Estimators Under γ = 1
Estimator CDR MAPE MSE MAE BTI

LA 95.56% 21.76% 0.091 0.189 87.5%
(94.77%, 96.35%) (19.29%, 24.23%) (0.069, 0.112) (0.171, 0.206) (82.9%, 92.1%)

LR 97.38% 12.85% 0.042 0.124 88.0%
(96.79%, 97.96%) (11.45%, 14.24%) (0.033, 0.052) (0.113, 0.136) (83.5%, 92.5%)

SDL 97.22% 11.55% 0.027 0.100 90.5%
(96.57%, 97.86%) (10.40%, 12.70%) (0.019, 0.035) (0.091, 0.109) (86.4%, 94.6%)

DeDL 98.81% 5.67% 0.014 0.056 92.5%
(98.33%, 99.29%) (4.87%, 6.47%) (0.008, 0.020) (0.049, 0.064) (88.8%, 96.2%)

Panel C: Comparison of Different Estimators Under γ = 3
Estimator CDR MAPE MSE MAE BTI

LA 94.62% 18.07% 0.112 0.210 89.0%
(93.71%, 95.54%) (16.18%, 19.96%) (0.075, 0.148) (0.190, 0.229) (84.6%, 93.4%)

LR 97.09% 12.10% 0.050 0.135 88.0%
(96.46%, 97.73%) (10.77%, 13.43%) (0.036, 0.063) (0.122, 0.149) (83.5%, 92.5%)

SDL 97.00% 15.10% 0.123 0.199 90.5%
(96.33%, 97.67%) (13.54%, 16.66%) (0.088, 0.159) (0.180, 0.218) (86.4%, 94.6%)

DeDL 97.50% 13.44% 0.151 0.181 92.5%
(96.77%, 98.22%) (10.87%, 16.00%) (0.096, 0.207) (0.156, 0.207) (88.8%, 96.2%)

Panel D: Comparison of Different Estimators Under γ = 5
Estimator CDR MAPE MSE MAE BTI

LA 95.34% 19.93% 0.155 0.263 88.0%
(94.47%, 96.22%) (17.12%, 22.74%) (0.125, 0.185) (0.241, 0.285) (83.5%, 92.5%)

LR 96.97% 12.05% 0.077 0.170 92.5%
(96.21%, 97.73%) (10.28%, 13.81%) (0.053, 0.102) (0.153, 0.187) (88.8%, 96.2%)

SDL 95.90% 17.24% 0.241 0.277 88.5%
(95.09%, 96.72%) (15.21%, 19.26%) (0.183, 0.299) (0.251, 0.304) (84.0%, 93.0%)

DeDL 95.46% 23.20% 0.559 0.333 84.5%
(94.43%, 96.50%) (18.31%, 28.09%) (0.375, 0.743) (0.284, 0.381) (79.4%, 89.6%)

Notes: All simulations are replicated 200 times, with 95% CIs reported in parentheses. 95% CIs of average absolute treatment
effects are (1.45, 1.65), (1.52, 1.72), (2.06, 2.36), and (2.71, 3.07) respectively in Panel A, Panel B, Panel C, and Panel D.

The complete result are reported in Table A9, where each panel shows a test result with different terms

in the DGP as defined above. Because there are no significant differences in the performance metrics BTI

and CDR, we only document the MAPE, MSE, and MAE measures. One can observe that DeDL performs

best when there exist interactions among the treatment effects of different experiments; see Panel A, B, and

C in Table A9. It means that even the link function is misspecified, DeDL can still capture some level of

interactions and make a relatively accurate estimation. Comparing DeDL and SDL, Table A9 shows that



Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
32

DeDL improves the performance over SDL as long as higher-order interaction terms are incorporated. Even

if the DGP is linear (i.e., Panel D), the performance of DeDL is on par with that of SDL, suggesting that

debiasing with Neyman orthogonality is fairly robust under model misspecification.

Table A9 Model Misspecification Result with Explicit Individual-Level Higher Order Terms

Panel A: Comparison of Different Estimators Under 1st, 2nd, 3rd, 4th - Order Terms
Estimator MAPE MSE MAE

LA 34.06% 18.732 2.582
(33.77%, 34.35 %) (18.426, 19.038) (2.559, 2.604)

LR 29.30% 12.225 1.883
(28.98%, 29.63 %) (11.967, 12.482) (1.860, 1.907)

SDL 21.78% 11.453 1.671
(21.41%, 22.14 %) (11.168, 11.739) (1.646, 1.696)

DeDL 15.15% 8.013 1.310
(14.80%, 15.50%) (7.706, 8.321) (1.277, 1.343)

Panel B: Comparison of Different Estimators Under 1st, 2nd, 3rd - Order Terms
Estimator MAPE MSE MAE

LA 33.65% 16.560 2.493
(33.35%, 33.96 %) (16.297, 16.824) (2.472, 2.514)

LR 28.81% 10.437 1.802
(28.49%, 29.14 %) (10.246, 10.629) (1.784, 1.821)

SDL 21.51% 9.653 1.591
(21.17%, 21.85 %) (9.437, 9.870) (1.571, 1.611)

DeDL 14.88% 6.476 1.230
(14.56%, 15.19%) (6.216, 6.736) (1.200, 1.260)

Panel C: Comparison of Different Estimators Under Under 1st, 2nd - Order Terms
Estimator MAPE MSE MAE

LA 31.04% 7.659 1.874
(30.74%, 31.33 %) (7.485, 7.833) (1.853, 1.896)

LR 25.09% 3.466 1.166
(24.80%, 25.39 %) (3.362, 3.570) (1.146, 1.185)

SDL 17.32% 2.903 0.948
(16.99%, 17.64 %) (2.786, 3.019) (0.927, 0.968)

DeDL 10.07% 1.328 0.591
(9.74%, 10.40%) (1.223, 1.433) (0.565, 0.617)

Panel D: Comparison of Different Estimators Under Under 1st - Order Terms
Estimator MAPE MSE MAE

LA 1.56% 0.002 0.036
(1.45%, 1.67 %) (0.002, 0.003) (0.034, 0.039)

LR 0.75% 0.001 0.018
(0.68%, 0.82 %) (0.001, 0.001) (0.017, 0.020)

SDL 6.32% 0.157 0.215
(6.08%, 6.55 %) (0.145, 0.169) (0.206, 0.224)

DeDL 6.67% 0.220 0.212
(6.41%, 6.92%) (0.210, 0.231) (0.195, 0.230)

Notes: All simulations are replicated 200 times, with 95% CIs reported in parentheses. 95% CIs of average absolute treatment
effects are (5.03, 5.10), (4.97, 5.04), (4.34, 4.41), and (2.48, 2.55) respectively in Panel A, Panel B, Panel C, and Panel D.
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D.5. Imbalanced Covariates

This set of simulations investigates a practical setting where the observed X distribution deviates from
the population. We call this setting imbalanced covariates, i.e., X covariates are imbalanced between any
treatment level t ∈ {0,1}m and population X distribution. The imbalanced covariates affect both training
and inference stages, invalidating the DeDL estimators. Below, we discuss how to rebalance the covariates to
get precise and trustworthy ATE estimates.

We adopt exactly the same simulation setup to Appendix D.3 except that the observed covariates follow
a different distribution. Specifically, the last dimension of x follows the exponential distribution with rate
λ ∈ {2.0,1.0,0.5} instead of the uniform distribution U(0,1). The ground truth ATEs are still calculated
using the uniform distributed x. Although this setup is relatively simple because the observed covariates
uniformly deviate from the true distribution across all treatment combinations while in practice the observed
covariates x may even follow different distributions under different t, this simulation result still demonstrates
the importance of rebalancing covariates.

To reconcile the imbalanced covariates, one can do stratified sampling on sampled units to match the
covariate distribution over the population, as we implement in our empirical study. There are also many
re-randomization techniques to improve covariate balance in experiments. We refer interested readers to
Morgan and Rubin (2012) and Li et al. (2020).

In this simulation study, to keep the discussion simple, we use the same stratified sampling procedure in our
empirical study. Specifically, we focus on the imbalanced covariate dimension with exponential distribution.
First, we do stratified sampling to keep only the data with x in the support [0,1]dX . Then we do stratified
sampling to make sure the imbalanced dimension of x is rebalanced in the sense that the sample sizes in
[0,1]dX−1 × [0,0.5) and [0,1]dX−1 × [0.5,1] are the same. Through stratified sampling, we may discard some
samples but sacrifice efficiency. We also conducted the stratified sampling with higher accuracy, e.g., the
numbers of samples in five buckets with 0.2 bandwidth are the same.

We report the MAEs for different estimators with balanced and imbalanced covariates in Figure A6(a) and
(b), respectively. Using the imbalanced covariates for both training and inference, Figure A6(a) reports the
comparison results. (We present the complete results in Table A10.) After the stratified sampling, we use the
rebalanced covariates for both training and inference; we show the result in Figure A6(b). λ∈ {2.0,1.0,0.5}

indicates the growing imbalance level. The key observation is that when the data is too imbalanced with
λ∈ {1.0,0.5}, DeDL is not precise. After the stratified sampling, debiasing is still trustworthy, reducing MAE
compared to SDL.
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(a) (b)
Figure A6 MAE Comparison Among Estimators Under the Imbalanced Covariates Setting. Panel (a) shows the
performance of LA,LR,SDL, and DeDL before rebalancing. Panel (b) presents the performance after rebalancing.
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Table A10 Imbalanced Covariates Result

Estimator CRD MAPE MSE MAE BTI
Panel A: Comparison of Different Estimators Under λ = 2.0

Before Covariates Rebalancing

LA 91.22% 32.03% 0.104 0.215 87.5%
(89.99%, 92.45%) (28.21%, 35.85%) (0.081, 0.127) (0.197, 0.233) (82.9%, 92.1%)

LR 96.00% 18.92% 0.047 0.136 91.0%
(95.32%, 96.68%) (16.87%, 20.97%) (0.036, 0.059) (0.123, 0.149) (87.0%, 95.0%)

SDL 96.12% 15.84% 0.024 0.101 95.0%
(95.42%, 96.83%) (14.09%, 17.60%) (0.018, 0.031) (0.093, 0.109) (92.0%, 98.0%)

DeDL 96.44% 11.10% 0.007 0.061 95.0%
(95.74%, 97.13%) (9.71%, 12.48%) (0.006, 0.008) (0.057, 0.065) (92.0%, 98.0%)

After Covariates Rebalancing

LA 93.94% 27.24% 0.102 0.193 92.0%
(92.85%, 95.02%) (23.10%, 31.38%) (0.074, 0.129) (0.173, 0.212) (88.2%, 95.8%)

LR 96.44% 18.36% 0.044 0.128 93.5%
(95.75%, 97.13%) (15.69%, 21.03%) (0.033, 0.056) (0.116, 0.141) (90.1%, 96.9%)

SDL 96.62% 14.47% 0.019 0.092 96.0%
(95.95%, 97.30%) (12.66%, 16.28%) (0.015, 0.023) (0.085, 0.099) (93.3%, 98.7%)

DeDL 97.66% 7.86% 0.006 0.049 98.0%
(97.11%, 98.20%) (6.66%, 9.05%) (0.004, 0.007) (0.045, 0.053) (96.0%, 100.0%)

Panel B: Comparison of Different Estimators Under λ = 1.0
Before Covariates Rebalancing

LA 87.84% 82.23% 0.519 0.534 71.5%
(86.47%, 89.21%) (73.27%, 91.18%) (0.445, 0.593) (0.497, 0.571) (65.2%, 77.8%)

LR 90.44% 70.13% 0.371 0.455 72.0%
(89.36%, 91.51%) (62.66%, 77.60%) (0.321, 0.420) (0.426, 0.485) (65.7%, 78.3%)

SDL 90.53% 71.28% 0.304 0.419 76.0%
(89.41%, 91.66%) (63.36%, 79.20%) (0.260, 0.348) (0.391, 0.447) (70.0%, 82.0%)

DeDL 90.59% 68.73% 0.291 0.408 75.5%
(89.51%, 91.68%) (61.16%, 76.30%) (0.248, 0.334) (0.380, 0.436) (69.5%, 81.5%)

After Covariates Rebalancing

LA 91.44% 32.66% 0.109 0.218 88.0%
(90.29%, 92.58%) (28.67%, 36.66%) (0.086, 0.133) (0.199, 0.236) (83.5%, 92.5%)

LR 95.84% 20.03% 0.056 0.138 94.5%
(95.17%, 96.52%) (16.01%, 24.04%) (0.036, 0.076) (0.124, 0.152) (91.3%, 97.7%)

SDL 96.00% 15.04% 0.027 0.099 96.0%
(95.23%, 96.77%) (12.57%, 17.51%) (0.018, 0.036) (0.089, 0.108) (93.3%, 98.7%)

DeDL 96.47% 9.16% 0.008 0.053 96.0%
(95.84%, 97.10%) (7.23%, 11.08%) (0.004, 0.012) (0.047, 0.058) (93.3%, 98.7%)

Panel C: Comparison of Different Estimators Under λ = 0.5
Before Covariates Rebalancing

LA 78.41% 186.87% 2.644 1.223 43.5%
(76.31%, 80.51%) (167.63%, 206.10%) (2.289, 2.999) (1.141, 1.304) (36.6%, 50.4%)

LR 80.84% 167.21% 2.097 1.084 47.0%
(78.92%, 82.77%) (150.48%, 183.94%) (1.811, 2.383) (1.012, 1.156) (40.0%, 54.0%)

SDL 81.50% 162.02% 1.737 0.996 51.0%
(79.51%, 83.49%) (144.89%, 179.15%) (1.503, 1.972) (0.930, 1.062) (44.0%, 58.0%)

DeDL 81.34% 163.63% 1.767 1.003 51.5%
(79.36%, 83.33%) (146.21%, 181.06%) (1.528, 2.005) (0.936, 1.070) (44.5%, 58.5%)

After Covariates Rebalancing

LA 88.78% 42.56% 0.158 0.273 84.0%
(87.40%, 90.17%) (37.80%, 47.32%) (0.126, 0.191) (0.248, 0.297) (78.9%, 89.1%)

LR 94.78% 22.60% 0.055 0.155 88.5%
(93.85%, 95.72%) (20.11%, 25.09%) (0.045, 0.065) (0.142, 0.168) (84.0%, 93.0%)

SDL 94.41% 19.69% 0.026 0.112 92.0%
(93.49%, 95.32%) (17.41%, 21.97%) (0.022, 0.030) (0.104, 0.121) (88.2%, 95.8%)

DeDL 94.75% 9.27% 0.005 0.053 93.5%
(93.87%, 95.63%) (8.32%, 10.21%) (0.005, 0.006) (0.050, 0.057) (90.1%, 96.9%)

Notes: All simulations are replicated 200 times, with 95% CIs reported in parentheses. 95% CIs of average absolute treatment
effects are (1.45, 1.65).
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