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Supplemental Materials

Appendix A: Proofs and Supplements

A.1. Proofs and Supplements in Section 4

A.1.1. NP-hardness of the CGPO problem.

Proof of Theorem 1: We prove the NP-hardness of the CGPO problem by reduction from the SUBSET-SUM

problem. Let the positive integers b1, . . . bn, and B form an instance of SUBSET-SUM. Without loss of generality, we

assume that bi ≤B for all i∈ {1,2, . . . , n}. Let si = bi/B. We have si ∈ [0,1] for all i.

We construct a special instance of the CGPO problem where V = {1,2, . . . , n}, L= 2, C =m, K ∈Z+, Av,0 = 0 and

pv ≤ 1/2 for all v ∈ V. By this construction, the optimal solution satisfies x∗v,2 = 0 for all v ∈ V. We show this claim by

contradiction. Assume the optimal solution x∗v,2 > 0. We construct a feasible solution: x′v,1 = x∗v,1 +x∗v,2 and x′v,2 = 0.

Let x∗v,1 +x∗v,2 = cv ≤ 1. The optimal adoption is given by

A∗v,2 =−p2
vqvmx

∗
v,1

2
+ pvmqvx

∗
v,1 + pvm(x∗v,1 +x∗v,2) =−p2

vqvmx
∗
v,1

2
+ pvmqvx

∗
v,1 + pvmcv .

Similarly, the adoptions with x′v,1 and x′v,2 is A′v,2 = −p2
vqvmx

′
v,1

2
+ pvmqvx

′
v,1 + pvmcv. Given pv ≤ 1/2, we have

A′v,2−A∗v,2 = pvqvmx
∗
v,2(1− pv(x′v,1 +x∗v,1))≥ pvqvmx∗v,2(1− 2pv)≥ 0, contradicting with the assumption.

Therefore, we can omit the variables x:,2 and write x= x:,1 for simplicity. Let αv = p2
vqvm and βv = pvm(qv + 1).

Under this construction, the CGPO problem can be expressed as

max
x,U⊆V:|U|≤K

∑
v∈V

−αvx2
v +βvxv

s.t.
∑
v∈V

xv ≤ 1,

0≤ xv ≤ 1{v ∈U},∀v ∈ V.

We assume that there exists values of p, q and m such that for all v ∈ V, −2αvsv + βv = d1 and αvs
2
v = d2 for some

d1, d2 ∈R+. We justify the existence of p, q, and m at the end of this proof. Here, we let `(x) =
∑
v∈V −αvx

2
v +βvxv.

We claim that

`(x∗)≥ d1 + d2K ,⇐⇒ there exists U ⊆V with |U |=K and
∑
v∈U

sv = 1 .

To prove this claim, we first express the objective value as

`(x) =
∑
v∈V

−αvx2
v +βvxv

(a)
=
∑
v∈U

−αvx2
v +βvxv

(b)
=
∑
v∈U

−αv(xv − sv)2 + d1xv + d2

(c)

≤ d1

∑
v∈U

xv + d2|U |
(d)

≤ d1 + d2K .

where (a) follows from constraint xv ≤ 1{v ∈ U}; (b) follows from the definition of d1 and d2; (c) follows since

αv ≥ 0; (d) follows from the constraint
∑
v∈V xv ≤ 1. If there exists U ⊆ V such that |U | = K and

∑
v∈U sv = 1,

then we can let U∗ = U and x∗v = sv1{v ∈ U} for all v ∈ V. Then, it is easy to verify that `(x∗) = d1 + d2K. On

the other hand, if `(x∗) = d1 + d2K, then the (c) implies that we must have x∗v = sv1{v ∈ U∗}; (d) implies that∑
v∈U∗ x

∗
v =

∑
v∈U∗ sv = 1 and |U∗|=K.

This claim allows us to reduce SUBSET-SUM to our problem as follows. If there exists a subset I ⊆ {1, . . . , n} such

that
∑
i∈I si = 1, then the objective value `(x∗) is equal to d1 +d2K for K = |I|. If there exists K ∈ {1,2, . . . , n} such

that `(x∗) = d1 + d2K, one can find I =U∗ such that
∑
i∈I si = 1.
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We then proceed by providing an example of the values of m, d1, and d2, which ensures that our construction

serves as a valid CGPO instance. Let s= minv∈V sv, m= 64/s2, d1 =m/2 and d2 = 1. Our construction assumes{
−2p2

vqvmsv + pvm(qv + 1) = d1

p2
vqvms

2
v = d2

,=⇒

{
pvqv + pv = 1

2
+ 2

msv

pvqv · pv = 1
ms2v

.

Therefore, for any given sv, we can solve pv and qv as demonstrated in (EC.1):

pv =

1
2

+ 2
msv

+

√(
1
2

+ 2
msv

)2

− 4
ms2v

2
and qv =

1
2

+ 2
msv
−
√(

1
2

+ 2
msv

)2

− 4
ms2v

1
2

+ 2
msv

+

√(
1
2

+ 2
msv

)2

− 4
ms2v

. (EC.1)

To ensure that pv and qv provided in (EC.1) are valid within the context of P-BDM, we need further justifications.

First, we need to ensure (EC.1) has real value solutions, that is,(
1

2
+

2

msv

)2

− 4

ms2
v

=
1

4
+

2

msv
+

(
4

m2
− 4

m

)
1

s2
v

≥ 1

4
+

2

m
+

(
4

m2
− 4

m

)
1

s2
=

3

16
+

33

16m
≥ 0 .

Next, we need to validate that pv, qv ≥ 0, pv ≤ 1/2, and pv + qv ≤ 1. It is obvious that pv, qv ≥ 0 by (EC.1). In order

to show pv + qv ≤ 1, it suffices to show that pv, qv ≤ 1/2. To show pv ≤ 1/2, we have√(
1

2
+

2

msv

)2

− 4

ms2
v

≤ 1

2
− 2

msv
⇐⇒ 1

2
− 2

msv
≥ 0 and

√(
1

2
− 2

msv

)2

+
4

msv
− 4

ms2
v

≤ 1

2
− 2

msv
,

where the inequalities follow since 0≤ sv ≤ 1. To show qv ≤ 1/2, we have

1

2
+

2

msv
≤ 3

√(
1

2
+

2

msv

)2

− 4

ms2
v

⇐⇒
(

1

2
+

2

msv

)2

− 9

2ms2
v

≥ 23

128
+

33

16m
≥ 0 .

Therefore, the construction of this specific CGPO instance is valid. Such construction exists for every instance of

SUBSET-SUM. In conclusion, the CGPO problem is NP-hard. �

A.1.2. Proofs for the PO-CR problem.

Proof of Theorem 2: To establish the equivalence of two problems, we need to show that for all optimal solutions

of the PO-CR problem, equalities hold for all constraints (5). We will show this by contradiction.

Let (x∗,A∗) and R∗ be the optimal solution and optimal value of the PO-CR problem. Assume there exists u∈U
and τ ∈ {1, . . . ,L} such that the following inequality holds: A∗u,τ <A

∗
u,τ−1 + pvmx

∗
u,τ + qu

m
A∗u,τ−1(m−A∗u,τ−1).

By the optimality of (x∗,A∗), it is straightforward to confirm that (x∗U,τ+1:L,A
∗
U,τ+1:L) is also the optimal solution

of the following problem (EC.2). Consequently, the optimal value of problem (EC.2) is equal to R∗.

max
x≥0,AU,τ+1:L

∑
v∈U

Av,L (EC.2a)

s.t. Av,τ+1 ≤A∗v,τ + pvmxv,τ+1 + qv
A∗v,τ
m

(m−A∗v,τ ), ∀v ∈U, (EC.2b)

xv,τ+1 ≤ 1−
A∗v,τ
m

, ∀v ∈U, (EC.2c)

Av,t ≤Av,t−1 + pvmxv,t + qv
Av,t−1

m
(m−Av,t−1),∀v ∈U ∀t= τ + 2, . . . ,L, (EC.2d)

xv,t ≤ 1− Av,t−1

m
, ∀v ∈U ∀t= τ + 2, . . . ,L, (EC.2e)

m

L∑
t=τ+1

∑
v∈U

xv,t ≤C −m
τ∑
t=1

∑
v∈U

x∗v,t. (EC.2f)

We then construct a feasible solution (x′,A′) for the PO-CR problem and let R′ be the objective value:

(i) When t= 1,2, . . . , τ − 1, x′U,t :=x∗U,t; When t= 0,1, . . . , τ − 1, A′U,t :=A∗U,t.

(ii) When t= τ , x′U,t :=x∗U,t and A′v,t :=

{
A∗v,t−1 + pvmx

∗
u,t−1 + qv

A∗v,t−1

m
(m−A∗v,t−1), when v ∈ {u},

A∗v,t, when v ∈U \ {u}.
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(iii) When t= τ + 1, . . . ,L, (x′U,t,A
′
U,t) is defined as the optimal solution of the following problem (EC.3):

max
x≥0,AU,τ+1:L

(EC.2a)

s.t. Av,τ+1 ≤A′v,τ + pvmxv,τ+1 +
qv
m
A′v,τ (m−A′v,τ ),∀v ∈U, (EC.3a)

xv,τ+1 ≤ 1−
A′v,τ
m

, ∀v ∈U, (EC.3b)

(EC.2d)− (EC.2f).

As a consequence, the optimal value of problem (EC.3) is also equal to R′.

In the following, we focus on problems (EC.2) and (EC.3). We aim to show that R′ >R∗, which contradicts with the

optimality of (x∗,A∗). Firstly, to characterize the optimal solution for problem (EC.2), we use Lagrangian multipliers

to introduce the constraints (EC.2b), (EC.2c) and (EC.2f) into the objective function. Let Ω denote the feasible

region constructed by constraints (EC.2d), (EC.2e). The dual problem can thus be expressed as

min
λ≥0,µ≥0,θ≥0

r(λ,µ, θ) +
∑
v∈U

λv
(
A∗v,τ +

qv
m
A∗v,τ (m−A∗v,τ )

)
+
∑
v∈U

µv

(
1−

A∗v,τ
m

)
+ θC , (EC.4)

where r(λ,µ, θ) is the optimal value function of a parameterized maximization problem as shown in (EC.5):

r(λ,µ, θ) := max
xU,τ+1:L≥0,

(x,A)U,τ+1:L∈Ω

∑
v∈U

[
Av,L−λvAv,τ+1 + (λvmpv −µv − θm)xv,τ+1− θm

(
τ∑
t=1

x∗v,t +

L∑
t=τ+2

xv,t

)]
.

(EC.5)

Notice that, in the maximization problem (EC.5), variable xU,τ+1 is not constrained by any other variables, but

only by a constant 0. Thus, we can split problem (EC.5) into two subproblems:

max
xU,τ+2:L≥0,

(x,A)U,τ+1:L∈Ω

∑
v∈U

[
Av,L−λvAv,τ+1− θm

(
τ∑
t=1

x∗v,t +

L∑
t=τ+2

xv,t

)]
and max

xU,τ+1≥0

∑
v∈U

(λvmpv −µv − θm)xv,τ+1 .

We then optimize two subproblems separately. For the former subproblem, we denote its optimal value as s(λ, θ).

For the latter subproblem, the maximization problem can be further decomposed for each content piece v ∈ U and

we can easily derive the optimal solution and the value of function r(λ,µ, θ) as follows:

x∗v,τ+1 =

{
0 when µv ≥m(λvpv − θ),
+∞ when µv <m(λvpv − θ),

and r(λ,µ, θ) =

{
s(λ, θ) when θ >minv∈U (λvpv − µv

m
),

+∞ o.w.

We then substitute the value function of r(λ,µ, θ) into the dual problem (EC.4). To minimize the dual value, it is

obvious that r(λ,µ, θ) should not be infinity. Hence, the dual problem (EC.4) can be reformulated as (EC.6),

min
λ≥0,θ≥0

s(λ, θ) +
∑
v∈U

λv
(
A∗v,τ +

qv
m
A∗v,τ (m−A∗v,τ )

)
+ θC +

∑
v∈U

min
µv≥0,

µv≥m(λvpv−θ)

µv

(
1−

A∗v,τ
m

) . (EC.6)

The inner minimization of problem (EC.6) can be represented as (EC.7). For any v ∈U ,

min
µv≥0,

µv≥m(λvpv−θ)

µv

(
1−

A∗v,τ
m

)
. (EC.7)

Since A∗v,τ ≤ m always holds, when given the value of (λ, θ), the optimal solution of µv should be µ∗v(λ, θ) =

max{0,m(λvpv − θ)}. Finally, we define the dual value function as

u(λ, θ;A∗U,τ ) := s(λ, θ) +
∑
v∈U

λv
(
A∗v,τ +

qv
m
A∗v,τ (m−A∗v,τ )

)
+ θC +

∑
v∈U

(
1−

A∗v,τ
m

)
max{0,m(λvpv − θ)}.

Similarly, for problem (EC.3), we can also have the dual value function as

u(λ, θ;A′U,τ ) := s(λ, θ) +
∑
v∈U

λv
(
A′v,τ +

qv
m
A′v,τ (m−A′v,τ )

)
+ θC +

∑
v∈U

(
1−

A′v,τ
m

)
max{0,m(λvpv − θ)}.
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Let (λ∗, θ∗) and (λ′, θ′) be the optimal dual variables for the dual problems of (EC.2) and (EC.3). Given that

problems (EC.2) and (EC.3) are convex optimization problems, by invoking Slater’s condition, strong duality holds for

both problems. Thus, the optimal values for problems (EC.2) and (EC.3) can be represented as R∗ = u(λ∗, θ∗;A∗U,τ )

and R′ = u(λ′, θ′;A′U,τ ). Finally, we compare between R∗ and R′ and show that R∗ ≤R′.

R∗−R′ = u(λ∗, θ∗;A∗τ )−u(λ′, θ′;A′τ )≤ u(λ′, θ′;A∗τ )−u(λ′, θ′;A′τ ) (EC.8a)

=
∑
v∈U

λ′v

(
A∗v,τ +

qv
m
A∗v,0(m−A∗v,τ )

)
+
∑
v∈U

(
1−

A∗v,τ
m

)
max{0,m(λ′vpv − θ′)}

−

[∑
v∈U

λ′v

(
A′v,τ +

qv
m
A′v,τ (m−A′v,τ )

)
+
∑
v∈U

(
1−

A′v,τ
m

)
max{0,m(λ′vpv − θ′)}

]

=
∑
v∈U

(A∗v,τ −A′v,τ )

[
λ′v

(
1 + qv −

qv
m

(A∗v,τ +A′v,τ )
)
− 1

m
max{0,m(λ′vpv − θ′)}

]
≤
∑
v∈U

(A∗v,τ −A′v,τ )
[
λ′v

(
1 + qv −

qv
m

(A∗v,τ +A′v,τ )
)
−λ′vpv

]
(EC.8b)

<
∑
v∈U

(A∗v,τ −A′v,τ )λ′v (1− qv − pv) (EC.8c)

≤ 0, (EC.8d)

where (EC.8a) follows since (λ∗, θ∗) is the optimal solution to dual problem (EC.4); (EC.8b) follows due to the

construction of A∗τ ≤A′τ and the inherent non-negativity of dual variables (i.e., λ′ ≥ 0 and θ′ ≥ 0); (EC.8c) follows

since by definition qv ≥ 0, A∗u,τ <A
′
u,τ ≤m and A∗v,τ =A′u,τ ≤m for all v ∈U \{u}; (EC.8d) follows from the definition

pv + qv ≤ 1.

As a result, (x′,A′) is a feasible solution to the PO-CR problem while the resulting objective value R′ is greater

than R∗. This indicates that (x∗,A∗) cannot be an optimal solution to the PO-CR problem.

In conclusion, the original PO problem (4) and the relaxed problem are equivalent. �

A.1.3. Lemmas and proofs for the single-variable reformulation. In the following, we include lemmas and

proofs to validate the single-variable reformulation and to show that it remains a convex program.

Lemma EC.1 (Redundant Constraint). Constraint (6c) is redundant to the reformulation (6).

Proof of Lemma EC.1: Let (x∗,A∗) be the optimal solution of the PO problem (4). By P-BDM dynamics (4b),

we can deduce that the optimal adoption number A∗ is non-decreasingly evolves over time (i.e., Av,0 ≤A∗v,1 ≤ · · · ≤

A∗v,L for all v ∈ U). By Theorem 2, (x∗,A∗) is also the optimal solution to the PO-CR problem. Therefore, for all

v ∈ U, t = 1,2, . . . ,L, constraint xv,t ≤ 1−Av,0/m is redundant compared with xv,t ≤ 1−Av,t−1/m in the PO-CR

problem. �

Construction of Feasible Solution to Problem (7).

For any v ∈U , given xv,: ∈ [0,1−Av,0/m]L, a feasible solution can be constructed by the following three steps:

Step 1: Set t := 1. Let Av,1 :=Av,0 + pvmxv,1 + qvAv,0(m−Av,0)/m. Then, increment t by 1, i.e., t := t+ 1.

Step 2: Let Av,t = min{m(1−xv,t+1),Av,t−1 + pvmxv,t + qvAv,t−1(m−Av,t−1)/m}.

Step 3: Increment t by 1, i.e., t := t+ 1. Repeat step 2, until t=L+ 1. �

To demonstrate that single-variable reformulation (6) remains a convex program, it is sufficient to show that the

objective is concave, given that all constraints are linear.

Proof of Lemma 1: For simplicity, we omit the subscript v here. For any x(1) and x(2), let x(λ) = λx(1) + (1−

λ)x(2), and we want to show that λf(x(1)) + (1−λ)f(x(2))≤ f(x(λ)) holds for any 0≤ λ≤ 1.
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Suppose A(1∗), A(2∗) and A(λ∗) are the optimal solutions to problem (7) with regard to x(1), x(2), and x(λ),

respectively. Let A(λ) = λA(1∗) + (1− λ)A(2∗). We first show that A(λ) is a feasible solution to problem (7) with

regard to x(λ) by verifying that it satisfies constraints (5) and (4c).

For constraint (5), we have

A
(λ)
t−1 + pmx

(λ)
t +

q

m
A

(λ)
t−1(m−A(λ)

t−1)−A(λ)
t

=λA
(1∗)
t−1 + (1−λ)A

(2∗)
t−1 + pm

[
λx(1) + (1−λ)x(2)

]
+
q

m

[
λA

(1∗)
t−1 + (1−λ)A

(2∗)
t−1

][
m−λA(1∗)

t−1 − (1−λ)A
(2∗)
t−1

]
−
[
λA

(1∗)
t + (1−λ)A

(2∗)
t

]
=λ
[
A

(1∗)
t−1 + pmx

(1)
t−1 + qA

(1∗)
t−1 −A

(1∗)
t

]
+ (1−λ)

[
A

(2∗)
t−1 + pmx

(2)
t−1 + qA

(2∗)
t−1 −A

(2∗)
t

]
− q

m

[
λA

(1∗)
t−1 + (1−λ)A

(2∗)
t−1

]2
≥λ
[
A

(1∗)
t−1 + pmx

(1)
t−1 + qA

(1∗)
t−1 −A

(1∗)
t

]
+ (1−λ)

[
A

(2∗)
t−1 + pmx

(2)
t−1 + qA

(2∗)
t−1 −A

(2∗)
t

]
− q

m

[
λA

(1∗)
t−1

2
+ (1−λ)A

(2∗)
t−1

2
]

(λ+ 1−λ)

=λ
[
A

(1∗)
t−1 + pmx

(1)
t−1 +

q

m
A

(1∗)
t−1

(
m−A(1∗)

t−1

)
−A(1∗)

t

]
+ (1−λ)

[
A

(2∗)
t−1 + pmx

(2)
t−1 +

q

m
A

(2∗)
t−1

(
m−A(2∗)

t−1

)
−A(2∗)

t

]
≥0 ,

where the first inequality follows from Cauchy–Schwarz inequality, the second inequality follows since A(1∗) and A(2∗)

satisfy the constraint (5) with regard to x(1) and x(2).

For constraint (4c), we have 1− A
(λ)
t−1

m
−x(λ)

t = λ

[
1− A

(1∗)
t−1

m
−x(1)

t

]
+(1−λ)

[
1− A

(2∗)
t−1

m
−x(2)

t

]
≥ 0, where the inequal-

ity follows since A(1∗) and A(2∗) satisfy the constraint (4c) with regard to x(1) and x(2).

Next, by the optimality ofA(λ∗), we have f(x(λ)) =A
(λ∗)
L ≥A(λ)

L = λA
(1∗)
L +(1−λ)A

(2∗)
L = λf(x(1))+(1−λ)f(x(2)).

In conclusion, fv(xv,:) is a concave function on the range [0,1−Av,0/m]L. �

We then outline the optimality condition of the single-variable reformulation in Lemma EC.2. To facilitate the

characterization of subgradient, we introduce the convex function f̃v :=−fv. Let ∂f̃v(xv) be the subgradient set at

xv:

Lemma EC.2 (Optimality Condition). Given θ≥ 0, the optimal solution x∗(θ) to the inner maximization prob-

lem (9) satisfies the following condition.

∀v ∈U, t= 1,2, . . . ,L,gv,:(θ)∈ ∂f̃v(x∗v(θ)),


gv,t(θ)≥−θ when x∗v,t(θ) = 0,

gv,t(θ) =−θ when 0<x∗v,t(θ)<Av,0,

gv,t(θ)≤−θ when x∗v,t(θ) =Av,0.

(EC.9)

Proof of Lemma EC.2: Define rv(xv,:;θ) :=−f̃v(xv,:)− θm
∑L
t=1 xv,t for all v ∈ U . The problem is separable by

content piece v, so we focus on a specific v ∈U in the following and omit the subscription for clarity.

When x∗t (θ) = 0, we construct a feasible solution x′(θ) :=x∗(θ)+εet where ε is a sufficiently small positive constant

and et is a vector with 1 in the t-th entry and 0 in all other entries. By the concavity of r, we have

r(x′(θ);θ)≥ r(x∗(θ);θ)− (g(θ) + θ1)>(x′(θ)−x∗(θ)) = r(x∗(θ);θ)− (gt(θ) + θ)ε ,

where 1 is the all one vector. Given the optimality of x∗(θ), gt(θ)≥−θ should hold.

When x∗t (θ) =Av,0, we construct a feasible solution x′′(θ) :=x∗(θ)− εet. By concavity of r, we have

r(x′′(θ);θ)≥ r(x∗(θ);θ)− (g(θ) + θ1)>(x′′(θ)−x∗(θ)) = r(x∗(θ);θ) + (gt(θ) + θ)ε .

Given the optimality of x∗(θ), gt(θ)≤−θ should hold.

When 0<x∗t (θ)<Av,0, we simultaneously construct two feasible solutions x′(θ) and x′′(θ) as previous. Similarly,

by optimality of x∗(θ), gt(θ) =−θ should hold.

In conclusion, we can characterize this optimality condition based on the subgradient g(θ) and θ. �
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For any θ ≥ 0, we denote
(
x∗v,:(θ) : v ∈ V

)
as the optimal solution to (9), and let function s(θ;U) :=

m
∑
v∈U

∑L
t=1 x

∗
v,t(θ) describe the total optimal promotion times with dual variable θ. In the following, we establish

the property of s(θ;U) for any given candidate set U ⊆V in Lemma EC.3.

Lemma EC.3 (Monotonicity). For any U ⊆V, s(θ;U) is a nonincreasing function in θ.

Proof of Lemma EC.3: For all θ1, θ2 ≥ 0, let gv(θ1) ∈ ∂f̃v(x∗v,:(θ1)) and gv(θ2) ∈ ∂f̃v(x∗v,:(θ2)) for all v ∈ U . By

Lemma EC.2, for all v ∈U , we have

(
x∗v,:(θ1)−x∗v,:(θ2)

)>
(−gv(θ1) + gv(θ2))

=
(
x∗v,:(θ1)−x∗v(θ2)

)>
(θ1 ·1− θ2 ·1) +

L∑
t=1

(
x∗v,t(θ1)−x∗v,t(θ2)

)
(−θ1− gv,t(θ1)) +

L∑
t=1

(
x∗v,t(θ1)−x∗v,t(θ2)

)
(θ2 + gv,t(θ2))

= (θ1− θ2) ·
(
x∗v,:(θ1)−x∗v,:(θ2)

)>
1 +

L∑
t=1

(
1{x∗v,t(θ1) = 0}+1{x∗v,t(θ1) =Av,0}

) (
x∗v,t(θ1)−x∗v,t(θ2)

)
(−θ1− gv,t(θ1))

+

L∑
t=1

(
1{x∗v,t(θ2) = 0}+1{x∗v,t(θ2) =Av,0}

) (
x∗v,t(θ1)−x∗v,t(θ2)

)
(θ2 + gv,t(θ2)) .

We further discuss the latter two terms. We have{
x∗v,t(θ1)−x∗v,t(θ2) =−x∗v,t(θ2)≤ 0, and − θ1− gv,t(θ1)≤ 0, when x∗v,t(θ1) = 0,

x∗v,t(θ1)−x∗v,t(θ2) =Av,0−x∗v,t(θ2)≥ 0, and − θ1− gv,t(θ1)≥ 0, when x∗v,t(θ1) =Av,0;

and

{
x∗v,t(θ1)−x∗v,t(θ2) = x∗v,t(θ1)≥ 0, and θ2 + gv,t(θ2)≥ 0, when x∗v,t(θ2) = 0,

x∗v,t(θ1)−x∗v,t(θ2) = x∗v,t(θ2)−Av,0 ≤ 0, and θ2 + gv,t(θ2)≤ 0, when x∗v,t(θ2) =Av,0.

Given concavity of fv, we have 0≥
(
x∗v,:(θ1)−x∗v,:(θ2)

)>
(−gv(θ1) + gv(θ2))≥ (θ1− θ2) ·

(
x∗v,:(θ1)−x∗v,:(θ2)

)>
1.

By summing up over v ∈U , we have (θ1− θ2) ·m
∑
v∈U

∑L
t=1

[
x∗v,t(θ1)−x∗v,t(θ2)

]
= (θ1− θ2) · (h(θ1)−h(θ2))≤ 0.

In conclusion, s(θ;U) is nonincreasing. �

Proof of Lemma 2: We begin by demonstrating that s(θ∗(U2);U1)≤ s(θ∗(U1);U1). We can decompose the func-

tion s(θ;U2) as s(θ;U1) + s(θ;U2 \U1). We consider two cases based on the value of s(θ∗(U1);U1):

(i) s(θ∗(U1);U1) =C. We directly have s∗(θ∗(U2);U1)≤ s∗(θ∗(U2);U2)≤C = s(θ∗(U1);U1).

(ii) s(θ∗(U1);U1)<C. We show this by contradiction. Assume that s(θ∗(U2);U1)> s(θ∗(U1);U1). We can construct

a feasible solution x′U2,: for the PO problem given candidate set U2 as

x′v,: =

{
x∗v,:(θ

∗(U1)) when v ∈U1,

x∗v,:(θ
∗(U2)) when v ∈U2 \U1.

The objective value generated by x′U2,: is larger than x∗U2,:(θ
∗(U2)), given the optimality of x∗U1,:(θ

∗(U1)) for the

PO problem with candidate set U1. This contradicts with the optimality of x∗U2,:(θ
∗(U2)) for the PO problem

with candidate set U2.

Consequently, s(θ∗(U2);U1)≤ s(θ∗(U1);U1). By Lemma EC.3, we conclude that θ∗(U1)≤ θ∗(U2). �

A.1.4. Submodularity of the CGPO objective.

Proof of Theorem 3: It is easy to verify that R(U ;C) +R(V \U ; 0) is a monotone function. By (11), we have

R(U ∪{w};C) +R(V \ (U + {w}); 0) = max
0≤c≤C

R(U ; c) +R({w};C − c) +R(V \ (U + {w}); 0)

≥R(U ;C) +R({w}; 0) +R(V \ (U + {w}); 0) =R(U ;C) +R(V \U ; 0).
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Next, we focus on the proof of submodularity. To prove that R(U ;C) +R(V \U ; 0) is a submodular function, we

need to demonstrate that for any given U1 ⊆U2 ⊆V and w ∈ V \U2, (10) holds. Therefore, we compare the marginal

gain of content piece w when given nested content sets U1 and U2 as follows:

R(U1 ∪{w};C)−R(U1;C)−R({w}; 0)− [R(U2 + {w};C)−R(U2;C)−R({w}; 0)]

=R(U1; c∗(U1)) +R({w};C − c∗(U1))−R(U1;C)−R({w}; 0)

− [R(U2; c∗(U2)) +R({w};C − c∗(U2))−R(U2;C)−R({w}; 0)]

≥R(U1; c∗(U2)) +R({w};C − c∗(U2))−R(U1;C)−R({w}; 0)

− [R(U2; c∗(U2)) +R({w};C − c∗(U2))−R(U2;C)−R({w}; 0)]

= [R(U1; c∗(U2))−R(U1;C)]− [R(U2; c∗(U2))−R(U2;C)] =−
∫ C

z=c∗(U2)

θ∗(U1;z)dz+

∫ C

z=c∗(U2)

θ∗(U2;z)dz

=

∫ C

z=c∗(U2)

[θ∗(U2;z)− θ∗(U1;z)]dz ≥ 0.

where the first inequality follows since c∗(U1) is the optimal solution that maximizes problem (11) and the last

inequality follows by Lemma 2.

In conclusion, R(U ;C) +R(V \U ; 0) is a monotone submodular set function. �

A.2. Proofs and Supplements in Section 5

A.2.1. The OLS estimation method for the BDM. According to Bass (1969), the OLS method of the

BDM works as follows. Given a sequence of adoption data {(at,At)}Tt=0, it assumes the following relationship: at =

β1 +β2 ·At−1 +β3A
2
t−1 + εt, where β1 = pm, β2 = q− p and β3 =−q/m are three different parameters to estimate; 1,

At−1, and A2
t−1 are considered as three observed covariates; εt is the independent white noise. For notation simplicity,

we denote the covariate matrix and dependent variable as

Z =


1 A0 A2

0

1 A1 A2
1

...
...

...
1 AT−1 A

2
T−1

 and a=


a1

a2

...
aT

 .

The OLS estimator β̂ can then be derived as β̂= (Z>Z)−1Z>a. Consequently, the estimators can be obtained as

m̂=
β̂2±

√
β̂2

2 − 4β̂1β̂2

2β̂3

, p̂=
β̂1

m̂
, and q̂=−β̂3m̂.

However, these estimators suffer from large variances. In extreme cases (e.g., m̂= 0), they even become invalid.

A.2.2. Proofs for the asymptotic analysis of the OLS-based estimators. To streamline notation, we

define the fixed-design covariate matrix for the n-th diffusion process as

Z(n) =


x1,(n) Ā1,(n)(1− Ā1,(n))
x2,(n) Ā2,(n)(1− Ā2,(n))

...
...

xn,(n) Ān,(n)(1− Ān,(n))

 .

Proof of Theorem 4: We first consider the n-th D-OLS estimator for q, which is represented as

q̂D-OLS
(n) = q+

∑n
i=1

[
Ai,(n)(1−xi,(n)−

Ai,(n)

m(n)
)εii,(n)

]
∑n
i=1

[
Ai,(n)(1−xi,(n)−

Ai,(n)

m(n)
)
]2 = q+

1
n

∑n
i=1 Āi,(n)(1−xi,(n)− Āi,(n))ε̄

i
i,(n)

1
n

∑n
i=1 Ā

2
i,(n)(1−xi,(n)− Āi,(n))2

.
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Let ε̄i denote the noise distribution with finite variance var
(
ε̄i
)
<∞, we can characterize the mean and variance of

D-OLS estimator as follows:

E
[
q̂D-OLS
(n)

]
= q+

1
n

∑n
i=1 Āi,(n)(1−xi,(n)− Āi,(n)) ·E

[
ε̄ii,(n)

]
1
n

∑n
i=1 Ā

2
i,(n)(1−xi,(n)− Āi,(n))2

= q, and

var
(
q̂D-OLS
(n)

)
=

1
n2

∑n
i=1 Ā

2
i,(n)(1−xi,(n)− Āi,(n))

2 var
(
ε̄ii,(n)

)[
1
n

∑n
i=1 Ā

2
i,(n)(1−xi,(n)− Āi,(n))2

]2 =
Q̃22,(n)

nQ2
22,(n)

var
(
ε̄i
)
.

By Chebyshev’s inequality, we have Pr
(
|q̂D-OLS

(n) − q| ≥ k
)
≤ Q̃22,(n)

k2nQ2
22,(n)

var
(
ε̄i
)
. Taking limits on both sides, we get

lim
n→∞

Pr
(
|q̂D-OLS

(n) − q| ≥ k
)
≤ lim
N→∞

1

k2

Q̃22,(n) var
(
ε̄i
)

nQ2
22,(n)

=
var
(
ε̄i
)

k2
·

limn→∞ Q̃22,(n)

limn→∞Q2
22,(n)

· lim
n→∞

1

n
=
Q̃22 var

(
ε̄i
)

k2Q2
22

· lim
n→∞

1

n
= 0 ,

which implies that limn→∞ q̂
D-OLS
(n) = q. Similarly, we consider the n-th D-OLS estimator for p, which is

p̂D-OLS
(n) = p+

∑n
i=1

[
m(n)xi,(n)

(
(q− q̂D-OLS

(n) )xi,(n)Ai,(n) + ε̄di,(n)

)]∑n
t=1(m(n)xi,(n))2

= p+
1
n

∑n
i=1

[
xi,(n)

(
(q− q̂D-OLS

(n) )xi,(n)Āi,(n) + ε̄di,(n)

)]
1
n

∑n
i=1 x

2
i,(n)

.

We consider the following two terms separately:

lim
n→∞

(
1
n

∑n
i=1(q− q̂D-OLS

(n) )x2
i,(n)Āi,(n)

1
n

∑n
t=1 x

2
i,(n)

)
and lim

n→∞

(
1
n

∑n
i=1 xi,(n)ε̄

d
i,(n)

1
n

∑n
t=1 x

2
i,(n)

)
.

The first term converges to 0 since

lim
n→∞

(
1
n

∑n
i=1(q− q̂D-OLS)x2

i,(n)Āi,(n)

1
n

∑n
t=1 x

2
i,(n)

)
= lim
n→∞

(
q− q̂D-OLS

(n)

)
· lim
n→∞

(
Q̃11,(n)

Q11,(n)

)
=
Q̃11

Q11
lim
n→∞

(
q− q̂D-OLS

(n)

)
= 0 .

The second term also converges to 0, similarly as in the proof of q̂D-OLS
(n) . As a result, we have limn→∞ p̂

D-OLS
(n) = p.

In conclusion, D-OLS estimators p̂D-OLS and q̂D-OLS are consistent estimators. �

Proof of Theorem 5: We consider two different estimation methods, respectively.

(i) The D-OLS method.

First, we characterize the limiting distribution of
√
n(q̂D-OLS

(n) − q). We can represent it as

√
n
(
q̂D-OLS
(n) − q

)
=

√
n
∑n
i=1

[
Āi,(n)(1−xi,(n)− Āi,(n))ε̄

i
i,(n)

]∑n
i=1

[
Āi,(n)(1−xi,(n)− Āi,(n))

]2 =

1√
n

∑n
i=1

[
Āi,(n)(1−xi,(n)− Āi,(n))ε̄

i
i,(n)

]
1
n

∑n
i=1 Ā

2
i,(n)(1−xi,(n)− Āi,(n))2

.

We consider it as the sum of n independent random variables:

√
n
(
q̂D-OLS
(n) − q

)
=

n∑
i=1

wi,(n)ε̄
i
i,(n), where wi,(n) =

1√
n

[
Āi,(n)(1−xi,(n)− Āi,(n))

]
1
n

∑n
i=1 Ā

2
i,(n)(1−xi,(n)− Āi,(n))2

.

We then show that this sequence satisfies

lim
n→∞

max
i=1,2,...,n

|wi,(n)| ≤ lim
n→∞

1√
n
· 1

Q̃22,(n)

= lim
n→∞

1√
n
· lim
n→∞

1

Q̃22,(n)

= lim
n→∞

1√
n
· 1

Q̃22

= 0 .

where the inequality follows since 0≤ xi,(n), Āi,(n) ≤ 1 for all i= 1,2, . . . , n.

This implies that Lindeberg’s condition is satisfied. At last, the variance of
√
n(q̂D-OLS

(n) − q) is as follows:

var
(√

n(q̂D-OLS
(n) − q)

)
=

1
n

∑n
i=1 Ā

2
i,(n)(1−xi,(n)− Āi,(n))

2[
1
n

∑n
i=1 Ā

2
i,(n)(1−xi,(n)− Āi,(n))2

]2 var
(
ε̄ii,(n)

)
=

1

Q̃22,(n)

ησ2.

Let ξ2 = ηQ22/Q̃22− 1. By Lindeberg’s central limit theorem, we have

√
n(q̂D-OLS

(n) − q) d−→N
(

0,
1

Q22,(n)

(1 + ξ2)σ2

)
.
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Next, we characterize the limiting distribution of
√
n(p̂D-OLS

(n) − p). We can represent it as

√
n(p̂D-OLS

(n) − p) =

√
n(q− q̂D-OLS

(n) )
∑n
i=1 x

2
i,(n)Āi,(n) +

√
n
∑n
i=1 xi,(n)ε̄

d
i,(n)∑n

i=1 x
2
i,(n)

=
√
n(q− q̂D-OLS

(n) )
1
n

∑n
i=1 x

2
i,(n)Āi,(n)

1
n

∑n
i=1 x

2
i,(n)

+

1√
n

∑n
i=1 xi,(n)ε̄

d
i,(n)

1
n

∑n
i=1 x

2
i,(n)

.

We consider the two terms separately. For the former term, we can easily derive that

√
n(q− q̂D-OLS

(n) )
1
n

∑n
i=1 x

2
i,(n)Āi,(n)

1
n

∑n
i=1 x

2
i,(n)

d−→N
(

0,
ηQ̃2

11

Q̃22Q2
11

σ2

)
.

For the latter term, we perform a similar analysis as the previous one and get

1√
n

∑n
i=1 xi,(n)ε̄

d
i,(n)

1
n

∑n
i=1 x

2
i,(n)

d−→N
(

0,
1− η
Q11

σ2

)
.

Let ξ1 = η(Q̃2
11/Q̃22Q11− 1). As these two terms are independent, therefore, we can conclude that

√
n(p̂D-OLS− p) d−→N

(
0,

1

Q11
(1 + ξ1)σ2

)
.

(ii) The OLS method. For notation simplicity, we write the OLS formulation in matrix form. Let β = (p, q)> and

ε̄(n) = (ε̄1,(n), ε̄2,(n), . . . , ε̄n,(n))
>. Consider the limiting distribution of

√
n(β̂OLS

(n) −β), we have

√
n(β̂OLS

(n) −β) =
√
n
(
Z(n)

>Z(n)

)−1

Z(n)
>ε̄(n).

Let W(n) =
√
n(Z(n)

>Z(n))
−1Z(n)

> and wi,(n) be the i-th column of W(n) for i= 1,2, . . . , n. As a consequence,

we can write
√
n(β̂OLS

(n) − β) as a sum of n independent random variables:
√
n(β̂OLS

(n) − β) =
∑n
i=1wi,(n)ε̄i,(n).

We then show that this sequence satisfies

lim
n→∞

max
i=1,2,...,n

‖wi,(n)‖2 = lim
n→∞

‖W(n)‖∞,2 = lim
n→∞

∥∥∥∥∥
(

1

n
Z(n)

>Z(n)

)−1
1√
n
Z(n)

>

∥∥∥∥∥
∞,2

= lim
n→∞

∥∥∥∥Q(n)
−1 1√

n
Z(n)

>
∥∥∥∥
∞,2
≤ lim
n→∞

1√
n

∥∥Q(n)
−1
∥∥

2,∞

∥∥∥Z(n)
>
∥∥∥

2,2

≤ lim
n→∞

1√
n

∥∥Q(n)
−1
∥∥

2,∞ = lim
n→∞

1√
n
· lim
n→∞

∥∥Q(n)
−1
∥∥

2,∞ = lim
n→∞

1√
n
·
∥∥Q−1

∥∥
2,∞ = 0,

where the first inequality follows since the definition of matrix operator norm and the second inequality follows

since 0≤ xi,(n), Āi,(n) ≤ 1 for all i= 1,2, . . . , n.

This implies that Lindeberg’s condition is satisfied. Then, we calculate the variance of
√
n(β̂OLS−β) as follows:

var
(√

n(β̂OLS
(n) −β)

)
= E

[
W(n)ε̄(n)ε̄(n)

>W(n)
>
]

= σ2W(n)W(n)
> = n

(
Z(n)

>Z(n)

)−1

=Q(n)
−1.

By Lindeberg’s central limit theorem, we have

√
n(β̂OLS

(n) −β)
d−→N

(
0,Q−1) , where Q−1 =

 1
Q11

(
1 + Q12

2

Q11Q22−Q2
12

)
− Q12

Q11Q22−Q2
12

− Q12

Q11Q22−Q2
12

1
Q22

(
1 +

Q2
12

Q11Q22−Q2
12

) .
At last, we conclude that (i) The asymptotic variances of p̂D-OLS and q̂D-OLS are (1 + ξ1)σ2/Q11 and (1 + ξ2)σ2/Q22,

where ξ1 = η(Q̃2
11/Q̃22Q11 − 1) and ξ2 = ηQ22/Q̃22 − 1. (ii) The asymptotic variances of p̂OLS and q̂OLS are (1 +

κ)σ2/Q11 and (1 +κ)σ2/Q22, where κ=Q2
12/|Q|. �

Proposition EC.1. When η ≤ Q̃22/Q22, we can show that the asymptotic variances of D-OLS estimators are

smaller than those of OLS estimators, that is, ξ1 ≤ κ and ξ2 ≤ κ.
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Proof for Proposition EC.1: Particularly, we have

κ− ξ1 =
Q2

12

Q11Q22−Q2
12

− η
(

Q̃2
11

Q11Q̃22

− 1

)
≥ Q2

12

Q11Q22−Q2
12

− Q̃2
11

Q11Q22
≥ Q2

12− Q̃2
11

Q11Q22
=
Q12 + Q̃11

Q11Q22

(
Q12− Q̃11

)
=
Q12 + Q̃11

Q11Q22
lim
n→∞

(
1

n

n∑
i=1

xi,(n)Ai,(n)(1−Ai,(n))−
1

n

n∑
i=1

x2
i,(n)Ai,(n)

)

≥ Q12 + Q̃11

Q11Q22
lim
n→∞

1

n

n∑
i=1

(
xi,(n)Ai,(n) ·xi,(n)−x2

i,(n)Ai,(n)

)
= 0.

where the first inequality follows since 0 ≤ η ≤ Q̃22/Q22, the second inequality follows since Q2
12 ≥ 0 and the third

inequality follows since xi,(n) ≤ 1− Āi,(n). Furthermore, we have

κ− ξ2 =
Q2

12

|Q| −
(
η
Q22

Q̃22

− 1

)
≥ κ ≥ 0.

where the first inequality follows since η≤ Q̃22/Q22 and the second inequality follows by definition. �

A.2.3. Proofs for the MLE estimators.

Proposition EC.2. When platforms cannot observe adopter types, the log-likelihood function LLMLE(p, q) is con-

cave.

Proof of Proposition EC.2: To show that LLMLE(p, q) is concave, it is sufficient to show that the corresponding

Hessian matrix is negative semi-definite.

Let gt = pxt/(1−At−1/m) + qAt−1/m. The partial derivatives of LLMLE(p, q) with regard to p and q are

∂LLMLE(p, q)

∂p
=

T∑
t=1

∂gt
∂p

(
at
gt
− m−At−1− at

1− gt

)
and

∂LLMLE(p, q)

∂q
=

T∑
t=1

∂gt
∂q

(
at
gt
− m−At−1− at

1− gt

)
.

Let HLL and Hgt be the Hessian matrices of LLMLE and gt, respectively. We have

HLL =

T∑
t=1

[
−
(
at
g2
t

+
m−At−1− at

(1− gt)2

)
·

(
∂gt
∂p
∂gt
∂q

)(
∂gt
∂p

∂gt
∂q

)
+

(
at
gt
− m−At−1− at

1− gt

)
·Hgt

]
.

Since Hgt is a zero matrix and at/g
2
t + (m−At−1 − at)/(1− gt)2 ≥ 0 always holds, we can conclude that HLL is

negative semi-definite which implies LLMLE(p, q) is concave.

In conclusion, the log-likelihood function LLMLE(p, q) is concave. �

Proposition EC.3. When platforms can observe adopter types, the log-likelihood function LLD-MLE(p, q) is con-

cave.

Proof of Proposition EC.3: To show that LLD-MLE(p, q) is concave, it is sufficient to show that the corresponding

Hessian matrix is negative semi-definite.

Let gt = qAt−1/m and ht = p+ qAt−1/m. The partial derivatives of LLD-MLE(p, q) with regard to p and q are

∂LLD-MLE(p, q)

∂p
=

T∑
t=1

[
∂gt
∂p

(
ai
t

gt
− m−At−1−mxt− ai

t

1− gt

)
+
∂ht
∂p

(
ad
t

ht
− mxt− ad

t

1−ht

)]
, and

∂LLD-MLE(p, q)

∂q
=

T∑
t=1

[
∂gt
∂q

(
ai
t

gt
− m−At−1−mxt− ai

t

1− gt

)
+
∂ht
∂q

(
ad
t

ht
− mxt− ad

t

1−ht

)]
.

Let HLL, Hgt and Hht be the Hessian matrices of LLD-MLE, gt and ht, respectively. We have

HLL =

T∑
t=1

[
−
(
ai
t

g2
t

+
m−At−1−mxt− ai

t

(1− gt)2

)
·

(
∂gt
∂p
∂gt
∂q

)(
∂gt
∂p

∂gt
∂q

)
+

(
ai
t

gt
− m−At−1−mxt− ai

t

1− gt

)
·Hgt

]

+

T∑
t=1

[
−
(
ad
t

h2
t

+
mxt− ad

t

(1−ht)2

)
·

(
∂ht
∂p
∂ht
∂q

)(
∂ht
∂p

∂ht
∂q

)
+

(
ad
t

gt
− mxt− ad

t

1− gt

)
·Hht

]
.

Since Hgt and Hht are zero matrices and ai
t/g

2
t +(m−At−1−mxt−ai

t)/(1−gt)2 ≥ 0 and ad
t /h

2
t +(mxt−ad

t )/(1−
ht)

2 ≥ 0 always hold, we can conclude that HLL is negative semi-definite which implies LLD-MLE(p, q) is concave.

In conclusion, the log-likelihood function LLD-MLE(p, q) is concave. �
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Appendix B: Supplements for Numerical Experiments

B.1. Model Calibration

B.1.1. The BDM for online content adoption. This section complements our discussions on the discrepancy

on the BDM and actual adoption data for online content. A common issue to fit the BDM is the notable underesti-

mation of the diffusion coefficient q, exemplified in our case study shown in Figure 4(a). In some cases, this coefficient

is even negative, as seen in Figure 4(b), leading to a deviation of the fitted BDM curve from its typical S-shaped

configuration.

It is important to emphasize that these variations, while significant, do not contradict the theoretical foundation

of the BDM. To clarify this point, we illustrate the complete trajectory of the fitted BDM curve, extended beyond

the time horizon of our observation, for our motivating example in Figure EC.1. In Figures 1(a) and 4(a), we have
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Figure EC.1 Illustration of the complete fitted BDM curve to the actual adoption for the motivating example.

only included a segment of the BDM curve that fits within the observed time frame. In Figure EC.1, the complete

fitted BDM curve gradually presents an S-shape. Despite this delayed emergence of the S-shape, the BDM curve

significantly diverges from the actual pattern of online content adoption. This discrepancy highlights the limitations

of the BDM model in accurately capturing the pattern of online content adoption and underscores the necessity of

adopting a modified model, such as the P-BDM, for a more precise representation of these dynamics.

B.1.2. Timeliness of online content diffusion. In this section, we will explore the concept of timeliness in

online content and how it affects the diffusion process, resulting in a time-decay factor. We will begin by presenting

our findings from data analysis and then modify the P-BDM to incorporate the time-decay factor for a better fit.

Online platforms operate in a highly dynamic and fast-paced environment, with new content being created and

shared at a rapid rate. Compared to traditional markets, online platforms have a faster speed of information dissem-

ination. As a result, the timeliness of online content plays a critical role. For example, a review video of a new movie

will lose its relevance and generate fewer adoptions as the movie becomes older and less popular. Our analysis of the

dataset from the video-sharing platform confirms this phenomenon. To demonstrate this, we calculate two ratios to

characterize the promotion and diffusion effects:

ad
v,t

mxv,t
−

ai
v,t

m−Av,t−1
and

ai
v,t

Av,t−1

m
(m−Av,t−1)

. (EC.10)

We would like to remark that our goal with this analysis is not to calculate precise values of p and q, but rather

to provide insight into the trends of both effects in the real world. As shown in Figure EC.2, the average values of

these two ratios among all content pieces are presented against the time from t = 1 to t = 50. It is apparent from

Figure EC.2 that the diffusion effect exhibits a time-decay trend, while the promotion effect remains nearly constant
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Figure EC.2 Illustration of the trends of promotion and diffusion effects. The x-axis represents the time elapsed

since the video was uploaded to the platform and the y-axis represents the average values of the

ratios as shown in (EC.10) among all videos at the same time step t.

throughout the entire horizon. The sensitivity to timeliness is primarily observed in the diffusion effect. As such,

incorporating the time-decay factor in diffusion modeling is critical to accurately capture the content adoptions for

online platforms.

Recall that in the P-BDM dynamic (2), the diffusion effect is proportional to the cumulative adopter number, given

by qAt−1/m. To incorporate the timeliness of online content diffusion, we introduce a time-decay multiplicative factor

γ where 0< γ ≤ 1. Specifically, we consider the diffusion effect to be qγt−1At−1/m instead. Therefore, the P-BDM

with a time-decay factor can be shown as follows:

at =

(
p+ q

γt−1At−1

m

)
mxt︸ ︷︷ ︸

Direct adopters

+ q
γt−1At−1

m
(m−At−1−mxt)︸ ︷︷ ︸

Indirect adopters

= pmxt︸ ︷︷ ︸
Promotion effect

+ q
γt−1At−1

m
(m−At−1)︸ ︷︷ ︸

Diffusion effect

. (EC.11)

This model uses the time-decay factor to characterize the decreasing incentive to diffuse the content as time elapses

since its upload. When γ = 1, this model is equivalent to the original P-BDM.

We make two remarks here. First, the exponent of γ is related to the time elapsed since the content is uploaded.

It should be distinguished from the subscript t in the CGPO problem, where the latter is used to denote the time

since the beginning of the L planning period. Second, when γ is given, all the results in Sections 4 and 5 still hold.

From the optimization perspective, it serves as a known parameter in the CGPO problem and does not change the

underlying optimal structure. From the estimation perspective, it requires preprocessing of the observations, but the

same estimation methods and analyses can be applied. Therefore, the P-BDM with a time-decay factor does not add

to the difficulty of the entire problem but provides flexibility in characterizing the true adoption processes.

B.1.3. Group Estimation. In the context of online platforms, estimating parameters for each content piece

individually is usually impractical because of the mountainous amount of videos and the scarcity of data pertaining to

a video. What makes things worse is that we often have to make promotion decisions at the early stage of a video’s life

cycle with minimal data available for estimation. Consequently, it is reasonable to group or cluster the videos using

features, and then estimate the parameters to make sure that past estimates can be generalized to future videos and

the results are precise. Due to the lack of contextual information, we focus on using category labels for estimation.

The group estimation procedure is similar to that of a single piece, except that the observations are expanded

to include all content pieces in the group. Let Vc ⊆ V be the set of content pieces in the group c. Therefore, the

observations for a group can be represented as ∪v∈Vc{(ad
v,t, a

i
v,t,Av,t, xv,t)}t=1,2,...,Tv . The OLS-based and the MLE-

based methods can be readily applied.
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B.1.4. Calibration process. For each video category c ∈ C within the dataset, we split the observations into

training, validation and test sets, separately. To avoid data corruption, we split the data based on video granularity,

using a 60-20-20 split. Specifically, for the video set Vc ⊆ V corresponding to category c, we randomly select 60%

of the videos v ∈ Vc and assign the associated observations {(ad
v,t, a

i
v,t,Av,t, xv,t)}t=1,2,...,Tv to the training set. The

remaining videos are also randomly split into 20% and 20% for validation and test sets, respectively.

To summarize the calibration process, we present Algorithm 2. We make a remark here, for each video v ∈ V, we

only include observations when the promotion fraction xv,t is positive in our training, validation, and test sets.

Algorithm 2: Calibration process with time-decay factor and group estimation.

1 for c∈ C do
2 Randomly split the video set Vc into Vctrain, Vcvalid and Vctest, using a 60-20-20 split.

3 Training set Dtrain :=∪v∈Vctrain{(a
d
v,t, a

i
v,t,Av,t, xv,t)}t=1,2,...,Tv .

4 Valid set Dvalid :=∪v∈Vc
valid
{(ad

v,t, a
i
v,t,Av,t, xv,t)}t=1,2,...,Tv .

5 Test set Dtest :=∪v∈Vctest{(a
d
v,t, a

i
v,t,Av,t, xv,t)}t=1,2,...,Tv .

6 end

7 for γ ∈ {γ1, γ2, . . .} do
8 for c∈ C do
9 Obtain p̂c(γ) and q̂c(γ) based on the training set Dtrain and time-decay factor γ.

10 for v ∈ Vcvalid do
11 Use p̂c(γ) and q̂c(γ) to predict adoptions as {âv,t}t=1,2,...Tv .

12 WMAPEv(γ) :=
∑Tv
t=1 |av,t− âv,t|/

∑Tv
t=1 av,t× 100%.

13 end
14 end

15 WMAPE(γ) := 1
|V|
∑
v∈VWMAPEv(γ).

16 end

17 γ∗ := arg maxγ WMAPE(γ).

18 for c∈ C do
19 for v ∈ Vctest do
20 Use p̂c(γ∗) and q̂c(γ∗) to predict adoptions as {âv,t}t=1,2,...Tv .

21 end
22 end

We evaluate the calibration performance using the weighted mean absolute percentage error (WMAPE). In Figure

EC.3, we show the WMAPE we obtain by calibrating the P-BDM with different time-decay factor γ using the D-OLS

method. The minimum WMAPE is achieved when γ = 0.983.

For the sake of completeness, we also include the calibration results in Figure EC.4 when the timeliness is ignored

(i.e., γ = 1). We observe that the estimated diffusion coefficient q is smaller in this case to account for the time decay

in diffusion. However, the average out-of-sample WMAPE is 42.92%, which is 10% larger than when γ = 0.983. The

average out-of-sample WMAPEs of the P-BDM with OLS and the BDM are 43.53% and 81.25%, respectively.

B.2. Supplementary Analysis of the AGA Policy with L= 13

In this section, we provide a supplementary analysis of the AGA policy. We begin by examining the AGA policy across

different lifetimes, followed by the detailed procedures of the sensitivity analysis and K-Means clustering analysis.
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Figure EC.3 WMAPE of the validation set against time-decay factor γ.
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Figure EC.4 Distribution of estimated coefficients when the timeliness of content diffusion is ignored (γ = 1).
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Figure EC.5 Promotion budget allocation of the AGA policy for videos at different lifetime stages.

B.2.1. The AGA policy across different lifetime stages. We begin by presenting the AGA policy across

different lifetime stages in Figure EC.5. As shown in Figure 5(a), the policy primarily promotes videos in their initial

stages, dedicating about 53% of the overall budget to videos that have no adopters (stage 0). This heavy initial

promotion indicates the policy aims at sparking interest in new content. Figure 5(b) further emphasizes this point

by showing that, on average, the promotion fraction allocated to videos tends to decline as the lifetime progresses.

However, an exception can be observed at stage 1. This anomaly occurs because only a subset of videos is advanced

to later stages after the initial promotion at stage 0. It implies that the policy also acts as a filter or selection

mechanism, deciding if a video shows enough promise for further promotion. As a result, the policy generally allocates

the promotion budget to videos that show considerable potential in their early stages.
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B.2.2. Sensitivity analysis of promotion and diffusion coefficients. In order to understand the relationship

between the promotion policy and the characteristics of videos, we perform sensitivity analysis for some important

characteristics. For this purpose, we specify the following regression model for the allocated promotion fraction xc,v,t,

where each observation is a video v at the beginning of time t in the experiment with promotion budget C̄ = c:

xc,v,t = β0 +β1pv +β2qv +β3Āv,t−1 +β4c+ εv,t. (EC.12)

where the adoption number is normalized by the market size m before entering the regression. The coefficient β in

(EC.12) can therefore be used to represent the impact of each characteristic on the allocated promotion fraction.

We conduct the regression on the observations from the previous AGA experiments with L= 13. Furthermore, in

order to illustrate the difference of policy for videos at different lifetime, we perform regression within each lifetime

stage separately. Table EC.1 reports the regression results. Although the R2 is small for all the regressions, indicating

Table EC.1 Regression results of the promotion fraction of the AGA policy with regard to video characteristics

# of Obs. R2 β0 (const) β1 (p) β2 (q) β3 (Ā) β4 (C̄)

stage 0 72,867 0.044
-0.1412∗∗∗∗ 0.8243∗∗∗∗ 0.6687∗∗∗∗ - 0.0055∗∗∗∗

(0.0043) (0.0216) (0.0377) - (0.0002)

stage 1 21,490 0.418
-1.1621∗∗∗∗ 5.8253∗∗∗∗ 3.7211∗∗∗∗ -0.7627∗∗∗∗ 0.0576∗∗∗∗

(0.0245) (0.1223) (0.1035) (0.0195) (0.0245)

stage 2 31,610 0.209
-0.4399∗∗∗∗ 2.3614∗∗∗∗ 1.3477∗∗∗∗ -0.1820∗∗∗∗ 0.0121∗∗∗∗

(0.0145) (0.0794) (0.0527) (0.0101) (0.0004)

stage 3 30,733 0.125
-0.2060∗∗∗∗ 0.8130∗∗∗∗ 0.5548∗∗∗∗ 0.0563∗∗∗∗ 0.0039∗∗∗∗

(0.0079) (0.0304) (0.0248) (0.0046) (0.0002)

stage 4 25,460 0.213
-0.1825∗∗∗∗ 1.0395∗∗∗∗ 0.7441∗∗∗∗ -0.0714∗∗∗∗ 0.0048∗∗∗∗

(0.0055) (0.0298) (0.0247) (0.0055) (0.0002)

stage 5 29,340 0.085
0.0395∗∗∗∗ 0.1499∗∗∗∗ 0.1519∗∗∗∗ -0.0843∗∗∗∗ 0.0003∗∗∗∗

(0.0021) (0.0068) (0.0080) (0.0039) (0.0001)

Note: Robust standard errors are reported in parentheses. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.

For stage 0, Ā is not included in the regression since it takes 0 value for all observations.

that the linear regression model (EC.12) is not a good representation of the complicated AGA policy, all coefficients

are significant at the significance level of 0.0001. Therefore, we consider the values of regression coefficients can

represent the impact of video characteristics on the promotion policy.

B.2.3. K-Means clustering for the promotion policy. In order to further understand the AGA policy over

the entire lifetime as a whole, we perform K-Means clustering on the average policy for different video configurations.

Let S = {0,1,2,3,4,5} be the set of lifetime stages. To summarize the clustering process, we present Algorithm 3.

As shown in Algorithm 3, the clustering is solely based on the allocated promotion fraction generated by the AGA

policy, and the promotion and diffusion coefficients are not explicitly involved. In Figure EC.6, we show the average

promotion policies for different video categories by their clusters.
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Algorithm 3: K-Means clustering for the promotion policy of different video categories.

1 for c∈ C do
2 Classify observations ∪v∈Vc{Av,t−1, xv,t}t=1,2,...,T into different lifetime stages by Āv,t−1.

3 for s∈ S do
4 Let Xs be the set of promotion fractions for observations at stage s.

5 x̃cs :=
∑
x∈Xs x/|Xs|.

6 end

7 x̃c := (x̃cs)
>
s∈S . // average promotion policy for category c.

8 end

9 X̃ := (x̃c)c∈C . // feature matrix for all categories.

10 Impute the missing values matrix X̃ using k-Nearest Neighbors, with k= 2.

11 Perform K-Means clustering based on X̃.
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Figure EC.6 Average promotion policies of different video categories (each subfigure represents a cluster).


	Introduction
	Proofs and Supplements
	Proofs and Supplements in Section 4
	NP-hardness of the CGPO problem.
	Proofs for the PO-CR problem.
	Lemmas and proofs for the single-variable reformulation.
	Submodularity of the CGPO objective.

	Proofs and Supplements in Section 5
	The OLS estimation method for the BDM.
	Proofs for the asymptotic analysis of the OLS-based estimators.
	Proofs for the MLE estimators.

	Supplements for Numerical Experiments
	Model Calibration
	The BDM for online content adoption.
	Timeliness of online content diffusion.
	Group Estimation.
	Calibration process.

	Supplementary Analysis of the AGA Policy with L=13
	The AGA policy across different lifetime stages.
	Sensitivity analysis of promotion and diffusion coefficients.
	K-Means clustering for the promotion policy.





