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Appendix A: Technical Details
A.1. Proof of Theorem 1

Our proof is inspired by the analysis of universal approximation bounds of neural networks (e.g., Kushilevitz
and Mansour 1991). At its core are the Fourier transformations of functions. Utilizing such transformations
in our context, we develop a compact representation of the ATE as Boolean functions that allow us to connect
to our Generalized Sigmoid Form II. The proof contains four steps. First, we give the Fourier representation
of the function f(t). Second, we rewrite the Fourier formula using indicator functions. Third, to remove
the integral and obtain a finite population bound, we use a probabilistic method. Last, we approximate the
indicator functions with our sigmoid link function.

Step 1 (Fourier representation). We first give the Fourier transformation of Boolean functions (e.g.,
Kushilevitz and Mansour 1991): For f(-):{0,1}™ — R, we always have

f6) = Y fa), whee fw) = o Y f(thvw(®)
we{0,1}™ te{0,1}™

where

1, if 7 wit;, mod2 = 0
X'w(t) = . Ziﬁl o
-1, if >0 wit; mod2 = 1.

Note that this implies
Ft) = Y fwhxe®) = Y | fw)|cos(rw T+ o(w))
we{0,1}m we{0,1}™

where d(w) = 71{f(w) < 0}.
Step 2 (Expansion with indicator functions). In the next, we expand the ATE, i.e., f(¢t) — f(0),

using integrals and indicator functions.

f(t)—1(0)
= Z f(w)] cos (mw "t + §(w)) — cos (5(w))
we{0,1}m
= Flw) '[Tf ’ tsin(7r2+5('w))dz]
. Vilw) 0
— f(w)] - [—n/ ]l('th—zZO)sin(ﬂz+6(w))dz+7r/ I(w't—2<0)sin(rz+ 0(w))dz|,
we{0,1}m 0 —vmllw]|

(7)

where the last equality follows from the elementary inequality |w "t| < /m|w]|.
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Step 3 (Sampling). Define Cy,n =3, c(0.1ym ‘f(w)‘ vml||w||. We use random sampling to remove the

integrals in the ATE representation. Particularly, for each £ =1,..., K, we sample (wy, 2z,) € R™ X R in an
1.7.d fashion as follows:

(0,0), with probability 1,

(we.ze) = 4 0.1} x (0,mlfwl],  with probability density JL,

{0,1}™ x [-m/|lw]|,0), with probability density ‘3];5;”"!

Also, define the function
3f(0)1(07t+0>0), if (w,z)=0,
g(w,z;t) = ¢ =37C; ,sin (72 4+ 0(w))L(w 't —2>0), if (w,z)€{0,1}™ x (0, /m|wl]],

31C} pmsin (2 +§(w))1(—w 't + 2 >0), if (w,z) € {0,1}™ x [—y/m|wl]],0).
Note that in the above we write f(0) = f(0)1(0Tt+0 > 0) for reasons that will be clear very soon. In view
of (7), we notice that for any £=1,..., K and t € {0,1}"", E(w, .,)[g(wy, z¢; t)] = f(t). This implies that

K 2
1
S, | 3 (50X ststmzon) | = 3 Vit ol

te{0,1}™ te{0,1}™

L 9.2m
S E Z E(wl’zl)[g(wl’zl;t)z] S 7.][‘ ( )\/CJQC,mv

te{0,1}m
where the first equality and the first inequality follow from straightforward computation, and the second

inequality follows from the definition of g(-,-;-). Therefore, there exists {(wy, Z,):€=1,... K} where each
(wy, Z,) is in the support of the random sampling distribution defined above such that
2
LY (s mn) < Lrove
om ’ K £y <Ly =K fom:
te{0,1}m =1
Step 4 (Approximation with sigmoid functions). Note that regardless of the value of (w, z), g(w, z; t)

can be written in the form g; (w, 2)1(a(w) "t + 3(z) > 0), where g, (w, 2), a(w) and B(z) are some functions

of w and z. Further, such functions as g, (w,z)1(a(w) "t + B3(z) > 0) can be well-approximated by scaled

sigmoid functions. Indeed, m%vz — 1(z > 0) pointwise except for z =0, when v — co. Thus, for any ¢ =
1,...,m,
o if (W, %) =0, set Og(xy) =7, 61(xp) =---=0,,(x) =0, and 0,,,,1(x,) =3Kp(¢) f(0);

o if (wy, Z) € {0,1}™ x (0,/ml||w]|], set Op(xe) = —v2;, 0;(x¢) =y, for j=1,...,m, and 0,11 () =
—=3nKp(£)C}msin(nZ,+ §(Wy));
o and if (W, %) € {0,1}™ x [—y/m]||w]],0), set Oy(w,) = vz, 0;(x¢) = —yw,; for j =1,...,m, and
Omr1(x;) =30 Kp(l)Cy msin (72, + 6(Wy)).
Here we set v large enough so that
POGO(1) -~ fealin 2:0)| <
uniformly over all =1,..., K and t € {0,1}". Thus,

o > (f(t) —pr)G(e(wi),t))

te{0,1}m

1
K7

K 2 K 2
2
<om D ( EZ wz,zz,t> Z( g(We, 23 t) — p(Z)G(e(w),t)>
te{o,1}m =1 P
1 1
< 2 2 <
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where the first inequality follows from repeated applications of the Young’s inequality. We conclude the

proof. O

A.2. Regularity Assumptions

We make the following regularity assumption throughout the theoretical analysis of this paper.

ASSUMPTION 3. (a). z; = (y;,x,t)), 1 <i<n, are i.i.d. copies from the population random variables
Z=Y,X'T) €Y x[-1,1]"x x {0,1}™, where Y is the bounded support of the outcome Y .
(b). The parameter function 0*(x) is uniformly bounded. Furthermore, 0;(x) € WP ([-1,1]9x), k =
1,2,...,ds, where for positive integers p, define the Sobolev ball WP ([—1,1]%%) of functions h: RI¥X
R with smoothness p € N as,
W ([—1,1]4% ) = {h: max  esssup |D"h(v)| < 1},
mIPI<Pye-1,1)4x

where = (T1,...,Tay ), |T| =71+ +7ray and D"h is the weak derivative.

We remark that Assumption 3(a) implies that the DGP is bounded, whereas Assumption 3(b) ensures
that the ground-truth parameter functions are uniformly bounded, and enjoy sufficient smoothness so they
can be accurately approximated by DNNs. The smoothness assumptions (see, also, Assumption 2 in Farrell
et al. 2020) are critical to deriving the sufficiently fast convergence rate of the estimator é()

We also make the following assumption throughout our analysis to ensure the identifiability and sufficient
convergence rate of our model. Let £(S) = (¢1(5), ..., tn(5)) €{0,1}™ denote the treatment assignment such
that t;(S) = 1{i € S}, where S C {1,2,...,m}, and define T := (1,T")" and #:= (1,#')". Let Anin(-) denote

the minimum eigenvalue of a symmetric matrix

ASSUMPTION 4. Any of the following conditions hold:

(a) G(-,-) is of the Multiplicative Form, Aum(E[TT'|X]) and |05(X)| are uniformly bounded away from
zero;

(b) G(-,-) is of the Standard Sigmoid Form, Amin(E[TT'|X]) is uniformly bounded away from zero;

(¢) G(-,-) is of the Generalized Sigmoid Form I, A (E[TT'|X]), 105,,1(X)|, and v(t(0)|X) are uniformly
bounded away from zero;

(d) G(-,-) is of the Generalized Sigmoid Form II, Auin(E[TT'|X]) and |07, (x)| are uniformly bounded
away from zero, and there exists a triplet (i,51,52) (i € {1,...,m}, S1, S2 C{1,2,...,m}) such that i ¢
S1,1¢ Sy, Sy # Sa, and v(#(S1U{i})| X) - v(t(S1)|X) - v(t(S2U{i})| X)) -v(t(S2)| X) and |G(0*(X),t(S1U
{i})G(0*(X),t(S2)) — G(O*(X),t(So U {i}))G(0*(X),t(S1))| are both uniformly bounded away from

ZEro.

Technically, we require that these conditions are satisfied uniformly on a set with probability one.
For simplicity, we skip almost everywhere in these statements. Also, the assumptions A, (E[TT’|X]) or
Amin (E[TT’| X]) being uniformly bounded above zero is satisfied as long as all m individual treatment con-
ditions and the full control condition are assigned with positive probability, i.e., ¥((0,0,...,0)'|) > ¢ and
v((1,0,...,0)|x), v((0,1,...,0)|x),..., v((0,0,...,1)|x) > ¢, for some ¢ > 0 almost everywhere, which is a

fairly mild assumption. Therefore, these conditions state that (m) treatment assignments are necessary.
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At a high level, we indeed can extend our framework to cases with higher-order interactions between indi-
vidual treatments, and Theorem 2 remains valid. However, the number of observable treatment combinations
must increase. For instance, to ensure the valid identification and inference for the model with quadratic
interactions mentioned above, one will need (m?) treatment combinations assigned with a positive proba-
bility. Following the same inference framework, we notice that the key is to guarantee the identifiability of
the model and the sufficient curvature condition in the presence of higher-order interactions.

Let us first consider the case where all second-order treatment interactions are included in the link func-
tion. In this regard, upon inspection of the proof for the Multiplicative Form, Standard Sigmoid Form, and
Generalized Sigmoid Form I, we note that only mild modifications of the assumptions on the data generation
process ensure the validity of our results. More specifically, one only needs to redefine T' = (1,T',T") where
T = (T,T;: Vi<j, 1<i,j<m). That is, we extend the definition of T to include all quadratic interac-
tions. Then, all analyses of the Multiplicative Form and Standard Sigmoid Form go through unchanged.
Particularly, we notice that in this case T is of dimension ©(m?), so to ensure that the minimum eigenvalue
of E[TT’|X] is uniformly bounded from below above zero, the support of treatment assignment distribu-
tion should have cardinality of order Q(m?). This is in sharp contrast with our results with linear terms
only, which only requires Q(m) treatment combinations with positive probability, highlighting the price for
modeling the higher-order treatment interactions and estimating the associated nuisance parameters.

With the Generalized Sigmoid Form II, the analysis is more involved. Consider the following link function

Ormr1()
G(6(z),t) = { +exp(—(fo(@) + iy Oi(@)t + 2, 0i (T)tit;)
As discussed above, we need the minimum eigenvalue of E[TT|X] is uniformly bounded from below above
zero. Moreover, to estimate 6,4, (), fix any i,j with 1 <i < j < m and consider S and S such that (1)
i,j¢ 5,8, (2) S#S, and (3) Hi:1 v(t(Sy)|X) > ¢ > 0 for some positive &, where S; =5, Sy =S U {i},
S;=SU{j}, S4=SU{i,j}, Ss=S, Ss=SU{i}, S;=SU{j}, Ss=SU{i,j}. Then it follows that

( Om+1(X) _1)< Om+1(X) _1)
G(8(X),t(51)) G(8(X),t(51))

( e s () 71) ( bmsa(X) 71) exp( ( ( )+ ]( )+ ]( ))) (8)
G(6(X),t(S2)) G(6(X),t(Ss))
and
Om+1(X) Om+1(X)
(Gw(;;,t(ss)) B 1) (G(e&)lﬁt(ss» B 1)
= exp(—(0;(X) +0;(X) 4 0;;(X))). (9)

( Om+1(X) _1)( Om+1(X) _1)
G(8(X),t(56)) G(8(X),t(57))

Under the assumption that 6,,,1(X) # 0, putting Eqns (8) and (9) together allows us to cancel out the term
exp(—(0;(X)+6;(X)+6,;(X))) and build a cubic equation of 6,,,1(X) with the products of G(8(X),t(S;))
(i=1,...,8) as the coefficients. This cubic equation admits at most 3 real solutions. As long as there are 3
such (4, ) pairs (and the correspondingly sets S and S), we can uniquely identify 6,,,,(X). Therefore, we
need Q(m?) treatment combinations with positive probability in the treatment assignment mechanism to
ensure identification.

The argument above aligns with our analysis of the identification condition for Generalized Sigmoid Form IT

detailed in Appendix A.3, yet it becomes significantly more complex in the presence of second-order treatment
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interactions. More generally, with higher-order interactions, we can establish equations similar to (8) and
(9) to formulate primitive conditions for identifying 6,,,1(X), which makes the identification condition
more restrictive and practically infeasible. Consequently, carefully trading off the generality, tractability, and

practicality of our framework, we have decided to focus on the Generalized Sigmoid Form II link function.

A.3. Influence Function

The following lemma from Farrell et al. (2020) formally states a generic result regarding the influence function,
which proves useful to derive the influence function in our setting (Proposition 2). The proof follows the

pathwise derivative method originated in Newey (1994).

LEMMA 1 (Theorem 2 in Farrell et al. (2020)). For allt € {0,1}™, suppose the following conditions
hold uniformly in the given conditioning elements. (i) (1) holds and identifies 6*(-). (ii) E[tg(Y,t,0%(x))| X =
x, T =1 =0. (iii) A(z) :=E[leo(Y,T,0(x))|X = x| is invertible with uniformly bounded inverse. (iv) Pa-
rameter u(t) is identified, pathwise differentiable, and H and ¢ are thrice continuously differentiable in 6. (v)
H(X,0*(X),t,ty) and Le(Y,T,0*(X)) possess ¢ >4 finite absolute moments and positive variance. Then
for the treatment effect u(t), the Neyman orthogonal score is ¥(z,0, A;t,to) — u(t), where

’l/)(zv 07 A; t’ tO) = H(:B, 9(.’13), t, tO) - Hg(.’l), 0(:8)7 t,to),A(.’B)_lfg(y,tv, 0(.’13)), (10)
where Ly, Hyg are dg-dimensional vectors of first order derivatives, and lgg is the dg X dg Hessian matriz of
0, with {ki,ks} element defined by 02€/00y, 00y, .

A.4. Proof of Proposition 1

We first present without proof a key convergence result inherited from Farrell et al. (2020).

LEMMA 2 (Theorem 1 in Farrell et al. (2020)). Suppose Assumption 3, and the following regularity
assumptions hold,

(a). (NONPARAMETRIC IDENTIFIABILITY) The arameter function 60*(x) can be nonparametrically identified
in DGP (1).

(b). (LipscuiTz CONTINUITY) There exists a positive constant Cy such that, for any (), 6(-) and =z,
[ €(y,t,0()) — Uy, t.0(x))| < Crl|0(x) — B(x)]2, (11)
(¢). (SUFFICIENT CURVATURE) There exist positive constants ¢1 and co such that, for any 0(-) € Fpyn,
aE[[|0(X) —0"(X)[5] <E[L(Y,T,0(X))] - E[/(Y,T,0"(X))] < :E[|0(X) — 6" (X)[3]- (12)

d
With the structured DNN of width H = O(n“?fgx) log®n) and depth L= O(logn) as illustrated in Figure
3, there exists a constant C' such that

~ __p log1
16, — 6112, %) S n 7x login 4 —2 080

and

E.[(0s—67)?] < n 7% log*n + 281087
n

d
for n large enough with probability at least 1 —exp(n~ Prix log®n), for k=1,...,dg.
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Assumptions in Lemma 2 are natural and common in the nonparametric M-estimation literature, which
consists of three parts: (a) the nonparametric identifiability of 6*(-), (b) the Lipschitz continuity of loss
(i.e., (11)), and (c) the sufficient curvature of loss (i.e., (12)). Whereas the Lipschitz continuity condition is
mild and easy to check in our setting, the identifiability of 6*(-) and the sufficient curvature condition are
non-trivial and should be verified carefully. In particular, the sufficient curvature condition (12) is usually
implied by a proper choice of the link function G(-,-) and the treatment assignment mechanism v(-|-). This
condition helps translate the convergence of outcomes Y into that of parameter functions 6(-).

To obtain the convergence results in Proposition 1, it suffices to verify the assumptions in Lemma 2 are
satisfied. The Lipschitz condition in Assumption (b) can be easily satisfied by for all our proposed link
functions in Section 3.3 because all G functions are sufficiently smooth with bounded X, T', and 8. Since the
square loss function and our link functions are differentiable, the second inequality in the curvature condition

is satisfied for all of our link functions. In particular, we note the identity
E[((Y,T,6(X))] - E[L(Y,T,6"(X))| =E [(G(6(X),T) - G(6"(X),T))’] (13)
by DGP (1), which then implies by the mean value theorem

E[((Y,T,0(X))] —E[/(Y,T,0"(X))] =E[(8(X) —6"(X))'Go(6(X), T)Go(8(X),T) (8(X) — 9*(X))](a14)
where 6(X) is such that 6;(X) € [07(X),0;(X)] for all component i. Since all variables are bounded,
Go(0(X), T)Gg(6(X),T) is also uniformly bounded and the claim follows.

Consequently, it suffices to verify the nonparametric identifiability and the first inequality in the curvature
condition in Lemma 2 for different forms of G functions to guarantee the convergence of structured DNNs.
To simplify the notation, we define the one-dimension sigmoid function as S(x):=1/(1 4 exp(—x)). In the
following, we prove that, for each proposed link functions in Assumption 1, the conditions of Lemma 2 hold.

We also remark that the constants may be different for different forms of the link function.

Standard Sigmoid Form. In this part, we start with the standard sigmoid form,

a

C(O(x),t) =
1+exp ( — (90(%) +6, (w)tl + -t em(x)tm)>

where the constants a # 0, b are known.

+b, (15)

Proof. Because the sigmoid function is invertible, it suffices to verify the identifiability and sufficient
curvature conditions for the linear link function @(x)'f. Suppose E[Y | X = x, T = t] = G(6(x)'{) = G(6* (z)'t).
Next, we show 6*(-) can be nonparametrically identified, i.e., §(X)=0*(X). For all £, we have,

0=0(X)i—0"(X)t=(6(X)—6"(X))t,
which implies,

0=E[((B(X) —6"(X))'T)*|X] = (8(X) — 6" (X))E[TT'| X](§(X) — 6"(X)).

Because E[TT’|X] is positive definite uniformly with respect to X, it must hold that 8(X) —6(X) =0

almost everywhere, which concludes the proof of identifiability.
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We show that the first inequality in the sufficient curvature condition is satisfied. Similar to (14), it holds

that

E[((Y,T,0(X))] —E[((Y,T,0°(X))] = IE{((G(X)—6*(X))’T)2-52(w(X,T))(1—S(w(X,T)))2} (16)

Y

&E [((9(){) - 0*(X))’T)2} (17)

where w(X,T) is some function such that w(X,T) € [0*(X)'T, 6(X)'T] and the inequality follows since
all of the variables are bounded. Then, under the assumption E[T’f’ | X] is uniformly bounded away from

zero and following the law of total expectation, we derive that,
Exr[(6(X)T -6"(X)T)’] = a®Ex[((6(X)—6"(X))E[TT'|X]|(8(X) - 6"(X))]
> &Ex[(0(X)—67(X)) (0(X) —0"(X))],

for some & > 0, which concludes the proof of sufficient curvature, i.e.,
E[£(Y,T,6(X))] - E[L(Y,T,0"(X))] > &i6Ex[(6(X) —67(X))(0(X) - 6"(X))] (18)

This concludes the proof. O

Multiplicative Form. Consider the link function
G(@(x),t) =0y(x) (1 + 91(w)t1) e (1 + Gm(ar:)tm)7 (19)

where u <146, (x) <M, k=1,...,m, uniformly in & by assumption.

Proof. For simplicity of the proof, let us assume throughout 6,(x) > 0 for & almost everywhere. Other
cases can be proved similarly. These conditions guarantee that log (G(@(w),t)) is well-defined. The proof of
nonparametric identifiability and the curvature conditions can be verified as shown in the following:

log G =logOy(x)(1+ 01 (x)t1) ... (140, (x)tm)
=logOo(x) +log(l+ 61 (x)t1) + - - - +1og(1 + 6,,,(x)t.)
=logby(x) +log(1+6;(x))t1 + - +1og(1 4 b,.(x))tm),
where the last equality follows from that ¢; = 0,1 for all « =1,2,...,m. Hence, the Multiplicative Form is
equivalent to G(0(x),t) = exp(a(x) + b1 (x)t; + - + by (X )t,,), with a(x) =logby(x), and by (x) = log(1 +
0x(x)). Because the exponential function is monotone and smooth, to satisfy the identification and sufficient

curvature condition, we only need that E[T'T’|X = ] are invertible uniformly in z, where T = (1,T"), i.e.,

Assumption 4(a). The proof follows from the same argument as the Standard Sigmoid Form. |

Generalized Sigmoid Form I. Next, we consider

G(0(2),t) = Omi1(2)

- : (20)
1+exp ( — (b1 (2)t1 4+ + 0m(m)tm))

where 0,,11(x) € R can capture the range of the expected outcome, and the sign of 6;(x) (i=1,2,...,m)

represents whether the experiment ¢ has a positive or negative effect.



Ye et al.: Deep-Learning-Based Causal Inference for Combinatorial Experiments

Proof. Let 8 = (0_(x)',0,,41(x))’, where 8_(x) = (0,(x),...,0,(x)). Hence, we rewrite G(0(x),t) =
Omi1(x)S(0-(x)'t).

First, we show that 6*(-) can be nonparametrically identified. Assume that E[Y|X,T] =
Omir(2)S(0_(X)'T) = 07,,,(X)S(0* (X)'T). Because v(0|X) =P[T = 0|X] > 0 uniformly and S(0) =
0.5 > 0, we have 0,,,,(X) = 0r,.1(X). Because 05, ,,(X)S(0*(X)'T) # 0 by assumption and 01 (X) =
0r,.1(X), we have S(O_(X)'T) = S(0 (X)'T). Also, because S(-) is continuously invertible, following the
similar argument for the Standard Sigmoid Form, we derive that

0=E[(6_(X)T - 0" (X)T)*|X]=(6_(X)— 0" (X))E[TT'|X](6_(X) — 6" (X)).
Since E[TT’| X] > 0, it follows that 6_(X) = 0* (X). Together with 6, (x) = 07,1 (x), we conclude the
proof of identifiability.

Next, we show the sufficient curvature condition. Using (13), we obtain E[((Y,T,0(X))] —
E[((Y,T,0%(X))] =E[(0m+1(X)S(0_(X)'T)—0;,,,(X)S(07 (X)'T))?]. Hence, the sufficient curvature con-

dition is equivalent to that there exists a constant c; > 0 such that
m+1

AE[Y (0:(X) = 6;(X))*] < E[(41(X)S(0-(X)'T) — 6., (X)S(0-(X)'T))’].

i=1
Since P[T" = 0|X] is uniformly bounded away from zero, which implies that |G(0*(X)t(0))] =
1607,.1(X)S(0)| = |01+1(X)|/2 with probability uniformly bounded away from zero for all X, there must

exist a constant ¢; > 0 such that,

2 2
Excr[ (011 (SO (X)'T) - 0,0, ()50 (X)D)) | 2B | (Pen(X) - 000) | (2)
With the condition E[TT"|X] uniformly bounded away from zero, using the argument similar to (18), we

can show that there exists a constant é; > 0, the following inequality holds

m

> (6:(X) —9?(X))2] : (22)
i=1
Then, for any realized « and ¢, we have the following decomposition

0111 (2)S(87 (@)'1) = 11 (2)S (0 (@)'t)|
2(0;,11 (@)S(02 (@) t) = 03,1 (@)S(0- (@)8)| = [0, (2)S(0-(2)'t) — 11 (@) S(6-(2)'2)|
[0;,11(@)|-| S(0 (@)') = SO (@) 1)] ~ 165,11(@) ~ Oy (@) - SO (@)'8).

Since |0}, ()| > 0, rearranging the terms implies that
|S(0i (m)/t) . S(O, ($)/t)| S |9m+1(w)‘9(07 (w) t) - 9’"1+1 (-’L’)S(e ( ) )‘ + |9m+1( ) "l+1( )|S( ( ) )

10741 ()]
If |A| <|B|+]|C|, one can get |A]> <|B|*+|C|? + 2|BC| < 2|B|* + 2|C|*. Using this elementary identity,

Ex r[(S(O_(X)T) ~ 5(6° (X)'T))*] > &Ex

together with the uniform boundedness of 0}, (), we arrive at that there exists some constant ¢; >0 such

that
ESIEKS(O_ (X)'T) — S(Hi(X)’T))Z} < E[(GmH(X)S(G_ (X)'T) —9;+1(X)5(9*_(X)'T))2}

B[ (001(X) ~ s (X)) |

. > TE[(0n 11 (X)S(0-(X)'T) = 0;,,,(X)S(6" (X)'T))*|

IN
N
—
+

2

(23)
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where the second inequality follows from (21). Putting the inequalities (21), (22), and (23) together, we
conclude that

o E[j60X) -0 (01| < B[ (Glox), 1) - G (x).1)) .

where ¢; = &6283/(1 + ¢; + &¢3), which concludes the proof.

Generalized Sigmoid Form II. We consider

G(O(2). 1) = ome1(2)

_ . (24)
1 exp (= (0o(@) + 61 (@)t + -+ B (@) )

Recall that ¢(S) represents the treatment assignment vector such that ¢;(S) =1 if and only if i € S, where
S c{1,2,...,m}. We restate the following sufficient conditions of Assumption 4(d): Uniformly in X,

o the matrix E[TT'|X] > 0, where T = (1, T"),

1651 (X)] >0,

o and there exists a triplet ¢ € {1,...,m}, S1, So C{1,2,...,m} such that i ¢ S, i ¢ Sy, S; # S, and there

exists a constant ¢, such that
v(E(S1U{i})|X) - w(#(S1)|X) - v(#(S2 U{i})| X) - v(£(52)| X) = & >0,
and
|G(07(X), 8(S1 U{i}))G(07(X),8(S2)) — G(67(X), 8(5; U{i}))G(67(X), 4(51))| = & > 0. (25)

We show that these conditions are sufficient to guarantee the identification and sufficient curvature near
the ground truth, i.e., Proposition 1 holds for the Generalized Sigmoid Form II.
Proof. To flesh out the analysis, given each 0(-) and X, let us define

94(07X>:G(O(X)at(SQU{Z}))v and g(O’X):(91(07X)792(07X)vg3(03X)ag4(07X))/

Then, note that for any fixed ¢t

Cm—lzexp<—(eo(X)+91(X)tl++9m(X)tm))
As a result, we have
0o (X) b (X)
GOX).t(5,00) | GOX).uS0m) L,
00X b o)
G(6(X),t(51)) G(6(X),1(52))
which implies that
1 1
X | (ST~ s @) )
1 1 1 1

T 50.X)  0:00,X) 26, X) " 9:(6,X)

=0.
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By assumption, 6,,,1(X) # 0, it then holds that

(94(6,X)g:1(0, X) —93(07X)92(07X)) 9m+1(X)

= 91(0,X)g2(0, X)g4(0, X) + 91(0, X)g3(0, X )g4(0, X) — 91(0, X)g2(0, X )g3(0, X ) —92(97X)93(0,ng%()0,X)-

Assume that there exist (X)) such that

G(6(X),T)=G(6"(X),T),
with the assignment mechanism v(-|-). Under our assignment mechanism assumption that

P[T=t(5,U {i})’X} P|T =

} P[T — (S, U {i})‘x] -P[T:t(sg)

X} S&H >0,  (27)

for some ¢ > 0, we have that G(0(X),t) = G(6*(X),t) for t =¢(S; U{i}), t(S1), t(S2U{i}), t(S2), i.e
g(0,X)=g(8*,X). And clearly, 0, 1(X) # 0, because 0%, ,,(X) # 0. Then we have 0, 1(X) = 0,,11(X),
which is implied by (26). The rest of the proof of identifiability is the same as the Generalized Sigmoid Form
L

Next, we move on to the first inequality of the sufficient curvature condition. Due to Assumption 3 and
the bounded output of the neural network, there must exists a constant ¢; such that G(0(x),t) < &5 for some

63 > 0 for all 0() € fDNN, X and t. Let
5={X: 190(0,X) — go(0", X)| < eVl =1,....4, and 9m+1(X)7é0}

where € = ¢5/(8¢3). Let us assume from now on that X € £. Define function h(g) = g491 — g392- By assumption,

we have |h(g(0*, X))| > é. Then, by mean value theorem, it must be that

h(g(6, X)) =h(g(6", X))+ VA(G(X)) (9(6,X) ~ 96", X)) = h(g(6", X)) — 4ée = h(9(6", X)) /2> &2/2 >0,
(28)

where g(X) is such that §,(X) € [g:(0*, X), g¢(0,X)] for £=1,...,4 and the first inequality holds because

[Ge(X)—ge(0*, X)| <eforall {=1,...,4 and the second inequality holds due to the definition of e. Therefore,

if we define

f(g) = (919294 + 919394 — 919293 — 919394) /1 (g),

then given (26) it holds that 6,,.1(X) = f(g(8, X)), which is well-defined since we have already shown that
h(g(@,X)) > 0. Similarly, we have 67, .,(X)= f(g(6*,X)). Then, we have

* 2 ~ * 2
(0m41(X) = 0;,, (X)) = [VF(9(X))'(9(8,X) —g(6", X))]", (29)
by the mean value theorem, where §,(X) € [ge(0*, X)), g¢(6, X)] for all £=1,...,4. Note that every term in
Vf(g(X)) is of the form poly(g(X))/h?(g(X)), where poly(g(X)) is a polynomial of g(X) and uniformly
bounded by assumption. By exactly the same argument to (28), we can still show that h(g(X)) > é /2.
Therefore, expanding the quadratic term on the right-hand side of (29), we obtain that for some constant
637

(Brn1(X) — 05,1 (X)) <& 9(6,X) —g(6°, X)) (30)
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fXe&= {X D O (X)) = O}, it must be that ¢g(@,X) =0 by definition. Also, by the uniform bound-
edness assumption, there exists constant ¢ such that g,(6*,X) > é&. Therefore, it must be that there is
constant &g such that

* 2 * ~ * ~ *
(Bmr1(X) = 6,1 (X)) =6;,1(X)* <& lg(6". X))|" = [19(6, X) —g(6". X)|.

If X ¢ £UE, it must be that there is £ € {1,2,3,4}, such that |ge(0, X) — go(6*, X)| > €. This clearly
implies that for some é&; >0,

2

(Brs1(X) =6, (X)) <& [9(6,X) — (6", X)|”.
by the boundedness of 6,,,,(X) and 6}, ,(X). Combined, we have that
Ex [ (6ms1(X) = 6;,,1(X))"] < max{es, 6,7} -Ex [ lg(6, X) — g(6", X)I] .

Note that (27) implies there exists a constant & > 0 such that,

Ex r :(G(O(X),T) - G(a*(X),T)y: > &Ex :(G(B(X)J(Sl U{i})) — G(O" (X),£(S U {i})))g]
Exr|(G(O(X),T) - G(O"(X),T))*| = &Ex | (G(O(X), 4($1)) — G(6"(X), ¢(51)))’] (31)
Ex r :(G(O(X),T) - G(O*(X)aT))2: >csEx :(G(@(}(),t(s2 U {Z})) _ G(e*(X),t(SQ U {Z})))2]
Ex r :(G(B(X),T) - G(g*(X)’T))2: > eEx :(G(B(X),t(SQ)) _ G(G*(X),t(SQ)))Z}

Then,

Ex[(GO(X),T) - 60" (X),T)7] > % !

e e o e i [S(C SR ANTe o) B o)

The rest of the proof is the same as that for the Generalized Sigmoid Form I. |

A.5. Proof of Proposition 2

Proof. The results directly follow from Theorem 2 of Farrell et al. (2020), which we also restate as Lemma
1 in Appendix A.3.

First, we derive the first-order derivative £y and the Hessian matrix fg9. With the loss function
U(y,t,0(x)) = (y— G(0(x),t))?, we can compute to get
lo=(00/D0,...,00/00,4,) =2(G —y)Ge,
loo = 2G oGy +2Gaa (G —y),
A(z) = E[lop| X = @] = 2Er10[GoGlhlx] + 2B [GQGEylt,m[(G —Y)T=tX =x||X = w} — 2E[Go G| X = .

We now verify the assumptions of Lemma 1. The first condition, identification of 8*, is satisfied under
Assumptions 1 and 4, which is shown in Proposition 1(a). The second condition holds by Assumption 2(i)
(i.e., DGP (1) holds) and the mean squared loss function. The third condition follows from Assumption 2(ii).
The fourth condition regarding the pathwise differentiable follows from Assumption 2(iii), and the thrice
continuously differentiability holds by the form of G defined in Assumption 1 and the mean squared loss
with sufficient smoothness in 8. The fourth condition holds because the link functions G in Assumption 1
are sufficiently smooth together with the boundedness of 6*(X) given by Assumption 3. Thus, Proposition

2 follows immediately from Lemma 1. O
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A.6. Verification of Assumption 2(ii)
In the following, we illustrate that, if the treatment assignment mechanism v(-|-) satisfies Assumption 4,
Assumption 2(ii) (i.e., A(x) > 0) is easy to satisfy and can be translated into very lenient conditions. A(z) > 0
is equivalent to that the vectors {Gg(0(x),t)}+ are nondegenerate. Without loss of generality, we take the
Generalized Sigmoid Form II for illustration. The other forms of link function can be verified similarly.
By definition, we have A(x) =2E[G¢(0(x),T)Ge(0(x),T)'| X = x|, where

Ouir (&) xp(—(Oo(@) -+ 0n @) 1 )

(1+exp(=(Oo(x) + - - + O (T)t1)))? Lt exp(=(bo() + -+ O (®)tm))

Thus, to verify that A(x) is invertible, it suffices to show that the matrix constructed by vectors

Go(0(),t) = (

{Ge(0(x),t)}; has full rank m + 2. For ease of exposition, we drop the dependence on @, which will not
cause any confusion.

Next, we verify that A(z) > 0 for the treatment assignment mechanism in Assumption 4(b-iv). All other
assignment rules in Assumption 4(b) can be translated into similar lenient conditions, so we omit their ver-
ification for brevity. Specifically, to ensure that E[T TT |X =a] > 0, we consider the assignment mechanism
v(t(@)|x) >0, v(E({1})|x) >0, v(E({2})|x) >0,..., v{E({m})|x) > 0, together with the overlapping assign-
ment v(¢(S1)|x) >0, nu(t(S;U{i})|x) >0, v(t(S2)|x) >0, and v(¢(S2U{i})|x) > 0. Define ey :=exp(—by),
ei:=exp(—0y—6;), for i=1,2,...,m, and e, 1 :=exp(—0't(S; U{i})). We have

9,1,10150(1 0,0,0,...,0) = £0-(1,0,0,0,...,0) -
B (1,1,0,0,...,0) F-(1,1,0,0,...,0) -
Pil2(1,0,1,0,...,0) £2-(1,0,1,0,...,0)
(a) Om es 1
rank(A) > rank 1:51363 (1, O’O’ L,...,0) 1+1€3 vk | 152(1,0,0,1,...,0)

1+es

9m+1em(1000 ) 1 > (1000 ) —L

It+em 1+6m ltem Item

Omi1€m €m+1
ﬁ(l t(Sl U{ }) ) 1+em+1 I+emtt (1 t(Sl U{ }) ) 1+f’m+1
100 0 0o L 1000...0 L
110 0 0o L 0100...0 P
101 0 oé 0010...0 ilz_L
c 1 1 _ 1
© i | 100 1 0 = |9 gr]0001.00 -2
100 0 1? 0000...1 Jﬁ%
1 (S u{i}) — 0000...0 A-—L—(Z-0)—(£-2)

The inequality (a) follows from the fact the right-hand-side matrix is expanded only by a partial of vectors
{Go(0(x),t)}:. The equality (b) follows from 6,1 # 0. The equality (c) follows from 1+ e; # 0 and e; # 0 for

all i=1,2,...,m. The equality (d) follows from some subtraction operations by rows. To guarantee the full
rank condition that rank(A)=m+2, a sufficient condition is _- i i - = + 7é 0, i.e., the bottom-right

entry of the last matrix is nonzero. This is indeed a very weak condition.
For other assignment mechanisms in Assumption 4(b), one can also translate the invertibility of A into

very lenient conditions. We omit the details for brevity.
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A.7. ATE Estimator Construction via Cross-Fitting

In the following, we introduce the sample-splitting/cross-fitting and estimation procedure from Chernozhukov
et al. (2018). The entire DeDL framework is given by Algorithm 1. In our setting with the known distribution
of T', we require only the two-way splitting, but for unknown T distribution, three-way splitting is required,
with an additional portion of samples used for obtaining A ().

One can split the data samples {1,2,...,n} into S nonoverlapping copies S, C {1,2,...,n}, s=1,2...,5
with the cardinality |Ss| being proportionally to the sample size n, and let S¢ be the complement of S;. First,
we use S¢ to get estimators 6,(-) of parameters 8*(-), and compute A,(-) given the estimators 6,(-) and
distribution of T'. Then, one can use the other samples to construct an estimator of u(t), for any ¢t € {0,1}™

as

) 1. N
,uDeDL(t) - S,us(t)7 ,us(t) - ‘Ss|

Z U(2i,0,(x;), As(z:);t, to). (33)

1€Ss

Similarly, the variance estimator can be constructed as

1

@DeDL(t; /L) = %\i/s(t)7 \ijs(t) = |Sg| Z (’(/}(Zi’ és(wi)7AS(wi); t’to) - ,aDeDL(t>)2' (34)

The asymptotic normality of fipepL(t) in Theorem 2(a) directly follows from Chernozhukov et al. (2018),
and a detailed proof can also be found in Farrell et al. (2020).

Therefore, the (1 — a)-confidence interval of fipepL(t) is given by

—~ 1 A 1 -
Clpep(t;1t) = | fipen (t) — 7n 9! (1 - %) “Wpept (t; 14), fipept (t) + 7n ! <1 — %) "I’DeDL(t;M)] , (35)

where ®71(-) is the inverse cumulative distribution function of a standard normal random variable.

A.8. Estimation and Inference for Best Treatment Identification

Details for the best treatment identification. After obtaining the asymptotically normal estimators
of ATE fi(t) for all experiment combinations ¢ € {0,1}™, the next step is identifying the best experiment
combination, which is defined as ¢t* := argmax;c g 13m p(t).

Following the common practice, one can search for the best treatment combination by search-
ing for the highest ATE estimation. Formally, we define the empirical best treatment level as £* :=
argmaxye o 1}m fipepL (t). The remaining job is verifying whether t* is the best treatment level with significant
improvements over all other treatment levels, i.e., we test the one-sided hypothesis on whether the ATE of

t* is significantly better than other treatments:
Hy:7(t) > 0,for all t€{0,1}"\{t"},
where
7(t) = u(t) — p(t) = E[G(6"(X),t")] — E[G(8"(X), 1)),

is the improvement in ATE of the empirically optimal £* over treatment level ¢ € {0,1}™. Notice that the
7(t) can be rewritten as,

7(t) =E[H (x, 0 (x);",t)],
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which is similar in structure to p(t) = E[H(X,0*(X);t,t)] with a change of the inputs in the advantage
function H.

Applying an influence function similar to (10) developed in Section 3.4, ie., ¥(z,0,A;t" t) =
H(z,0(x);t*,t) — Ho(x,0(x);t*,t)A(x) Yo (y,t,0(x)) and the two-way splitting procedure described

above, we construct the estimators
#penL () := fipept (Epept) — AipenL (t), (36)

and the variance estimate \iJDeDL(t;T) for TpepL ().
Proof of Theorem 2

By Proposition 1(b), it is straightforward to verify that ||6u. — 67 L,x) = o(n~/*) holds if p > dx. By
Theorem 3 of Farrell et al. (2020), we have the desired asymptotic normality of the proposed estimators
fipepL (t) and Fpepi (t). This proves part (a). On the other hand, we also highlight that this DNN convergence
rate is inherited from Lemma 1 (Theorem 2 in Farrell et al. 2020), which might not be tight as well. As
establishing a tighter rate for DNN convergence is beyond the scope of our paper, we instead follow the
standard o(n~'/*) decay rate (as claimed in Proposition 1).

For Part (b), the empirically optimal treatment combination £* := argmax,, {01y fi(t) depends on the
samples used for the training and inference of ATE, which is a critical challenge in our proof below. For
the rest of our proof, we drop the subscript DeDL to simplify the notation. First, we construct the following
estimator C(t) := fi(t*) — i(t), where A(-) is given by (33), for the true advantage of the optimal treatment
combination ¢(t) := u(t*) — p(t). Similar to (34), one can construct the variance estimator W (;¢) for {(t).
Importantly, f (t) is a virtual estimator not available in practice, because the ground-truth optimal treatment
combination t* is unknown.

First, Theorem 3 in Farrell et al. (2020) establishes the asymptotic normality of ¢(t):

Va(E(E0) @) =) =D (B(E:Q) T (121,07 (@), Al@o) . 8) = (1)) [V + 0,(1) = N (0,1).
- (37)
Next, we show that, with probability going to 1, the optimal treatment combination is correctly identified,
ie., le P[f* =1t*] =1, when the dependence on sample size n is dropped for brevity. By Part (a), we have
ﬂ(t*;—: w(t*) and f(t) —, p(t) for any t #t*. Because the max operator is continuous with respect to the

L norm, we have
[at") = p(@)| V [at) — u(t)] =, 0,
where “V" denote the maximum of two real numbers. Since the optimal treatment combination t* is unique,

as the sample size n goes to infinity,

() — )] v i(e) — ()| < PEL D) (39)

with a probability going to 1.

Furthermore, (38) implies,

") = i(t) = [p(t”) = (uE") — (7)) = [p(#) — (u(t) — 2(¢)] =
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Therefore, with the probability going to 1, we have [i(t*) > [i(t) as the sample size n goes to infinity.
Taking the union bound over (2™ — 1) treatment combinations, we have fi(t*) > max,.- ii(t), ie., t* =
argmax, (i(t) =t*, with a probability going to 1 as the sample size n goes to infinity.

If * = ¢*, by definition,

Vi (B(8:0) () - (1) - vin(

A

(t:7) ()~ (1)) =0
Hence, we have that for any € > 0,

Tim P[Va(#(£:0)*(E®) () - Va(I(E:r))

—1/2

(7(t) — (1)) <] = 1. (39)

Combining (39) with the asymptotic normality (37), by Slutsky’s theorem, we have

n

~ -1/2, . e -1/2 * *
V(b)) @)=Y (B ) T (020, 07 (@), Ale), £, 8) — () Vi + 0p(1) =4 N0, 1),
i=1
which concludes the proof. O
Given the asymptotic normality, the (1 — «)-confidence interval for 7pep () is given by
—~ . 1 _ AN N 1 _ AN
CIDeDL(t;T) = |:7—DeDL(t) - % 9! (1 - 5) '\IJDeDL(t;T)aTDeDL(t) + ﬁ X (1 - 5) "I/DeDL(téT)] . (40)

Appendix B: Empirical Analysis With Field Experiment Data
B.1. User Covariates Used in Section 4

Table A1 presents all the user covariates used in our empirical analysis in Section 4.

B.2. Stratified Sampling Details

We employ a three-step stratified sampling to keep the user covariates balanced with respect to eight different
treatment combinations. First, we categorize 10 continuous variables in Table A1 by their quantile ranges
[0%,25%), [25%,50%), [50%,75%), and [75%,100%)]. Specifically, we assign 1, 2, 3, and 4 as new values
for values in each quantile interval respectively for each continuous variable. After all the variables are
discretized, we proceed to divide the population into subpopulations according to imbalanced covariates.
To check for diversely distributed covariates, we utilize a pairwise t-test between the baseline combination
(0,0,0) and seven treatment combinations for covariates in Table Al. Among the 26 covariates, 16 discrete
covariates show no significant difference between the baseline combination (0,0,0) and the other seven
treatment combinations, while 10 continuous variables are imbalanced-distributed. Therefore, we divide users
into 69,111 strata by the value of imbalanced covariates. Namely, users with the same value in all imbalanced
covariates are grouped together. For each stratum, we set the minimum number of users among all treatment
combinations as its target size and then randomly sample this many individuals for each combination as
the stratified sample. Therefore, the stratified sample has a similar number of users in each treatment
combination, and the treatment assignment mechanism satisfies P[T; = 1| X = x| =P[T; =0|X =] =0.5

(1=1,2,3) for any .
B.3. Complete Randomization Check Results

Table A2 presents complete randomization check results of the stratified samples used in our empirical

analysis in Section 4.
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Table Al User Covariates Used in the DeDL Framework
Variable Description
Age Range Age range of user: young, mid-age, senior, old, or unknown
Gender Gender of user: male, female, or unknown
Operating System OS of user’s device: Android, IOS, or other
Product Version Version used: lite, express, or regular
Phone Price Range Price range of device: luxury, expensive, affordable, or unknown
User Activeness Degree Activeness of user: high-, mid-, low-active, or new user
User Active-Deepness Degree Active-deepness of user: deep-, shallow-active, or new user
Feed Mode Preferred mode of app interface:
Disc- video stream, video cover stream, or unknown
rete Number of Followers Interval of the user’s number of followers:
Var. <10, 10 - 10k, 10k - 100k, >100k
Influencer Level Mainly determined by the number of followers:
micro, midtier, or macro influencer
Number of Mutual Followers Interval of the user’s number of mutual followers (friends):
<10, 10 - 10k, 10k - 100k, >100k
Sociableness Level Mainly determined by the number of
mutual followers (friends): low-, mid-, or high-sociable
Frequent Residence Area Region in which the user is frequently on the platform:
South, North, or unknown
Frequent Residence City Level Level of city in which the user is frequently on the platform:
large city, big city, medium city, small city, or unknown
Frequent Residence City Type Type of city in which the user is frequently on the platform:
city, town, rural, or unknown
Active Engagement City Level Level of city in which the user is always active:
large city, big city, medium city, small city, or unknown
Average App Usage Duration User’s average usage duration on platform per day
Average Video Watching Time User’s average time on watching videos on platform per day
Average Live Watching Time User’s average time on watching live on platform per day
Conti- Average DP Video Watching Time  User’s average time on watching videos on Discover Page per day
UoUs Average LP Video Watching Time User’s average time on watching videos on Live Page per day
Var Average FYP Video Watching Time User’s average time on watching videos on For You Page per day
’ Average FP Video Watching Time User’s average time on watching videos on Following Page per day
Average DP Screen Time User’s average time on Discover Page per day
Average LP Screen Time User’s average time on Live Page per day
Average FP Screen Time User’s average time on Following Page per day
Table A2 Randomization Check
Treatment Combination ¢ (0,0,0) (0,0,1) (0,1,0) (1,0,0) (1,1,1) (1,1,0) (1,0,1) (0,1,1)
Proportion of 60.51% 60.63% 60.31% 60.49% 60.40% 60.36% 60.30% 60.31%
Male Users (0.41) (0.13) (0.85) (0.40) (0.26) (0.11) (0.15)
User De- Proportion of 29.67% 29.65% 29.60% 29.73% 29.77% 29.65% 29.80% 29.66%
mographics High-Active Users (0.88) (0.55) (0.62) (0.44) (0.85) (0.34) (0.91)
Proportion of Users 39.83% 39.64% 39.90% 39.80% 39.85% 39.68% 39.69%  39.74%
from the South (0.16) (0.63) (0.88) (0.90) (0.26) (0.29) (0.48)
Average Active -0.0003 -0.0010 0.0012 -0.0006 -0.0011 0.0001 0.0011 0.0008
Days per User (0.78) (0.59) (0.91) (0.75) (0.88) (0.61) (0.69)
User Average DP Screen 0.0173  0.0144 0.0151 0.0152 0.0140 0.0145 0.0152 0.0157
Behaviors Time per User (0.31) (0.45) (0.46) (0.25) (0.34) (0.46) (0.58)
10 Days Average LP Screen 0.0126  0.0091 0.0146 0.0104 0.0136 0.0145 0.0103 0.0159
Prior to Time per User (0.21) (0.49) (0.42) (0.75) (0.52) (0.42) (0.25)
the Ezxperi- Average FYP Screen 0.0048  0.0022 0.0033 0.0044 0.0010 0.0033 0.0015 0.0024
ments Time per User (0.36) (0.62) (0.91) (0.18) (0.61) (0.25) (0.41)
Average App Usage 0.0129  0.0111 0.0114 0.0114 0.0104 0.0103 0.0120 0.0117
Duration per User (0.55) (0.62) (0.61) (0.39) (0.37) (0.76) (0.69)

Note: p-values of t-tests between the baseline combination ¢, = (0,0,0)’ and other treatment combinations are reported in
parentheses. To protect sensitive data, the reported metrics of active days, screen time, and app-usage duration are rescaled.
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Appendix C: Implementation Details of Benchmarks

In this section, we present the implementation details of using linear addition (LA), linear regression (LR),
pure deep learning (PDL), and structured deep learning (SDL) as our benchmark to estimate ATE. For LR,
PDL, and SDL estimation, we follow the same four-fold cross-fitting described in Appendix 5.2.

C.1. Linear Addition (LA) Estimator

To obtain the LA estimator for each treatment level, we use the ATE of five observed treatment combinations
to calculate the ATE of unobserved treatment combinations. For observed treatment combinations, their esti-
mated ATE and significance level are the same as the ground truth. For unobserved treatment combinations,
we use the linear addition of ATE of individual observed treatment combinations as the estimated ATE.
Furthermore, we estimate the standard error of the estimated ATE for unobserved treatment combinations
by assuming that the estimators for individual experiments are independent.

We report the LA estimators in the first row in each section of treatment combination in Table A3.
The top four treatment combinations are observable, and therefore the LA estimator yields zero error (see
columns 5-7 in Table A3). The estimators for the ATE of the bottom-three treatment combinations use
the ATE of individual treatment combinations, i.e., (0,0,1), (0,1,0), and (1,0,0), to calculate the final
results f(t) = f(ty) + p(t2), where t =¢; + t5. The standard deviation of the estimator follows & (f(t)) =

Vo((t:))? +6((tz))>.

C.2. Linear Regression (LR) Estimator

The LR estimator uses the regression coefficients as the estimated ATE. The regression is defined as
y = Pit1 + Bala + Bstz + awx, (41)

where t, t5, and t3 denote three experiments for pages DP, LP, and FYP, respectively, and x denotes the
user covariates in Table A1. We fit the linear regression model (41) with 1,291,652 data points with the five
observed treatment combinations. The estimator for 3;, Bi, captures the ATE of treatment ¢;. Similar to LA
estimators, LR estimators assume the linear additivity of the ATEs. To maintain a fair comparison between
the estimators, we adopt a four-fold cross-fitting described in Appendix 5.2 to obtain the LR estimator as
well. Specifically, we fit the linear regression model with 75% of the training data. For the second-stage
inference, we predict the potential outcome of each user given the covariates  under treatment combination
t € T using the trained linear regression. The estimation and inference of each ATE is obtained through the
standard pairwise t-test for each treatment combination with the predicted outcomes on the last data fold.
The average values of estimated ATEs for each treatment combination are presented in the second row in

Table A3.

C.3. Pure Deep Learning (PDL) Estimator

Similar to the implementation of DeDL approach in Appendix 5.2, we apply the four-fold cross-fitting pro-
cedure to reduce overfitting when implementing the PDL estimators. Specifically, we evenly partition the
observed data of five treatment combinations into four random folds. For each data fold, we use the data

from three other folds as the training data to approximate y = f(x,t), where f(:,-) is a fully-connected
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three-layer DNN with 20 nodes in each layer. We call this approach the “pure” deep learning estimator
because no constraints are imposed on the DNN f(-,-). The DNN is trained with the Adam optimizer and
the mean squared error as the loss function. We then use the trained DNN f (+,+) to predict the potential
outcomes under eight treatment combinations for each user the covariates @ on the last fold. Similar to the
LR estimator, pairwise t-tests with the predicted outcomes between any treatment combination ¢ and the
control ¢, provide the ATE estimate and its corresponding standard error, whereas the final estimates are
the average value of all four data folds. The fourth row for each treatment combination in Table A3 shows

the estimated ATE of the PDL approach.

C.4. Structured Deep Learning (SDL) Estimator

The SDL approach adopts the same structured DNN and four-fold cross-fitting as DeDL as documented in
Appendix 5.2, but without the debiasing term. For each treatment combination ¢ € 7, we use the trained
structured DNN to predict the potential outcome given the covariates @: H(x,0,(x);t,to) := G(0,(x),t) —
G(és (x),to). Similar to the LA and PDL approaches, t-tests with the predicted outcomes provide the ATE
estimates under SDL. We remark that the SDL approach underestimates the standard errors because it
ignores the noises in fitting é() caused by the variations in the training data. The estimation results of SDL

for each treatment combination are reported in the last row in Table A3.
Appendix D: Details of Synthetic Experiments

In this section, we provide details of the synthetic experiments designed to assess several factors we have
identified that could potentially influence the performance of the DeDL estimators in practice. We first
validate our theory by varying the number of experiments m € {4,6,8,10} in Appendix D.2. In Appendix
D.3, we test the performance of our DeDL estimators with a potentially large bias of estimating é(), we
find that DeDL is fairly robust, with moderate biases. We also systematically assess the performance of
DeDL under model misspecification, and we shed light on how to test and select the link function in practice
in Appendix D.4. Furthermore, in Appendix D.5, we investigate a practical setting where the observed X

distribution deviates from the population, and discuss how to use the rebalancing method to get trustworthy

estimates.
D.1. Simulation Setup

Throughout Sections D.2 and D.3, we assume that the link function G is correctly specified. Consistent with

our empirical study in Section 4, we use the Generalized Sigmoid Form II, i.e., for each data point i, we have

0%,
= +e 42
Y T T exp (05 (1) + 07 () tor + 05 (@) tia + -+ 05, (@) Eom) (42)

where ¢; is the 7.7.d. random noise with zero mean.

We assume there are m concurrent field experiments, each with a binary treatment. We sample 0},
from the uniform distribution /(10,20) throughout, while generating 6;(x), j =0,1,...,m, differently in
different subsequent sections. We generate data points z; = (y;,x}, t;)’ as i.i.d. copies of the random vector

Z = (Y, X', T'"). The random perturbation e follows a uniform distribution /(—0.05,0.05). Without loss of

generality, we generate covariates « as follows: (1) the dimension of covariates X satisfies dx = 10; (2) the
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Table A3 Detailed Results of Benchmark Estimators

Treatment Ground-Truth Estimated
Combination ATE Estimator ATE CD APE SE AE

(1) (2) 3) ) © (1
LA 1.091% 1 0.00% 0.000 0.000

(0,0, 1) 1.091%* LR 1.329% 1 21.79% 5.657  2.379
PDL 1.247% 1 14.24% 2.417 1.555

SDL 1.179% 1 8.00% 0.763 0.873

LA -0.267% 1 NA 0.000 0.000

(0, 1, 0) -0.267% LR -0.013% 1 NA 6.460 2.542
PDL -0.036% 0 NA 5.353 2.314

SDL -0.072% 0 NA 3.792 1.947

LA 0.758% 1 0.00% 0.000 0.000

(1,0, 0) 0.758%* LR 1.079% 1 42.29% 10.028 3.206
PDL 1.043% 1 37.60% 8.126 2.851

SDL 0.978% 1 28.95% 4.816 2.195

LA 2.121% 1 0.00% 0.000 0.000

(1,1,1) 2.121%**=* LR 2.395% 1 12.95% 7.539 2.746
1

1

1

0

0

0

1

1

1

1

0

1

1

1

PDL 2.326% 9.67% 4.209 2.052
SDL 2.040% 3.78% 0.642 0.801
LA 0.491% NA 3.902 1.975
(1,1, 0) 0.689% LR 1.066% NA 14.233 3.773
PDL 1.030% NA 11.625 3.410
SDL 0.902% NA 4.543 2.132
LA 1.850% 19.56% 20.229 4.498
(1,0, 1) 2.299%%**** LR 2.408% 4.72% 1.178 1.085
PDL 2.333% 1.46% 0.112 0.336
SDL 2.148% 6.59% 2.297 1.516
LA 0.824% 40.58% 31.670 5.628
0,1, 1) 1.387%*** LR 1.316% 5.08% 0.495 0.704
PDL 1.217% 12.26% 2.890 1.700
SDL 1.070% 22.84% 10.030 3.167

Notes: The calculation of APE, SE, and AE is based on the scaled outcome variable (see column (1) of this table). SE
is scaled by multiplying a constant. AE is scaled by multiplying another constant. The significance levels are encoded as
*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.

different components of X are i.i.d. following the uniform distribution /(0, 1). We remark that larger random
perturbations, higher dimensional covariates, and/or more complicated joint distributions of X can be easily
incorporated into the simulation. We adopt the current setting for ease of model training and efficiency of
experiments.

To ensure that the identifiability and sufficient curvature conditions (i.e., Assumption 4) are met, we adopt
the following treatment assignment mechanism v(-|-). We assume the independence between X and T,
whose distribution we denote as v(t) = P[T = t|. Furthermore, in the training stage, with equal probability,
we randomly assign each experimental unit to one of m + 2 different treatment combinations with equal
probability, i.e., v(t)=1/(m+2) if te{te{0,1}™:>" ¢ =0o0r 1} U{(1,1,0,...,0)'} and v(¢) =0 for

other treatment combinations. In other words, we assume the partially observed outcome setting with only
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m + 2 observable treatment combinations, while other treatment outcomes are masked for gauging the
performance of estimators.

Our neural network structure to estimate 65 (x), j=0,1,...,m, is prespecified as two-layer perceptrons
with ReLU activation functions and 10 nodes in hidden layers in all experiments throughout this section.
Because there are m + 2 unknown parameters, which linearly scale with the number of experiments m,
we generate 500m i.i.d. experimental data points z; for the DNN training, and another independent 500m
experimental data points for the inference stage. During the DNN training stage, we randomly split this data
set with 70% for training and the rest 30% for cross-validation. We adopt the MSE loss function and Adam
algorithm (Kingma and Ba 2014). In most experiments, we stop training when the loss on cross-validation
data is less than a fixed threshold of 0.3. We empirically tested various thresholds and found that the gain
from a smaller stopping threshold is marginal. Thus, we picked this threshold based on the computational
efficiency consideration. In the experiments with misspecified link functions and imbalanced data, which we
will discuss later, the cross-validation loss tends to increase. Hence, we adjust the threshold accordingly in
such cases. We also experiment with popular training strategies such as dropout or regularizing the weights,
but the gain is marginal, so we do not include them in this discussion.

At the inference stage, we independently generate a data sample with the same size as the training
data. To avoid the rare case where the empirical estimate A () is not invertible (e.g., 8;(x) = 0;(z) for all
i,j€{1,2,...,m}), we add a small regularization to A(x) so that (A(x)+ 0.00051,,,,,)"" is well-defined.
Similar regularization or trimming techniques based on the propensity score are quite common in practice
for numerical stability.

To calculate the true ATE over the population, we use the sample average of 2,000 independent samples
for each treatment combination, and use the standard ¢-test with a significance level of 0.05 to determine
whether the ATE of an experiment combination is statistically significant. To derive statistical metrics such

as confidence intervals, we replicate all experiments 200 times.

D.2. Validation of the DeDL Estimator under Large m

In this section, we aim at empirically validating the theoretical results in Section 3 and further demon-
strating the superior performance of our DeDL estimator in practice. Such experiments are necessary due
to the gaps between theory and practice. In particular, there are two potential inconsistencies between the
underlying theory (e.g., see Section 3) and practical settings. First, the key theoretical result Proposition 1 is
proved under the assumption that one obtains the estimator §(x) by (almost) minimizing the empirical loss.
However, the loss of DNN is difficult to optimize globally, especially given our novel structured architecture
with a model layer. Second, the theoretical DNN width O(néx/2(P+dx)10g? n) and depth O(logn) required
in Proposition 1 are clearly too large for practical applications. Practitioners often fine-tune these hyper-
parameters at a much smaller scale. Given these practical issues, we find it necessary to conduct synthetic
experiments to demonstrate the performance of DeDL in general settings.

To generate the functions * () in this subsection, we first define the coefficient matrix A € Rm+1)>dx ith
each component independently drawn from the uniform distribution /(—0.5,0.5) and write the j the row of

*

A as row vector Ap;). Then, we let 6% (x) = (Aj1yx)®, j=0,2,...,m. As mentioned, the parameter 6}, ,, is
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randomly generated from the uniform distribution 2/(10,20). To facilitate numerical experiments, we choose
a relatively simple structure for the neural network, as discussed previously. However, the more complex
function 6*(x) can be readily incorporated and tested in our synthetic experiments, and DNN training-
related hyperparameters (e.g., width, depth, and training algorithm) should be fine-tuned to accommodate
such cases.

We summarize the main result here while deferring more details into Appendices D.2.1 and D.2.2. There,
we report complete simulation results in Table A4 and Table A5, along with more observations made.
In Figure Al(a), we evaluate the performance of different estimators including LA, LR, PDL, SDL, and
DeDL with varying numbers of A/B tests, i.e., m € {4,6,8,10}. We train these estimators with partially
observed outcomes, as discussed above. We note that the performance of MAE is highly correlated with
other performance metrics, so to keep the discussion simple, we mainly report and visualize the performance
comparison under MAE along with the 95% confidence interval, shown in Figure Al. We compute the
confidence interval using the 200 instances for each parameter combination. One can observe from panel
(a) that DeDL has the best performance under all m € {4,6,8,10}. Increased values of m lead to quick
degradation of the performance of LA and LR. Such simple models relying on linear extrapolation are unable
to capture the rich treatment effects, but the performance of SDL and DeDL are relatively stable.

To highlight the issue that PDL can easily overfit the observed data and result in large biases in unobserved
treatments, we conduct a more detailed synthetic experiment focusing on PDLs with different network size
specifications and partially/fully observed data. Figure A1(b) displays the performance of different variants
of PDL estimators under different m values. For better visualization, we report the performance of PDL
with a different scale on the y-axis than that in Figure Al(a). Among these different PDL estimators, we
use subscripts s (small) and | (large) to represent different widths of neural nets, with 10 (small) and 40
(large) hidden nodes for all three hidden layers, respectively. All DNNs have three linear layers followed
by ReLU activation layers. The subscripts p and a represent the training samples generated from partially
observed treatments and all treatments, respectively. For a fair comparison to SDL and DeDL, we focus on
PDL_s_p with partially observed treatments and a similar DNN size to SDL. We observe that, with partially
observed combinations, both PDL_s_p and PDL_I_p perform poorly, mainly driven by the bad performance
under the unobserved treatments. Increased network size does not help much. However, when we incorporate
data from all treatment combinations for training, PDL_s_a and PDL_I|_a obtain comparable performance
with the best estimator DeDL. Therefore, a structured DNN model allows us to capture the interaction of
experiments in practical settings, while the model flexibility in PDL helps only in unrealistic scenarios where
a large proportion of experimental combinations are observed. We refer interested readers to Appendix ?7 for
more detailed comparisons, discussions, and additional simulations of incorporating regularizers into PDL.

Because all performance metrics show similar patterns under different m values, we maintain m = 4 for
computation efficiency in subsequent sections. Also, due to the inferior performance of PDL with partially

observed treatments, we do not report its performance in the following sections.
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Figure Al MAE comparison among estimators under the increasing number of experiments m values. Panel (a) shows the
performance of LA,LR,SDL, and DeDL. Panel (b) presents the performance of PDLs with different network size specifications
and partially/fully observed data. Subscript s represents a small 10-width DNN while | represents a large 40-width DNN.
Subscript p represents that the training set contains partially observed treatment while a represents that the training set
contains all 2™ treatments.

D.2.1. Detailed Results of the Comparison Among Estimators. We document the complete sim-
ulation results of Appendix D.2 in Table A4 and Table A5. We evaluate the performance of the estimators
under m € {4,6,8,10} A/B tests and report the estimation results in Panels A to D. The first column
“Estimator” describes which estimator is tested. The second column “CDR” shows the proportion of treat-
ment combinations whose estimated ATE significance levels and signs are consistent with the ground truth.
The third column “MAPE” gives the mean absolute percentage error of ATE estimates over all treatment
combinations whose real average treatment effects are significant. In other words, we rule out insignificant
treatment combinations when calculating MAPE. Otherwise, those insignificant treatment effects would re-
sult in a close-to-zero value in the denominators to calculate APE, resulting in an undesired metric. Similarly,
column “MSE” and column “MAE” represent squared error and absolute error, respectively. In these two
columns, we do not exclude those insignificant combinations. Indeed, unlike MAPE, close-to-zero treatment
effects do not cause a problem for MSE and MAE. As a result, MAE and MSE over all combinations can
supplement MAPE. However, to better understand the scales of MSE and MAE errors, we also report in the
table notes 95% confidence intervals of average absolute treatment effects over all combinations. Finally, the
column “BTI” presents the results on best treatment identification. For each replication of the experiment,
we verify whether different methods can successfully identify the best treatment combination. The value in
this column shows the proportion of replications in which the optimal combination is correctly identified.
We observe the following consistent patterns across all panels in Table A4. First, DeDL outperforms LA,
LR, PDL_s_p, and SDL under all metrics, which validates our theory and provides strong evidence for the
advantage of our method. In particular, DeDL increases the success rate of both CDR and BTI, and decreases

MAPE, MSE, and MAE compared to SDL by a significant margin. This demonstrates the value of debiasing
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Table A4

Learning Estimator Validation Result

Panel A: Comparison of Different Estimators Under m =4

Estimator CDR MAPE MSE MAE BTI
LA 92.40% 22.64% 0.070 0.123 79.5%
(91.02%, 93.78%) (20.10%, 25.17%) (0.023, 0.118) (0.103, 0.143) (73.9%, 85.1%)
LR 95.34% 15.30% 0.038 0.089 82.0%
(94.46%, 96.23%)  (13.56%, 17.04%) (0.0179, 0.0582)  (0.074, 0.105)  (76.6%, 87.3%)
PDL s 88.59% 68.83% 0.867 0.433 56.0%
—-P (87.02%, 90.17%) (60.76%, 76.89%) (0.572, 1.163) (0.378, 0.488) (49.1%, 62.9%)
SDL 95.12% 16.12% 0.018 0.079 90.5%
(94.17%, 96.08%) (14.57%, 17.66%) (0.011, 0.024) (0.070, 0.087) (86.4%, 94.6%)
DeDL 97.53% 7.20% 0.008 0.040 93.5%
(96.90%, 98.15%) (6.45%, 7.95%) (0.004, 0.012) (0.033, 0.046) (90.1%, 96.9%)
Panel B: Comparison of Different Estimators Under m =6
Estimator CDR MAPE MSE MAE BTI
LA 92.05% 27.35% 0.080 0.166 73.0%
(90.70%, 93.40%) (23.81%, 30.89%) (0.056, 0.105) (0.147, 0.186) (66.8%, 79.2%)
LR 94.88% 18.42% 0.073 0.136 75.5%
(94.10%, 95.67%) (16.61%, 20.24%) (0.038, 0.108) (0.118, 0.155) (69.4%, 81.6%)
PDL s 84.23% 111.70% 2.172 0.874 28.0%
——P (82.54%, 85.93%)  (98.07%, 125.33%) (1.736, 2.607) (0.793, 0.956)  (21.7%, 34.3%)
SDL 93.07% 27.22% 0.051 0.150 68.0%
(92.17%, 93.96%) (25.16%, 29.29%) (0.037, 0.064) (0.136, 0.163) (61.5%, 74.5%)
DeDL 95.28% 13.33% 0.023 0.079 87.0%
(94.61%, 95.96%) (11.99%, 14.68%) (0.012, 0.033) (0.069, 0.090) (82.3%, 91.7%)
Panel C: Comparison of Different Estimators Under m =8
Estimator CDR MAPE MSE MAE BTI
LA 93.83% 28.37% 0.196 0.247 65.0%
(92.74%, 94.92%) (24.98%, 31.75%) (0.135, 0.256) (0.218, 0.276) (58.3%, 71.7%)
LR 95.51% 22.49% 0.209 0.222 75.6%
(94.87%, 96.14%) (20.03%, 24.96%) (0.128, 0.289) (0.186, 0.258) (69.2%, 82.0%)
PDL s 78.89% 140.60% 3.825 1.246 11.5%
——P (77.01%, 80.77%) (128.28%, 152.91%) (3.059, 4.591) (1.136, 1.355) (7.0%, 16.0%)
SDL 94.89% 22.18% 0.072 0.153 67.5%
(94.25%, 95.53%)  (20.20%, 24.15%) (0.025, 0.120) (0.133,0.174)  (61.0%, 74.0%)
DeDL 95.53% 13.49% 0.049 0.099 82.0%
(94.92%, 96.15%) (11.82%, 15.15%) (0.007, 0.092) (0.079, 0.118) (76.6%, 87.4%)
Panel D: Comparison of Different Estimators Under m = 10
Estimator CDR MAPE MSE MAE BTI
LA 95.01% 31.54% 0.326 0.311 58.8%
(93.96%, 96.05%)  (24.23%, 38.84%) (0.152, 0.500) (0.251,0.371)  (47.7%, 69.8%)
LR 95.51% 25.28% 0.359 0.305 62.0%
(94.87%, 96.14%) (21.73%, 28.83%) (0.146, 0.572) (0.240, 0.369) (52.3%, 71.7%)
PDL s 77.27% 163.85% 5.360 1.563 5.0%
——P (75.50%, 79.03%) (151.47%, 176.22%) (4.527, 6.193) (1.448, 1.677) (2.0%, 8.0%)
SDL 94.27% 26.37% 0.077 0.195 56.2%
(93.21%, 95.33%)  (22.97%, 29.78%) (0.054, 0.100) (0.171, 0.220)  (45.1%, 67.4%)
DeDL 94.54% 16.59% 0.046 0.127 78.8%

(93.48%, 95.60%)

(13.39%, 19.78%)

(0.026, 0.067)

(0.103, 0.150)

(69.6%, 87.9%)

Notes: All experiments are replicated 200 times, with 95% CZs reported in parentheses. 95% CZs of average absolute treatment
effects are (0.68,1.06), (1.09,1.30), (1.45,1.71), and (1.54,2.03), respectively, in Panel A, Panel B, Panel C, and Panel D.
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Table A5 Performance of PDL Estimators
Panel A: Comparison of Different Estimators Under m =4
Estimator CDR MAPE MSE MAE BTI
PDL s 88.59% 68.83% 0.867 0.433 56.0%
—-P (87.02%, 90.17%) (60.76%, 76.89%) (0.572, 1.163) (0.378, 0.488) (49.1%, 62.9%)
PDL s a 95.16% 16.01% 0.012 0.075 78.0%
- (94.27%, 96.04%) (14.49%, 17.53%) (0.009, 0.016) (0.068, 0.083) (72.2%, 83.8%)
PDL | 89.12% 60.15% 0.493 0.356 56.0%
——P (87.61%, 90.64%) (53.09%, 67.20%) (0.375, 0.610) (0.319, 0.393) (49.1%, 62.9%)
PDL | a 96.34% 12.55% 0.006 0.052 86.5%
- (95.57%, 97.12%) (11.20%, 13.89%) (0.004, 0.007) (0.048, 0.057) (81.7%, 91.3%)
Panel B: Comparison of Different Estimators Under m =6
Estimator CDR MAPE MSE MAE BTI
PDL s 84.23% 111.70% 2.172 0.874 28.0%
—-p (82.54%, 85.93%) (98.07%, 125.33%) (1.736, 2.607) (0.793, 0.956) (21.7%, 34.3%)
PDL s a 95.04% 20.03% 0.021 0.104 70.5%
—— (94.43%, 95.65%) (18.39%, 21.67%) (0.017, 0.024) (0.096, 0.113) (64.1%, 76.9%)
PDL | 83.87% 111.37% 1.748 0.789 25.0%
—-p (82.33%, 85.40%) (99.17%, 123.57%) (1.357, 2.138) (0.712, 0.866) (18.9%, 31.1%)
PDL | a 95.73% 16.91% 0.015 0.085 68.0%
—— (95.05%, 96.42%)  (14.93%, 18.89%) (0.012, 0.019)  (0.077, 0.093)  (61.5%, 74.5%)
Panel C: Comparison of Different Estimators Under m =8
Estimator CDR MAPE MSE MAE BTI
PDL s 78.89% 140.60% 3.825 1.246 11.5%
—-P (77.01%, 80.77%) (128.28%, 152.91%) (3.059, 4.591) (1.136, 1.355) (7.0%, 16.0%)
PDL s a 95.04% 20.03% 0.021 0.104 70.5%
—— (94.43%, 95.65%)  (18.39%, 21.67%) (0.017, 0.024)  (0.096, 0.113)  (64.1%, 76.9%)
PDL | 80.80% 125.38% 3.059 1.098 10.0%
——P (79.15%, 82.44%) (114.46%, 136.29%) (2.347, 3.770) (1.001, 1.195) (5.8%, 14.2%)
PDL | a 95.43% 20.24% 0.035 0.137 57.5%
—— (94.90%, 95.95%)  (18.36%, 22.13%) (0.028, 0.041)  (0.126, 0.148)  (50.6%, 64.4%)
Panel D: Comparison of Different Estimators Under m = 10
Estimator CDR MAPE MSE MAE BTI
PDL s 77.27% 163.85% 5.360 1.563 5.0%
—-p (75.50%, 79.03%) (151.47%, 176.22%) (4.527, 6.193) (1.448, 1.677) (2.0%, 8.0%)
PDL s a 95.14% 24.87% 0.052 0.173 43.0%
—— (94.69%, 95.59%) (22.64%, 27.11%) (0.044, 0.061) (0.160, 0.185) (36.1%, 49.9%)
PDL | 76.03% 159.58% 5.436 1.472 6.0%
—-P (73.04%, 79.01%) (124.10%, 195.06%) (3.533, 7.339) (1.224, 1.720) (1.2%, 10.8%)
PDL | a 95.67% 19.66% 0.033 0.140 56.0%

(94.82%, 96.53%)

(17.00%, 22.31%)

(0.025, 0.041)

(0.122, 0.157)

(41.7%, 70.3%)

Note: All experiments are replicated 200 times, with 95% CZs reported in parentheses.

in the influence function (5). Second, LA and LR perform worse than SDL in general, demonstrating the
advantage of neural networks over linear methods, although SDL may still be asymptotically biased.
Comparing across different panels, we observe that the performance of all estimators becomes worse when
m grows larger. In particular, the performance of BTI worsens quickly due to the exponentially increased
number of combinations. Even so, DeDL can still successfully identify the best treatment among the 1,024

combinations with a relatively high probability of 78.8% when m = 10.
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We also remark on the underlying mechanisms of these degenerating performances. On one hand, intu-
itively, due to the sigmoid link function setup, when the number of field experiments gets larger, the treatment
effect becomes more nonlinear. It creates difficulty for the LA estimator. Therefore, the performance of LA
worsens due to its inherent lack of model richness. On the other hand, with the correct link function specifi-
cation, one may expect that the performance of SDL and DeDL should be relatively stable because of their
strong modeling power. However, since we fix the same DNN structure with a constant number of 10 hidden
nodes across all experiments for a fair comparison with LA, the model complexity of neural networks is
limited by design. We have verified that increasing the number of hidden nodes for m = 6, 8, 10 helps achieve
similar performance to that of m = 4. Indeed, the challenge of estimation and inference from an increased
m can be mitigated by increasing the size and complexity of the DNN. Therefore, without loss of generality,

for all experiments in this section, we keep m =4 for computational efficiency.

D.2.2. A Closer Look at PDL. We report the performance of the PDL estimators in a separate table,
i.e., Table A5, to provide an anatomy of their bad performance. The subscripts s and | represent different
widths of neural nets, with 10 and 40 hidden nodes for hidden layers, resulting in the DNN structure
(ds + di + 1)-10-ReLU-10-ReLU-10-ReLU-1 and (d, + d; + 1)-40-ReLU-40-ReLU-40-ReLU-1, respectively
The subscripts p and a represent the training samples generated from partially observed treatments or all
treatments. For a fair comparison to estimators in Table A4, we should focus on PDL_s_p with partially
observed treatments and similar DNN size as SDL. The training stopping criterion is set the same as SDL
with 0.3 validation loss threshold.

With partially observed combinations, both PDL_s_p and PDL_|_p perform worse than all other estima-
tors under all metrics. This is due to the bad performance of the out-of-sample test under the unobserved
treatments, rather than the bad approximation ability of DNN. When we increase the DNN width from 10
to 40, the performance only slightly increases. Also, PDL indeed has much better in-sample tests. Because
when we incorporate data from all treatment combinations in the training, the resulting estimators PDL_s_a
and PDL_I_a have comparable performance with the best estimator DeDL.

It is within our expectation that PDL with partially observed treatments has such bad performance be-
cause it can only access the data generated by base treatment level, m single experiment data, and only one
treatment level with interaction (1,1,0,...,0). It means that it is almost impossible for PDL to learn interac-
tion between different experiments. Unlike LR and SDL, which impose parametric structures of experimental
interaction, PDL aims only at increasing the performance of in-sample outcome prediction, totally ignoring
the out-of-sample performance. One may argue that this is due to the over-fitting of PDL.

To explore in more detail why PDL performs badly, we investigate further. To simplify the discussion, we
conduct an extra synthetic experiment with m = 3; we report the result in Figure A2. Each point in the
scatter plots represents the values of real ATE (x-axis) and predicted ATE (y-axis). From left to right, we
visualize the performance of LR, PDL-base (i.e., PDL_s_p), PDL-dropout (i.e., PDL_s_p with p = 0.1 dropout
regularizer after each activation layer), and PDL-L1 (i.e., PDL_s_p with L; regularization loss over DNN

parameters with fine-tuned weight 0.05).
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Table A6 Performance of PDL With Regularizers
Estimator CDR MAPE MSE MAE BTI

LA 93.56% 27.44% 0.705 0.408 89.0%
(92.06%, 95.07%)  (22.60%, 32.29%)  (0.504, 0.905)  (0.359, 0.457)  (84.6%, 93.4%)

LR 95.50% 26.01% 0.654 0.389 91.5%
(94.37%, 96.63%)  (20.56%, 31.45%)  (0.449, 0.859)  (0.335, 0.443)  (87.6%, 95.4%)

PDL-base 91.62% 52.68% 2.930 0.762 73.0%
(90.22%, 93.03%)  (44.27%, 61.09%)  (2.104, 3.756)  (0.675, 0.849)  (66.8%, 79.2%)

PDL-drobout 90.81% 35.74% 0.967 0.504 63.5%
P (89.17%, 92.46%)  (31.43%, 40.04%)  (0.739, 1.195)  (0.453, 0.555)  (56.8%, 70.2%)

92.00% 33.64% 1.274 0.426 84.5%

PDL-L1

(90.25%, 93.75%)

(27.96%, 39.32%)

(0.513, 2.035)

(0.354, 0.498)

(79.4%, 89.6%)

Note: All experiments are replicated 200 times under m = 3, with 95% CZs reported in parentheses.

Four subfigures in the upper panel show the in-sample performance, while lower panel subfigures show
the performance under unobserved treatment combinations. Notice that PDL-base has better in-sample
performance than LR, as the data points are more concentrated around true line y = z, but PDL-base has
the worst out-of-sample performance. Although LR assumes linear extrapolation of treatment effects, in our
example, most scatter points in the out-of-sample test are still well concentrated around y = x except clear
patterns of overestimate when absolute ATE increases. When applying regularizations, PDL-dropout and
PDL-L1 have deteriorated in-sample performance with points less concentrated around the true line while
improving out-of-sample performance.

Generally, we do not know the out-of-sample ground-truth ATE in practice, which makes it difficult to
guide the selection of regularizers. We also try other regularizers, such as early stopping, L, parameter
weights, and smaller network sizes, which, however, still perform badly comparable to LR. Due to the bad

performance of PDL with partially observed treatments, we do not report it in the following simulations.
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D.3. Robustness to the DNN Convergence Rate

As pointed out by the semiparametric estimation literature (e.g., Chernozhukov et al. 2018), in practice, it
is sometimes questionable whether DNN estimators é() can achieve the o(n~'/*) convergence rate required
for the inference stage. To systematically illustrate the performance of the debiasing technique in learning
the treatment effects, we artificially control the biases in DNN estimators to evaluate the impact of such
biases in the second-stage inference.

Specifically, we use an approach with a similar spirit to Chernozhukov et al. (2018) by constructing é(m)
with manually controlled biases. First, parameter functions are defined as Hj(w) = Az, for j=0,1,...,m,
where each component in the coefficient matrix A € R("+)*dx ig generated under independent and uni-
form distribution ¢(—0.5,0.5). The parameter ¢, ,, is randomly generated from the uniform distribution
U(10,20). Next, instead of training a DNN for estimation, we manually set the biased estimator éj(m) =
(1+err;)0i(x), j=0,1,...,m+1, where all err;, j=0,1,...,m+1 terms independently follow the uniform
distribution U (—4,d). We set different levels of the bias range coefficient ¢ € {0.1,0.2,0.3} to investigate the
effectiveness of DeDL with different levels of biases of the estimators 8. In the following discussion, we focus
on the MAE performance metric. We refer interested readers to Appendix ?? for a more detailed comparison
and discussion.

As documented in Figure A3, DeDL has much smaller MAEs than SDL, implying a significant performance
improvement with adding debias term. In all settings, DeDL performs better than LA and LR despite that
SDL may generate MAEs much larger than LA and LR, in particular, when é = 0.3. This shows that the
DeDL estimator is fairly robust, with moderate biases in 0. However, we also point out that when the bias
from training is large, debiasing may not improve the performance, as we illustrated in Figure 7 in Section
4. In our simulation, we have a similar observation that, when ¢ increases to 1.0, DeDL may perform worse
than SDL under the MAPE metric. In such cases, it is critical to improve DeDL by training a better DNN
model, for example, through using a larger network. For completeness, we also document the detaild results
in Table A7, the columns of which are the same as Table A4. Insights similar to above can be infered from

the table.

D.4. Link Function Misspecification

In this subsection, we first investigate how a misspecified link function impairs the effectiveness of our
debiased estimator. Indeed, a key assumption of our framework is that the link function G is correctly
specified. In practice, however, it can be challenging to select the best link function. On the positive side, as
we will discuss, one may test the efficacy of the link function by checking the cross-validation errors in the

DNN training stage. For this subsection, we adjust our true DGP as,

0 1
;= = + <*€Bi+ f(@a)tin +--+ ;iﬂitim)‘i‘i, 43
S o R o e o T R G A A
where parameter functions are defined as 05 (x) = Aj;, and §; (x) = Bz, for j =0,1,...,m. The parameter

~ > 0 captures the extent to which the true link function deviates from the Generalized Sigmoid Form II,
which we still adopt in our DeDL framework for estimating the treatment effect. The larger the -, the more

misspecified our model is. We generate both the coefficient matrices A € R("t)*dx and B € RU"tDxdx with
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Table A7

Function Misspecification

DNN Convergence Violation Result

Panel A: Performance of Benchmarks

Estimator CDR MAPE MSE MAE BTI
LA 94.56% 19.93% 0.085 0.179 92.0%
(93.69%, 95.44%) (17.94%, 21.93%) (0.066, 0.104) (0.162, 0.195) (88.2%, 95.8%)
LR 96.88% 13.59% 0.046 0.127 94.0%
(96.21%, 97.54%) (12.11%, 15.08%) (0.036, 0.056) (0.115, 0.139) (90.7%, 97.3%)
Panel B: Comparison of Different Estimators Under § = 0.1
Estimator CDR MAPE MSE MAE BTI
SDL 96.97% 4.98% 0.013 0.074 92.5%
(96.32%, 97.62%) (4.58%, 5.38%) (0.010, 0.015) (0.066, 0.083) (88.8%, 96.2%)
DeDL 98.56% 5.04% 0.003 0.031 97.0%
(98.12%, 99.01%) (4.32%, 5.76%) (0.002, 0.003) (0.028, 0.035) (94.6%, 99.4%)
Panel C: Comparison of Different Estimators Under § = 0.2
Estimator CDR MAPE MSE MAE BTI
SDL 94.19% 11.06% 0.061 0.170 85.5%
(93.19%, 95.19%) (10.28%, 11.83%) (0.049, 0.072) (0.153, 0.186) (80.6%, 90.4%)
DeDL 96.31% 11.10% 0.016 0.078 95.5%
(95.50%, 97.12%) (9.46%, 12.74%) (0.012, 0.020) (0.069, 0.087) (92.6%, 98.4%)
Panel D: Comparison of Different Estimators Under 6 =0.3
Estimator CDR MAPE MSE MAE BTI
SDL 93.44% 15.53% 0.145 0.259 80.0%
(92.48%, 94.39%) (14.33%, 16.73%) (0.118, 0.173) (0.232, 0.286) (74.4%, 85.6%)
94.63% 12.78% 0.032 0.108 92.5%
DeDL

(93.74%, 95.51%)  (11.05%, 14.50%)  (0.024, 0.039)

(0.095, 0.120)

(88.8%, 96.2%)

Notes: All simulations are replicated 200 times, with 95% CZs reported in parentheses. 95% CZs of average absolute treatment

effect are (1.45,1.65) in all panels.

independent entries, and each component follows the uniform distribution 2/(—0.5,0.5). The parameter 6},

is again randomly generated from the uniform distribution (10, 20).
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We run synthetic experiments under different levels of model misspecification v € {0,1,3,5}. To illustrate
how the link function is skewed, we plot in Figure A5 the histograms of outcome y in (43). The z-axis
represents the experimental outcome y among the population in all 2™ treatment combinations with equal
probability. Observe that when v is large, e.g., v =5, the bias from using the sigmoid link function to
approximate the experimental outcome is likely to be large. Because the DGP defined by (43) may be too
restrictive in the sense of ATE representation, further in Appendix D.4.2, we conduct another synthetic
experiment where the true DGP has explicit higher-order interaction terms. The results show that debiasing

through Neyman orthogonality is fairly robust under such model misspecification.
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Figure A5 Experimental Outcome of Misspecified Model

Defferring reporting the complete results in Appendix D.4.1, here we emphasize the main insights. We first
plot the comparison between different methods under model misspecification in Figure A4. This comparison
reveals that when the link function is more specified (i.e., larger ), SDL and DeDL estimators perform
substantially worse, whereas the performances of the LA and LR estimators are relatively stable. Indeed, the
LA and LR estimators face no significant increases in MAPE as « gets larger. Also, when + is increased to 5,
DeDL performs worse than SDL, implying that debiasing via Neyman orthogonality hurts the performance
when the link function is not correctly specified.

In practice, however, it is difficult, if not impossible, to verify the true link function. Fortunately, one may
detect link function misspecification through large training errors. In other words, we can resort to checking
the cross-validation errors in the DNN training stage. To shed light on this point, we report the training
errors from our experiments. Specifically, we compare the errors induced by pure DNN without a sigmoid
link function (a three-layer perceptron in our case) and structured DNN (a two-layer perceptron followed by
a link function layer), respectively. Pure DNN takes treatment level ¢ together with covariates x as inputs
to the first linear layer. In contrast, the structured DNN takes only covariates @ to the first linear layer and
uses treatment level £ in the final link function layer.

For a fair comparison, we set the pure DNN structure with a similar width and depth, i.e., (dz +dy +1)—
10-ReLU-10-ReLU-10-ReLU-1. Equipped with higher flexibility, pure DNN is generally good at fitting

individual responses in the partially observed treatment combinations. Hence, we can use the pure DNN as a
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benchmark for the in-sample comparison to check whether the link function is reasonable. Adopting the same
Adam algorithm and training samples, we obtain the following 95% CZs of cross-validation mean squared
errors under different misspecification levels: (a) [0.044,0.053], [0.086,0.112], [0.116,0.159], [0.142,0.197] for
pure DNN under v=0,1,3,5 respectively; and (b) [0.012,0.014], [0.019,0.026], [0.076,0.106], [0.215,0.279]
for structured DNN under v =0, 1,3, 5 respectively. One can observe that when v € {0, 1,3}, the structured
DNN has a smaller or comparable in-sample loss than the pure DNN, which indicates the reasonable per-
formance of the generalized sigmoid link function to approximate the outcome variable. However, when the
misspecification level 7 =5, the in-sample error from the generalized sigmoid form grows larger than that
of the pure DNN. Correspondingly, in Figure A4, we observe severe performance degradation for both SDL
and DeDL and a significant negative impact from the debiasing term. In this case, we suggest experimenting
with a different link function in the first DNN training stage and/or not using the debiased estimator. More
generally, as long as the in-sample loss of the structured DNN is on par with that of a pure DNN with similar

depth and width, we recommend adopting this structured DNN with debiasing.

D.4.1. Complete Results of the Experiments in Appendix D.4. Table A8 shows the complete
simulation results. Comparing across different panels representing different values of -y, one can observe that
when the link function gets more misspecified, SDL and DeDL estimators get worse under all metrics. While
the MAPE, MSE, and MAE performances of LA and LR are not significantly deteriorated, considering the
increased absolute treatment effects listed in table notes. When the model is not misspecified or marginally
misspecified, i.e., v € {0,1,3}, SDL and DeDL work no worse than LA in all performance metrics. When y =1,
DeDL can only marginally improve the performance of SDL for all metrics. However, when + is increased to
3, we can observe that DeDL has worse MSE performance than SDL. Even worse, when -y is increased to 5,
DeDL is not better than SDL under all performance metrics. In summary, we still recommend using DeDL
when v € {0, 1,3}.

D.4.2. Experiment on Model Misspecification under Higher-Order Treatment Interactions.
We conduct a new set of synthetic experiments on the model misspecification with explicit higher-order
interaction terms. Specifically, the true data-generating process with all higher-order terms is defined as

yi =05 () + 07 ()11 + 05 () t2 + 05 () b5 + 0] ()

(44)
+ 9;1 (wi)tthtg + efz(wi)tztgul + 91(3 (wi)t3t4t1 + 9I4($i)t4t1t2
+ 075 (xi)tatatsts + €,
where all parameters 6 (x) = c;z (i=0,1,...,15) are linear in the covariate vector. We generate the coeffi-

cient ¢ € R?x with independent entries, and each component follows the uniform distribution 2/(0,0.5). Note
that our proposed Generalized Sigmoid Form II is largely misspecified compared to the above true DGP. We
run synthetic experiments under different levels of model misspecification by incorporating different terms
into the DGP. Specifically, we conduct four different tests. In the first test, we add all terms, i.e., 1st, 2nd,
3rd, and 4th-order interaction terms. In the second test, we only put 1st, 2nd, and 3rd-order terms in the

true DGP. In the third test, we have 1st and 2nd-order terms, while the last test only has linear terms.
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Table A8

Model Misspecification Result

Panel A: Comparison of Different Estimators Under v =0

Estimator CDR MAPE MSE MAE BTI
LA 94.78% 20.69% 0.074 0.167 94.5%
(93.80%, 95.76%) (18.30%, 23.08%) (0.056, 0.091) (0.151, 0.182) (91.3%, 97.7%)
LR 97.38% 12.81% 0.043 0.125 94.5%
(96.81%, 97.94%) (11.53%, 14.08%) (0.033, 0.053) (0.112, 0.138) (91.3%, 97.7%)
SDL 97.71% 10.07% 0.014 0.075 96.5%
(97.18%, 98.26%) (8.92%, 11.21%) (0.010, 0.018) (0.068, 0.081) (93.9%, 99.1%)
DeDL 99.28% 3.23% 0.002 0.024 99.0%
(98.99%, 99.57%) (2.68%, 3.78%) (0.001, 0.003) (0.021, 0.027) (97.6%, 100.4%)
Panel B: Comparison of Different Estimators Under v =1
Estimator CDR MAPE MSE MAE BTI
LA 95.56% 21.76% 0.091 0.189 87.5%
(94.77%, 96.35%) (19.29%, 24.23%) (0.069, 0.112) (0.171, 0.206) (82.9%, 92.1%)
LR 97.38% 12.85% 0.042 0.124 88.0%
(96.79%, 97.96%) (11.45%, 14.24%) (0.033, 0.052) (0.113, 0.136) (83.5%, 92.5%)
SDL 97.22% 11.55% 0.027 0.100 90.5%
(96.57%, 97.86%) (10.40%, 12.70%) (0.019, 0.035) (0.091, 0.109) (86.4%, 94.6%)
DeDL 98.81% 5.67% 0.014 0.056 92.5%
(98.33%, 99.29%) (4.87%, 6.47%) (0.008, 0.020) (0.049, 0.064) (88.8%, 96.2%)
Panel C: Comparison of Different Estimators Under v =3
Estimator CDR MAPE MSE MAE BTI
LA 94.62% 18.07% 0.112 0.210 89.0%
(93.71%, 95.54%) (16.18%, 19.96%) (0.075, 0.148) (0.190, 0.229) (84.6%, 93.4%)
LR 97.09% 12.10% 0.050 0.135 88.0%
(96.46%, 97.73%) (10.77%, 13.43%) (0.036, 0.063) (0.122, 0.149) (83.5%, 92.5%)
SDL 97.00% 15.10% 0.123 0.199 90.5%
(96.33%, 97.67%) (13.54%, 16.66%) (0.088, 0.159) (0.180, 0.218) (86.4%, 94.6%)
DeDL 97.50% 13.44% 0.151 0.181 92.5%
(96.77%, 98.22%) (10.87%, 16.00%) (0.096, 0.207) (0.156, 0.207) (88.8%, 96.2%)
Panel D: Comparison of Different Estimators Under v =5
Estimator CDR MAPE MSE MAE BTI
LA 95.34% 19.93% 0.155 0.263 88.0%
(94.47%, 96.22%) (17.12%, 22.74%) (0.125, 0.185) (0.241, 0.285) (83.5%, 92.5%)
LR 96.97% 12.05% 0.077 0.170 92.5%
(96.21%, 97.73%) (10.28%, 13.81%) (0.053, 0.102) (0.153, 0.187) (88.8%, 96.2%)
SDL 95.90% 17.24% 0.241 0.277 88.5%
(95.09%, 96.72%) (15.21%, 19.26%) (0.183, 0.299) (0.251, 0.304) (84.0%, 93.0%)
DeDL 95.46% 23.20% 0.559 0.333 84.5%

(94.43%, 96.50%)

(18.31%, 28.09%)

(0.375, 0.743)

(0.284, 0.381)

(79.4%, 89.6%)

Notes: All simulations are replicated 200 times, with 95% CZs reported in parentheses. 95% CZs of average absolute treatment

effects are (1.45,1.65), (1.52,1.72), (2.06,2.36), and (2.71,3.07) respectively in Panel A, Panel B, Panel C, and Panel D.

The complete result are reported in Table A9, where each panel shows a test result with different terms

in the DGP as defined above. Because there are no significant differences in the performance metrics BTI

and CDR, we only document the MAPE, MSE, and MAE measures. One can observe that DeDL performs

best when there exist interactions among the treatment effects of different experiments; see Panel A, B, and

C in Table A9. It means that even the link function is misspecified, DeDL can still capture some level of

interactions and make a relatively accurate estimation. Comparing DeDL and SDL, Table A9 shows that
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DeDL improves the performance over SDL as long as higher-order interaction terms are incorporated. Even
if the DGP is linear (i.e., Panel D), the performance of DeDL is on par with that of SDL, suggesting that

debiasing with Neyman orthogonality is fairly robust under model misspecification.

Table A9 Model Misspecification Result with Explicit Individual-Level Higher Order Terms

Panel A: Comparison of Different Estimators Under 1st, 2nd, 3rd, 4th - Order Terms

Estimator MAPE MSE MAE

LA 34.06% 18.732 2.582
(33.77%, 34.35 %) (18.426, 19.038) (2.559, 2.604)

LR 29.30% 12.225 1.883
(28.98%, 29.63 %) (11.967, 12.482) (1.860, 1.907)

SDL 21.78% 11.453 1.671
(21.41%, 22.14 %) (11.168, 11.739) (1.646, 1.696)

DeDL 15.15% 8.013 1.310

(14.80%, 15.50%) (7.706, 8.321) (1.277, 1.343)

Panel B: Comparison of Different Estimators Under 1st, 2nd, 3rd - Order Terms

Estimator MAPE MSE MAE

LA 33.65% 16.560 2.493
(33.35%, 33.96 %) (16.297, 16.824) (2.472, 2.514)

LR 28.81% 10.437 1.802
(28.49%, 29.14 %) (10.246, 10.629) (1.784, 1.821)

SDL 21.51% 9.653 1.591
(21.17%, 21.85 %) (9.437, 9.870) (1.571, 1.611)

DeDL 14.88% 6.476 1.230

(14.56%, 15.19%) (6.216, 6.736) (1.200, 1.260)

Panel C: Comparison of Different Estimators Under Under 1st, 2nd - Order Terms

Estimator MAPE MSE MAE

LA 31.04% 7.659 1.874
(30.74%, 31.33 %) (7.485, 7.833) (1.853, 1.896)

LR 25.09% 3.466 1.166
(24.80%, 25.39 %) (3.362, 3.570) (1.146, 1.185)

SDL 17.32% 2.903 0.948
(16.99%, 17.64 %) (2.786, 3.019) (0.927, 0.968)

DeDL 10.07% 1.328 0.591

(9.74%, 10.40%)

(1.223, 1.433)

(0.565, 0.617)

Panel D: Comparison of Different Estimators Under Under 1st - Order Terms

Estimator MAPE MSE MAE

LA 1.56% 0.002 0.036
(1.45%, 1.67 %) (0.002, 0.003) (0.034, 0.039)

LR 0.75% 0.001 0.018
(0.68%, 0.82 %) (0.001, 0.001) (0.017, 0.020)

SDL 6.32% 0.157 0.215
(6.08%, 6.55 %) (0.145, 0.169) (0.206, 0.224)

DeDL 6.67% 0.220 0.212

(6.41%, 6.92%)

(0.210, 0.231)

(0.195, 0.230)

Notes: All simulations are replicated 200 times, with 95% CZs reported in parentheses. 95% CZs of average absolute treatment
effects are (5.03,5.10), (4.97,5.04), (4.34,4.41), and (2.48,2.55) respectively in Panel A, Panel B, Panel C, and Panel D.
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D.5. Imbalanced Covariates

This set of simulations investigates a practical setting where the observed X distribution deviates from
the population. We call this setting imbalanced covariates, i.e., X covariates are imbalanced between any
treatment level ¢ € {0,1}™ and population X distribution. The imbalanced covariates affect both training
and inference stages, invalidating the DeDL estimators. Below, we discuss how to rebalance the covariates to
get precise and trustworthy ATE estimates.

We adopt exactly the same simulation setup to Appendix D.3 except that the observed covariates follow
a different distribution. Specifically, the last dimension of x follows the exponential distribution with rate
A €{2.0,1.0,0.5} instead of the uniform distribution ¢/(0,1). The ground truth ATEs are still calculated
using the uniform distributed @. Although this setup is relatively simple because the observed covariates
uniformly deviate from the true distribution across all treatment combinations while in practice the observed
covariates  may even follow different distributions under different ¢, this simulation result still demonstrates
the importance of rebalancing covariates.

To reconcile the imbalanced covariates, one can do stratified sampling on sampled units to match the
covariate distribution over the population, as we implement in our empirical study. There are also many
re-randomization techniques to improve covariate balance in experiments. We refer interested readers to
Morgan and Rubin (2012) and Li et al. (2020).

In this simulation study, to keep the discussion simple, we use the same stratified sampling procedure in our
empirical study. Specifically, we focus on the imbalanced covariate dimension with exponential distribution.
First, we do stratified sampling to keep only the data with @ in the support [0,1]¢X. Then we do stratified
sampling to make sure the imbalanced dimension of x is rebalanced in the sense that the sample sizes in
[0,1]9x~1 % [0,0.5) and [0,1]?*~! x [0.5,1] are the same. Through stratified sampling, we may discard some
samples but sacrifice efficiency. We also conducted the stratified sampling with higher accuracy, e.g., the
numbers of samples in five buckets with 0.2 bandwidth are the same.

We report the MAESs for different estimators with balanced and imbalanced covariates in Figure A6(a) and
(b), respectively. Using the imbalanced covariates for both training and inference, Figure A6(a) reports the
comparison results. (We present the complete results in Table A10.) After the stratified sampling, we use the
rebalanced covariates for both training and inference; we show the result in Figure A6(b). A € {2.0,1.0,0.5}
indicates the growing imbalance level. The key observation is that when the data is too imbalanced with
A€ {1.0,0.5}, DeDL is not precise. After the stratified sampling, debiasing is still trustworthy, reducing MAE
compared to SDL.
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Figure A6 MAE Comparison Among Estimators Under the Imbalanced Covariates Setting. Panel (a) shows the

performance of LA,LR,SDL, and DeDL before rebalancing. Panel (b) presents the performance after rebalancing.
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Table A10 Imbalanced Covariates Result

Estimator CRD MAPE MSE MAE BTI
Panel A: Comparison of Different Estimators Under A = 2.0
Before Covariates Rebalancing
LA 91.22% 32.03% 0.104 0.215 87.5%
(89.99%, 92.45%)  (28.21%, 35.85%) (0.081,0.127)  (0.197, 0.233)  (82.9%, 92.1%)
LR 96.00% 18.92% 0.047 0.136 91.0%
(95.32%, 96.68%)  (16.87%, 20.97%) (0.036, 0.059)  (0.123, 0.149)  (87.0%, 95.0%)
SDL 96.12% 15.84% 0.024 0.101 95.0%
(95.42%, 96.83%) (14.09%, 17.60%) (0.018, 0.031) (0.093, 0.109) (92.0%, 98.0%)
DeDL 96.44% 11.10% 0.007 0.061 95.0%
(95.74%, 97.13%)  (9.71%, 12.48%) (0.006, 0.008)  (0.057, 0.065)  (92.0%, 98.0%)
After Covariates Rebalancing
LA 93.94% 27.24% 0.102 0.193 92.0%
(92.85%, 95.02%) (23.10%, 31.38%) (0.074, 0.129) (0.173, 0.212) (88.2%, 95.8%)
LR 96.44% 18.36% 0.044 0.128 93.5%
(95.75%, 97.13%) (15.69%, 21.03%) (0.033, 0.056) (0.116, 0.141) (90.1%, 96.9%)
SDL 96.62% 14.47% 0.019 0.092 96.0%
(95.95%, 97.30%)  (12.66%, 16.28%) (0.015, 0.023)  (0.085, 0.099)  (93.3%, 98.7%)
DeDL 97.66% 7.86% 0.006 0.049 98.0%
(97.11%, 98.20%) (6.66%, 9.05%) (0.004, 0.007) (0.045, 0.053) (96.0%, 100.0%)
Panel B: Comparison of Different Estimators Under A =1.0
Before Covariates Rebalancing
LA 87.84% 82.23% 0.519 0.534 71.5%
(86.47%, 89.21%) (73.27%, 91.18%) (0.445, 0.593) (0.497, 0.571) (65.2%, 77.8%)
LR 90.44% 70.13% 0.371 0.455 72.0%
(89.36%, 91.51%)  (62.66%, 77.60%) (0.321, 0.420)  (0.426, 0.485)  (65.7%, 78.3%)
SDL 90.53% 71.28% 0.304 0.419 76.0%
(89.41%, 91.66%) (63.36%, 79.20%) (0.260, 0.348) (0.391, 0.447) (70.0%, 82.0%)
DeDL 90.59% 68.73% 0.291 0.408 75.5%
(89.51%, 91.68%)  (61.16%, 76.30%) (0.248, 0.334)  (0.380, 0.436)  (69.5%, 81.5%)
After Covariates Rebalancing
LA 91.44% 32.66% 0.109 0.218 88.0%
(90.29%, 92.58%) (28.67%, 36.66%) (0.086, 0.133) (0.199, 0.236) (83.5%, 92.5%)
LR 95.84% 20.03% 0.056 0.138 94.5%
(95.17%, 96.52%) (16.01%, 24.04%) (0.036, 0.076) (0.124, 0.152) (91.3%, 97.7%)
SDL 96.00% 15.04% 0.027 0.099 96.0%
(95.23%, 96.77%)  (12.57%, 17.51%) (0.018, 0.036)  (0.089, 0.108)  (93.3%, 98.7%)
DeDL 96.47% 9.16% 0.008 0.053 96.0%
(95.84%, 97.10%) (7.23%, 11.08%) (0.004, 0.012) (0.047, 0.058) (93.3%, 98.7%)
Panel C: Comparison of Different Estimators Under A =0.5
Before Covariates Rebalancing
LA 78.41% 186.87% 2.644 1.223 43.5%
(76.31%, 80.51%) (167.63%, 206.10%) (2.289, 2.999) (1.141, 1.304) (36.6%, 50.4%)
LR 80.84% 167.21% 2.097 1.084 47.0%
(78.92%, 82.77%)  (150.48%, 183.94%)  (1.811,2.383)  (1.012, 1.156)  (40.0%, 54.0%)
SDL 81.50% 162.02% 1.737 0.996 51.0%
(79.51%, 83.49%) (144.89%, 179.15%) (1.503, 1.972) (0.930, 1.062) (44.0%, 58.0%)
DeDL 81.34% 163.63% 1.767 1.003 51.5%
(79.36%, 83.33%)  (146.21%, 181.06%)  (1.528,2.005)  (0.936, 1.070)  (44.5%, 58.5%)
After Covariates Rebalancing
LA 88.78% 42.56% 0.158 0.273 84.0%
(87.40%, 90.17%)  (37.80%, 47.32%) (0.126, 0.191)  (0.248, 0.297)  (78.9%, 89.1%)
LR 94.78% 22.60% 0.055 0.155 88.5%
(93.85%, 95.72%) (20.11%, 25.09%) (0.045, 0.065) (0.142, 0.168) (84.0%, 93.0%)
SDL 94.41% 19.69% 0.026 0.112 92.0%
(93.49%, 95.32%)  (17.41%, 21.97%) (0.022, 0.030)  (0.104, 0.121)  (88.2%, 95.8%)
DeDL 94.75% 9.27% 0.005 0.053 93.5%

(93.87%, 95.63%)

(8.32%, 10.21%) (0.005, 0.006)  (0.050, 0.057)

(90.1%, 96.9%)




