
Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
1

Online Appendices

Deep-Learning-Based Causal Inference for Large-Scale Combinatorial Experiments

By Zikun Ye, Zhiqi Zhang, Dennis J. Zhang, Heng Zhang, Renyu Zhang

Appendix A: Technical Details

A.1. Proof of Theorem 1

Our proof is inspired by the analysis of universal approximation bounds of neural networks (e.g., Kushilevitz

and Mansour 1991). At its core are the Fourier transformations of functions. Utilizing such transformations

in our context, we develop a compact representation of the ATE as Boolean functions that allow us to connect

to our Generalized Sigmoid Form II. The proof contains four steps. First, we give the Fourier representation

of the function f(t). Second, we rewrite the Fourier formula using indicator functions. Third, to remove

the integral and obtain a finite population bound, we use a probabilistic method. Last, we approximate the

indicator functions with our sigmoid link function.

Step 1 (Fourier representation). We first give the Fourier transformation of Boolean functions (e.g.,

Kushilevitz and Mansour 1991): For f(·) : {0,1}
m

→↑R, we always have

f(t) =
∑

w→{0,1}m

f̂(w)ωw(t), where f̂(w) := 1
2m

∑

t→{0,1}m

f(t)ωw(t),

where

ωw(t) =
{

1 , if
∑m

i=1 witi mod 2 = 0
↓1 , if

∑m
i=1 witi mod 2 = 1.

Note that this implies

f(t) =
∑

w→{0,1}m

f̂(w)ωw(t) =
∑

w→{0,1}m

∣∣∣f̂(w)
∣∣∣ cos (εw↑t+ ϑ(w))

where ϑ(w) = ε {f̂(w) < 0}.

Step 2 (Expansion with indicator functions). In the next, we expand the ATE, i.e., f(t) ↓ f(0),

using integrals and indicator functions.

f(t) ↓ f(0)

=
∑

w→{0,1}m

∣∣∣f̂(w)
∣∣∣ cos (εw↑t+ ϑ(w)) ↓ cos (ϑ(w))

=
∑

w→{0,1}m

∣∣∣f̂(w)
∣∣∣ ·

[
↓ε

∫ w→t

0
sin (εz + ϑ(w))dz

]

=
∑

w→{0,1}m

∣∣∣f̂(w)
∣∣∣ ·

[
↓ ε

∫ ↓
m↔w↔

0
(w↑t↓ z ↔ 0) sin (εz + ϑ(w))dz + ε

∫ 0

↗
↓

m↔w↔
(w↑t↓ z ↗ 0) sin (εz + ϑ(w))dz

]
,

(7)

where the last equality follows from the elementary inequality |w↑t| ↗
↘

m≃w≃.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
2

Step 3 (Sampling). Define Cf,m :=
∑

w→{0,1}m

∣∣∣f̂(w)
∣∣∣
↘

m≃w≃. We use random sampling to remove the
integrals in the ATE representation. Particularly, for each ϖ = 1, . . . ,K, we sample (wω, zω) ⇐ Rm

⇒ R in an
i.i.d fashion as follows:

(wω, zω) =






(0,0), with probability 1
3 ,

{0,1}
m

⇒ (0,m≃w≃], with probability density |f̂(w)|
3Cf,m

,

{0,1}
m

⇒ [↓m≃w≃,0), with probability density |f̂(w)|
3Cf,m

.

Also, define the function

g(w, z; t) :=






3f(0) (0↑t+ 0 ↔ 0), if (w, z) = 0,

↓3εCf,m sin (εz + ϑ(w)) (w↑t↓ z ↔ 0), if (w, z) ⇐ {0,1}
m

⇒ (0,
↘

m≃w≃],
3εCf,m sin (εz + ϑ(w)) (↓w↑t+ z ↔ 0), if (w, z) ⇐ {0,1}

m
⇒ [↓

↘
m≃w≃,0).

Note that in the above we write f(0) = f(0) (0↑t+ 0 ↔ 0) for reasons that will be clear very soon. In view
of (7), we notice that for any ϖ = 1, . . . ,K and t⇐ {0,1}

m, E(wω,zω)[g(wω, zω; t)] = f(t). This implies that

E{(wω,zω)}K
ω=1




∑

t→{0,1}m

(
f(t) ↓

K∑

ω=1
p(ϖ)g(wω, zω; t)

)2

 = 1
K

∑

t→{0,1}m

Var(w1,z1)[g(w1, z1; t)]

↗
1
K

∑

t→{0,1}m

E(w1,z1)[g(w1, z1; t)2] ↗
9 · 2m

K
f2(0) ⇑ C2

f,m,

where the first equality and the first inequality follow from straightforward computation, and the second
inequality follows from the definition of g(·, ·; ·). Therefore, there exists {(w̃ω, z̃ω) : ϖ = 1, . . .K} where each
(w̃ω, z̃ω) is in the support of the random sampling distribution defined above such that

1
2m

∑

t→{0,1}m

(
f(t) ↓

1
K

K∑

ω=1
g(w̃ω, z̃ω; t)

)2

↗
9
K

f2(0) ⇑ C2
f,m.

Step 4 (Approximation with sigmoid functions). Note that regardless of the value of (w, z), g(w, z; t)
can be written in the form g1(w, z) (ω(w)↑t + ϱ(z) ↔ 0), where g1(w, z), ω(w) and ϱ(z) are some functions
of w and z. Further, such functions as g1(w, z) (ω(w)↑t + ϱ(z) ↔ 0) can be well-approximated by scaled
sigmoid functions. Indeed, 1

1+e↑εz ↑ (z ↔ 0) pointwise except for z = 0, when ς ↑ ⇓. Thus, for any ϖ =
1, . . . ,m,

• if (w̃ω, z̃ω) = 0, set φ0(xω) = ς, φ1(xω) = · · · = φm(xω) = 0, and φm+1(xω) = 3Kp(ϖ)f(0);
• if (w̃ω, z̃ω) ⇐ {0,1}

m
⇒ (0,

↘
m≃w̃≃], set φ0(xω) = ↓ςz̃ω, φj(xω) = ςw̃ω,j for j = 1, . . . ,m, and φm+1(xω) =

↓3εKp(ϖ)Cf,m sin (εz̃ω + ϑ(w̃ω));
• and if (w̃ω, z̃ω) ⇐ {0,1}

m
⇒ [↓

↘
m≃w̃≃,0), set φ0(w̃ω) = ςz̃ω, φj(xω) = ↓ςw̃ω,j for j = 1, . . . ,m, and

φm+1(xi) = 3εKp(ϖ)Cf,m sin (εz̃ω + ϑ(w̃ω)).
Here we set ς large enough so that∣∣∣∣p(ϖ)G(ε(xω), t) ↓

1
K

g(w̃ω, z̃ω; t)
∣∣∣∣ ↗

1
K

,

uniformly over all ϖ = 1, . . . ,K and t⇐ {0,1}
m. Thus,

1
2m

∑

t→{0,1}m

(
f(t) ↓

K∑

ω=1
p(ϖ)G(ε(xi), t)

)2

↗
2

2m

∑

t→{0,1}m

(
f(t) ↓

1
K

K∑

ω=1
g(w̃ω, z̃ω; t)

)2

+ 2K

2m

∑

t→{0,1}m

K∑

ω=1


1
K

g(w̃ω, z̃ω; t) ↓ p(ϖ)G(ε(xω), t)
2

↭ 1
K

(f2(0) ⇑ C2
f,m + 1) ↭ 1

K
,

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
3

where the first inequality follows from repeated applications of the Young’s inequality. We conclude the
proof. ↫

A.2. Regularity Assumptions

We make the following regularity assumption throughout the theoretical analysis of this paper.

Assumption 3. (a). zi = (yi,x↘
i, ť

↘
i)↘

, 1 ↗ i ↗ n, are i.i.d. copies from the population random variables

Z = (Y,X ↘,T ↘)↘
⇐ Y ⇒ [↓1,1]dX ⇒ {0,1}

m
, where Y is the bounded support of the outcome Y .

(b). The parameter function ε≃(x) is uniformly bounded. Furthermore, φ≃
k(x) ⇐ W p,⇐([↓1,1]dX), k =

1,2, . . . , dω, where for positive integers p, define the Sobolev ball W p,⇐([↓1,1]dX) of functions h :RdX →↑

R with smoothness p ⇐N+ as,

W p,⇐([↓1,1]dX) :=


h : max
r,|r|<p

ess sup
v→[↗1,1]dX

|Drh(v)| ↗ 1


,

where r = (r1, . . . , rdX
), |r| = r1 + · · · + rdX

and Drh is the weak derivative.

We remark that Assumption 3(a) implies that the DGP is bounded, whereas Assumption 3(b) ensures
that the ground-truth parameter functions are uniformly bounded, and enjoy su!cient smoothness so they
can be accurately approximated by DNNs. The smoothness assumptions (see, also, Assumption 2 in Farrell
et al. 2020) are critical to deriving the su!ciently fast convergence rate of the estimator ε̂(·).

We also make the following assumption throughout our analysis to ensure the identifiability and su!cient
convergence rate of our model. Let t(S) = (t1(S), . . . , tm(S))↘

⇐ {0,1}
m denote the treatment assignment such

that ti(S) = 1{i ⇐ S}, where S ⇔ {1,2, . . . ,m}, and define T̃ := (1,T ↘)↘ and t̃ := (1, t↘)↘. Let ↼min(·) denote
the minimum eigenvalue of a symmetric matrix

Assumption 4. Any of the following conditions hold:

(a) G(·, ·) is of the Multiplicative Form, ↼min(E[T̃ T̃ ↘
|X]) and |φ≃

0(X)| are uniformly bounded away from

zero;

(b) G(·, ·) is of the Standard Sigmoid Form, ↼min(E[T̃ T̃ ↘
|X]) is uniformly bounded away from zero;

(c) G(·, ·) is of the Generalized Sigmoid Form I, ↼min(E[TT ↘
|X]), |φ≃

m+1(X)|, and ↽(t(↖)|X) are uniformly

bounded away from zero;

(d) G(·, ·) is of the Generalized Sigmoid Form II, ↼min(E[T̃ T̃ ↘
|X]) and |φ≃

m+1(x)| are uniformly bounded

away from zero, and there exists a triplet (i,S1, S2) (i ⇐ {1, . . . ,m}, S1, S2 ⇔ {1,2, . . . ,m}) such that i /⇐

S1, i /⇐ S2, S1 ↙= S2, and ↽(t(S1 ∝{i})|X) ·↽(t(S1)|X) ·↽(t(S2 ∝{i})|X) ·↽(t(S2)|X) and |G(ε≃(X), t(S1 ∝

{i}))G(ε≃(X), t(S2)) ↓ G(ε≃(X), t(S2 ∝ {i}))G(ε≃(X), t(S1))| are both uniformly bounded away from

zero.

Technically, we require that these conditions are satisfied uniformly on a set with probability one.
For simplicity, we skip almost everywhere in these statements. Also, the assumptions ↼min(E[T̃ T̃ ↘

|X]) or
↼min(E[TT ↘

|X]) being uniformly bounded above zero is satisfied as long as all m individual treatment con-
ditions and the full control condition are assigned with positive probability, i.e., ↽((0,0, . . . ,0)↘

|x) > c and
↽((1,0, . . . ,0)↘

|x), ↽((0,1, . . . ,0)↘
|x), . . . , ↽((0,0, . . . ,1)↘

|x) > c, for some c > 0 almost everywhere, which is a
fairly mild assumption. Therefore, these conditions state that !(m) treatment assignments are necessary.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
4

At a high level, we indeed can extend our framework to cases with higher-order interactions between indi-
vidual treatments, and Theorem 2 remains valid. However, the number of observable treatment combinations
must increase. For instance, to ensure the valid identification and inference for the model with quadratic
interactions mentioned above, one will need !(m2) treatment combinations assigned with a positive proba-
bility. Following the same inference framework, we notice that the key is to guarantee the identifiability of
the model and the su!cient curvature condition in the presence of higher-order interactions.

Let us first consider the case where all second-order treatment interactions are included in the link func-
tion. In this regard, upon inspection of the proof for the Multiplicative Form, Standard Sigmoid Form, and
Generalized Sigmoid Form I, we note that only mild modifications of the assumptions on the data generation
process ensure the validity of our results. More specifically, one only needs to redefine T̃ = (1,T ↘, T̄ ↘)↘ where
T̄ = (TiTj : ′i < j, 1 ↗ i, j ↗ m). That is, we extend the definition of T̃ to include all quadratic interac-
tions. Then, all analyses of the Multiplicative Form and Standard Sigmoid Form go through unchanged.
Particularly, we notice that in this case T̃ is of dimension ”(m2), so to ensure that the minimum eigenvalue
of E[T̃ T̃ ↘

|X] is uniformly bounded from below above zero, the support of treatment assignment distribu-
tion should have cardinality of order !(m2). This is in sharp contrast with our results with linear terms
only, which only requires !(m) treatment combinations with positive probability, highlighting the price for
modeling the higher-order treatment interactions and estimating the associated nuisance parameters.

With the Generalized Sigmoid Form II, the analysis is more involved. Consider the following link function

G(ε(x), t) = φm+1(x)
1 + exp(↓(φ0(x) +

∑m
i=1 φi(x)ti +

∑
i<j φij(x)titj)

.

As discussed above, we need the minimum eigenvalue of E[T̃ T̃ ↘
|X] is uniformly bounded from below above

zero. Moreover, to estimate φm+1(x), fix any i, j with 1 ↗ i < j ↗ m and consider S and S̃ such that (1)
i, j /⇐ S, S̃, (2) S ↙= S̃, and (3)

8
k=1 ↽(t(Sk)|X) ↔ c̃1 > 0 for some positive c̃1, where S1 = S, S2 = S ∝ {i},

S3 = S ∝ {j}, S4 = S ∝ {i, j}, S5 = S̃, S6 = S̃ ∝ {i}, S7 = S̃ ∝ {j}, S8 = S̃ ∝ {i, j}. Then it follows that


εm+1(X)
G(ω(X),t(S1)) ↓ 1


εm+1(X)

G(ω(X),t(S4)) ↓ 1



εm+1(X)

G(ω(X),t(S2)) ↓ 1


εm+1(X)
G(ω(X),t(S3)) ↓ 1

 = exp(↓(φi(X) + φj(X) + φij(X))) (8)

and


εm+1(X)
G(ω(X),t(S5)) ↓ 1


εm+1(X)

G(ω(X),t(S8)) ↓ 1



εm+1(X)

G(ω(X),t(S6)) ↓ 1


εm+1(X)
G(ω(X),t(S7)) ↓ 1

 = exp(↓(φi(X) + φj(X) + φij(X))). (9)

Under the assumption that φm+1(X) ↙= 0, putting Eqns (8) and (9) together allows us to cancel out the term
exp(↓(φi(X)+φj(X)+φij(X))) and build a cubic equation of φm+1(X) with the products of G(ε(X), t(Si))
(i = 1, . . . ,8) as the coe!cients. This cubic equation admits at most 3 real solutions. As long as there are 3
such (i, j) pairs (and the correspondingly sets S and S̃), we can uniquely identify φm+1(X). Therefore, we
need !(m2) treatment combinations with positive probability in the treatment assignment mechanism to
ensure identification.

The argument above aligns with our analysis of the identification condition for Generalized Sigmoid Form II

detailed in Appendix A.3, yet it becomes significantly more complex in the presence of second-order treatment

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
5

interactions. More generally, with higher-order interactions, we can establish equations similar to (8) and
(9) to formulate primitive conditions for identifying φm+1(X), which makes the identification condition
more restrictive and practically infeasible. Consequently, carefully trading o" the generality, tractability, and
practicality of our framework, we have decided to focus on the Generalized Sigmoid Form II link function.

A.3. Influence Function

The following lemma from Farrell et al. (2020) formally states a generic result regarding the influence function,
which proves useful to derive the influence function in our setting (Proposition 2). The proof follows the
pathwise derivative method originated in Newey (1994).

Lemma 1 (Theorem 2 in Farrell et al. (2020)). For all t⇐ {0,1}
m

, suppose the following conditions

hold uniformly in the given conditioning elements. (i) (1) holds and identifies ε≃(·). (ii) E[ϖω(Y, ť,ε≃(x))|X =
x,T = ť] = 0. (iii) !(x) := E[ϖωω(Y,T ,ε(x))|X = x] is invertible with uniformly bounded inverse. (iv) Pa-

rameter µ(t) is identified, pathwise di!erentiable, and H and ϖ are thrice continuously di!erentiable in ε. (v)

H(X,ε≃(X), t, t0) and ϖω(Y,T ,ε≃(X)) possess q > 4 finite absolute moments and positive variance. Then

for the treatment e!ect µ(t), the Neyman orthogonal score is ⇀(z,ε,!; t, t0) ↓ µ(t), where

⇀(z,ε,!; t, t0) = H(x,ε(x); t, t0) ↓ Hω(x,ε(x); t, t0)↘!(x)↗1ϖω(y, ť,ε(x)), (10)

where ϖω,Hω are dω-dimensional vectors of first order derivatives, and ϖωω is the dω ⇒ dω Hessian matrix of

ϖ, with {k1, k2} element defined by ⇁2ϖ/⇁φk1⇁φk2 .

A.4. Proof of Proposition 1

We first present without proof a key convergence result inherited from Farrell et al. (2020).

Lemma 2 (Theorem 1 in Farrell et al. (2020)). Suppose Assumption 3, and the following regularity

assumptions hold,

(a). (Nonparametric Identifiability) The arameter function ε≃(x) can be nonparametrically identified

in DGP (1).
(b). (Lipschitz Continuity) There exists a positive constant Cω such that, for any ε(·), ε̃(·) and x,

| ϖ(y, t,ε(x)) ↓ ϖ(y, t, ε̃(x))| ↗ Cω≃ε(x) ↓ ε̃(x)≃2, (11)

(c). (Sufficient Curvature) There exist positive constants c1 and c2 such that, for any ε(·) ⇐ FDNN ,

c1E[≃ε(X) ↓ε≃(X)≃2
2] ↗E[ϖ(Y,T ,ε(X))] ↓E[ϖ(Y,T ,ε≃(X))] ↗ c2E[≃ε(X) ↓ε≃(X)≃2

2]. (12)

With the structured DNN of width H = O(n
dX

2(p+dX) log2 n) and depth L = O(log n) as illustrated in Figure

3, there exists a constant C such that

≃ε̂k ↓ε≃
k≃

2
L2(X) ↭ n↗ p

p+dX log8 n + log log n

n

and

En


(ε̂k ↓ε≃

k)2
↭ n↗ p

p+dX log8 n + log log n

n

for n large enough with probability at least 1 ↓ exp(n↗ dX
p+dX log8 n), for k = 1, . . . , dω.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
6

Assumptions in Lemma 2 are natural and common in the nonparametric M-estimation literature, which
consists of three parts: (a) the nonparametric identifiability of ε≃(·), (b) the Lipschitz continuity of loss
(i.e., (11)), and (c) the su!cient curvature of loss (i.e., (12)). Whereas the Lipschitz continuity condition is
mild and easy to check in our setting, the identifiability of ε≃(·) and the su!cient curvature condition are
non-trivial and should be verified carefully. In particular, the su!cient curvature condition (12) is usually
implied by a proper choice of the link function G(·, ·) and the treatment assignment mechanism ↽(· | ·). This
condition helps translate the convergence of outcomes Y into that of parameter functions ε(·).

To obtain the convergence results in Proposition 1, it su!ces to verify the assumptions in Lemma 2 are
satisfied. The Lipschitz condition in Assumption (b) can be easily satisfied by for all our proposed link
functions in Section 3.3 because all G functions are su!ciently smooth with bounded X, T , and ε. Since the
square loss function and our link functions are di"erentiable, the second inequality in the curvature condition
is satisfied for all of our link functions. In particular, we note the identity

E[ϖ(Y,T ,ε(X))] ↓E[ϖ(Y,T ,ε≃(X))] =E

(G(ε(X),T) ↓ G(ε≃(X),T))2


(13)

by DGP (1), which then implies by the mean value theorem

E[ϖ(Y,T ,ε(X))] ↓E[ϖ(Y,T ,ε≃(X))] =E[(ε(X) ↓ε≃(X))↘Gω(ε̃(X),T)Gω(ε̃(X),T)↘(ε(X) ↓ε≃(X))],
(14)

where ε̃(X) is such that φ̃i(X) ⇐ [φ≃
i (X),φi(X)] for all component i. Since all variables are bounded,

Gω(ε̃(X),T)Gω(ε̃(X),T)↘ is also uniformly bounded and the claim follows.
Consequently, it su!ces to verify the nonparametric identifiability and the first inequality in the curvature

condition in Lemma 2 for di"erent forms of G functions to guarantee the convergence of structured DNNs.
To simplify the notation, we define the one-dimension sigmoid function as S(x) := 1/(1 + exp(↓x)). In the
following, we prove that, for each proposed link functions in Assumption 1, the conditions of Lemma 2 hold.
We also remark that the constants may be di"erent for di"erent forms of the link function.

Standard Sigmoid Form. In this part, we start with the standard sigmoid form,

G(ε(x), t) := a

1 + exp


↓ (φ0(x) + φ1(x)t1 + · · · + φm(x)tm)
 + b, (15)

where the constants a ↙= 0, b are known.
Proof. Because the sigmoid function is invertible, it su!ces to verify the identifiability and su!cient

curvature conditions for the linear link function ε(x)↘t̃. Suppose E[Y |X =x,T = t] = G(ε̂(x)↘t̃) = G(ε≃(x)↘t̃).
Next, we show ε≃(·) can be nonparametrically identified, i.e., ε̂(X) = ε≃(X). For all t̃, we have,

0 = ε̂(X)↘t̃↓ε≃(X)↘t̃= (ε̂(X) ↓ε≃(X))↘t̃,

which implies,

0 =E[((ε̂(X) ↓ε≃(X))↘T̃)2
|X] = (ε̂(X) ↓ε≃(X))↘E[T̃ T̃ ↘

|X](ε̂(X) ↓ε≃(X)).

Because E[T̃ T̃ ↘
|X] is positive definite uniformly with respect to X, it must hold that ε̂(X) ↓ ε̃(X) = 0

almost everywhere, which concludes the proof of identifiability.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
7

We show that the first inequality in the su!cient curvature condition is satisfied. Similar to (14), it holds

that

E[ϖ(Y,T ,ε(X))] ↓E[ϖ(Y,T ,ε≃(X))] = E


(ε(X) ↓ε≃(X))↘T̃
2

· S2(w(X, T̃))

1 ↓ S(w(X, T̃))

2
(16)

↔ c̃1E


(ε(X) ↓ε≃(X))↘T̃
2

(17)

where w(X, T̃) is some function such that w(X, T̃) ⇐ [ε≃(X)↘T̃ , ε(X)↘T̃] and the inequality follows since

all of the variables are bounded. Then, under the assumption E[T̃ T̃ ↘
|X] is uniformly bounded away from

zero and following the law of total expectation, we derive that,

EX,T


((ε(X)↘T̃ ↓ε≃(X)↘T̃)2

= a2EX [((ε(X) ↓ε≃(X))↘E[T̃ T̃ ↘
|X](ε(X) ↓ε≃(X))]

↔ c̃2EX [(ε(X) ↓ε≃(X))↘(ε(X) ↓ε≃(X))],

for some c̃2 > 0, which concludes the proof of su!cient curvature, i.e.,

E[ϖ(Y,T ,ε(X))] ↓E[ϖ(Y,T ,ε≃(X))] ↔ c̃1c̃2EX [(ε(X) ↓ε≃(X))↘(ε(X) ↓ε≃(X))] (18)

This concludes the proof. ↫

Multiplicative Form. Consider the link function

G(ε(x), t) = φ0(x)

1 + φ1(x)t1


. . .


1 + φm(x)tm


, (19)

where µ ↗ 1 + φk(x) ↗ M, k = 1, . . . ,m, uniformly in x by assumption.

Proof. For simplicity of the proof, let us assume throughout φ0(x) > 0 for x almost everywhere. Other

cases can be proved similarly. These conditions guarantee that log

G(ε(x), t)


is well-defined. The proof of

nonparametric identifiability and the curvature conditions can be verified as shown in the following:

log G = log φ0(x)(1 + φ1(x)t1) . . . (1 + φm(x)tm)

= log φ0(x) + log(1 + φ1(x)t1) + · · · + log(1 + φm(x)tm)

= log φ0(x) + log(1 + φ1(x))t1 + · · · + log(1 + φm(x))tm),

where the last equality follows from that ti = 0,1 for all i = 1,2, ...,m. Hence, the Multiplicative Form is

equivalent to G(ε(x), t) = exp(a(x) + b1(x)t1 + · · · + bm(x)tm), with a(x) = log φ0(x), and bk(x) = log(1 +

φk(x)). Because the exponential function is monotone and smooth, to satisfy the identification and su!cient

curvature condition, we only need that E[T̃ T̃ ↘
|X =x] are invertible uniformly in x, where T̃ ↘ = (1,T ↘), i.e.,

Assumption 4(a). The proof follows from the same argument as the Standard Sigmoid Form. ↫

Generalized Sigmoid Form I. Next, we consider

G(ε(x), t) := φm+1(x)
1 + exp


↓ (φ1(x)t1 + · · · + φm(x)tm)

 , (20)

where φm+1(x) ⇐ R can capture the range of the expected outcome, and the sign of φi(x) (i = 1,2, ...,m)

represents whether the experiment i has a positive or negative e"ect.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
8

Proof. Let ε = (ε↗(x)↘,φm+1(x))↘, where ε↗(x) = (φ1(x), . . . ,φm(x))↘. Hence, we rewrite G(ε(x), t) =
φm+1(x)S(ε↗(x)↘t).

First, we show that ε≃(·) can be nonparametrically identified. Assume that E[Y |X,T] =
φ̂m+1(x)S(ε̂↗(X)↘T) = φ≃

m+1(X)S(ε≃
↗(X)↘T). Because ↽(0 |X) = P[T = 0|X] > 0 uniformly and S(0) =

0.5 > 0, we have φ̂m+1(X) = φ≃
m+1(X). Because φ≃

m+1(X)S(ε≃
↗(X)↘T) ↙= 0 by assumption and φ̂m+1(X) =

φ≃
m+1(X), we have S(ε̂↗(X)↘T) = S(ε≃

↗(X)↘T). Also, because S(·) is continuously invertible, following the
similar argument for the Standard Sigmoid Form, we derive that

0 =E[(ε̂↗(X)↘T ↓ε≃
↗(X)↘T)2

|X] = (ε̂↗(X) ↓ε≃
↗(X))↘E[TT ↘

|X](ε̂↗(X) ↓ε≃
↗(X)).

Since E[TT ↘
| X] ∞ 0, it follows that ε̂↗(X) = ε≃

↗(X). Together with φ̂m+1(x) = φ≃
m+1(x), we conclude the

proof of identifiability.
Next, we show the su!cient curvature condition. Using (13), we obtain E[ϖ(Y,T ,ε(X))] ↓

E[ϖ(Y,T ,ε≃(X))] =E[(φm+1(X)S(ε↗(X)↘T) ↓ φ≃
m+1(X)S(ε≃

↗(X)↘T))2]. Hence, the su!cient curvature con-
dition is equivalent to that there exists a constant c1 > 0 such that

c1E[
m+1∑

i=1
(φi(X) ↓ φ≃

i (X))2] ↗E[(φm+1(X)S(ε↗(X)↘T) ↓ φ≃
m+1(X)S(ε≃

↗(X)↘T))2].

Since P[T = 0|X] is uniformly bounded away from zero, which implies that |G(ε≃(X)↘t(↖))| =
|φ≃

m+1(X)S(0)| = |φm+1(X)|/2 with probability uniformly bounded away from zero for all X, there must
exist a constant c̃1 > 0 such that,

EX,T


φm+1(X)S(ε↗(X)↘T) ↓ φ≃

m+1(X)S(ε≃
↗(X)↘T)

2
↔ c̃1EX


φm+1(X) ↓ φ≃

m+1(X)
2


. (21)

With the condition E[TT ↘
|X] uniformly bounded away from zero, using the argument similar to (18), we

can show that there exists a constant c̃2 > 0, the following inequality holds

EX,T [(S(ε↗(X)↘T) ↓ S(ε≃
↗(X)↘T))2] ↔ c̃2EX

[
m∑

i=1
(φi(X) ↓ φ≃

i (X))2

]
. (22)

Then, for any realized x and t, we have the following decomposition∣∣∣φ≃
m+1(x)S(ε≃

↗(x)↘t) ↓ φm+1(x)S(ε↗(x)↘t)
∣∣∣

↔

∣∣∣φ≃
m+1(x)S(ε≃

↗(x)↘t) ↓ φ≃
m+1(x)S(ε↗(x)↘t)

∣∣∣ ↓

∣∣∣φ≃
m+1(x)S(ε↗(x)↘t) ↓ φm+1(x)S(ε↗(x)↘t)

∣∣∣

=|φ≃
m+1(x)| ·

∣∣∣S(ε≃
↗(x)↘t) ↓ S(ε↗(x)↘t)

∣∣∣ ↓ |φ≃
m+1(x) ↓ φm+1(x)| · S(ε↗(x)↘t).

Since |φ≃
m+1(x)| > 0, rearranging the terms implies that

|S(ε≃
↗(x)↘t) ↓ S(ε↗(x)↘t)| ↗

|φ≃
m+1(x)S(ε≃

↗(x)↘t) ↓ φm+1(x)S(ε↗(x)↘t)| + |φ≃
m+1(x) ↓ φm+1(x)|S(ε↗(x)↘t)

|φ≃
m+1(x)| .

If |A| ↗ |B| + |C|, one can get |A|
2

↗ |B|
2 + |C|

2 + 2|BC| ↗ 2|B|
2 + 2|C|

2. Using this elementary identity,
together with the uniform boundedness of φ≃

m+1(x), we arrive at that there exists some constant c̃3 > 0 such
that

c̃3E


S(ε↗(X)↘T) ↓ S(ε≃
↗(X)↘T)

2
↗ E


φm+1(X)S(ε↗(X)↘T) ↓ φ≃

m+1(X)S(ε≃
↗(X)↘T)

2

+E


φ≃
m+1(X) ↓ φm+1(X)

2

↗


1 + 1

c̃1


·E[(φm+1(X)S(ε↗(X)↘T) ↓ φ≃

m+1(X)S(ε≃
↗(X)↘T))2]

=


1 + 1
c̃1


·E


G(ε(X),T) ↓ G(ε≃(X),T)

2

,

(23)

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
9

where the second inequality follows from (21). Putting the inequalities (21), (22), and (23) together, we
conclude that

c1E

≃ε(X) ↓ε≃(X)≃2

2


↗E


G(ε(X),T)) ↓ G(ε≃(X),T))

2
,

where c1 = c̃1c̃2c̃3/(1 + c̃1 + c̃2c̃3), which concludes the proof.
↫

Generalized Sigmoid Form II. We consider

G(ε(x), t) := φm+1(x)
1 + exp


↓ (φ0(x) + φ1(x)t1 + · · · + φm(x)tm)

 . (24)

Recall that t(S) represents the treatment assignment vector such that ti(S) = 1 if and only if i ⇐ S, where
S ⇔ {1,2, . . . ,m}. We restate the following su!cient conditions of Assumption 4(d): Uniformly in X,

• the matrix E[T̃ T̃ ↘
|X] ∞ 0, where T̃ ↘ = (1, T ↘),

• |φ≃
m+1(X)| > 0,

• and there exists a triplet i ⇐ {1, . . . ,m}, S1, S2 ⇔ {1,2, . . . ,m} such that i /⇐ S1, i /⇐ S2, S1 ↙= S2, and there
exists a constant c̃1,c̃2 such that

↽(t(S1 ∝ {i})|X) · ↽(t(S1)|X) · ↽(t(S2 ∝ {i})|X) · ↽(t(S2)|X) ↔ c̃1 > 0,

and

|G(ε≃(X), t(S1 ∝ {i}))G(ε≃(X), t(S2)) ↓ G(ε≃(X), t(S2 ∝ {i}))G(ε≃(X), t(S1))| ↔ c̃2 > 0. (25)

We show that these conditions are su!cient to guarantee the identification and su!cient curvature near
the ground truth, i.e., Proposition 1 holds for the Generalized Sigmoid Form II.

Proof. To flesh out the analysis, given each ε(·) and X, let us define

g1(ε,X) = G(ε(X), t(S1)), g2(ε,X) = G(ε(X), t(S2)), g3(ε,X) = G(ε(X), t(S1 ∝ {i})),

g4(ε,X) = G(ε(X), t(S2 ∝ {i})), and g(ε,X) = (g1(ε,X), g2(ε,X), g3(ε,X), g4(ε,X))↘.

Then, note that for any fixed t

φm+1(X)
G(ε(X), t) ↓ 1 = exp


↓ (φ0(X) + φ1(X)t1 + · · · + φm(X)tm)


.

As a result, we have

φm+1(X)
G(ε(X), t(S1 ∝ {i})) ↓ 1

φm+1(X)
G(ε(X), t(S1)) ↓ 1

=

φm+1(X)
G(ε(X), t(S2 ∝ {i})) ↓ 1

φm+1(X)
G(ε(X), t(S2)) ↓ 1

= exp(↓φi(X)),

which implies that

φm+1(X) ·


1

g3(ε,X)g2(ε,X) ↓
1

g4(ε,X)g1(ε,X)


· φm+1(X)

↓
1

g3(ε,X) ↓
1

g2(ε,X) + 1
g4(ε,X) + 1

g1(ε,X)


= 0.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
10

By assumption, φm+1(X) ↙= 0, it then holds that

(g4(ε,X)g1(ε,X) ↓ g3(ε,X)g2(ε,X))φm+1(X)

= g1(ε,X)g2(ε,X)g4(ε,X) + g1(ε,X)g3(ε,X)g4(ε,X) ↓ g1(ε,X)g2(ε,X)g3(ε,X) ↓ g2(ε,X)g3(ε,X)g4(ε,X).
(26)

Assume that there exist ε̃(X) such that

G(ε̃(X),T) = G(ε≃(X),T),

with the assignment mechanism ↽(· | ·). Under our assignment mechanism assumption that

P

T = t(S1 ∝ {i})

∣∣∣X


·P

T = t(S1)

∣∣∣X


·P

T = t(S2 ∝ {i})

∣∣∣X


·P

T = t(S2)

∣∣∣X


> c̃1 > 0, (27)

for some c̃1 > 0, we have that G(ε̃(X), t) = G(ε≃(X), t) for t = t(S1 ∝ {i}), t(S1), t(S2 ∝ {i}), t(S2), i.e.,
g(ε,X) = g(ε≃,X). And clearly, φ̃m+1(X) ↙= 0, because φ̃≃

m+1(X) ↙= 0. Then we have φ̃m+1(X) = φm+1(X),
which is implied by (26). The rest of the proof of identifiability is the same as the Generalized Sigmoid Form

I.
Next, we move on to the first inequality of the su!cient curvature condition. Due to Assumption 3 and

the bounded output of the neural network, there must exists a constant c̃3 such that G(ε(x), t) ↗ c̃3 for some
c̃3 > 0 for all ε(·) ⇐ FDNN, X and t. Let

E =

X : |gω(ε,X) ↓ gω(ε≃,X)| ↗ ε ′ϖ = 1, . . . ,4, and φm+1(X) ↙= 0



where ε = c̃2/(8c̃3). Let us assume from now on that X ⇐ E . Define function h(g) = g4g1 ↓g3g2. By assumption,
we have |h(g(ε≃,X))| ↔ c̃2. Then, by mean value theorem, it must be that

h (g(ε,X)) = h (g(ε≃,X)) + ∈h(ĝ(X))↘

g(ε,X) ↓ g(ε≃,X)


↔ h (g(ε≃,X)) ↓ 4c̃3ε ↔ h (g(ε≃,X))/2 ↔ c̃2/2 > 0,

(28)

where ĝ(X) is such that ĝω(X) ⇐ [gω(ε≃,X), gω(ε,X)] for ϖ = 1, . . . ,4 and the first inequality holds because
|ĝω(X)↓gω(ε≃,X)| ↗ ε for all ϖ = 1, . . . ,4 and the second inequality holds due to the definition of ε. Therefore,
if we define

f(g) = (g1g2g4 + g1g3g4 ↓ g1g2g3 ↓ g1g3g4)/h(g),

then given (26) it holds that φm+1(X) = f(g(ε,X)), which is well-defined since we have already shown that
h(g(ε,X)) > 0. Similarly, we have φ≃

m+1(X) = f(g(ε≃,X)). Then, we have

εm+1(X) ↓ε≃

m+1(X)
2 = [∈f(g̃(X))↘(g(ε,X) ↓ g(ε≃,X))]2 , (29)

by the mean value theorem, where g̃ω(X) ⇐ [gω(ε≃,X), gω(ε,X)] for all ϖ = 1, . . . ,4. Note that every term in
∈f(g̃(X)) is of the form poly(g̃(X))/h2(g̃(X)), where poly(g̃(X)) is a polynomial of g̃(X) and uniformly
bounded by assumption. By exactly the same argument to (28), we can still show that h(g̃(X)) > c̃2/2.
Therefore, expanding the quadratic term on the right-hand side of (29), we obtain that for some constant
c̃3,


εm+1(X) ↓ε≃

m+1(X)
2

↗ c̃4 · ≃g(ε,X) ↓ g(ε≃,X))≃2 . (30)

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
11

If X ⇐ E1 =

X : φm+1(X) = 0


, it must be that g(ε,X) = 0 by definition. Also, by the uniform bound-

edness assumption, there exists constant c̃5 such that gω(ε≃,X) ↔ c̃5. Therefore, it must be that there is
constant c̃6 such that


εm+1(X) ↓ε≃

m+1(X)
2 = ε≃

m+1(X)2
↗ c̃6 · ≃g(ε≃,X))≃2 = c̃6 · ||g(ε,X) ↓ g(ε≃,X)≃2 .

If X /⇐ E ∝ E1, it must be that there is ϖ ⇐ {1,2,3,4}, such that |gω(ε,X) ↓ gω(ε≃,X)| > ε. This clearly
implies that for some c̃7 > 0,


εm+1(X) ↓ε≃

m+1(X)
2

↗ c̃7 · ≃g(ε,X) ↓ g(ε≃,X)≃2 .

by the boundedness of εm+1(X) and ε≃
m+1(X). Combined, we have that

EX


εm+1(X) ↓ε≃

m+1(X)
2


↗ max{c̃4, c̃6, c̃7} ·EX


≃g(ε,X) ↓ g(ε≃,X)≃2


.

Note that (27) implies there exists a constant c̃7 > 0 such that,

EX,T


(G(ε(X),T) ↓ G(ε≃(X),T))2


↔ c̃8EX


G(ε(X), t(S1 ∝ {i})) ↓ G(ε≃(X), t(S1 ∝ {i}))

2


EX,T


(G(ε(X),T) ↓ G(ε≃(X),T))2


↔ c̃8EX


G(ε(X), t(S1)) ↓ G(ε≃(X), t(S1))

2


EX,T


(G(ε(X),T) ↓ G(ε≃(X),T))2


↔ c̃8EX


G(ε(X), t(S2 ∝ {i})) ↓ G(ε≃(X), t(S2 ∝ {i}))

2


EX,T


(G(ε(X),T) ↓ G(ε≃(X),T))2


↔ c̃8EX


G(ε(X), t(S2)) ↓ G(ε≃(X), t(S2))

2

.

(31)

Then,

EX,T


(G(ε(X),T) ↓ G(ε≃(X),T))2


↔

c̃8

4 ·
1

max{c̃4, c̃6, c̃7}
·EX


εm+1(X) ↓ε≃

m+1(X)
2


. (32)

The rest of the proof is the same as that for the Generalized Sigmoid Form I. ↫

A.5. Proof of Proposition 2

Proof. The results directly follow from Theorem 2 of Farrell et al. (2020), which we also restate as Lemma
1 in Appendix A.3.

First, we derive the first-order derivative ϖω and the Hessian matrix ϖωω. With the loss function
ϖ(y, t,ε(x)) = (y ↓ G(ε(x), t))2, we can compute to get

ϖω = (⇁ϖ/⇁φ1, . . . ,⇁ϖ/⇁φdω
)↘ = 2(G ↓ y)Gω,

ϖωω = 2GωG↘
ω + 2Gωω(G ↓ y),

!(x) =E[ϖωω|X =x] = 2ET |x[GωG↘
ω|x] + 2ET |x


GωωEy|t,x[(G ↓ y)|T = t,X =x]|X =x


= 2E[GωG↘

ω|X =x].

We now verify the assumptions of Lemma 1. The first condition, identification of ε≃, is satisfied under
Assumptions 1 and 4, which is shown in Proposition 1(a). The second condition holds by Assumption 2(i)
(i.e., DGP (1) holds) and the mean squared loss function. The third condition follows from Assumption 2(ii).
The fourth condition regarding the pathwise di"erentiable follows from Assumption 2(iii), and the thrice
continuously di"erentiability holds by the form of G defined in Assumption 1 and the mean squared loss
with su!cient smoothness in ε. The fourth condition holds because the link functions G in Assumption 1
are su!ciently smooth together with the boundedness of ε≃(X) given by Assumption 3. Thus, Proposition
2 follows immediately from Lemma 1. ↫

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
12

A.6. Verification of Assumption 2(ii)

In the following, we illustrate that, if the treatment assignment mechanism ↽(· | ·) satisfies Assumption 4,

Assumption 2(ii) (i.e., !(x) ∞ 0) is easy to satisfy and can be translated into very lenient conditions. !(x) ∞ 0

is equivalent to that the vectors {Gω(ε(x), t)}t are nondegenerate. Without loss of generality, we take the

Generalized Sigmoid Form II for illustration. The other forms of link function can be verified similarly.

By definition, we have !(x) = 2E[Gω(ε(x),T)Gω(ε(x),T)↘
|X =x], where

Gω(ε(x), t)↘ =
φm+1(x) exp(↓(φ0(x) + · · · + φm(x)tm))

(1 + exp(↓(φ0(x) + · · · + φm(x)tm)))2 (1, t1, . . . , tm), 1
1 + exp(↓(φ0(x) + · · · + φm(x)tm))


.

Thus, to verify that !(x) is invertible, it su!ces to show that the matrix constructed by vectors

{Gω(ε(x), t)}t has full rank m + 2. For ease of exposition, we drop the dependence on x, which will not

cause any confusion.

Next, we verify that !(x) ∞ 0 for the treatment assignment mechanism in Assumption 4(b-iv). All other

assignment rules in Assumption 4(b) can be translated into similar lenient conditions, so we omit their ver-

ification for brevity. Specifically, to ensure that E[T̃ T̃ ↘
|X = x] ∞ 0, we consider the assignment mechanism

↽(t(↖)|x) > 0, ↽(t({1})|x) > 0, ↽(t({2})|x) > 0, . . . , ↽(t({m})|x) > 0, together with the overlapping assign-

ment ↽(t(S1)|x) > 0, nu(t(S1 ∝ {i})|x) > 0, ↽(t(S2)|x) > 0, and ↽(t(S2 ∝ {i})|x) > 0. Define e0 := exp(↓φ0),

ei := exp(↓φ0 ↓ φi), for i = 1,2, . . . ,m, and em+1 := exp(↓ε↘t(S1 ∝ {i})). We have

rank(!)
(a)
↔ rank





εm+1e0
1+e0

(1,0,0,0, . . . ,0) 1
1+e0

εm+1e1
1+e1

(1,1,0,0, . . . ,0) 1
1+e1

εm+1e2
1+e2

(1,0,1,0, . . . ,0) 1
1+e2

εm+1e3
1+e3

(1,0,0,1, . . . ,0) 1
1+e3

...
...

εm+1em

1+em
(1,0,0,0, . . . ,1) 1

1+em
εm+1em+1

1+em+1
(1, t(S1 ∝ {i})↘) 1

1+em+1





(b)= rank





e0
1+e0

(1,0,0,0, . . . ,0) 1
1+e0

e1
1+e1

(1,1,0,0, . . . ,0) 1
1+e1

e2
1+e2

(1,0,1,0, . . . ,0) 1
1+e2

e3
1+e3

(1,0,0,1, . . . ,0) 1
1+e3

...
...

em
1+em

(1,0,0,0, . . . ,1) 1
1+emem+1

1+em+1
(1, t(S1 ∝ {i})↘) 1

1+em+1





(c)= rank





1 0 0 0 . . . 0 1
e0

1 1 0 0 . . . 0 1
e1

1 0 1 0 . . . 0 1
e2

1 0 0 1 . . . 0 1
e3

...
...

...
1 0 0 0 . . . 1 1

em

1 t(S1 ∝ {i})↘ 1
em+1





(d)= rank





1 0 0 0 . . . 0 1
e0

0 1 0 0 . . . 0 1
e1

↓
1

e0
0 0 1 0 . . . 0 1

e2
↓

1
e0

0 0 0 1 . . . 0 1
e3

↓
1

e0
...

...
...

0 0 0 0 . . . 1 1
em

↓
1

e0
0 0 0 0 . . . 0 1

em+1
↓

1
e0

↓ (1
e1

↓
1

e0
) ↓ (1

ei
↓

1
e0

)





.

The inequality (a) follows from the fact the right-hand-side matrix is expanded only by a partial of vectors

{Gω(ε(x), t)}t. The equality (b) follows from φm+1 ↙= 0. The equality (c) follows from 1+ei ↙= 0 and ei ↙= 0 for

all i = 1,2, . . . ,m. The equality (d) follows from some subtraction operations by rows. To guarantee the full

rank condition that rank(!) = m + 2, a su!cient condition is 1
em+1

↓
1

e1
↓

1
ei

+ 1
e0

↙= 0, i.e., the bottom-right

entry of the last matrix is nonzero. This is indeed a very weak condition.

For other assignment mechanisms in Assumption 4(b), one can also translate the invertibility of ! into

very lenient conditions. We omit the details for brevity.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
13

A.7. ATE Estimator Construction via Cross-Fitting

In the following, we introduce the sample-splitting/cross-fitting and estimation procedure from Chernozhukov
et al. (2018). The entire DeDL framework is given by Algorithm 1. In our setting with the known distribution
of T , we require only the two-way splitting, but for unknown T distribution, three-way splitting is required,
with an additional portion of samples used for obtaining !̂(x).

One can split the data samples {1,2, . . . , n} into S nonoverlapping copies Ss ⇔ {1,2, . . . , n}, s = 1,2 . . . , S

with the cardinality |Ss| being proportionally to the sample size n, and let S
c
s be the complement of Ss. First,

we use S
c to get estimators ε̂s(·) of parameters ε≃(·), and compute !̂s(·) given the estimators ε̂s(·) and

distribution of T . Then, one can use the other samples to construct an estimator of µ(t), for any t⇐ {0,1}
m

as

µ̂DeDL(t) = 1
S

µ̂s(t), µ̂s(t) = 1
|Ss|

∑

i→Ss

⇀(zi, ε̂s(xi), !̂s(xi); t, t0). (33)

Similarly, the variance estimator can be constructed as

#̂DeDL(t;µ) = 1
S

#̂s(t), #̂s(t) = 1
|Ss|

∑

i→Ss


⇀(zi, ε̂s(xi), !̂s(xi); t, t0) ↓ µ̂DeDL(t)

2
. (34)

The asymptotic normality of µ̂DeDL(t) in Theorem 2(a) directly follows from Chernozhukov et al. (2018),
and a detailed proof can also be found in Farrell et al. (2020).

Therefore, the (1 ↓ α)-confidence interval of µ̂DeDL(t) is given by

ĈIDeDL(t;µ) =

µ̂DeDL(t) ↓

1
↘

n
· $↗1


1 ↓

α

2


· #̂DeDL(t;µ), µ̂DeDL(t) + 1

↘
n

· $↗1


1 ↓
α

2


· #̂DeDL(t;µ)


, (35)

where $↗1(·) is the inverse cumulative distribution function of a standard normal random variable.

A.8. Estimation and Inference for Best Treatment Identification

Details for the best treatment identification. After obtaining the asymptotically normal estimators
of ATE µ̂(t) for all experiment combinations t ⇐ {0,1}

m, the next step is identifying the best experiment
combination, which is defined as t≃ := arg maxt→{0,1}m µ(t).

Following the common practice, one can search for the best treatment combination by search-
ing for the highest ATE estimation. Formally, we define the empirical best treatment level as t̂≃ :=
arg maxt→{0,1}m µ̂DeDL(t). The remaining job is verifying whether t̂≃ is the best treatment level with significant
improvements over all other treatment levels, i.e., we test the one-sided hypothesis on whether the ATE of
t̂≃ is significantly better than other treatments:

H0 : ▷(t) > 0, for all t⇐ {0,1}
m

\{t̂≃
},

where
▷(t) := µ(t̂≃) ↓ µ(t) =E[G(ε≃(X), t̂≃)] ↓E[G(ε≃(X), t)],

is the improvement in ATE of the empirically optimal t̂≃ over treatment level t ⇐ {0,1}
m. Notice that the

▷(t) can be rewritten as,
▷(t) =E[H(x,ε≃(x); t̂≃, t)],

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
14

which is similar in structure to µ(t) = E[H(X,ε≃(X); t, t0)] with a change of the inputs in the advantage
function H.

Applying an influence function similar to (10) developed in Section 3.4, i.e., ⇀(z,ε,!; t̂≃, t) =
H(x,ε(x); t̂≃, t) ↓ Hω(x,ε(x); t̂≃, t)↘!(x)↗1ϖω(y, ť,ε(x)) and the two-way splitting procedure described
above, we construct the estimators

▷̂DeDL(t) := µ̂DeDL(t̂≃
DeDL) ↓ µ̂DeDL(t), (36)

and the variance estimate #̂DeDL(t; ▷) for ▷DeDL(t).
Proof of Theorem 2

By Proposition 1(b), it is straightforward to verify that ≃φ̂sk ↓ φ≃
k≃L2(X) = o(n↗1/4) holds if p > dX . By

Theorem 3 of Farrell et al. (2020), we have the desired asymptotic normality of the proposed estimators
µ̂DeDL(t) and ▷̂DeDL(t). This proves part (a). On the other hand, we also highlight that this DNN convergence
rate is inherited from Lemma 1 (Theorem 2 in Farrell et al. 2020), which might not be tight as well. As
establishing a tighter rate for DNN convergence is beyond the scope of our paper, we instead follow the
standard o(n↗1/4) decay rate (as claimed in Proposition 1).

For Part (b), the empirically optimal treatment combination t̂≃ := arg maxt→{0,1}m µ̂(t) depends on the
samples used for the training and inference of ATE, which is a critical challenge in our proof below. For
the rest of our proof, we drop the subscript DeDL to simplify the notation. First, we construct the following
estimator ◁̂(t) := µ̂(t≃) ↓ µ̂(t), where µ̂(·) is given by (33), for the true advantage of the optimal treatment
combination ◁(t) := µ(t≃) ↓ µ(t). Similar to (34), one can construct the variance estimator #̂(t; ◁) for ◁̂(t).
Importantly, ◁̂(t) is a virtual estimator not available in practice, because the ground-truth optimal treatment
combination t≃ is unknown.

First, Theorem 3 in Farrell et al. (2020) establishes the asymptotic normality of ◁̂(t):

↘
n


#̂(t; ◁)

↗1/2(◁̂(t) ↓ ◁(t)) =
n∑

i=1


#̂(t; ◁)

↗1/2
⇀(zi,ε

≃(xi),!(xi), t≃, t) ↓ ◁(t)

/
↘

n + op(1) ↑d N (0,1).

(37)
Next, we show that, with probability going to 1, the optimal treatment combination is correctly identified,

i.e., lim
n⇒⇐

P[t̂≃ = t≃] = 1, when the dependence on sample size n is dropped for brevity. By Part (a), we have
µ̂(t≃) ↑p µ(t≃) and µ̂(t) ↑p µ(t) for any t ↙= t≃. Because the max operator is continuous with respect to the
L1 norm, we have

|µ̂(t≃) ↓ µ(t≃)| ⇑ |µ̂(t) ↓ µ(t)| ↑p 0,

where “⇑" denote the maximum of two real numbers. Since the optimal treatment combination t≃ is unique,
as the sample size n goes to infinity,

|µ̂(t≃) ↓ µ(t≃)| ⇑ |µ̂(t) ↓ µ(t)| ↗
µ(t≃) ↓ µ(t)

4 , (38)

with a probability going to 1.
Furthermore, (38) implies,

µ̂(t≃) ↓ µ̂(t) = [µ(t≃) ↓ (µ(t≃) ↓ µ̂(t≃))] ↓ [µ(t) ↓ (µ(t) ↓ µ̂(t))] ↔
µ(t≃) ↓ µ(t)

2 > 0.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
15

Therefore, with the probability going to 1, we have µ̂(t≃) > µ̂(t) as the sample size n goes to infinity.
Taking the union bound over (2m

↓ 1) treatment combinations, we have µ̂(t≃) > maxt ⇑=t↓ µ̂(t), i.e., t̂≃ =
arg maxt µ̂(t) = t≃, with a probability going to 1 as the sample size n goes to infinity.

If t̂≃ = t≃, by definition,
↘

n

#̂(t; ◁)

↗1/2(◁̂(t) ↓ ◁(t)) ↓
↘

n

#̂(t; ▷)

↗1/2(▷̂(t) ↓ ▷(t)) = 0

Hence, we have that for any 0 > 0,

lim
n⇒⇐

P[|
↘

n

#̂(t; ◁)

↗1/2(◁̂(t) ↓ ◁(t)) ↓
↘

n

#̂(t; ▷)

↗1/2(▷̂(t) ↓ ▷(t))| < 0] = 1. (39)

Combining (39) with the asymptotic normality (37), by Slutsky’s theorem, we have

↘
n


#̂(t; ▷)

↗1/2(▷̂(t) ↓ ▷(t)) =
n∑

i=1


#̂(t; ▷)

↗1/2
⇀(zi,ε

≃(xi),!(xi), t≃, t) ↓ ▷(t)

/
↘

n + op(1) ↑d N (0,1),

which concludes the proof. ↫
Given the asymptotic normality, the (1 ↓ α)-confidence interval for ▷̂DeDL(t) is given by

ĈIDeDL(t; ▷) =

▷̂DeDL(t) ↓

1
↘

n
· $↗1


1 ↓

α

2


· #̂DeDL(t; ▷), ▷̂DeDL(t) + 1

↘
n

· $↗1


1 ↓
α

2


· #̂DeDL(t; ▷)


. (40)

Appendix B: Empirical Analysis With Field Experiment Data

B.1. User Covariates Used in Section 4

Table A1 presents all the user covariates used in our empirical analysis in Section 4.

B.2. Stratified Sampling Details

We employ a three-step stratified sampling to keep the user covariates balanced with respect to eight di"erent
treatment combinations. First, we categorize 10 continuous variables in Table A1 by their quantile ranges
[0%,25%), [25%,50%), [50%,75%), and [75%,100%]. Specifically, we assign 1, 2, 3, and 4 as new values
for values in each quantile interval respectively for each continuous variable. After all the variables are
discretized, we proceed to divide the population into subpopulations according to imbalanced covariates.
To check for diversely distributed covariates, we utilize a pairwise t-test between the baseline combination
(0,0,0) and seven treatment combinations for covariates in Table A1. Among the 26 covariates, 16 discrete
covariates show no significant di"erence between the baseline combination (0,0,0) and the other seven
treatment combinations, while 10 continuous variables are imbalanced-distributed. Therefore, we divide users
into 69,111 strata by the value of imbalanced covariates. Namely, users with the same value in all imbalanced
covariates are grouped together. For each stratum, we set the minimum number of users among all treatment
combinations as its target size and then randomly sample this many individuals for each combination as
the stratified sample. Therefore, the stratified sample has a similar number of users in each treatment
combination, and the treatment assignment mechanism satisfies P[Ti = 1|X = x] = P[Ti = 0|X = x] = 0.5
(i = 1,2,3) for any x.

B.3. Complete Randomization Check Results

Table A2 presents complete randomization check results of the stratified samples used in our empirical
analysis in Section 4.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
16

Table A1 User Covariates Used in the DeDL Framework

Variable Description

Disc-
rete
Var.

Age Range Age range of user: young, mid-age, senior, old, or unknown
Gender Gender of user: male, female, or unknown
Operating System OS of user’s device: Android, IOS, or other
Product Version Version used: lite, express, or regular
Phone Price Range Price range of device: luxury, expensive, a!ordable, or unknown
User Activeness Degree Activeness of user: high-, mid-, low-active, or new user
User Active-Deepness Degree Active-deepness of user: deep-, shallow-active, or new user
Feed Mode Preferred mode of app interface:

video stream, video cover stream, or unknown
Number of Followers Interval of the user’s number of followers:

<10, 10 - 10k, 10k - 100k, >100k
Influencer Level Mainly determined by the number of followers:

micro, midtier, or macro influencer
Number of Mutual Followers Interval of the user’s number of mutual followers (friends):

<10, 10 - 10k, 10k - 100k, >100k
Sociableness Level Mainly determined by the number of

mutual followers (friends): low-, mid-, or high-sociable
Frequent Residence Area Region in which the user is frequently on the platform:

South, North, or unknown
Frequent Residence City Level Level of city in which the user is frequently on the platform:

large city, big city, medium city, small city, or unknown
Frequent Residence City Type Type of city in which the user is frequently on the platform:

city, town, rural, or unknown
Active Engagement City Level Level of city in which the user is always active:

large city, big city, medium city, small city, or unknown

Conti-
nuous
Var.

Average App Usage Duration User’s average usage duration on platform per day
Average Video Watching Time User’s average time on watching videos on platform per day
Average Live Watching Time User’s average time on watching live on platform per day
Average DP Video Watching Time User’s average time on watching videos on Discover Page per day
Average LP Video Watching Time User’s average time on watching videos on Live Page per day
Average FYP Video Watching Time User’s average time on watching videos on For You Page per day
Average FP Video Watching Time User’s average time on watching videos on Following Page per day
Average DP Screen Time User’s average time on Discover Page per day
Average LP Screen Time User’s average time on Live Page per day
Average FP Screen Time User’s average time on Following Page per day

Table A2 Randomization Check

Treatment Combination t↔ (0, 0, 0) (0, 0, 1) (0, 1, 0) (1, 0, 0) (1, 1, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1)

User De-
mographics

Proportion of 60.51% 60.63% 60.31% 60.49% 60.40% 60.36% 60.30% 60.31%
Male Users (0.41) (0.13) (0.85) (0.40) (0.26) (0.11) (0.15)

Proportion of 29.67% 29.65% 29.60% 29.73% 29.77% 29.65% 29.80% 29.66%
High-Active Users (0.88) (0.55) (0.62) (0.44) (0.85) (0.34) (0.91)

Proportion of Users 39.83% 39.64% 39.90% 39.80% 39.85% 39.68% 39.69% 39.74%
from the South (0.16) (0.63) (0.88) (0.90) (0.26) (0.29) (0.48)

User
Behaviors
10 Days
Prior to
the Experi-
ments

Average Active -0.0003 -0.0010 0.0012 -0.0006 -0.0011 0.0001 0.0011 0.0008
Days per User (0.78) (0.59) (0.91) (0.75) (0.88) (0.61) (0.69)

Average DP Screen 0.0173 0.0144 0.0151 0.0152 0.0140 0.0145 0.0152 0.0157
Time per User (0.31) (0.45) (0.46) (0.25) (0.34) (0.46) (0.58)

Average LP Screen 0.0126 0.0091 0.0146 0.0104 0.0136 0.0145 0.0103 0.0159
Time per User (0.21) (0.49) (0.42) (0.75) (0.52) (0.42) (0.25)

Average FYP Screen 0.0048 0.0022 0.0033 0.0044 0.0010 0.0033 0.0015 0.0024
Time per User (0.36) (0.62) (0.91) (0.18) (0.61) (0.25) (0.41)

Average App Usage 0.0129 0.0111 0.0114 0.0114 0.0104 0.0103 0.0120 0.0117
Duration per User (0.55) (0.62) (0.61) (0.39) (0.37) (0.76) (0.69)

Note: p-values of t-tests between the baseline combination t0 = (0, 0, 0)↔ and other treatment combinations are reported in
parentheses. To protect sensitive data, the reported metrics of active days, screen time, and app-usage duration are rescaled.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
17

Appendix C: Implementation Details of Benchmarks

In this section, we present the implementation details of using linear addition (LA), linear regression (LR),
pure deep learning (PDL), and structured deep learning (SDL) as our benchmark to estimate ATE. For LR,
PDL, and SDL estimation, we follow the same four-fold cross-fitting described in Appendix 5.2.

C.1. Linear Addition (LA) Estimator

To obtain the LA estimator for each treatment level, we use the ATE of five observed treatment combinations
to calculate the ATE of unobserved treatment combinations. For observed treatment combinations, their esti-
mated ATE and significance level are the same as the ground truth. For unobserved treatment combinations,
we use the linear addition of ATE of individual observed treatment combinations as the estimated ATE.
Furthermore, we estimate the standard error of the estimated ATE for unobserved treatment combinations
by assuming that the estimators for individual experiments are independent.

We report the LA estimators in the first row in each section of treatment combination in Table A3.
The top four treatment combinations are observable, and therefore the LA estimator yields zero error (see
columns 5–7 in Table A3). The estimators for the ATE of the bottom-three treatment combinations use
the ATE of individual treatment combinations, i.e., (0,0,1), (0,1,0), and (1,0,0), to calculate the final
results µ̂(t) = µ̂(t1) + µ̂(t2), where t = t1 + t2. The standard deviation of the estimator follows 1̂(µ̂(t)) =
√

1̂(µ̂(t1))2 + 1̂(µ̂(t2))2.

C.2. Linear Regression (LR) Estimator

The LR estimator uses the regression coe!cients as the estimated ATE. The regression is defined as

y = ϱ1t1 + ϱ2t2 + ϱ3t3 +ωx, (41)

where t1, t2, and t3 denote three experiments for pages DP, LP, and FYP, respectively, and x denotes the
user covariates in Table A1. We fit the linear regression model (41) with 1,291,652 data points with the five
observed treatment combinations. The estimator for ϱi, ϱ̂i, captures the ATE of treatment ti. Similar to LA
estimators, LR estimators assume the linear additivity of the ATEs. To maintain a fair comparison between
the estimators, we adopt a four-fold cross-fitting described in Appendix 5.2 to obtain the LR estimator as
well. Specifically, we fit the linear regression model with 75% of the training data. For the second-stage
inference, we predict the potential outcome of each user given the covariates x under treatment combination
t⇐ T using the trained linear regression. The estimation and inference of each ATE is obtained through the
standard pairwise t-test for each treatment combination with the predicted outcomes on the last data fold.
The average values of estimated ATEs for each treatment combination are presented in the second row in
Table A3.

C.3. Pure Deep Learning (PDL) Estimator

Similar to the implementation of DeDL approach in Appendix 5.2, we apply the four-fold cross-fitting pro-
cedure to reduce overfitting when implementing the PDL estimators. Specifically, we evenly partition the
observed data of five treatment combinations into four random folds. For each data fold, we use the data
from three other folds as the training data to approximate y = f(x, t), where f(·, ·) is a fully-connected

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
18

three-layer DNN with 20 nodes in each layer. We call this approach the “pure” deep learning estimator
because no constraints are imposed on the DNN f(·, ·). The DNN is trained with the Adam optimizer and
the mean squared error as the loss function. We then use the trained DNN f̂(·, ·) to predict the potential
outcomes under eight treatment combinations for each user the covariates x on the last fold. Similar to the
LR estimator, pairwise t-tests with the predicted outcomes between any treatment combination t and the
control t0 provide the ATE estimate and its corresponding standard error, whereas the final estimates are
the average value of all four data folds. The fourth row for each treatment combination in Table A3 shows
the estimated ATE of the PDL approach.

C.4. Structured Deep Learning (SDL) Estimator

The SDL approach adopts the same structured DNN and four-fold cross-fitting as DeDL as documented in
Appendix 5.2, but without the debiasing term. For each treatment combination t ⇐ T , we use the trained
structured DNN to predict the potential outcome given the covariates x: H(x, φ̂s(x); t, t0) := G(ε̂s(x), t) ↓

G(ε̂s(x), t0). Similar to the LA and PDL approaches, t-tests with the predicted outcomes provide the ATE
estimates under SDL. We remark that the SDL approach underestimates the standard errors because it
ignores the noises in fitting ε̂(·) caused by the variations in the training data. The estimation results of SDL
for each treatment combination are reported in the last row in Table A3.

Appendix D: Details of Synthetic Experiments

In this section, we provide details of the synthetic experiments designed to assess several factors we have
identified that could potentially influence the performance of the DeDL estimators in practice. We first
validate our theory by varying the number of experiments m ⇐ {4,6,8,10} in Appendix D.2. In Appendix
D.3, we test the performance of our DeDL estimators with a potentially large bias of estimating ε̂(·); we
find that DeDL is fairly robust, with moderate biases. We also systematically assess the performance of
DeDL under model misspecification, and we shed light on how to test and select the link function in practice
in Appendix D.4. Furthermore, in Appendix D.5, we investigate a practical setting where the observed X

distribution deviates from the population, and discuss how to use the rebalancing method to get trustworthy
estimates.

D.1. Simulation Setup

Throughout Sections D.2 and D.3, we assume that the link function G is correctly specified. Consistent with
our empirical study in Section 4, we use the Generalized Sigmoid Form II, i.e., for each data point i, we have

yi =
φ≃

m+1
1 + exp(φ≃

0(xi) + φ≃
1(xi)ti1 + φ≃

2(xi)ti2 + · · · + φ≃
m(xi)tim) + εi, (42)

where εi is the i.i.d. random noise with zero mean.
We assume there are m concurrent field experiments, each with a binary treatment. We sample φ≃

m+1

from the uniform distribution U(10,20) throughout, while generating φj(x), j = 0,1, . . . ,m, di"erently in
di"erent subsequent sections. We generate data points zi = (yi,x↘

i, t
↘
i)↘ as i.i.d. copies of the random vector

Z = (Y,X ↘,T ↘)↘. The random perturbation ε follows a uniform distribution U(↓0.05,0.05). Without loss of
generality, we generate covariates x as follows: (1) the dimension of covariates X satisfies dX = 10; (2) the

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
19

Table A3 Detailed Results of Benchmark Estimators

Treatment Ground-Truth Estimated
Combination ATE Estimator ATE CD APE SE AE

(1) (2) (3) (4) (5) (6) (7)

(0, 0, 1) 1.091%↓↓

LA -1.091% 1 00.00% 0.000 0.000
LR -1.329% 1 21.79% 5.657 2.379

PDL -1.247% 1 14.24% 2.417 1.555
SDL -1.179% 1 08.00% 0.763 0.873

(0, 1, 0) -0.267%

LA -0.267% 1 NA 0.000 0.000
LR -0.013% 1 NA 6.460 2.542

PDL -0.036% 0 NA 5.353 2.314
SDL -0.072% 0 NA 3.792 1.947

(1, 0, 0) 0.758%↓

LA -0.758% 1 00.00% 0.000 0.000
LR -1.079% 1 42.29% 10.028 3.206

PDL -1.043% 1 37.60% 8.126 2.851
SDL -0.978% 1 28.95% 4.816 2.195

(1, 1, 1) 2.121%↓↓↓↓

LA -2.121% 1 0 0.00% 0.000 0.000
LR -2.395% 1 12.95% 7.539 2.746

PDL -2.326% 1 09.67% 4.209 2.052
SDL -2.040% 1 03.78% 0.642 0.801

(1, 1, 0) 0.689%

LA -0.491% 1 NA 3.902 1.975
LR -1.066% 0 NA 14.233 3.773

PDL -1.030% 0 NA 11.625 3.410
SDL -0.902% 0 NA 4.543 2.132

(1, 0, 1) 2.299%↓↓↓↓

LA -1.850% 1 19.56% 20.229 4.498
LR -2.408% 1 04.72% 1.178 1.085

PDL -2.333% 1 01.46% 0.112 0.336
SDL -2.148% 1 06.59% 2.297 1.516

(0, 1, 1) 1.387%↓↓↓

LA -0.824% 0 40.58% 31.670 5.628
LR -1.316% 1 05.08% 0.495 0.704

PDL -1.217% 1 12.26% 2.890 1.700
SDL -1.070% 1 22.84% 10.030 3.167

Notes: The calculation of APE, SE, and AE is based on the scaled outcome variable (see column (1) of this table). SE
is scaled by multiplying a constant. AE is scaled by multiplying another constant. The significance levels are encoded as
↓p<0.05; ↓↓p<0.01; ↓↓↓p<0.001; ↓↓↓↓p<0.0001.

di"erent components of X are i.i.d. following the uniform distribution U(0,1). We remark that larger random

perturbations, higher dimensional covariates, and/or more complicated joint distributions of X can be easily

incorporated into the simulation. We adopt the current setting for ease of model training and e!ciency of

experiments.

To ensure that the identifiability and su!cient curvature conditions (i.e., Assumption 4) are met, we adopt

the following treatment assignment mechanism ↽(· | ·). We assume the independence between X and T ,

whose distribution we denote as ↽(t) = P[T = t]. Furthermore, in the training stage, with equal probability,

we randomly assign each experimental unit to one of m + 2 di"erent treatment combinations with equal

probability, i.e., ↽(t) = 1/(m + 2) if t ⇐ {t ⇐ {0,1}
m :

∑m
i=1 ti = 0 or 1} ∝ {(1,1,0, . . . ,0)↘

} and ↽(t) = 0 for

other treatment combinations. In other words, we assume the partially observed outcome setting with only

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
20

m + 2 observable treatment combinations, while other treatment outcomes are masked for gauging the
performance of estimators.

Our neural network structure to estimate φ≃
j (x), j = 0,1, . . . ,m, is prespecified as two-layer perceptrons

with ReLU activation functions and 10 nodes in hidden layers in all experiments throughout this section.
Because there are m + 2 unknown parameters, which linearly scale with the number of experiments m,
we generate 500m i.i.d. experimental data points zi for the DNN training, and another independent 500m

experimental data points for the inference stage. During the DNN training stage, we randomly split this data
set with 70% for training and the rest 30% for cross-validation. We adopt the MSE loss function and Adam
algorithm (Kingma and Ba 2014). In most experiments, we stop training when the loss on cross-validation
data is less than a fixed threshold of 0.3. We empirically tested various thresholds and found that the gain
from a smaller stopping threshold is marginal. Thus, we picked this threshold based on the computational
e!ciency consideration. In the experiments with misspecified link functions and imbalanced data, which we
will discuss later, the cross-validation loss tends to increase. Hence, we adjust the threshold accordingly in
such cases. We also experiment with popular training strategies such as dropout or regularizing the weights,
but the gain is marginal, so we do not include them in this discussion.

At the inference stage, we independently generate a data sample with the same size as the training
data. To avoid the rare case where the empirical estimate !̂(x) is not invertible (e.g., εi(x) = εj(x) for all
i, j ⇐ {1,2, . . . ,m}), we add a small regularization to !̂(x) so that (!̂(x) + 0.0005Idm+2)↗1 is well-defined.
Similar regularization or trimming techniques based on the propensity score are quite common in practice
for numerical stability.

To calculate the true ATE over the population, we use the sample average of 2,000 independent samples
for each treatment combination, and use the standard t-test with a significance level of 0.05 to determine
whether the ATE of an experiment combination is statistically significant. To derive statistical metrics such
as confidence intervals, we replicate all experiments 200 times.

D.2. Validation of the DeDL Estimator under Large m

In this section, we aim at empirically validating the theoretical results in Section 3 and further demon-
strating the superior performance of our DeDL estimator in practice. Such experiments are necessary due
to the gaps between theory and practice. In particular, there are two potential inconsistencies between the
underlying theory (e.g., see Section 3) and practical settings. First, the key theoretical result Proposition 1 is
proved under the assumption that one obtains the estimator ε̂(x) by (almost) minimizing the empirical loss.
However, the loss of DNN is di!cult to optimize globally, especially given our novel structured architecture
with a model layer. Second, the theoretical DNN width O(ndX/2(p+dX) log2 n) and depth O(log n) required
in Proposition 1 are clearly too large for practical applications. Practitioners often fine-tune these hyper-
parameters at a much smaller scale. Given these practical issues, we find it necessary to conduct synthetic
experiments to demonstrate the performance of DeDL in general settings.

To generate the functions ε≃(x) in this subsection, we first define the coe!cient matrix A⇐R(m+1)⇓dX with
each component independently drawn from the uniform distribution U(↓0.5,0.5) and write the j the row of
A as row vector A[j]. Then, we let φ≃

j (x) = (A[j+1]x)3, j = 0,2, . . . ,m. As mentioned, the parameter φ≃
m+1 is

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
21

randomly generated from the uniform distribution U(10,20). To facilitate numerical experiments, we choose

a relatively simple structure for the neural network, as discussed previously. However, the more complex

function ε≃(x) can be readily incorporated and tested in our synthetic experiments, and DNN training-

related hyperparameters (e.g., width, depth, and training algorithm) should be fine-tuned to accommodate

such cases.

We summarize the main result here while deferring more details into Appendices D.2.1 and D.2.2. There,

we report complete simulation results in Table A4 and Table A5, along with more observations made.

In Figure A1(a), we evaluate the performance of di"erent estimators including LA, LR, PDL, SDL, and

DeDL with varying numbers of A/B tests, i.e., m ⇐ {4,6,8,10}. We train these estimators with partially

observed outcomes, as discussed above. We note that the performance of MAE is highly correlated with

other performance metrics, so to keep the discussion simple, we mainly report and visualize the performance

comparison under MAE along with the 95% confidence interval, shown in Figure A1. We compute the

confidence interval using the 200 instances for each parameter combination. One can observe from panel

(a) that DeDL has the best performance under all m ⇐ {4,6,8,10}. Increased values of m lead to quick

degradation of the performance of LA and LR. Such simple models relying on linear extrapolation are unable

to capture the rich treatment e"ects, but the performance of SDL and DeDL are relatively stable.

To highlight the issue that PDL can easily overfit the observed data and result in large biases in unobserved

treatments, we conduct a more detailed synthetic experiment focusing on PDLs with di"erent network size

specifications and partially/fully observed data. Figure A1(b) displays the performance of di"erent variants

of PDL estimators under di"erent m values. For better visualization, we report the performance of PDL
with a di"erent scale on the y-axis than that in Figure A1(a). Among these di"erent PDL estimators, we

use subscripts s (small) and l (large) to represent di"erent widths of neural nets, with 10 (small) and 40

(large) hidden nodes for all three hidden layers, respectively. All DNNs have three linear layers followed

by ReLU activation layers. The subscripts p and a represent the training samples generated from partially

observed treatments and all treatments, respectively. For a fair comparison to SDL and DeDL, we focus on

PDL_s_p with partially observed treatments and a similar DNN size to SDL. We observe that, with partially

observed combinations, both PDL_s_p and PDL_l_p perform poorly, mainly driven by the bad performance

under the unobserved treatments. Increased network size does not help much. However, when we incorporate

data from all treatment combinations for training, PDL_s_a and PDL_l_a obtain comparable performance

with the best estimator DeDL. Therefore, a structured DNN model allows us to capture the interaction of

experiments in practical settings, while the model flexibility in PDL helps only in unrealistic scenarios where

a large proportion of experimental combinations are observed. We refer interested readers to Appendix ?? for

more detailed comparisons, discussions, and additional simulations of incorporating regularizers into PDL.

Because all performance metrics show similar patterns under di"erent m values, we maintain m = 4 for

computation e!ciency in subsequent sections. Also, due to the inferior performance of PDL with partially

observed treatments, we do not report its performance in the following sections.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
22

(a) (b)
Figure A1 MAE comparison among estimators under the increasing number of experiments m values. Panel (a) shows the
performance of LA,LR,SDL, and DeDL. Panel (b) presents the performance of PDLs with di!erent network size specifications

and partially/fully observed data. Subscript s represents a small 10-width DNN while l represents a large 40-width DNN.
Subscript p represents that the training set contains partially observed treatment while a represents that the training set

contains all 2m treatments.

D.2.1. Detailed Results of the Comparison Among Estimators. We document the complete sim-
ulation results of Appendix D.2 in Table A4 and Table A5. We evaluate the performance of the estimators
under m ⇐ {4,6,8,10} A/B tests and report the estimation results in Panels A to D. The first column
“Estimator” describes which estimator is tested. The second column “CDR” shows the proportion of treat-
ment combinations whose estimated ATE significance levels and signs are consistent with the ground truth.
The third column “MAPE” gives the mean absolute percentage error of ATE estimates over all treatment
combinations whose real average treatment e"ects are significant. In other words, we rule out insignificant
treatment combinations when calculating MAPE. Otherwise, those insignificant treatment e"ects would re-
sult in a close-to-zero value in the denominators to calculate APE, resulting in an undesired metric. Similarly,
column “MSE” and column “MAE” represent squared error and absolute error, respectively. In these two
columns, we do not exclude those insignificant combinations. Indeed, unlike MAPE, close-to-zero treatment
e"ects do not cause a problem for MSE and MAE. As a result, MAE and MSE over all combinations can
supplement MAPE. However, to better understand the scales of MSE and MAE errors, we also report in the
table notes 95% confidence intervals of average absolute treatment e"ects over all combinations. Finally, the
column “BTI” presents the results on best treatment identification. For each replication of the experiment,
we verify whether di"erent methods can successfully identify the best treatment combination. The value in
this column shows the proportion of replications in which the optimal combination is correctly identified.

We observe the following consistent patterns across all panels in Table A4. First, DeDL outperforms LA,
LR, PDL_s_p, and SDL under all metrics, which validates our theory and provides strong evidence for the
advantage of our method. In particular, DeDL increases the success rate of both CDR and BTI, and decreases
MAPE, MSE, and MAE compared to SDL by a significant margin. This demonstrates the value of debiasing

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
23

Table A4 Learning Estimator Validation Result

Panel A: Comparison of Di!erent Estimators Under m = 4
Estimator CDR MAPE MSE MAE BTI

LA 92.40% 22.64% 0.070 0.123 79.5%
(91.02%, 93.78%) (20.10%, 25.17%) (0.023, 0.118) (0.103, 0.143) (73.9%, 85.1%)

LR 95.34% 15.30% 0.038 0.089 82.0%
(94.46%, 96.23%) (13.56%, 17.04%) (0.0179, 0.0582) (0.074, 0.105) (76.6%, 87.3%)

PDL_s_p 88.59% 68.83% 0.867 0.433 56.0%
(87.02%, 90.17%) (60.76%, 76.89%) (0.572, 1.163) (0.378, 0.488) (49.1%, 62.9%)

SDL 95.12% 16.12% 0.018 0.079 90.5%
(94.17%, 96.08%) (14.57%, 17.66%) (0.011, 0.024) (0.070, 0.087) (86.4%, 94.6%)

DeDL 97.53% 7.20% 0.008 0.040 93.5%
(96.90%, 98.15%) (6.45%, 7.95%) (0.004, 0.012) (0.033, 0.046) (90.1%, 96.9%)

Panel B: Comparison of Di!erent Estimators Under m = 6
Estimator CDR MAPE MSE MAE BTI

LA 92.05% 27.35% 0.080 0.166 73.0%
(90.70%, 93.40%) (23.81%, 30.89%) (0.056, 0.105) (0.147, 0.186) (66.8%, 79.2%)

LR 94.88% 18.42% 0.073 0.136 75.5%
(94.10%, 95.67%) (16.61%, 20.24%) (0.038, 0.108) (0.118, 0.155) (69.4%, 81.6%)

PDL_s_p 84.23% 111.70% 2.172 0.874 28.0%
(82.54%, 85.93%) (98.07%, 125.33%) (1.736, 2.607) (0.793, 0.956) (21.7%, 34.3%)

SDL 93.07% 27.22% 0.051 0.150 68.0%
(92.17%, 93.96%) (25.16%, 29.29%) (0.037, 0.064) (0.136, 0.163) (61.5%, 74.5%)

DeDL 95.28% 13.33% 0.023 0.079 87.0%
(94.61%, 95.96%) (11.99%, 14.68%) (0.012, 0.033) (0.069, 0.090) (82.3%, 91.7%)

Panel C: Comparison of Di!erent Estimators Under m = 8
Estimator CDR MAPE MSE MAE BTI

LA 93.83% 28.37% 0.196 0.247 65.0%
(92.74%, 94.92%) (24.98%, 31.75%) (0.135, 0.256) (0.218, 0.276) (58.3%, 71.7%)

LR 95.51% 22.49% 0.209 0.222 75.6%
(94.87%, 96.14%) (20.03%, 24.96%) (0.128, 0.289) (0.186, 0.258) (69.2%, 82.0%)

PDL_s_p 78.89% 140.60% 3.825 1.246 11.5%
(77.01%, 80.77%) (128.28%, 152.91%) (3.059, 4.591) (1.136, 1.355) (7.0%, 16.0%)

SDL 94.89% 22.18% 0.072 0.153 67.5%
(94.25%, 95.53%) (20.20%, 24.15%) (0.025, 0.120) (0.133, 0.174) (61.0%, 74.0%)

DeDL 95.53% 13.49% 0.049 0.099 82.0%
(94.92%, 96.15%) (11.82%, 15.15%) (0.007, 0.092) (0.079, 0.118) (76.6%, 87.4%)

Panel D: Comparison of Di!erent Estimators Under m = 10
Estimator CDR MAPE MSE MAE BTI

LA 95.01% 31.54% 0.326 0.311 58.8%
(93.96%, 96.05%) (24.23%, 38.84%) (0.152, 0.500) (0.251, 0.371) (47.7%, 69.8%)

LR 95.51% 25.28% 0.359 0.305 62.0%
(94.87%, 96.14%) (21.73%, 28.83%) (0.146, 0.572) (0.240, 0.369) (52.3%, 71.7%)

PDL_s_p 77.27% 163.85% 5.360 1.563 5.0%
(75.50%, 79.03%) (151.47%, 176.22%) (4.527, 6.193) (1.448, 1.677) (2.0%, 8.0%)

SDL 94.27% 26.37% 0.077 0.195 56.2%
(93.21%, 95.33%) (22.97%, 29.78%) (0.054, 0.100) (0.171, 0.220) (45.1%, 67.4%)

DeDL 94.54% 16.59% 0.046 0.127 78.8%
(93.48%, 95.60%) (13.39%, 19.78%) (0.026, 0.067) (0.103, 0.150) (69.6%, 87.9%)

Notes: All experiments are replicated 200 times, with 95% CIs reported in parentheses. 95% CIs of average absolute treatment
e!ects are (0.68, 1.06), (1.09, 1.30), (1.45, 1.71), and (1.54, 2.03), respectively, in Panel A, Panel B, Panel C, and Panel D.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
24

Table A5 Performance of PDL Estimators

Panel A: Comparison of Di!erent Estimators Under m = 4
Estimator CDR MAPE MSE MAE BTI

PDL_s_p 88.59% 68.83% 0.867 0.433 56.0%
(87.02%, 90.17%) (60.76%, 76.89%) (0.572, 1.163) (0.378, 0.488) (49.1%, 62.9%)

PDL_s_a 95.16% 16.01% 0.012 0.075 78.0%
(94.27%, 96.04%) (14.49%, 17.53%) (0.009, 0.016) (0.068, 0.083) (72.2%, 83.8%)

PDL_l_p 89.12% 60.15% 0.493 0.356 56.0%
(87.61%, 90.64%) (53.09%, 67.20%) (0.375, 0.610) (0.319, 0.393) (49.1%, 62.9%)

PDL_l_a 96.34% 12.55% 0.006 0.052 86.5%
(95.57%, 97.12%) (11.20%, 13.89%) (0.004, 0.007) (0.048, 0.057) (81.7%, 91.3%)

Panel B: Comparison of Di!erent Estimators Under m = 6
Estimator CDR MAPE MSE MAE BTI

PDL_s_p 84.23% 111.70% 2.172 0.874 28.0%
(82.54%, 85.93%) (98.07%, 125.33%) (1.736, 2.607) (0.793, 0.956) (21.7%, 34.3%)

PDL_s_a 95.04% 20.03% 0.021 0.104 70.5%
(94.43%, 95.65%) (18.39%, 21.67%) (0.017, 0.024) (0.096, 0.113) (64.1%, 76.9%)

PDL_l_p 83.87% 111.37% 1.748 0.789 25.0%
(82.33%, 85.40%) (99.17%, 123.57%) (1.357, 2.138) (0.712, 0.866) (18.9%, 31.1%)

PDL_l_a 95.73% 16.91% 0.015 0.085 68.0%
(95.05%, 96.42%) (14.93%, 18.89%) (0.012, 0.019) (0.077, 0.093) (61.5%, 74.5%)

Panel C: Comparison of Di!erent Estimators Under m = 8
Estimator CDR MAPE MSE MAE BTI

PDL_s_p 78.89% 140.60% 3.825 1.246 11.5%
(77.01%, 80.77%) (128.28%, 152.91%) (3.059, 4.591) (1.136, 1.355) (7.0%, 16.0%)

PDL_s_a 95.04% 20.03% 0.021 0.104 70.5%
(94.43%, 95.65%) (18.39%, 21.67%) (0.017, 0.024) (0.096, 0.113) (64.1%, 76.9%)

PDL_l_p 80.80% 125.38% 3.059 1.098 10.0%
(79.15%, 82.44%) (114.46%, 136.29%) (2.347, 3.770) (1.001, 1.195) (5.8%, 14.2%)

PDL_l_a 95.43% 20.24% 0.035 0.137 57.5%
(94.90%, 95.95%) (18.36%, 22.13%) (0.028, 0.041) (0.126, 0.148) (50.6%, 64.4%)

Panel D: Comparison of Di!erent Estimators Under m = 10
Estimator CDR MAPE MSE MAE BTI

PDL_s_p 77.27% 163.85% 5.360 1.563 5.0%
(75.50%, 79.03%) (151.47%, 176.22%) (4.527, 6.193) (1.448, 1.677) (2.0%, 8.0%)

PDL_s_a 95.14% 24.87% 0.052 0.173 43.0%
(94.69%, 95.59%) (22.64%, 27.11%) (0.044, 0.061) (0.160, 0.185) (36.1%, 49.9%)

PDL_l_p 76.03% 159.58% 5.436 1.472 6.0%
(73.04%, 79.01%) (124.10%, 195.06%) (3.533, 7.339) (1.224, 1.720) (1.2%, 10.8%)

PDL_l_a 95.67% 19.66% 0.033 0.140 56.0%
(94.82%, 96.53%) (17.00%, 22.31%) (0.025, 0.041) (0.122, 0.157) (41.7%, 70.3%)

Note: All experiments are replicated 200 times, with 95% CIs reported in parentheses.

in the influence function (5). Second, LA and LR perform worse than SDL in general, demonstrating the

advantage of neural networks over linear methods, although SDL may still be asymptotically biased.

Comparing across di"erent panels, we observe that the performance of all estimators becomes worse when

m grows larger. In particular, the performance of BTI worsens quickly due to the exponentially increased

number of combinations. Even so, DeDL can still successfully identify the best treatment among the 1,024

combinations with a relatively high probability of 78.8% when m = 10.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
25

We also remark on the underlying mechanisms of these degenerating performances. On one hand, intu-

itively, due to the sigmoid link function setup, when the number of field experiments gets larger, the treatment

e"ect becomes more nonlinear. It creates di!culty for the LA estimator. Therefore, the performance of LA
worsens due to its inherent lack of model richness. On the other hand, with the correct link function specifi-

cation, one may expect that the performance of SDL and DeDL should be relatively stable because of their

strong modeling power. However, since we fix the same DNN structure with a constant number of 10 hidden

nodes across all experiments for a fair comparison with LA, the model complexity of neural networks is

limited by design. We have verified that increasing the number of hidden nodes for m = 6,8,10 helps achieve

similar performance to that of m = 4. Indeed, the challenge of estimation and inference from an increased

m can be mitigated by increasing the size and complexity of the DNN. Therefore, without loss of generality,

for all experiments in this section, we keep m = 4 for computational e!ciency.

D.2.2. A Closer Look at PDL. We report the performance of the PDL estimators in a separate table,

i.e., Table A5, to provide an anatomy of their bad performance. The subscripts s and l represent di"erent

widths of neural nets, with 10 and 40 hidden nodes for hidden layers, resulting in the DNN structure

(dx + dt + 1)-10-ReLU-10-ReLU-10-ReLU-1 and (dx + dt + 1)-40-ReLU-40-ReLU-40-ReLU-1, respectively

The subscripts p and a represent the training samples generated from partially observed treatments or all

treatments. For a fair comparison to estimators in Table A4, we should focus on PDL_s_p with partially

observed treatments and similar DNN size as SDL. The training stopping criterion is set the same as SDL
with 0.3 validation loss threshold.

With partially observed combinations, both PDL_s_p and PDL_l_p perform worse than all other estima-

tors under all metrics. This is due to the bad performance of the out-of-sample test under the unobserved

treatments, rather than the bad approximation ability of DNN. When we increase the DNN width from 10

to 40, the performance only slightly increases. Also, PDL indeed has much better in-sample tests. Because

when we incorporate data from all treatment combinations in the training, the resulting estimators PDL_s_a
and PDL_l_a have comparable performance with the best estimator DeDL.

It is within our expectation that PDL with partially observed treatments has such bad performance be-

cause it can only access the data generated by base treatment level, m single experiment data, and only one

treatment level with interaction (1,1,0, . . . ,0). It means that it is almost impossible for PDL to learn interac-

tion between di"erent experiments. Unlike LR and SDL, which impose parametric structures of experimental

interaction, PDL aims only at increasing the performance of in-sample outcome prediction, totally ignoring

the out-of-sample performance. One may argue that this is due to the over-fitting of PDL.

To explore in more detail why PDL performs badly, we investigate further. To simplify the discussion, we

conduct an extra synthetic experiment with m = 3; we report the result in Figure A2. Each point in the

scatter plots represents the values of real ATE (x-axis) and predicted ATE (y-axis). From left to right, we

visualize the performance of LR, PDL-base (i.e., PDL_s_p), PDL-dropout (i.e., PDL_s_p with p = 0.1 dropout

regularizer after each activation layer), and PDL-L1 (i.e., PDL_s_p with L1 regularization loss over DNN

parameters with fine-tuned weight 0.05).

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
26

Table A6 Performance of PDL With Regularizers

Estimator CDR MAPE MSE MAE BTI

LA 93.56% 27.44% 0.705 0.408 89.0%
(92.06%, 95.07%) (22.60%, 32.29%) (0.504, 0.905) (0.359, 0.457) (84.6%, 93.4%)

LR 95.50% 26.01% 0.654 0.389 91.5%
(94.37%, 96.63%) (20.56%, 31.45%) (0.449, 0.859) (0.335, 0.443) (87.6%, 95.4%)

PDL-base 91.62% 52.68% 2.930 0.762 73.0%
(90.22%, 93.03%) (44.27%, 61.09%) (2.104, 3.756) (0.675, 0.849) (66.8%, 79.2%)

PDL-dropout 90.81% 35.74% 0.967 0.504 63.5%
(89.17%, 92.46%) (31.43%, 40.04%) (0.739, 1.195) (0.453, 0.555) (56.8%, 70.2%)

PDL-L1 92.00% 33.64% 1.274 0.426 84.5%
(90.25%, 93.75%) (27.96%, 39.32%) (0.513, 2.035) (0.354, 0.498) (79.4%, 89.6%)

Note: All experiments are replicated 200 times under m = 3, with 95% CIs reported in parentheses.

Four subfigures in the upper panel show the in-sample performance, while lower panel subfigures show
the performance under unobserved treatment combinations. Notice that PDL-base has better in-sample
performance than LR, as the data points are more concentrated around true line y = x, but PDL-base has
the worst out-of-sample performance. Although LR assumes linear extrapolation of treatment e"ects, in our
example, most scatter points in the out-of-sample test are still well concentrated around y = x except clear
patterns of overestimate when absolute ATE increases. When applying regularizations, PDL-dropout and
PDL-L1 have deteriorated in-sample performance with points less concentrated around the true line while
improving out-of-sample performance.

Generally, we do not know the out-of-sample ground-truth ATE in practice, which makes it di!cult to
guide the selection of regularizers. We also try other regularizers, such as early stopping, L2 parameter
weights, and smaller network sizes, which, however, still perform badly comparable to LR. Due to the bad
performance of PDL with partially observed treatments, we do not report it in the following simulations.

Figure A2 LR and PDL Estimator Comparison

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
27

D.3. Robustness to the DNN Convergence Rate

As pointed out by the semiparametric estimation literature (e.g., Chernozhukov et al. 2018), in practice, it
is sometimes questionable whether DNN estimators ε̂(·) can achieve the o(n↗1/4) convergence rate required
for the inference stage. To systematically illustrate the performance of the debiasing technique in learning
the treatment e"ects, we artificially control the biases in DNN estimators to evaluate the impact of such
biases in the second-stage inference.

Specifically, we use an approach with a similar spirit to Chernozhukov et al. (2018) by constructing ε̂(x)
with manually controlled biases. First, parameter functions are defined as φ≃

j (x) = A[j]x, for j = 0,1, . . . ,m,
where each component in the coe!cient matrix A ⇐ R(m+1)⇓dX is generated under independent and uni-
form distribution U(↓0.5,0.5). The parameter φ≃

m+1 is randomly generated from the uniform distribution
U(10,20). Next, instead of training a DNN for estimation, we manually set the biased estimator φ̂j(x) =
(1+errj)φ≃

j (x), j = 0,1, . . . ,m+1, where all errj , j = 0,1, . . . ,m+1 terms independently follow the uniform
distribution U(↓ϑ, ϑ). We set di"erent levels of the bias range coe!cient ϑ ⇐ {0.1,0.2,0.3} to investigate the
e"ectiveness of DeDL with di"erent levels of biases of the estimators ε̂. In the following discussion, we focus
on the MAE performance metric. We refer interested readers to Appendix ?? for a more detailed comparison
and discussion.

As documented in Figure A3, DeDL has much smaller MAEs than SDL, implying a significant performance
improvement with adding debias term. In all settings, DeDL performs better than LA and LR despite that
SDL may generate MAEs much larger than LA and LR, in particular, when ϑ = 0.3. This shows that the
DeDL estimator is fairly robust, with moderate biases in ε̂. However, we also point out that when the bias
from training is large, debiasing may not improve the performance, as we illustrated in Figure 7 in Section
4. In our simulation, we have a similar observation that, when ϑ increases to 1.0, DeDL may perform worse
than SDL under the MAPE metric. In such cases, it is critical to improve DeDL by training a better DNN
model, for example, through using a larger network. For completeness, we also document the detaild results
in Table A7, the columns of which are the same as Table A4. Insights similar to above can be infered from
the table.

D.4. Link Function Misspecification

In this subsection, we first investigate how a misspecified link function impairs the e"ectiveness of our
debiased estimator. Indeed, a key assumption of our framework is that the link function G is correctly
specified. In practice, however, it can be challenging to select the best link function. On the positive side, as
we will discuss, one may test the e!cacy of the link function by checking the cross-validation errors in the
DNN training stage. For this subsection, we adjust our true DGP as,

yi =
φ≃

m+1
1 + exp(φ≃

0(xi) + φ≃
1(xi)ti1 + · · · + φ≃

m(xi)tim) + ς


ϱ≃
0(xi) + ϱ≃

1(xi)ti1 + · · · + ϱ≃
m(xi)tim


+ εi, (43)

where parameter functions are defined as φ≃
j (x) =A[j]x, and ϱ≃

j (x) =B[j]x, for j = 0,1, . . . ,m. The parameter
ς ↔ 0 captures the extent to which the true link function deviates from the Generalized Sigmoid Form II,
which we still adopt in our DeDL framework for estimating the treatment e"ect. The larger the ς, the more
misspecified our model is. We generate both the coe!cient matrices A⇐R(m+1)⇓dX and B ⇐R(m+1)⇓dX with

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
28

Figure A3 MAE Comparison Under Decreasing
DNN Convergence Rate

Figure A4 MAE Comparison Under Link
Function Misspecification

Table A7 DNN Convergence Violation Result

Panel A: Performance of Benchmarks
Estimator CDR MAPE MSE MAE BTI

LA 94.56% 19.93% 0.085 0.179 92.0%
(93.69%, 95.44%) (17.94%, 21.93%) (0.066, 0.104) (0.162, 0.195) (88.2%, 95.8%)

LR 96.88% 13.59% 0.046 0.127 94.0%
(96.21%, 97.54%) (12.11%, 15.08%) (0.036, 0.056) (0.115, 0.139) (90.7%, 97.3%)

Panel B: Comparison of Di!erent Estimators Under ω = 0.1
Estimator CDR MAPE MSE MAE BTI

SDL 96.97% 4.98% 0.013 0.074 92.5%
(96.32%, 97.62%) (4.58%, 5.38%) (0.010, 0.015) (0.066, 0.083) (88.8%, 96.2%)

DeDL 98.56% 5.04% 0.003 0.031 97.0%
(98.12%, 99.01%) (4.32%, 5.76%) (0.002, 0.003) (0.028, 0.035) (94.6%, 99.4%)

Panel C: Comparison of Di!erent Estimators Under ω = 0.2
Estimator CDR MAPE MSE MAE BTI

SDL 94.19% 11.06% 0.061 0.170 85.5%
(93.19%, 95.19%) (10.28%, 11.83%) (0.049, 0.072) (0.153, 0.186) (80.6%, 90.4%)

DeDL 96.31% 11.10% 0.016 0.078 95.5%
(95.50%, 97.12%) (9.46%, 12.74%) (0.012, 0.020) (0.069, 0.087) (92.6%, 98.4%)

Panel D: Comparison of Di!erent Estimators Under ω = 0.3
Estimator CDR MAPE MSE MAE BTI

SDL 93.44% 15.53% 0.145 0.259 80.0%
(92.48%, 94.39%) (14.33%, 16.73%) (0.118, 0.173) (0.232, 0.286) (74.4%, 85.6%)

DeDL 94.63% 12.78% 0.032 0.108 92.5%
(93.74%, 95.51%) (11.05%, 14.50%) (0.024, 0.039) (0.095, 0.120) (88.8%, 96.2%)

Notes: All simulations are replicated 200 times, with 95% CIs reported in parentheses. 95% CIs of average absolute treatment
e!ect are (1.45, 1.65) in all panels.

independent entries, and each component follows the uniform distribution U(↓0.5,0.5). The parameter φ≃
m+1

is again randomly generated from the uniform distribution U(10,20).

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
29

We run synthetic experiments under di"erent levels of model misspecification ς ⇐ {0,1,3,5}. To illustrate
how the link function is skewed, we plot in Figure A5 the histograms of outcome y in (43). The x-axis
represents the experimental outcome y among the population in all 2m treatment combinations with equal
probability. Observe that when ς is large, e.g., ς = 5, the bias from using the sigmoid link function to
approximate the experimental outcome is likely to be large. Because the DGP defined by (43) may be too
restrictive in the sense of ATE representation, further in Appendix D.4.2, we conduct another synthetic
experiment where the true DGP has explicit higher-order interaction terms. The results show that debiasing
through Neyman orthogonality is fairly robust under such model misspecification.

Figure A5 Experimental Outcome of Misspecified Model

De"erring reporting the complete results in Appendix D.4.1, here we emphasize the main insights. We first
plot the comparison between di"erent methods under model misspecification in Figure A4. This comparison
reveals that when the link function is more specified (i.e., larger ς), SDL and DeDL estimators perform
substantially worse, whereas the performances of the LA and LR estimators are relatively stable. Indeed, the
LA and LR estimators face no significant increases in MAPE as ς gets larger. Also, when ς is increased to 5,
DeDL performs worse than SDL, implying that debiasing via Neyman orthogonality hurts the performance
when the link function is not correctly specified.

In practice, however, it is di!cult, if not impossible, to verify the true link function. Fortunately, one may
detect link function misspecification through large training errors. In other words, we can resort to checking
the cross-validation errors in the DNN training stage. To shed light on this point, we report the training
errors from our experiments. Specifically, we compare the errors induced by pure DNN without a sigmoid
link function (a three-layer perceptron in our case) and structured DNN (a two-layer perceptron followed by
a link function layer), respectively. Pure DNN takes treatment level t together with covariates x as inputs
to the first linear layer. In contrast, the structured DNN takes only covariates x to the first linear layer and
uses treatment level t in the final link function layer.

For a fair comparison, we set the pure DNN structure with a similar width and depth, i.e., (dx + dt + 1)–
10–ReLU–10–ReLU–10–ReLU–1. Equipped with higher flexibility, pure DNN is generally good at fitting
individual responses in the partially observed treatment combinations. Hence, we can use the pure DNN as a

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
30

benchmark for the in-sample comparison to check whether the link function is reasonable. Adopting the same
Adam algorithm and training samples, we obtain the following 95% CIs of cross-validation mean squared
errors under di"erent misspecification levels: (a) [0.044,0.053], [0.086,0.112], [0.116,0.159], [0.142,0.197] for
pure DNN under ς = 0,1,3,5 respectively; and (b) [0.012,0.014], [0.019,0.026], [0.076,0.106], [0.215,0.279]
for structured DNN under ς = 0,1,3,5 respectively. One can observe that when ς ⇐ {0,1,3}, the structured
DNN has a smaller or comparable in-sample loss than the pure DNN, which indicates the reasonable per-
formance of the generalized sigmoid link function to approximate the outcome variable. However, when the
misspecification level ς = 5, the in-sample error from the generalized sigmoid form grows larger than that
of the pure DNN. Correspondingly, in Figure A4, we observe severe performance degradation for both SDL
and DeDL and a significant negative impact from the debiasing term. In this case, we suggest experimenting
with a di"erent link function in the first DNN training stage and/or not using the debiased estimator. More
generally, as long as the in-sample loss of the structured DNN is on par with that of a pure DNN with similar
depth and width, we recommend adopting this structured DNN with debiasing.

D.4.1. Complete Results of the Experiments in Appendix D.4. Table A8 shows the complete
simulation results. Comparing across di"erent panels representing di"erent values of ς, one can observe that
when the link function gets more misspecified, SDL and DeDL estimators get worse under all metrics. While
the MAPE, MSE, and MAE performances of LA and LR are not significantly deteriorated, considering the
increased absolute treatment e"ects listed in table notes. When the model is not misspecified or marginally
misspecified, i.e., ς ⇐ {0,1,3}, SDL and DeDL work no worse than LA in all performance metrics. When ς = 1,
DeDL can only marginally improve the performance of SDL for all metrics. However, when ς is increased to
3, we can observe that DeDL has worse MSE performance than SDL. Even worse, when ς is increased to 5,
DeDL is not better than SDL under all performance metrics. In summary, we still recommend using DeDL
when ς ⇐ {0,1,3}.

D.4.2. Experiment on Model Misspecification under Higher-Order Treatment Interactions.
We conduct a new set of synthetic experiments on the model misspecification with explicit higher-order
interaction terms. Specifically, the true data-generating process with all higher-order terms is defined as

yi =φ≃
0(xi) + φ≃

1(xi)t1 + φ≃
2(xi)t2 + φ≃

3(xi)t3 + φ≃
4(xi)t4

+ φ≃
5(xi)t1t2 + φ≃

6(xi)t1t3 + φ≃
7(xi)t1t4 + φ≃

8(xi)t2t3 + φ≃
9(xi)t2t4 + φ≃

10(xi)t3t4

+ φ≃
11(xi)t1t2t3 + φ≃

12(xi)t2t3t4 + φ≃
13(xi)t3t4t1 + φ≃

14(xi)t4t1t2

+ φ≃
15(xi)t1t2t3t4 + εi,

(44)

where all parameters φ≃
i (x) = c↘

ix (i = 0,1, . . . ,15) are linear in the covariate vector. We generate the coe!-
cient c⇐RdX with independent entries, and each component follows the uniform distribution U(0,0.5). Note
that our proposed Generalized Sigmoid Form II is largely misspecified compared to the above true DGP. We
run synthetic experiments under di"erent levels of model misspecification by incorporating di"erent terms
into the DGP. Specifically, we conduct four di"erent tests. In the first test, we add all terms, i.e., 1st, 2nd,
3rd, and 4th-order interaction terms. In the second test, we only put 1st, 2nd, and 3rd-order terms in the
true DGP. In the third test, we have 1st and 2nd-order terms, while the last test only has linear terms.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
31

Table A8 Model Misspecification Result

Panel A: Comparison of Di!erent Estimators Under ε = 0
Estimator CDR MAPE MSE MAE BTI

LA 94.78% 20.69% 0.074 0.167 94.5%
(93.80%, 95.76%) (18.30%, 23.08%) (0.056, 0.091) (0.151, 0.182) (91.3%, 97.7%)

LR 97.38% 12.81% 0.043 0.125 94.5%
(96.81%, 97.94%) (11.53%, 14.08%) (0.033, 0.053) (0.112, 0.138) (91.3%, 97.7%)

SDL 97.71% 10.07% 0.014 0.075 96.5%
(97.18%, 98.26%) (8.92%, 11.21%) (0.010, 0.018) (0.068, 0.081) (93.9%, 99.1%)

DeDL 99.28% 3.23% 0.002 0.024 99.0%
(98.99%, 99.57%) (2.68%, 3.78%) (0.001, 0.003) (0.021, 0.027) (97.6%, 100.4%)

Panel B: Comparison of Di!erent Estimators Under ε = 1
Estimator CDR MAPE MSE MAE BTI

LA 95.56% 21.76% 0.091 0.189 87.5%
(94.77%, 96.35%) (19.29%, 24.23%) (0.069, 0.112) (0.171, 0.206) (82.9%, 92.1%)

LR 97.38% 12.85% 0.042 0.124 88.0%
(96.79%, 97.96%) (11.45%, 14.24%) (0.033, 0.052) (0.113, 0.136) (83.5%, 92.5%)

SDL 97.22% 11.55% 0.027 0.100 90.5%
(96.57%, 97.86%) (10.40%, 12.70%) (0.019, 0.035) (0.091, 0.109) (86.4%, 94.6%)

DeDL 98.81% 5.67% 0.014 0.056 92.5%
(98.33%, 99.29%) (4.87%, 6.47%) (0.008, 0.020) (0.049, 0.064) (88.8%, 96.2%)

Panel C: Comparison of Di!erent Estimators Under ε = 3
Estimator CDR MAPE MSE MAE BTI

LA 94.62% 18.07% 0.112 0.210 89.0%
(93.71%, 95.54%) (16.18%, 19.96%) (0.075, 0.148) (0.190, 0.229) (84.6%, 93.4%)

LR 97.09% 12.10% 0.050 0.135 88.0%
(96.46%, 97.73%) (10.77%, 13.43%) (0.036, 0.063) (0.122, 0.149) (83.5%, 92.5%)

SDL 97.00% 15.10% 0.123 0.199 90.5%
(96.33%, 97.67%) (13.54%, 16.66%) (0.088, 0.159) (0.180, 0.218) (86.4%, 94.6%)

DeDL 97.50% 13.44% 0.151 0.181 92.5%
(96.77%, 98.22%) (10.87%, 16.00%) (0.096, 0.207) (0.156, 0.207) (88.8%, 96.2%)

Panel D: Comparison of Di!erent Estimators Under ε = 5
Estimator CDR MAPE MSE MAE BTI

LA 95.34% 19.93% 0.155 0.263 88.0%
(94.47%, 96.22%) (17.12%, 22.74%) (0.125, 0.185) (0.241, 0.285) (83.5%, 92.5%)

LR 96.97% 12.05% 0.077 0.170 92.5%
(96.21%, 97.73%) (10.28%, 13.81%) (0.053, 0.102) (0.153, 0.187) (88.8%, 96.2%)

SDL 95.90% 17.24% 0.241 0.277 88.5%
(95.09%, 96.72%) (15.21%, 19.26%) (0.183, 0.299) (0.251, 0.304) (84.0%, 93.0%)

DeDL 95.46% 23.20% 0.559 0.333 84.5%
(94.43%, 96.50%) (18.31%, 28.09%) (0.375, 0.743) (0.284, 0.381) (79.4%, 89.6%)

Notes: All simulations are replicated 200 times, with 95% CIs reported in parentheses. 95% CIs of average absolute treatment
e!ects are (1.45, 1.65), (1.52, 1.72), (2.06, 2.36), and (2.71, 3.07) respectively in Panel A, Panel B, Panel C, and Panel D.

The complete result are reported in Table A9, where each panel shows a test result with di"erent terms

in the DGP as defined above. Because there are no significant di"erences in the performance metrics BTI

and CDR, we only document the MAPE, MSE, and MAE measures. One can observe that DeDL performs

best when there exist interactions among the treatment e"ects of di"erent experiments; see Panel A, B, and

C in Table A9. It means that even the link function is misspecified, DeDL can still capture some level of

interactions and make a relatively accurate estimation. Comparing DeDL and SDL, Table A9 shows that

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
32

DeDL improves the performance over SDL as long as higher-order interaction terms are incorporated. Even

if the DGP is linear (i.e., Panel D), the performance of DeDL is on par with that of SDL, suggesting that

debiasing with Neyman orthogonality is fairly robust under model misspecification.

Table A9 Model Misspecification Result with Explicit Individual-Level Higher Order Terms

Panel A: Comparison of Di!erent Estimators Under 1st, 2nd, 3rd, 4th - Order Terms
Estimator MAPE MSE MAE

LA 34.06% 18.732 2.582
(33.77%, 34.35 %) (18.426, 19.038) (2.559, 2.604)

LR 29.30% 12.225 1.883
(28.98%, 29.63 %) (11.967, 12.482) (1.860, 1.907)

SDL 21.78% 11.453 1.671
(21.41%, 22.14 %) (11.168, 11.739) (1.646, 1.696)

DeDL 15.15% 8.013 1.310
(14.80%, 15.50%) (7.706, 8.321) (1.277, 1.343)

Panel B: Comparison of Di!erent Estimators Under 1st, 2nd, 3rd - Order Terms
Estimator MAPE MSE MAE

LA 33.65% 16.560 2.493
(33.35%, 33.96 %) (16.297, 16.824) (2.472, 2.514)

LR 28.81% 10.437 1.802
(28.49%, 29.14 %) (10.246, 10.629) (1.784, 1.821)

SDL 21.51% 9.653 1.591
(21.17%, 21.85 %) (9.437, 9.870) (1.571, 1.611)

DeDL 14.88% 6.476 1.230
(14.56%, 15.19%) (6.216, 6.736) (1.200, 1.260)

Panel C: Comparison of Di!erent Estimators Under Under 1st, 2nd - Order Terms
Estimator MAPE MSE MAE

LA 31.04% 7.659 1.874
(30.74%, 31.33 %) (7.485, 7.833) (1.853, 1.896)

LR 25.09% 3.466 1.166
(24.80%, 25.39 %) (3.362, 3.570) (1.146, 1.185)

SDL 17.32% 2.903 0.948
(16.99%, 17.64 %) (2.786, 3.019) (0.927, 0.968)

DeDL 10.07% 1.328 0.591
(9.74%, 10.40%) (1.223, 1.433) (0.565, 0.617)

Panel D: Comparison of Di!erent Estimators Under Under 1st - Order Terms
Estimator MAPE MSE MAE

LA 1.56% 0.002 0.036
(1.45%, 1.67 %) (0.002, 0.003) (0.034, 0.039)

LR 0.75% 0.001 0.018
(0.68%, 0.82 %) (0.001, 0.001) (0.017, 0.020)

SDL 6.32% 0.157 0.215
(6.08%, 6.55 %) (0.145, 0.169) (0.206, 0.224)

DeDL 6.67% 0.220 0.212
(6.41%, 6.92%) (0.210, 0.231) (0.195, 0.230)

Notes: All simulations are replicated 200 times, with 95% CIs reported in parentheses. 95% CIs of average absolute treatment
e!ects are (5.03, 5.10), (4.97, 5.04), (4.34, 4.41), and (2.48, 2.55) respectively in Panel A, Panel B, Panel C, and Panel D.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
33

D.5. Imbalanced Covariates

This set of simulations investigates a practical setting where the observed X distribution deviates from
the population. We call this setting imbalanced covariates, i.e., X covariates are imbalanced between any
treatment level t ⇐ {0,1}

m and population X distribution. The imbalanced covariates a"ect both training
and inference stages, invalidating the DeDL estimators. Below, we discuss how to rebalance the covariates to
get precise and trustworthy ATE estimates.

We adopt exactly the same simulation setup to Appendix D.3 except that the observed covariates follow
a di"erent distribution. Specifically, the last dimension of x follows the exponential distribution with rate
↼ ⇐ {2.0,1.0,0.5} instead of the uniform distribution U(0,1). The ground truth ATEs are still calculated
using the uniform distributed x. Although this setup is relatively simple because the observed covariates
uniformly deviate from the true distribution across all treatment combinations while in practice the observed
covariates x may even follow di"erent distributions under di"erent t, this simulation result still demonstrates
the importance of rebalancing covariates.

To reconcile the imbalanced covariates, one can do stratified sampling on sampled units to match the
covariate distribution over the population, as we implement in our empirical study. There are also many
re-randomization techniques to improve covariate balance in experiments. We refer interested readers to
Morgan and Rubin (2012) and Li et al. (2020).

In this simulation study, to keep the discussion simple, we use the same stratified sampling procedure in our
empirical study. Specifically, we focus on the imbalanced covariate dimension with exponential distribution.
First, we do stratified sampling to keep only the data with x in the support [0,1]dX . Then we do stratified
sampling to make sure the imbalanced dimension of x is rebalanced in the sense that the sample sizes in
[0,1]dX↗1

⇒ [0,0.5) and [0,1]dX↗1
⇒ [0.5,1] are the same. Through stratified sampling, we may discard some

samples but sacrifice e!ciency. We also conducted the stratified sampling with higher accuracy, e.g., the
numbers of samples in five buckets with 0.2 bandwidth are the same.

We report the MAEs for di"erent estimators with balanced and imbalanced covariates in Figure A6(a) and
(b), respectively. Using the imbalanced covariates for both training and inference, Figure A6(a) reports the
comparison results. (We present the complete results in Table A10.) After the stratified sampling, we use the
rebalanced covariates for both training and inference; we show the result in Figure A6(b). ↼ ⇐ {2.0,1.0,0.5}

indicates the growing imbalance level. The key observation is that when the data is too imbalanced with
↼ ⇐ {1.0,0.5}, DeDL is not precise. After the stratified sampling, debiasing is still trustworthy, reducing MAE
compared to SDL.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
34

(a) (b)

Figure A6 MAE Comparison Among Estimators Under the Imbalanced Covariates Setting. Panel (a) shows the
performance of LA,LR,SDL, and DeDL before rebalancing. Panel (b) presents the performance after rebalancing.

Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments
35

Table A10 Imbalanced Covariates Result

Estimator CRD MAPE MSE MAE BTI
Panel A: Comparison of Di!erent Estimators Under ϑ = 2.0

Before Covariates Rebalancing

LA 91.22% 32.03% 0.104 0.215 87.5%
(89.99%, 92.45%) (28.21%, 35.85%) (0.081, 0.127) (0.197, 0.233) (82.9%, 92.1%)

LR 96.00% 18.92% 0.047 0.136 91.0%
(95.32%, 96.68%) (16.87%, 20.97%) (0.036, 0.059) (0.123, 0.149) (87.0%, 95.0%)

SDL 96.12% 15.84% 0.024 0.101 95.0%
(95.42%, 96.83%) (14.09%, 17.60%) (0.018, 0.031) (0.093, 0.109) (92.0%, 98.0%)

DeDL 96.44% 11.10% 0.007 0.061 95.0%
(95.74%, 97.13%) (9.71%, 12.48%) (0.006, 0.008) (0.057, 0.065) (92.0%, 98.0%)

After Covariates Rebalancing

LA 93.94% 27.24% 0.102 0.193 92.0%
(92.85%, 95.02%) (23.10%, 31.38%) (0.074, 0.129) (0.173, 0.212) (88.2%, 95.8%)

LR 96.44% 18.36% 0.044 0.128 93.5%
(95.75%, 97.13%) (15.69%, 21.03%) (0.033, 0.056) (0.116, 0.141) (90.1%, 96.9%)

SDL 96.62% 14.47% 0.019 0.092 96.0%
(95.95%, 97.30%) (12.66%, 16.28%) (0.015, 0.023) (0.085, 0.099) (93.3%, 98.7%)

DeDL 97.66% 7.86% 0.006 0.049 98.0%
(97.11%, 98.20%) (6.66%, 9.05%) (0.004, 0.007) (0.045, 0.053) (96.0%, 100.0%)

Panel B: Comparison of Di!erent Estimators Under ϑ = 1.0
Before Covariates Rebalancing

LA 87.84% 82.23% 0.519 0.534 71.5%
(86.47%, 89.21%) (73.27%, 91.18%) (0.445, 0.593) (0.497, 0.571) (65.2%, 77.8%)

LR 90.44% 70.13% 0.371 0.455 72.0%
(89.36%, 91.51%) (62.66%, 77.60%) (0.321, 0.420) (0.426, 0.485) (65.7%, 78.3%)

SDL 90.53% 71.28% 0.304 0.419 76.0%
(89.41%, 91.66%) (63.36%, 79.20%) (0.260, 0.348) (0.391, 0.447) (70.0%, 82.0%)

DeDL 90.59% 68.73% 0.291 0.408 75.5%
(89.51%, 91.68%) (61.16%, 76.30%) (0.248, 0.334) (0.380, 0.436) (69.5%, 81.5%)

After Covariates Rebalancing

LA 91.44% 32.66% 0.109 0.218 88.0%
(90.29%, 92.58%) (28.67%, 36.66%) (0.086, 0.133) (0.199, 0.236) (83.5%, 92.5%)

LR 95.84% 20.03% 0.056 0.138 94.5%
(95.17%, 96.52%) (16.01%, 24.04%) (0.036, 0.076) (0.124, 0.152) (91.3%, 97.7%)

SDL 96.00% 15.04% 0.027 0.099 96.0%
(95.23%, 96.77%) (12.57%, 17.51%) (0.018, 0.036) (0.089, 0.108) (93.3%, 98.7%)

DeDL 96.47% 9.16% 0.008 0.053 96.0%
(95.84%, 97.10%) (7.23%, 11.08%) (0.004, 0.012) (0.047, 0.058) (93.3%, 98.7%)

Panel C: Comparison of Di!erent Estimators Under ϑ = 0.5
Before Covariates Rebalancing

LA 78.41% 186.87% 2.644 1.223 43.5%
(76.31%, 80.51%) (167.63%, 206.10%) (2.289, 2.999) (1.141, 1.304) (36.6%, 50.4%)

LR 80.84% 167.21% 2.097 1.084 47.0%
(78.92%, 82.77%) (150.48%, 183.94%) (1.811, 2.383) (1.012, 1.156) (40.0%, 54.0%)

SDL 81.50% 162.02% 1.737 0.996 51.0%
(79.51%, 83.49%) (144.89%, 179.15%) (1.503, 1.972) (0.930, 1.062) (44.0%, 58.0%)

DeDL 81.34% 163.63% 1.767 1.003 51.5%
(79.36%, 83.33%) (146.21%, 181.06%) (1.528, 2.005) (0.936, 1.070) (44.5%, 58.5%)

After Covariates Rebalancing

LA 88.78% 42.56% 0.158 0.273 84.0%
(87.40%, 90.17%) (37.80%, 47.32%) (0.126, 0.191) (0.248, 0.297) (78.9%, 89.1%)

LR 94.78% 22.60% 0.055 0.155 88.5%
(93.85%, 95.72%) (20.11%, 25.09%) (0.045, 0.065) (0.142, 0.168) (84.0%, 93.0%)

SDL 94.41% 19.69% 0.026 0.112 92.0%
(93.49%, 95.32%) (17.41%, 21.97%) (0.022, 0.030) (0.104, 0.121) (88.2%, 95.8%)

DeDL 94.75% 9.27% 0.005 0.053 93.5%
(93.87%, 95.63%) (8.32%, 10.21%) (0.005, 0.006) (0.050, 0.057) (90.1%, 96.9%)

Notes: All simulations are replicated 200 times, with 95% CIs reported in parentheses. 95% CIs of average absolute treatment
e!ects are (1.45, 1.65).

