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Abstract. Problem definition: Content promotion policies are crucial for online content plat-
forms to improve content consumption and user engagement. However, traditional promo-
tion policies generally neglect the diffusion effect within a crowd of users. In this paper, we 
study the candidate generation and promotion optimization (CGPO) problem for an online 
content platform, emphasizing the incorporation of the diffusion effect. Methodology/results: 
We propose a diffusion model that incorporates platform promotion decisions to characterize 
the adoption process of online content. Based on this diffusion model, we formulate the 
CGPO problem as a mixed-integer program with nonconvex and nonlinear constraints, 
which is proved to be NP-hard. Additionally, we investigate methods for estimating the dif-
fusion model parameters using available online platform data and introduce novel double 
ordinary least squares (D-OLS) estimators. We prove the submodularity of the objective func-
tion for the CGPO problem, which enables us to find an efficient (1� 1=e)-approximation 
greedy solution. Furthermore, we demonstrate that the D-OLS estimators are consistent and 
have smaller asymptotic variances than traditional ordinary least squares estimators. By uti-
lizing real data from a large-scale video-sharing platform, we show that our diffusion model 
effectively characterizes the adoption process of online content. Compared with the policy 
implemented on the platform, our proposed promotion policy increases total adoptions by 
49.90%. Managerial implications: Our research highlights the essential role of diffusion in 
online content and provides actionable insights for online content platforms to optimize their 
content promotion policies by leveraging our diffusion model.

Funding: R. Zhang is grateful for the financial support from the Hong Kong Research Grants Council 
General Research Fund [Grants 14502722 and 14504123] and the National Natural Science Founda-
tion of China [Grant 72293560/72293565]. 

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0172. 
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1. Introduction
In recent years, online content platforms such as TikTok 
and Instagram have achieved considerable success in 
parallel with the proliferation of social media. These 
platforms offer various forms of online content, includ-
ing reviews, blogs, and videos, with the content serving 
as virtual products to attract users. However, several 
unique features of online content platforms set them 
apart from traditional online retailers: 

i. Platform objective: Whereas retailers aim to maxi-
mize the revenue obtained from selling products, content 
platforms aim to maximize the engagement of users and 
the impact of their content. For example, the total num-
ber of content clicks, which we adopt as the key metric in 
our work, is widely recognized as a vital metric for 

platform operations (Su and Khoshgoftaar 2009) to mea-
sure content consumption.

ii. Scale: The amount of content is orders of magni-
tude larger than the number of products on an online 
retail platform. New content is generated significantly 
faster than new products introduced on a retail plat-
form. For instance, Amazon sells 12 million products in 
total (AMZScout 2021), whereas YouTube has more 
than 500 hours of videos (YouTube 2021) uploaded per 
minute with an average video length of 11.7 minutes 
(Statista 2021). A rough estimate implies that millions 
of new videos are uploaded every day.

iii. User consumption behavior: Unlike in an 
e-commerce setting in which users directly search for a 
product of interest, online content platform users rely 
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heavily on platform promotions and/or friends shar-
ing content on a social network as ways to overcome 
information overload (Anandhan et al. 2018).

Therefore, online platforms actively promote con-
tent to users and foster an environment in which users 
are encouraged to share interesting content. This leads 
to the phenomenon of content diffusion, wherein the 
content spreads to a larger audience beyond the scope 
of direct platform promotion. Consequently, a greater 
number of users have the opportunity to discover and 
consume the content, thereby significantly amplifying 
user engagement. Two examples of diffusion are 
provided.

Example 1 (The Diffusion of One Piece of Content). Some 
articles that announce breaking news or tell good stor-
ies might go viral on the platform when many users 
cascadingly repost them. For instance, in 2020, a local 
news story about two missing children in Florida net-
ted almost 3.5 million shares on Facebook (FOX32 
2020).

Example 2 (The Diffusion of a Trend). Some content that 
is of the same category, similar in nature, or with 
homogeneous topics is usually associated with trend-
ing hashtags and/or headlines. As more users are 
aware of and engaged in this trend, the related con-
tent also becomes popular. For instance, the hashtag 
#squidgame has garnered 72.4 billion views on Tik-
Tok (TikTok 2021). Numerous TikTok users became 
part of the trend, and an enormous amount of con-
tent, including reenactments of the game, makeup 
looks, and Halloween costumes inspired by the TV 
show Squid Game, was produced and viewed on 
TikTok.

The online content platform’s business model 
prompts the following research question: how can a 
promotion policy be designed that selects a small sub-
set of content from the enormous corpus to display 
to users in a way that maximizes the total content 
clicks?

The existing literature often prioritizes maximizing 
the number of clicks through direct promotion, neglect-
ing the diffusion effect. It advocates promoting content 
with a high historical click-through rate in hopes of 
attracting more direct clicks (Feng et al. 2007, Liu et al. 
2010). However, this type of promotion may overem-
phasize content that is already popular, creating a sce-
nario in which a limited set of content is continuously 
promoted, reducing overall content diversity. This “rich 
get richer” phenomenon can negatively impact user 
engagement and satisfaction (Vahabi et al. 2015) as 
users might be unable to discover new content. The 
challenge of the promotion policy lies in balancing 
between promoting trending content for immediate 
gain and promoting diverse content to stimulate user 
engagement for long-term platform sustainability. To 

the best of our knowledge, these trade-offs remain 
largely unexplored in the literature. The diffusion effect 
serves as one of the major sources of indirect gain. In 
this study, we aim to fill this gap by developing a 
diffusion-based promotion policy for online content 
platforms.

Machine learning–based promotion strategies in 
practice typically involve two stages: candidate gener-
ation (CG) and promotion optimization (PO) (David-
son et al. 2010, Covington et al. 2016). The candidate 
generation stage selects a small subset of content from 
a large corpus, whereas the promotion optimization 
stage allocates a limited promotion budget to each 
candidate content piece. This two-stage procedure bal-
ances computational efficiency and focuses the plat-
form’s attention on a small portion of content that can 
potentially generate high rewards. We follow this 
framework and introduce two distinct features that 
differ from previous machine learning–based strate-
gies. First, we incorporate the diffusion effect into our 
promotion policy. Second, we recognize that the can-
didate set selection can impact the optimal allocation 
of user attention to the content. We, therefore, care-
fully consider these two stages together to maximize 
the total number of clicks rather than treating them as 
separate machine learning tasks as in previous litera-
ture. This leads to the candidate generation and pro-
motion optimization (CGPO) problem on which we 
focus in this paper.

A central piece of the CGPO problem is the promo-
tion Bass diffusion model (P-BDM) that we propose to 
characterize the diffusion process of online content. 
The P-BDM is adapted from the well-known Bass dif-
fusion model (BDM; Bass 1969) and inherits its inno-
vative and imitative effects, which we interpret as 
two sources of user clicks on content platforms: plat-
form promotion and diffusion through user sharing, 
respectively. We show that the BDM is not suitable 
for modeling the diffusion process of online content 
because it fails to account for platform promotion 
policy and the timeliness of content diffusion. In con-
trast, the P-BDM explicitly captures both and provides 
an excellent fit for a real-world online content plat-
form. Based on the P-BDM, we offer a set of complete 
solution techniques for the online content promotion 
problem. First, we integrate the candidate generation 
and promotion optimization problems into a succinct 
mixed-integer program, allowing us to obtain high- 
quality approximate solutions with performance guar-
antees. Second, leveraging the high-granularity data 
commonly available on online platforms, we design a 
novel estimation method for the parameters in the 
P-BDM. Finally, our modeling framework, optimiza-
tion algorithm, and estimation method are demon-
strated to be effective through counterfactual analyses 
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based on real online content data. In the next section, 
we detail our contribution.

1.1. Contribution and Organization
• A diffusion model for online content: Our key con-

tribution is the P-BDM for depicting online content dif-
fusion, which takes into account the promotion policy 
and timeliness of content diffusion. Theoretically, the 
P-BDM characterizes the relationship between the plat-
form’s promotion decisions and the diffusion process, 
providing a concise way to optimize promotion policy. 
Practically, the P-BDM demonstrates effective align-
ment with real adoption patterns derived from an 
online video data set.
• Formulation and algorithmic design for the CGPO 

problem: Under the P-BDM, we represent the CGPO 
problem as a challenging mixed-integer optimization 
problem that involves complex dynamics of content adop-
tion. Despite the presence of nonconvex and nonlinear 
constraints as well as its proven NP-hardness, we identify 
a crucial property known as the monotonic property with 
nested sets. This leads to the establishment of the submo-
dularity of the problem objective. Leveraging this prop-
erty, we propose the accelerated greedy algorithm (AGA), 
building upon the well-known greedy algorithm for sub-
modular maximization problems (Nemhauser et al. 1978) 
with a (1� 1=e)-approximation ratio.
• New estimation approach for the P-BDM: We intro-

duce the double ordinary least squares (D-OLS) method 
for estimating P-BDM parameters, taking advantage 
of the online platform’s ability to distinguish different 
types of adopters. The D-OLS estimators are straight-
forward to compute and possess desired statistical 
properties. We show that they yield smaller asymptotic 
variances compared with the ordinary least squares 
(OLS) estimators and demonstrate their robustness 
when the promotion policy is endogenous with diffu-
sion dynamics theoretically and numerically.
• Extensive numerical experiments with real data: 

We validate our models and algorithms using a large- 
scale, real-world data set from an online video-sharing 
platform. Our observations are threefold. First, the 
promotion and diffusion coefficients for online content 
are negatively correlated, highlighting the complexity 
of the CGPO problem. Second, the policy generated 
by the AGA effectively strikes a balance between 
incorporating the diffusion effect and updating the 
promotion policy. The success of the AGA provides 
invaluable insights, such as the emphasis on the pro-
motion effect over the diffusion effect and the distinc-
tion of promotion strategies for various content based 
on their respective promotion and diffusion coeffi-
cients as well as content lifetime. Third, the AGA pol-
icy significantly outperforms the benchmark policy 
that disregards the diffusion effect with an improve-
ment of at least 49.90%.

The remainder of the paper is structured as follows: In 
Section 2, we review the related literature. In Section 3, 
we discuss the formulation of the P-BDM. In Section 4, 
we formulate the CGPO problem and propose the AGA 
for solving it. In Section 5, we discuss the estimation 
issues for the P-BDM and propose the D-OLS method. 
Section 6 presents our numerical studies based on real- 
world data, followed by concluding statements in Sec-
tion 7.

2. Literature Review
As we discuss earlier, promotion and diffusion are two 
primary drivers of rewards for online content plat-
forms. Therefore, we focus our review on promotion 
policies and diffusion effect studies. An active stream 
of literature is about recommender systems (RSs), and 
it focuses on investigating the connections between 
users and content. Various recommendation algorithms 
(Kitts et al. 2000, Covington et al. 2016) have been pro-
posed to evaluate the probability of users clicking on a 
particular item that characterizes the immediate inter-
actions between the platform and users. Some recent 
work (Lu et al. 2014, Besbes et al. 2016) demonstrates 
that maximizing the immediate item relevancy does 
not align with utility maximization. The reasons are 
various, and one of the most important issues is the 
consequent diffusion within the social network. This 
implies that the adoptions are not only from directly 
targeted users but also from those who are influenced 
by them. Few studies incorporate this effect. Vahabi 
et al. (2015) are the first to mention that the social net-
work can empower the utility maximization of RSs. 
They propose a social diffusion–aware RS that can effi-
ciently use recommendation slots and enhance the 
overall performance. Our work substantially differs 
from Vahabi et al. (2015). Whereas they utilize a person-
alized recommendation scheme with a hard constraint 
that prevents neighbors from receiving identical con-
tent, we instead aim to characterize the diffusion trend 
across the population and find an optimal promotion 
policy.

We remark that our work does not emphasize under-
standing the relationship between users and content 
from a machine learning perspective as in the afore-
mentioned literature. Typically, these works consider 
content recommendations for each user individually. 
Rather, we take a holistic approach and study the prob-
lem from an operations perspective. Our objective is to 
maximize the total clicks by modeling the whole prob-
lem as a diffusion process within the population and 
generating high-quality solutions using combinatorial 
optimization techniques.

To understand how user interactions influence adop-
tion, many diffusion models have been proposed in 
the literature. Pioneered by Bass (1969), the BDM has 
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become the most widely used model for new products, 
capturing the adoption trend with parsimonious differ-
ential equations. A sequence of work (Easingwood et al. 
1983, Norton and Bass 1987) extends the BDM by incor-
porating different dynamics, such as nonuniform influ-
ence and multiple generations. The BDM has achieved 
tremendous success in predicting the adoption of a 
variety of products, including consumer durable goods, 
medical innovations (Sultan et al. 1990), and informa-
tion technology innovations (Teng et al. 2002). Despite 
its long history, the BDM is also frequently applied in 
novel contexts (Jiang and Jain 2012, Agrawal et al. 
2021). Our diffusion model extends the BDM by inte-
grating promotion policy and the timeliness of online 
content diffusion.

The BDM, along with all the other models previ-
ously referenced, focuses on the global diffusion effect. 
In particular, each user is influenced by a universal dif-
fusion effect, namely, the overall adoption level within 
the entire market. In contrast, some research also 
explores diffusion in the context of social networks, in 
which each user is influenced only by the user’s local 
neighborhood. This type of diffusion model can pro-
vide a more granular representation of the unique 
diffusion effect experienced by each user. The indepen-
dent cascade model (Goldenberg et al. 2001) and linear 
threshold model (Granovetter 1978) are two such fun-
damental models that incorporate network structures. 
Kempe et al. (2003) then models the influence maximi-
zation problem as an algorithmic problem, aiming to 
identify the optimal subset of seed users that could trig-
ger the maximum adoptions. For other applications, 
we refer readers to review papers (Kiesling et al. 2012, 
Zhang and Vorobeychik 2019). However, the diffusion 
process within a network is not easy to quantify 
through a simple formula; hence, the market characteri-
zation relies heavily on simulation techniques, making 
the subsequent optimization problem time-consuming 
to solve. Given the limitations, our work focuses on the 
global diffusion effect to maintain simplicity and effi-
ciency in optimization problems.

Another branch of study relevant to our work is reve-
nue management for online retailers. Whereas users 
exhibit different behaviors, the process of candidate 
selection and promotion optimization shares some sim-
ilarities with assortment and pricing problems. Golre-
zaei et al. (2020) and Chen and Shi (2019) present the 
inventory and pricing strategies for strategic customers, 
who exhibit similar user behavior as online content 
platforms. Moreover, recent works also consider the 
network effect in operations management problems. 
Hu et al. (2016) consider the case in which purchase 
decisions can be influenced by earlier purchases. Du 
et al. (2016) and Wang and Wang (2017) propose a vari-
ant of the multinomial logit model incorporating the 
network effect in an assortment optimization problem. 

Follow-up works (Chen and Chen 2021, Nosrat et al. 
2021) also involve different choice models. This line of 
research inspires us to consider similar problems on 
online content platforms.

3. Promotion Bass Diffusion Model
In this section, we introduce the P-BDM to capture 
the adoption process of online content. We begin by 
highlighting a common issue of the Bass diffusion 
model to model the real-world online content adop-
tion process. It motivates us to develop a new model, 
P-BDM, that incorporates the platform’s promotion 
decisions, which serves as the foundation for our sub-
sequent optimization and analysis.

3.1. Background and Motivation from a Large- 
Scale Video-Sharing Platform

We begin with a brief overview of the BDM, which is a 
widely used model for describing the adoption process 
of new products in a population over time. The basic 
premise of the BDM is that adopters can be classified 
into two types: innovators and imitators. Innovators 
are individuals who independently decide to adopt a 
product, whereas imitators are influenced by those 
who have already adopted it. In the context of online 
content, we view the clicks on a content piece as adop-
tions. For this reason, we use the terms “click” and 
“adoption” interchangeably throughout.

The discrete-time BDM models the adoption process 
of a product over a discrete finite time horizon t �
1, 2, : : : , T in a market of population size m. The initial 
number of adopters is denoted by A0, and the number 
of new adopters at each time period t is given by

at � p+ q At�1

m

� �

(m�At�1), ∀t � 1, : : : , T, (1) 

where At�1 � A0 +
Pt�1
τ�1 aτ�represents the cumulative 

number of adopters up to time period t�1 and p and q 
are the innovative and imitative coefficients, respec-
tively. In particular, (p+ qAt�1=m) corresponds to the 
adoption rate of the nonadopters at period t. This indi-
cates that the adoption behavior at time t is jointly influ-
enced by two forces: the innovative effect p and the 
imitative effect qAt�1=m, which is proportional to the 
cumulative number of adopters. To ensure the discrete- 
time BDM is well-defined, it is commonly assumed that 
p ≥ 0, q ≥ 0, and p+ q ≤ 1.

Whereas it seems intuitive to apply the BDM to 
model the adoption of online content, empirical evi-
dence may suggest otherwise. Particularly, we analyze 
the clickstream data from a large-scale video-sharing 
platform. For a detailed introduction about the plat-
form and the data, please refer to Section 6.1. In Figure 1, 
we use a single video to showcase the typical pattern of 
the content diffusion process. In Figure 1(a), we present 
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both the actual cumulative adoption data over 102 peri-
ods and the fitted BDM curve. For clarity, we limit the 
range of these curves to the time frame within our 
observation. A comprehensive discussion on the fit of 
the BDM to online content adoption data, including the 
full trajectory of the fitted BDM curve, is provided in 
Online Section B.1.1.

A detailed explanation of our fitting method can be 
found in Section 5.1. Specifically, we first estimate the 
parameters of the BDM using data from the initial 60 
periods and then use these parameters to generate a fit-
ted curve for the full 102 periods. We evaluate the fit-
ness and predictive power of this curve in two parts: 
from time periods 0 to 60 and 60 to 102. In the first part, 
although the fitted curve largely reflects the overall 
trend, it fails to capture the subtle swings of the curve 
from time to time. In the second part, the fitted BDM 
continues to predict a steady growth of new adopters, 
whereas the actual data shows a much slower rate of 
adoption. As a result, the predicted adoption number 
deviates significantly from the actual value at the end. 
These observations suggest that the BDM may not be 
able to provide an appropriate description for the diffu-
sion of online content. One of the significant factors con-
tributing to this inconsistency is the BDM’s assumption 
that all nonadopters are impacted by the innovation 
effect, as outlined in (1). However, this is unlikely to 
hold for online content because of limited user time and 
targeted promotion strategies. Figure 1(b) further sup-
ports this claim by showing a strong correlation 
between targeted users and new adopters at each time 
period (the Pearson correlation coefficient is ρ � 0:748).

The discrepancy between the BDM and actual adop-
tion data are not unique to this particular example; it is 
commonly observed in the data. This suggests that 
platform-controlled promotion plays a vital role in 

driving adoption and motivates us to develop a new 
diffusion model tailored to online content that incorpo-
rates platform promotion policy.

3.2. The Promotion Bass Diffusion Model
The key message conveyed in the previous analysis is 
that one must take into account the platform’s promo-
tion policy to capture the adoption patterns of online 
content. This motivates our P-BDM. It builds on the 
notation of the BDM and adapts it to the specifics of 
online content. It aims to model the adoption process of 
online content over a finite time horizon t � 1, 2, : : : , T in 
a market of size m. The model posits that the adoption 
of a content piece is driven by two forces: (i) the promo-
tion effect, which reflects the intrinsic preference of 
users toward a content piece, specifically how likely a 
user is to adopt a content piece as an individual when it 
is promoted by the platform, and (ii) the diffusion 
effect, which represents the influence of the adopted 
population on others, that is, the likelihood that a user 
will adopt a content piece that is shared by other adop-
ters. The promotion and diffusion effects are the coun-
terparts of innovative and imitative effects in the BDM; 
we, therefore, use these terms interchangeably in the 
following discussions. In a similar vein, we define the 
promotion coefficient p and diffusion coefficient q to 
characterize these two effects. Consistent with the BDM 
setting, we assume that p ≥ 0, q ≥ 0, and p+ q ≤ 1.

The P-BDM incorporates the platform’s promotion 
policy as a new variable, denoted by x � (xt : t � 1, 2, 
: : : , T), which represents the fraction of users in the mar-
ket that receive the promotion at each time period. For 
mathematical convenience in the subsequent formula-
tion, we define this promotion fraction over the entire 
market size rather than over the remaining nonadop-
ters although these two definitions can be converted to 

Figure 1. (Color online) Illustration of Adoption Curves and the Corresponding Fitted BDM Curve for an Example Video 

(a) (b)

Notes. To ensure data anonymity, we have scaled the y-axis using a randomly selected number. (a) Cumulative adopters. (b) New adopters and 
targeted users.
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each other as needed. Specifically, there are in total mxt 
users receiving the promotion at time t. The platform 
does not promote any content piece to users who have 
already adopted it. Thus, the promotion fraction xt is 
upper bounded by the fraction of the remaining nona-
dopters in the market at time t�1 (i.e., xt ≤ 1�At�1 
=m). Denoting A0 as the initial number of adopters, the 
P-BDM assumes that the number of new adopters at 
time t is

at � p+ q At�1

m

� �

mxt
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Direct adopters

+q At�1

m
(m�At�1�mxt)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Indirect adopters

� pmxt|ffl{zffl}
Promotion effect

+q At�1

m
(m�At�1)

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Diffusion effect

: (2) 

In the P-BDM dynamics (2), we categorize adopters 
based on whether they receive the promotion or not. 
For those not exposed to promotion, categorized as 
indirect adopters, their adoption rate reflects only the 
diffusion effect and is expressed as qAt�1=m. For those 
who receive the promotion, categorized as direct adop-
ters, their adoption rate is increased by the promotion 
effect, making it (p+ qAt�1=m). It is worth noting that 
the BDM is a special case of the P-BDM in which all 
nonadopters receive the promotion at each time period 
(i.e., xt � 1�At�1=m, ∀t � 1, 2, : : : , T).

In practice, we also observe a time decay effect in 
online content diffusion, which can be attributed to the 
limited life span of content and the diminishing incen-
tives for adopters to share it over time. To account for 
this timeliness feature, we incorporate a time-decay mul-
tiplicative factor γ�for better alignment of the diffusion 
model with real-world data. We explain this approach in 
more detail in Online Section B.1.2. It is important to note 
that we consider the time-decay factor as an external 
influence, which means that it does not complicate the 
theoretical analysis of the promotion optimization prob-
lem. Therefore, we assume γ� 1 until the discussion of 
numerical experiments (i.e., Section 6), in which we 
explore the effect of time-decay factor γ�further.

4. Optimizing Content Adoptions
In practice, online platforms frequently undertake the 
mission of efficiently selecting and spotlighting fea-
tured content. This content, a distinct subset that the 
platform deliberately highlights or promotes, is usually 
selected because of its high quality and potential for 
stimulating trends. For instance, on the platform with 
which we collaborate, algorithms select high-quality 
content regularly for inclusion in the trending video 
pool. With the intent of stimulating diffusion and creat-
ing buzz, this content is then blended with other 
material—content selected based on user interests by 

machine learning algorithms, advertisements, and 
more—and displayed to users. The content display pro-
cess on this platform is representative, including two 
stages (Davidson et al. 2010, Covington et al. 2016): can-
didate generation and promotion optimization. The for-
mer involves the selection of a promising subset of 
content from the overall corpus, whereas the latter 
necessitates the platform’s allocation of its limited pro-
motional resources among the selected candidates. This 
process, driven by machine learning and reliant on 
decentralized algorithms, doesn’t account for overall 
diffusion—an objective of the trending video pool. In 
contrast, we formulate the CGPO problem as an optimi-
zation task to incorporate the diffusion effect into con-
tent promotion, using the P-BDM as a basis.

4.1. The Content Generation and Promotion 
Optimization Problem

We consider a platform with a fixed content corpus V, 
operating within a market of unchanging size m. The 
platform can select up to K candidate content pieces. Its 
objective is to maximize total content adoptions over a 
fixed planning interval of length L given a promotion 
budget C. To achieve this, the platform needs to deter-
mine not only the promotion fraction for each content 
piece, but also coordinate the timing of the promotion.

In line with the two-stage process, the platform first 
selects a subset U ⊆ V with no more than K candidates. 
This cardinality constraint reflects the natural upper 
bound on the size of the trending or featured video 
pool. Then, the platform determines the promotion pol-
icy x � (xv, t : v ∈U, t � 1, 2, : : : , L) for the candidate set 
U. Here, each candidate v ∈U is promoted to a fraction 
xv, t of users at each time t � 1, : : : , L. Subsequently, the 
CGPO problem is formulated as

max
U⊆V:|U| ≤K

R(U; C) +R(V \U; 0), (3) 

where R(U; C) denotes the maximum total adoptions 
for the candidate set U, achievable by optimizing the 
promotion policy x within the promotion budget C. 
Similarly, R(V \U; 0) denotes the total adoptions of the 
remaining set V \U with budget zero. This is equivalent 
to none of the content in set V \U being promoted. 
Notice that, given any U ⊆ V and promotion budget C, 
R(U; C) can be defined as the optimal value of the fol-
lowing PO subproblem:

max
x≥0,AU, 1:L

X

v∈U
Av, L (4a) 

s:t: Av, t � Av, t�1 + pvmxv, t +
qv

m
Av, t�1(m�Av, t�1),

∀v ∈U ∀t � 1, : : : , L, (4b) 

xv, t ≤ 1�Av, t�1

m , ∀v ∈U ∀t � 1, : : : , L,

(4c) 
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m
XL

t�1

X

v∈U
xv, t ≤ C: (4d) 

In this subproblem, Av, : � (Av, t : t � 0, 1, : : : , L) denotes 
the cumulative adopters for v ∈U at each time, and ini-
tial adoption AU, 0 � (Av, 0 : v ∈U) is given. Objective 
(4a) represents the total adoptions of all candidates in 
set U at the end of the L-period planning interval; (4b) 
mandates the cumulative adopters follow the P-BDM 
diffusion dynamics as defined in (2); (4c) ensures that 
the number of users receiving the promotion does not 
exceed the remaining nonadopters; and (4d) ensures, 
across the L periods, a total promotion budget C on 
the number of impressions used for promoting these 
videos in the featured video pool. The rest of the plat-
form capacity is reserved for other purposes, such as 
displaying videos selected based on user interests and 
advertisements. In addition, we use C :� C=mL to indi-
cate the average promotion budget per user per time 
period, which can be an arbitrary given constant.

In a similar vein, we can define R(V \U; 0). Specifi-
cally, it can be calculated according to the P-BDM diffu-
sion dynamics (2) when xv, t is set to zero for all 
v ∈ V \U and t � 1, 2, : : :L.

We remark on the following before solving the 
CGPO problem. First, on the notation side, we use bold 
notation to denote collections of specific variables for a 
set of content pieces within a certain time period in vec-
tor or matrix form. For example, x � (xv, t : v ∈ V, t � 1, 
: : : , L), xv, : � (xv, t : t � 1, : : : , L), and xU, t � (xv, t : v ∈U). 
We use i : j to denote a slice of the vector or matrix rang-
ing from index i to j, where i, j ∈ Z+. For example, 
xv, 2:L � (xv, t : t � 2, : : : , L). Second, one ultimate goal of 
content platforms is to maximize total adoptions over a 
long time horizon of T periods (T≫ L). Crafting a 
“true” optimal promotion policy for this entire period 
is challenging because of the dynamic platform envi-
ronment, including regular updates to the content cor-
pus and market size variations. However, content 
diffusion on platforms typically outpaces these envi-
ronmental changes (Graffius 2022). As such, it is reason-
able to design promotion policies periodically for a 
short period in which the environment is relatively sta-
ble. The CGPO problem, therefore, seeks to identify 
such a dynamic policy within an L-period window. We 
can reoptimize it periodically to account for the envi-
ronmental changes over the extended time horizon.

4.2. Promotion Optimization Given the 
Content Set

The CGPO problem inherently comprises two stages, 
namely, CG and PO. The CG stage as represented in 
Problem (3) is a combinatorial optimization problem 
that embeds the PO stage as shown in Problem (4). The 
primary challenge in solving the CGPO problem stems 

from the implicit interaction among content pieces, 
which is a consequence of the budget constraint (4d). 
This constraint not only leads to different selections of 
content, but also necessitates corresponding adjust-
ments in how the promotion budget is allocated to the 
selected content. These adjustments lead to a variety of 
diffusion outcomes. The complexity of this problem is 
formally captured in the following theorem.

Theorem 1 (NP-Hardness). The CGPO problem (3) is 
NP-hard.

For a detailed proof of Theorem 1, please refer to 
Online Section A.1.1. In this section, we first focus on 
the PO stage for a given candidate content set U ⊆ V. 
We show how to solve the PO subproblem optimally 
and identify the key property that helps solve the entire 
CGPO problem.

Given set U, the PO problem (4) remains difficult to 
solve because of its nonconvex nature. In the following, 
we first perform convex relaxation and show that the 
PO problem is equivalent to its relaxed problem. Then, 
we highlight a critical ingredient in solving the relaxed 
problem, which is also essential to solving the entire 
CGPO problem.

4.2.1. Convex Relaxation. The nonconvexity of Prob-
lem (4) originates from the set of equality constraints 
(4b), which include a quadratic term of A on the right- 
hand side. To transform this nonconvex feasible region 
into a convex one, we relax (4b) as inequalities as fol-
lows:

Av, t ≤ Av, t�1 + pvmxv, t +
qv

m Av, t�1(m� Av, t�1),

∀v ∈ U ∀t � 1, : : : , L: (5) 

We denote the relaxed problem as PO-CR, which uses 
(4a) as the objective and includes (5), (4c), and (4d) 
as the constraints. The PO-CR problem is a convex opti-
mization problem and, thus, can be handled by com-
mercial solvers. Any optimal solutions to the PO-CR 
problem serve as upper bound solutions to the PO 
problem (4). Moreover, as we illustrate in Theorem 2, 
the PO-CR problem is, in fact, equivalent to the original 
PO problem (4).

Theorem 2 (Relaxation). The PO problem (4) and relaxed 
problem PO-CR are equivalent.

We remark that the equivalence is nontrivial because 
the decision variables A and x have opposing relation-
ships in Constraints (4b) and (4c). Specifically, increas-
ing Av, t seems to increase the objective value because of 
(4b), but it lowers xv, s for s ≥ t+ 1 because of (4c). To 
establish the equivalence, we show that the optimal 
solutions of the PO-CR problem are feasible solutions 
to the PO problem (4). The key intuition is that, under 
P-BDM dynamics, there is no benefit in holding back 
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realized adoptions as a larger unadopted population 
for future promotion. In other words, achieving equal-
ity in Constraint (4b) is more beneficial than maintain-
ing the constraint as a strict inequality for a larger 
upper bound of x in Constraint (4c). Complete proofs 
are in the online appendix.

With the PO-CR problem at hand, we can directly 
find the optimal promotion policy for any given candi-
date set U ⊆ V using commercial solvers. However, to 
tackle the CGPO problem (3) as a whole, we need to uti-
lize the optimality condition of the PO-CR problem as 
detailed in Section 4.2.2 and then establish its link to the 
outer CG problem. This is accomplished by a reformu-
lation that solely uses the promotion fraction x as the 
decision variable.

4.2.2. Monotonic Property with Nested Sets of PO Pro-
blems. Given that the adoption number Av, 1:L intrinsi-
cally depends on x and Av, 0, we logically reformulate 
the PO-CR problem into a convex program that solely 
involves the promotion fraction x:

max
x≥0

X

v∈U
fv(xv, :) (6a) 

s:t: m
XL

t�1

X

v∈U
xv, t ≤ C, (6b) 

xv, t ≤ 1�Av, 0

m , ∀v ∈U ∀t � 1, : : : , L,

(6c) 

where, for all v ∈U, function fv(xv, :) is defined as

fv(xv, :) :�max
Av, 1:L

Av, L s:t: (5), (4c): (7) 

This reformulation utilizes a series of black box func-
tions, fv for each v ∈U, to evaluate the adoptions of con-
tent v under a given promotion policy. To ensure fv(xv, :)

is well-defined, we include a set of redundant con-
straints (6c), which ensures that Problem (7) always has 
a feasible solution. We elaborate on the rationale behind 
these constraints and the process of constructing a feasi-
ble solution to Problem (7) for any given policy in 
Online Section A.1.3. This reformulation creates a cru-
cial link between the PO problem for a specific candi-
date set and the CG problem, which encompasses a set 
of PO problems for any possible candidate sets. It natu-
rally divides the PO problem into two steps: evaluation 
and optimization. Evaluation is through functions fv, 
separable for each content piece v ∈ V and independent 
of the chosen set U. For example, if we consider two dif-
ferent candidate sets U1 and U2, where v ∈ V is included 
in both sets, function fv is consistently defined across 
both PO problems. Moreover, the reformulation pre-
serves the convexity of the PO-CR problem as we can 

demonstrate that fv is a concave function for each v ∈ V 

in Lemma 1.

Lemma 1 (Concavity). For any v ∈ V, fv(xv, :) is a concave 
function for xv, : ∈ [0, 1�Av, 0=m]L.

Lemma 1 derives from the fact that Problem (7) is a 
convex program. Based on this, we illustrate the opti-
mality condition of the PO problem using the Lagrang-
ian multiplier, which serves as a stepping stone to 
solving the entire CGPO problem. Specifically, we dual-
ize the reformulation (6) as the dual problem (8) with θ�
being the Lagrangian multiplier for Constraint (6b):

min
θ≥0

X

v∈U
hv(θ) + θC: (8) 

Here, hv(θ) is defined as the optimal value function of 
the following maximization problem:

hv(θ) :� max
xv, :∈[0, 1�Av, 0=m]L

fv(xv, :)�θm
XL

t�1
xv, t: (9) 

For any candidate set U ⊆ V, let θ∗(U) denote the opti-
mal dual variables of dual problem (8). In Lemma 2, we 
provide a comparison of optimal dual variables for 
nested candidate sets U1 ⊆U2 ⊆ V.

Lemma 2 (Monotonic Property with Nested Sets). For any 
nested candidate sets U1 ⊆U2 ⊆ V, the optimal dual vari-
ables satisfy θ∗(U1) ≤ θ

∗(U2).

Lemma 2 implies that, for nested candidate sets, the 
optimal dual variables of the larger set will always be 
greater or equal. This conclusion is grounded in the 
consistent definition of function fv across PO problems 
with different sets. Lemma 2 not only enables us to effi-
ciently search for the optimal dual solution θ∗ without 
requiring a closed-form expression, but also plays a 
crucial role in proving the submodularity of the GG 
problem. In particular, we employ this property to 
show that the marginal gain of the CG problem 
decreases monotonically as the content set U enlarges.

4.3. Candidate Generation
In this section, we address the CG stage, which aims to 
select a subset of content pieces that yield the maximum 
total adoptions. Leveraging the monotonic property with 
nested sets for PO problems derived in the previous sec-
tion, we approach this combinatorial optimization from 
another perspective. Instead of directly identifying the 
optimal candidate set, we focus on the comparison of 
total adoptions between two nested candidate sets. By 
comparing the marginal gains of incorporating an addi-
tional content piece into nested candidate sets, we show 
that the objective of the CG problem (3) is a monotone 
submodular set function. This finding enables us to apply 
the greedy algorithm for submodular maximization to 
solve the entire CGPO problem, thereby achieving an 
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(1� 1=e)-approximation. Moreover, we can further accel-
erate the greedy algorithm by leveraging the monotonic 
property with nested sets again.

4.3.1. Submodularity of the CGPO Objective. To verify 
that the CGPO objective (i.e., R(U; C) +R(V \U; 0)) is a 
submodular set function of U ⊆ V, we need to show 
that R(U ∪ {w}; C) +R(V \ (U ∪ {w}); 0)�R(U; C)�R(V 

\U; 0) is decreasing in U for all w ∈ V \U. With simple 
algebra, this is equivalent to showing that, for any given 
nested sets U1 ⊆U2 ⊆ V and w ∈ V \ U2,

R(U1 ∪ {w}; C)�R(U1; C)�R({w}; 0)

≥ R(U2 ∪ {w}; C)�R(U2; C)�R({w}; 0): (10) 

The left and right sides of (10) represent the marginal 
gain of adding an additional content piece w to sets U1 
and U2, respectively. The marginal gain is characterized 
by the difference between the optimal values of two dif-
ferent PO problems. Direct comparison of two marginal 
gains is intractable as the optimal value of the PO prob-
lem does not have a closed-form expression. To over-
come this challenge, in the following, we express the 
marginal gain as the difference between the optimal 
values of the same PO problem under different promo-
tion budgets instead.

At a higher level, R(U; C) denotes the optimal adop-
tions when the promotion budget C is entirely allocated 
to the candidate set U, whereas R(U ∪ {w}; C) denotes 
the optimal adoptions when part of the promotion bud-
get c ∈ [0, C] is allocated to U and the remaining (C� c)
is allocated to w. Hence, we can reformulate R(U ∪
{w}; C) as the optimal value of the following problem:

R(U ∪ {w}; C) :� max
0≤ c≤C

[R(U; c) +R({w}; C� c)], (11) 

where R(U; c) is the maximum total adoptions of set U 
given a promotion budget c and R({w}; C� c) is the 
maximal total adoptions of content piece w with a pro-
motion budget (C� c).

Hence, if c∗(U) denotes the optimal promotion bud-
get allocated to set U in Problem (11), the marginal gain 
from including content piece w given content set U can 
be expressed as

R(U∪{w};C)�R(U;C)�R({w};0)
� [R(U;c∗(U))�R(U;C)]+[R({w};C�c∗(U))�R({w};0)]:

(12) 

The marginal gain is decomposed into two parts: the 
adoption loss of set U because of the cannibalization of 
the new content piece w and the adoption gain resulting 
from w. Both parts can be depicted as the difference 
between optimal values of the same PO problem with 
the promotion budget varied. This further enables us to 
use the Lagrangian multiplier to represent the marginal 

gain. Analogous to (8), we formulate the PO dual prob-
lem for set U and promotion budget c as

R(U; c) � min
θ≥0

X

v∈U
hv(θ) + θc, (13) 

where hv(θ) adheres to the same definition in (9). By 
the envelope theorem, we can express the difference 
between two optimal values as an integral of the opti-
mal dual variable, such as

R(U; c)�R(U; 0) �
Z c

z�0
θ∗(U; z)dz, ∀θ∗(U; z) ∈Θ∗(U; z), 

where Θ∗(U; z) is the set of optimal dual variables to 
Problem (13) when the budget is z.

Consequently, the first term in (12) can be repre-
sented as

R(U; c∗(U))� R(U; C) �
Z c∗(U)

z�0
θ∗(U; z)dz

�

Z C

z�0
θ∗(U; z)dz

� �

Z C

z�c∗(U)
θ∗(U; z)dz:

In a similar manner, we can express the second term in 
(12). Therefore, the marginal gain of adding piece w to 
the candidate set U can be represented by the optimal 
dual variables as

(12) � �
Z C

z�c∗(U)
θ∗(U; z)dz +

Z C�c∗(U)

z�0
θ∗({w}; z)dz:

Hence, we transform the proof of submodularity, which 
essentially involves comparing the marginal gain of piece 
w over two nested sets U1 and U2 in a comparison 
between the optimal dual variables of PO problems with 
two nested sets. This leads us directly to Theorem 3.

Theorem 3 (Submodularity). The CGPO objective, R(U; C)
+ R(V \U; 0), is a monotone submodular set function with 
respect to content set U ⊆ V.

The proof of Theorem 3 relies on transforming mar-
ginal gain and utilizing the monotonic property with 
nested sets. The complete proof is included in Online 
Section A.1.4. As a result, the CGPO problem (3) can be 
viewed as a monotone submodular maximization prob-
lem with a cardinality constraint.

4.3.2. Accelerated Greedy Algorithm. The well-known 
greedy algorithm (Nemhauser et al. 1978) provides a 
(1� 1=e)-approximation for the monotone submodular 
maximization problem with a cardinality constraint. 
The algorithm iterates K times, selecting a content piece 
with the highest marginal gain in each iteration. The 
greedy algorithm is presented as Algorithm 1.

Lin et al.: Online Content Promotion with the Diffusion Effect 
1070 Manufacturing & Service Operations Management, 2024, vol. 26, no. 3, pp. 1062–1081, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

21
6.

16
5.

99
.3

9]
 o

n 
18

 M
ay

 2
02

4,
 a

t 2
0:

53
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Algorithm 1 (Greedy Algorithm for the CGPO Problem) 
1 U0 :� ∅.
2 for k ∈ [1, : : : , K] do
3 for v ∈ V \Uk�1 do
4 Solve the PO problem (through its convex 

relaxation) for set Uk�1 ∪ {v}.
5 Let R(Uk�1 ∪ {v}; C) be the optimal value.
6 end
7 v∗ :� arg maxw∈V\Uk�1 R(Uk�1 ∪ {w}; C) +R(V \ (Uk�1 

∪ {w}); 0).
8 Uk :�Uk�1 ∪ {v∗}.
9 end.

Subsequently, we aim to demonstrate that an accelera-
tion of the greedy algorithm can be achieved by exploit-
ing the monotonic property with nested sets. In each 
iteration, the greedy algorithm solves PO problems by 
adding an extra content piece to the selected set, which 
means it repeatedly solves PO problems for nested sets. 
Acceleration can be achieved by combining the Lagrang-
ian relaxation technique with the greedy approach. The 
core idea is to utilize the optimal dual variable values 
from previously solved PO problems to create a more 
compact feasible region for subsequent iterations, which 
deals with expanded candidate sets. We formalize this 
idea as the AGA, which is detailed as follows.

4.3.3. Accelerated Greedy Algorithm. For line 4 in Algo-
rithm 1, 

i. At iteration k, record the optimal Lagrangian dual 
variable when solving the PO problem with set Uk�1 ∪

{v} as θ∗(Uk�1 ∪ {v}).
ii. At iteration k+ 1, when solving the PO problem 

for set Uk ∪ {v}, set the lower bound of the Lagrangian 
dual variable as max{θ∗(Uk),θ∗(Uk�1 ∪ {v})}.

As indicated by Lemma 2, the optimal dual variable 
monotonically increases with each greedy iteration. By 
implementing the AGA, we do not treat the PO pro-
blems as separate convex programming problems, but 
rather utilize knowledge from previous iterations to 
speed up the solving process. In the AGA, the search 
region of the dual variable is adaptively shrunk at each 
greedy iteration by updating the lower bound to match 
the optimal dual variable from previous iterations. 
Consequently, the AGA can significantly reduce the 
execution time of optimizing the CGPO problem by 
exploiting the problem structure in conjunction with 
the greedy algorithm.

5. Parameter Estimation
In this section, we discuss how to estimate the para-
meters of the P-BDM by adapting the classic methods 
for the BDM. We show that, despite the challenges of 
estimating parameters for diffusion models, the data 
available on online platforms allows us to achieve high- 
quality estimates.

Although the BDM describes a deterministic diffusion 
dynamic, several probabilistic methods have been pro-
posed to estimate its parameters. Bass (1969) first esti-
mates the parameters using the OLS method. Schmittlein 
and Mahajan (1982) and Srinivasan and Mason (1986) 
apply maximum likelihood estimation (MLE) and non-
linear least square to obtain better estimates. However, 
these methods and their analyses are complicated by the 
diffusion nature, such as autocorrelation, which exists 
among observations, because diffusion happens as a 
dynamic process. The intricate relationship of para-
meters, such as the cumulative adopters as a direct func-
tion of p, q, and m, further complicates the problem (a 
commonly used expression can be founded in Schmit-
tlein and Mahajan 1982). Estimating the parameters of the 
P-BDM introduces additional challenges because of pro-
motion. The inclusion of promotion decisions makes the 
closed-form expression of cumulative adopters no longer 
exist, limiting our choice of tools. Additionally, as the 
platform determines promotion policy based on real- 
time adoption levels, the promotion fraction is correlated 
with the cumulative adopters and, thus, endogenous in 
the diffusion dynamics.

We revisit the OLS and MLE methods for the BDM 
and adapt them to the P-BDM, leading to new estimation 
methods, namely, the D-OLS and D-MLE methods. We 
highlight that, whereas there are inherent deficiencies in 
estimating diffusion models as mentioned, we can largely 
alleviate these issues and improve the estimation results 
on online platforms. In fact, compared with traditional 
markets, we can extract additional information from 
online platforms, particularly by identifying adopters 
who have received promotions. We use a fixed design 
framework to underscore the theoretical benefits of this 
extra information. Although this analysis is stylized, the 
benefits we demonstrate are not merely fortuitous; they 
are also consistently observed in numerical experiments 
with both OLS- and MLE-based estimators. In the follow-
ing discussions, we focus on a fixed v ∈ V, omit the sub-
script v, and treat the market size m as fixed.

5.1. OLS Estimators
In this part, we discuss the OLS-based methods for esti-
mating parameters in the P-BDM. We base our approach 
on the OLS method for the BDM as presented in Bass 
(1969), summarized in Online Section A.2.1. To estimate 
parameters in the P-BDM, we observe a sequence of 
observations {(at, xt, At)}

T
t�1, which includes both the 

realization of promotion decisions and adoption num-
bers. The OLS method for the P-BDM relies on the fol-
lowing relationship:

at � p ·mxt + q ·At�1

m (m�At�1) + ɛt, 

where p and q are the two parameters to estimate and ɛt 
is independent random noise with mean zero as 
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defined in the OLS estimation for the BDM. We obtain 
OLS estimators for p and q by considering mxt and 
(At�1�A2

t�1=m) as two observed covariates. However, 
because the promotion fraction often correlates with 
adoption numbers, there can be certain colinearity 
between these two covariates, resulting in OLS estima-
tors possibly yielding large variances.

To reduce the variances, we can leverage information 
about adopter types on online platforms. Specifically, out 
of the total new adopters (at), we can observe the number 
of direct adopters who receive the promotion (ad

t ) and the 
number of indirect adopters who do not receive the pro-
motion (ai

t). This yields a sequence of adoption data 
{(ad

t , ai
t, At, xt)}

T
t�1. We propose a straightforward D-OLS 

method based on the following relationships:

ad
t � p ·mxt + q ·At�1xt + ɛ

d
t and

ai
t � q ·At�1

m
(m�At�1�mxt) + ɛ

i
t, (14) 

where the first equation in (14) focuses on the direct 
adopters targeted by promotion, whereas the second 
focuses on the others; ɛd

t and ɛi
t are independent ran-

dom noises such that ɛt � ɛ
d
t + ɛ

i
t.

Our D-OLS method yields estimators p̂D-OLS and 
q̂D-OLS through the following steps: 

i. We use the OLS method to estimate q̂D-OLS from 
the second equation in (14), resulting in

q̂D-OLS �

PT
t�1 At�1 1� xt�

At�1
m

� �
ai

t
� �

PT
t�1 At�1 1� xt�

At�1
m

� �� �2 ;

ii. We use the OLS method again, but this time, we 
substitute q in the first equation in (14) with the D-OLS 
estimator q̂D-OLS to compute p̂D-OLS, which is given by

p̂D-OLS �

PT
t�1[mxt(ad

t � q̂D-OLSAt�1xt)]
PT

t�1 (mxt)
2 :

By separating the estimation of two coefficients, the 
D-OLS method also alleviates the issue of correlation 
between the promotion fraction and adoption number. 
This method reduces the variance of estimators and 
enhances prediction accuracy.

5.1.1. Asymptotic Properties. We now examine the 
asymptotic properties of the estimators. Our analysis 
reveals that D-OLS estimators are 

ffiffiffi
n
√

-consistent and pos-
sess smaller asymptotic variances than OLS estimators. 
Moreover, the reduction in variance becomes more pro-
nounced when the promotion policy is endogenous with 
the diffusion dynamics.

In the traditional BDM literature, rigorous asymp-
totic analysis of estimation has been a challenging task 
because of the lack of an asymptotic framework for dif-
fusion processes. To flesh out the comparison between 
OLS and D-OLS estimators, we consider a fixed design 

framework with a triangular sequence of infinite diffu-
sion processes. Specifically, we consider a sequence of 
diffusion processes with an increasing market size m(n)
for n � 1, 2, : : : . We assume that the observations come 
from a fixed-design triangular array wherein the nth 
row includes n observations from the diffusion process 
with market size m(n). We treat the covariates as fixed 
rather than random variables. This creates a framework 
amenable to theoretical analysis. For the nth diffusion 
process, let {Ai, (n)}

n
i�1 denote the adopters at n different 

time steps and {xi, (n)}
n
i�1 denote the consequent promo-

tion fractions. We then define the empirical second 
moment matrices of the OLS method as well as the 
empirical second moments of the two estimation steps 
in the D-OLS method as follows:

Q(n) �

1
n
Xn

i�1
x2

i,(n)
1
n
Xn

i�1
xi,(n)Ai,(n)(1�Ai,(n))

1
n
Xn

i�1
xi,(n)Ai,(n)(1�Ai,(n))

1
n
Xn

i�1
[Ai,(n)(1�Ai,(n))]

2

0

B
B
B
B
@

1

C
C
C
C
A

,

Q̃11,(n) �
1
n
Xn

i�1
x2

i,(n)Ai,(n), and

Q̃22,(n) �
1
n
Xn

i�1
A2

i,(n)(1�xi,(n)�Ai,(n))
2, 

where Ai, (n) � Ai, (n)=m(n) is the normalized adopter 
number (i.e., the fraction of adopters).

Our analysis is based on the following assumption, 
common for regression in fixed-design settings and rea-
sonable in practice. With Q defined in the assumption, we 
let Q11 be the component in row one and column one of Q. 
Other components can be defined in a similar fashion.

Assumption 1 (Positive Definiteness). We assume that the 
following limits exist:

lim
n→∞

Q(n) � Q, lim
n→∞

Q̃11, (n) � Q̃11, and

lim
n→∞

Q̃22, (n) � Q̃22, 

where Q is positive definite and Q̃11, Q̃22 > 0.

We further suppose that the scaled random noise for 
the nth diffusion process ɛ :� ɛ=m(n) has variance σ2. The 
following theorems, Theorems 4 and 5, show the asymp-
totic properties of D-OLS estimators. The detailed proof 
is given in Online Section A.2.2.

Theorem 4 (Consistency). Suppose that the scaled random 
noise ɛi

i :� ɛi
i=m(n) and ɛd

i :� ɛd
i =m(n) are independently 

and identically distributed with mean zero and finite vari-
ance for all i � 1, : : : , n; then, D-OLS estimators p̂D-OLS 

and q̂D-OLS converge to the true parameters p and q in prob-
ability as n scales to infinity. That is,

p̂D-OLS
(n) →

p
p and q̂D-OLS

(n) →
p

q:

Theorem 4 implies that, with sufficient observations, 
the true values of p and q can be uncovered.
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Theorem 5 (Asymptotic Normality). Suppose that the 
scaled random noise ɛi

i and ɛd
i are independently and iden-

tically distributed with mean zero and variance (1� η)σ2 

and ησ2 for all i � 1, : : : , n for some η ∈ (0, 1); then, when n 
scales to infinity, 

i. D-OLS estimators p̂D-OLS
(n) and q̂D-OLS

(n) are asymptoti-
cally normal. Specifically,

ffiffiffi
n
√
(p̂D-OLS
(n) � p)→d N 0, 1

Q11
(1+ ξ1)σ

2
� �

and

ffiffiffi
n
√
(q̂D-OLS
(n) � q)→d N 0, 1

Q22
(1+ ξ2)σ

2
� �

, 

where ξ1 � η(Q̃
2
11=Q̃22Q11� 1) and ξ2 � ηQ22=Q̃22� 1.

ii. OLS estimators p̂OLS
(n) and q̂OLS

(n) are asymptotically nor-
mal. Specifically,

ffiffiffi
n
√
(p̂OLS
(n) � p)→d N 0, 1

Q11
(1+ κ)σ2

� �

and

ffiffiffi
n
√
(q̂OLS
(n) � q)→d N 0, 1

Q22
(1+ κ)σ2

� �

, 

where κ �Q2
12= |Q |.

We draw two insights based on Theorem 5. First, 
the ratio κ�is not negligible, especially when the pro-
motion policy is endogenous with diffusion dynamics. 
We observe that κ�increases as the determinant of Q 
decreases. When x is highly colinear to A(1�A), κ�ap-
proaches infinity, whereas ξ1 and ξ2 remain bounded. 
Therefore, D-OLS estimators are more robust against 
correlations than OLS estimators. Second, when η ≤
Q̃22=Q22, D-OLS estimators have smaller asymptotic 
variances than OLS estimators (see Proposition EC.1 
in Online Section A.2). We note that, according to our 
real-world data set, the average of promotion fraction 
xt is 0.00062 per hour, placing Q̃22=Q22 in close proxim-
ity to one. Consequently, we expect η ≤ Q̃22=Q22 to be 
readily fulfilled in our setting, suggesting that D-OLS 
estimators present smaller asymptotic variances than 
OLS estimators.

5.2. MLE Estimators
Whereas the OLS method is straightforward and com-
putationally efficient, it lacks a rigorous probabilistic 
interpretation in a diffusion setting. On the other hand, 
the MLE method in Schmittlein and Mahajan (1982) for 
estimating the BDM is based on a rigorous probabilistic 
model. However, it requires an explicit expression of 
the cumulative adopter number At, which is not appli-
cable in the P-BDM. Nonetheless, we show that MLE- 
based estimators can still be used in our setting.

When the platform cannot distinguish adopter types, 
the probabilistic counterpart is established as follows: at 
time t, there are (m�At�1) nonadopters, each of which 

has the same adoption probability as (pxt=(1�At�1=m)
+ qAt�1=m). The log-likelihood function is formulated 
as

LLMLE(p, q) �
XT

t�1
at log mxt

m�At�1
p+At�1

m
q

� �

+ (m�At�1� at)

log 1� mxt

m�At�1
p�At�1

m
q

� �

:

When the platform can distinguish adopter types, the 
probabilistic counterpart is established as follows: at 
time t, there are (m�At�1) nonadopters. Each nonadop-
ter has a probability of mxt=(m�At�1) to be promoted 
by the platform. Given being promoted, the nonadopters 
adopt independently with probability (p+ qAt�1=m). 
Otherwise, the nonadopters adopt independently with 
probability qAt�1=m when not being promoted. The log- 
likelihood function is formulated as

LLD-MLE(p,q)

�
XT

t�1
ai

t log At�1

m
q

� �

+(m�At�1�mxt�ai
t) log 1�At�1

m
q

� �� �

+
XT

t�1
ad

t log p+At�1

m
q

� �

+(mxt�ad
t ) log 1�p�At�1

m
q

� �� �

, 

and the derived estimators are named D-MLE estima-
tors. In Online Section A.2.3, we show that both log- 
likelihood functions are concave, allowing us to use the 
gradient method for estimation.

5.3. Comparing OLS- and MLE-Based Estimators 
with Simulation

We create a synthetic data set by bootstrapping the dif-
fusion processes of a content piece according to P-BDM 
dynamics. The diffusion processes are simulated based 
on the D-MLE probabilistic counterpart defined in Sec-
tion 5.2 when adopter types can be distinguished. We 
assess the estimators under two promotion schemes: (i) 
Const: promotion fraction xt remains constant, and (ii) 
Linear: promotion fraction xt has a positive linear rela-
tionship with adopter number At�1.

The true values of coefficients are set at p� 0.523 and 
q� 0.062. We run experiments with market sizes ranging 
from m� 1,200 to m� 40,000 and scale observation num-
bers with market size as mentioned in Section 5.1.1. Per-
formance is measured using the estimation error of the 
parameters, which is the Euclidean distance between the 
estimators and true values 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(p� p̂)2 + (q� q̂)2
q

.
Figure 2 displays the results for Const and Linear 

schemes, respectively. Overall, we observe a signifi-
cant improvement when adopter types can be distin-
guished, emphasizing the benefits of using additional 
data for estimating diffusion models. We offer two more 
observations. First, comparing Figure 2(a) with (c) and 
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Figure 2(b) with (d), we see larger relative improve-
ments under the Linear scheme compared with the 
Const scheme, particularly for OLS-based estimators. 
This not only indicates robustness in MLE-based meth-
ods, but also verifies the theoretical results in Theorem 5
and highlights the effectiveness of our proposed estima-
tors. Second, comparing Figure 2, (a) and (b), or Figure 
2, (c) and (d), we notice that D-OLS and D-MLE perform 
similarly when adopter types can be distinguished, 
whereas the MLE method outperforms the OLS method 
when they cannot be differentiated. In this case, the 
correlation among covariates creates difficulty for OLS 
estimators, but additional information about adoption 
types helps to greatly narrow the gap.

In summary, both the D-OLS and D-MLE methods 
perform well when working with data available on 
online platforms. Whereas the D-MLE method is sup-
ported by a rigorous probabilistic framework, it is less 

computationally efficient. Given the similar perfor-
mance of D-OLS and D-MLE, we opt to use the D-OLS 
method for other computational experiments with real 
data.

6. Numerical Results
In this section, we conduct a comprehensive analysis 
using data from a large-scale video-sharing platform. 
To help readers better understand our numerical re-
sults, we provide the code for our analyses in a GitHub 
repository (https://github.com/YunduanLin/Content_ 
Promotion).

6.1. Platform and Data Overview
We obtain the data set from one of the most popular 
Chinese video-sharing platforms, similar to TikTok. 
The platform is fueled by user-generated content and 

Figure 2. (Color online) Estimation Errors for Different Methods Against Market Size (Scale with the Number of Observations) 

(a) (b)

(c) (d)

Notes. (a) Const: OLS-based methods. (b) Const: MLE-based methods. (c) Linear: OLS-based methods. (d) Linear: MLE-based methods.
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has become a social phenomenon with a massive user 
base sharing their daily lives. As of 2023, it has more 
than 360 million daily active users and more than 20 
billion videos. Effective content promotion plays an 
important role in platform operations. Whereas machine 
learning–based algorithms offer personalized recom-
mendations curated based on user interests, promoting 
content that has the potential to go viral is challenging 
because of the difficulty of optimizing diffusion. As 
such, the issue addressed in this study is essential for the 
platform to maximize its impact and foster an engaged 
user community.

The data set consists of user behavior logs for 46,444 
short videos, sampled from 518,646 users over 20 days 
(July 1–20, 2020). The logs contain time-stamped re-
cords of video promotions and user behavior in terms 
of clicks. For each video, we identify two distinct user 
sets: LP, which comprises users who receive the pro-
motion, and LC, which comprises users who click on it. 
Because of the presence of diffusion effects, some users 
click on videos without receiving promotions (i.e., 
LC \LP ≠ ∅). For ease of analysis, we aggregate the 
time-stamped data hourly. Then, we calculate the pro-
motion fraction as the ratio between the promoted 
users (LP) and market size m. We further identify 
adopter types: direct adopters (LP ∩ LC) and indirect 
adopters (LC \LP). In addition, each video is catego-
rized by the platform according to its topic. The data 
set includes videos from 61 category labels provided 
by the platform, ranging from 155 to 2,759 videos per 
category.

6.2. Model Calibration
In this section, we estimate the promotion and diffusion 
coefficients under the P-BDM specification with the 
real-world video data, comparing results with the BDM 
benchmark.

We use the D-OLS method to estimate p and q. Dur-
ing this process, we consider the following two key 
aspects: 

i. Time-decay factor: We include a time-decay factor 
γ�as a hyperparameter to reflect users’ decreasing ten-
dency to share content over time. See Online Section 
B.1.2 for more details.

ii. Group estimation: We estimate the same p and q 
values for each video category. We highlight that pro-
motion decisions are often made at the early stages of a 
video’s life cycle when limited data are available for 
estimation. Consequently, group-wise estimation is typ-
ically utilized to guarantee generalizability. In principle, 
we can adopt a contextual approach given the availabil-
ity of the featured information of each content piece. 
The group-based estimation can be seen as a special 
case of this approach, in which the sole feature variable 
is the category information. For the sake of simplicity in 
this study, we use the category labels provided by the 

platform to determine groups. See Online Section B.1.3 
for more details.

For further details about our calibration process, 
including data splitting, hyperparameter selection, and 
the effect of time-decay factor γ, please refer to Online 
Section B.1.4. Next, we present the calibration results 
under the best time-decay factor γ � 0:983.

6.2.1. Distribution of p and q. Figure 3 depicts the dis-
tribution of estimated coefficients across 61 different 
categories. Notably, a negative correlation between p 
and q is observed with a Pearson correlation coefficient 
of ρ ��0:5335. A one-tailed t-test further supports the 
observation with a t-statistic of �4.845 rejecting the null 
hypothesis at a significance level of 0.05 (critical t-value 
of �1.671). These findings suggest that videos with a 
large promotion effect may not have a larger diffusion 
effect, highlighting the need for a promotion policy that 
accounts for the diffusion effect.

6.2.2. Performance of Estimation. We evaluate the per-
formance using the weighted mean absolute percent 
error (WMAPE), which can be calculated as WMAPE �
PTv

t�1 |av, t� âv, t | =
PTv

t�1 av, t for video v, where âv, t is the 
predicted number for new adopters. Overall, the P-BDM 
estimated with the D-OLS method achieves an average 
out-of-sample WMAPE of 38.96%. We assess the D-OLS 
approach with the P-BDM against two benchmarks. Our 
first point of comparison is the traditional OLS method, 
illustrating the advantages of the D-OLS method in 
the context of online platforms. Second, we contrast the 
P-BDM with the BDM, demonstrating the P-BDM’s 
superior aptitude in managing online content adoptions. 
The out-of-sample WMAPEs for these two benchmarks 
register at 39.66% and 81.25%, respectively. The P-BDM 
shows a considerable improvement over the BDM and a 

Figure 3. (Color online) Distribution of Estimated Promotion 
Coefficient p and Diffusion Coefficient q 

Notes. Each point in the scatterplot represents a video category. The 
size of points represents the number of videos in each category.

Lin et al.: Online Content Promotion with the Diffusion Effect 
Manufacturing & Service Operations Management, 2024, vol. 26, no. 3, pp. 1062–1081, © 2024 INFORMS 1075 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

21
6.

16
5.

99
.3

9]
 o

n 
18

 M
ay

 2
02

4,
 a

t 2
0:

53
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



moderate yet noticeable enhancement compared with 
the OLS method. In contrast to the simulation in Section 
5.3, the colinearity issue brought up in Section 5.1.1 is 
not severe in this data set. Through the use of a paired t- 
test, we ascertain that the improvement is statistically 
significant with a t-statistic of �35.48, smaller than the t- 
value corresponding to a 0.05 significance level (i.e., 
�1.645). Further, when we perform hypothesis tests for 
each category, we find that 53 out of the 61 categories 
display improvement at the 0.05 significance level. Two 
categories indicate deterioration, whereas the remaining 
six categories do not show significant changes.

To further illustrate the effectiveness of the P-BDM, 
we present two examples in Figure 4. Figure 4(a) uses 
the same video as the example in Section 3.1. To delin-
eate the issue, we estimate the coefficients from a single 
video rather than the entire category. That is, for each 
video, we use the first 60% of data samples to estimate 
coefficients and generate the fitted curves for the entire 
time horizon using the estimated coefficients. Com-
pared with the BDM, the P-BDM fits not only the overall 
adoption trend, but also the curve shape. Whereas the 
BDM provides reasonable fit in early periods, a com-
mon issue observed is the underestimation of the diffu-
sion coefficient. In some cases, as shown in Figure 4(b), 
the estimated coefficient can even be negative, which 
lacks a valid real-world interpretation. These observa-
tions underscore the effectiveness of the P-BDM.

6.3. Experiments on the Accelerated 
Greedy Algorithm

In this section, we simulate the platform environment 
with estimated parameters to evaluate promotion poli-
cies. We name the policy decided by the AGA under 
the P-BDM as the AGA policy.

6.3.1. Long-Term Performance with Different Planning 
Intervals. In practice, platforms are concerned with the 
long-term efficacy of promotion policies. Accordingly, 
we solve the CGPO problem every L periods using the 
AGA policy in the most recent platform environment.

We simulate a 120-period time horizon with a market 
size of m� 10,000 and assess the AGA policy by varying 
the planning interval L from 1 to 20. More details are 
described as follows: 
• Video corpus: The video corpus is initialized at 

t� 0 with 50 videos, all with zero adoptions. We assume 
that, at each time step, five new videos are added with 
no initial adoptions to be consistent with the practical 
operations of the platform. Each video is associated with 
parameters (p, q) randomly sampled from the empirical 
distribution estimated in Section 6.2.
• User behavior: At each time, users act according to 

the D-MLE stochastic counterpart of the P-BDM as 
described in Section 5.2.
• AGA implementation. We assume that the plat-

form employs the AGA with a planning interval of L. 
We solve the CGPO problem every L periods and 
implement the policy recommended by the AGA for 
these L periods. To keep the policy up to date with 
the platform environment, new videos added during 
the past L periods are included when solving the 
new CGPO problem instance with initial adoption 
numbers set to match those at the end of the past L 
periods.

We first remark that the selection of L is crucial in 
striking a balance between the frequency of policy 
updates and the consideration of diffusion effects. A 
smaller L permits more frequent policy updates yet is 
myopic and ignores diffusion in the long term. Con-
versely, a larger L considers more extended diffusion 

Figure 4. (Color online) Illustration of Adoption Curves and the Corresponding Fitted BDM/P-BDM Curves for Example 
Videos 

(a) (b)

Notes. To ensure data anonymity, we have scaled the y-axis using a randomly selected number. (a) Motivating example in Section 3.1. (b) Exam-
ple of negative fitted BDM coefficient.
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effects but may delay the promotion of new videos 
because of less frequent policy updates. We observe 
that this trade-off is influenced by the choice of candi-
date set size K and the promotion budget C. To elucidate 
this, we present results varying these two parameters 
separately.

In Figure 5, we fix the average promotion budget 
per user per period C at six, and vary the size of the 
candidate set size to be K ∈ {30, 50, 70}. As shown in 
Figure 5(a), we notice that this trade-off is evident by 
an initial increase followed by a decrease in the num-
ber of unique promoted videos as L increases. Notably, 
we observe that an increase in K leads to a rise in the 
number of promoted videos. This trend suggests that 
the capacity constraint becomes more restricted in sce-
narios with a larger planning horizon L, primarily 
because of the increased complexity of the diffusion 
trajectory in such cases. On average, 61.37% of in-
stances face a binding capacity constraint, underscor-
ing its significant impact on the outcomes of the 
promotion strategy. Figure 5(b) further sheds light on 
the total adoptions during the process, which mirrors 
the pattern observed in the number of promoted 
videos. Especially, as K increases, the optimal planning 
horizon L also tends to be larger.

In Figure 6, we fix the candidate set size to be 50 and 
vary the average promotion budget to be C ∈ {2, 4, 
6, 8, 10}. From Figure 6(a), we observe a similar trade- 
off akin to our previous findings except that an increase 
in C leads to a smaller optimal planning horizon. As 
shown in Figure 6(b), direct adoptions exhibit a consis-
tent decrease with an increase in L. This is expected 
because a longer planning interval reduces direct adop-
tions from promotion to potentially increase indirect 
adoptions driven by diffusion. Similar to the total adop-
tions, the indirect adoption curve assumes an inverted 

U-shape, a phenomenon driven by the fact that, when L 
is too large, the algorithm suffers from infrequent 
updates, losing the diffusion power for new videos 
because of timeliness.

Hereafter, we fix the cardinality constraint K� 50 to 
conduct the simulation. We then investigate how the 
AGA policy with different L values distributes the pro-
motion budget among videos based on p and q. Figure 7
shows the average promotion times received by videos 
in different categories. Although videos with a large p 
value tend to receive more promotion, clearly, as L 
increases, the AGA policy increases the budget allocated 
to the videos with a large q value to trigger more long- 
term diffusion. The judicious allocation of limited re-
sources is governed by our algorithm.

6.3.2. The Underlying Mechanism of the AGA Pol-
icy. To gain deeper insights into the mechanism under-
lying the AGA policy and promote a qualitative 
understanding of how to manage the interactions of 
promotion and diffusion effects, we conduct additional 
analysis of the promotion fraction for videos, focusing 
on different model primitives. For illustration, we select 
L� 13, which consistently performs well across differ-
ent promotion budgets in our experiments.

We aim to understand how a video’s configuration 
(pv and qv) and lifetime (Av, t�1) affect the promotion 
fraction xv, t in the AGA policy. We use our experimen-
tal results as observations, in which each observation 
represents a promotion fraction xv, t allocated to a 
video v at the beginning of time t. We divide the obser-
vations into six stages based on video lifetime. Stage 0 
includes observations with Av, t�1 � 0, and stages i ∈
{1, 2, 3, 4, 5} include observations when the video v has 
an adopter number Av, t�1 at the start of time t such 
that i � ⌈5Av, t�1=m⌉.

Figure 5. (Color online) Illustration of the AGA Policy for Different Selections of Candidate Set Size K 

(a) (b)

Notes. (a) Promoted videos. (b) Total adoptions.
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We first conduct a sensitivity analysis to examine 
how video configurations impact the promotion frac-
tion x. This analysis uses linear regression to study the 
effects of p and q, controlling other relevant covariates. 
For a detailed explanation of this analysis, please refer 
to Online Section B.2.2. The regression coefficients of p 
and q, which we interpret as their impacts, are pre-
sented in Figure 8. Figure 8(a) demonstrates that both p 
and q positively influence x. Contrary to the intuitive 
expectation that the impact should decrease gradually 
after the initial stage, our findings suggest otherwise. 
The impact of p and q is most pronounced during the 
intermediate stages (i.e., stages 1 and 2). This is because, 
in the initial stage, the policy aims to kickstart the diffu-
sion processes for a large pool of videos so that it does 
not heavily differentiate between video configurations. 
In other words, by accounting for the diffusion effect, 
the AGA policy promotes a diverse range of videos in 
their initial stages, thereby making efficient use of the 
promotion budget. In the intermediate stages, however, 

the policy becomes more selective, filtering out non-
competitive videos and favoring videos with greater 
potential. Furthermore, Figure 8(b) shows the impact 
ratio between p and q, indicating that p carries more 
weight than q, particularly during the intermediate 
stages.

Then, we use K-means clustering to group video con-
figurations into four clusters based on their lifetime pro-
motion policies. The clustering procedure is described 
in Online Section B.2.3. Figure 9(a) displays the cluster-
ing results according to video configuration, whereas 
Figure 9(b) showcases the average promotion policy 
for each cluster. Several observations can be made. 
Despite the clusters being based on promotion policy, 
they strongly correlate with video configurations. Clus-
ter 0, located in the bottom left of Figure 9(a), is distinct 
because of its notably lower promotion at stage 0. These 
are the videos discarded by the AGA policy. Roughly 
speaking, moving toward the right of Figure 9(a), videos 
receive more promotions. Echoing the insights from our 

Figure 6. (Color online) Illustration of the AGA Policy for Different Selections of Promotion Budget 

(a) (b) (c)

Notes. (a) Total adoptions. (b) Direct adoptions. (c) Indirect adoptions.

Figure 7. (Color online) Illustration of the AGA Policy Across Different Video Categories 

Notes. Each point in the scatterplot represents a video category. The size of points represents the average promotion times. Left: L � 1, right: L � 20.
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sensitivity analysis, we notice a trend in which the 
points of peak promotion shift toward later stages as p 
increases. In contrast, videos in clusters 1 and 2 that 
have larger q values and smaller p values need to be 
promoted early to take advantage of their diffusion 
potential.

In summary, the AGA policy operates based on two 
main principles: (i) Promotion and diffusion effects, p 
and q, positively influence the promotion intensity with 
the most profound impact during the intermediate life-
time stages. Among these, the promotion effect has a 
more notable impact. (ii) Videos with a small p but large 
q mainly receive their promotion in the early stages, in 
which the promotion acts as a trigger for diffusion. In 
contrast, videos with a large p but small q continue to be 
promoted, serving as both a trigger for diffusion and an 
attraction for direct adoptions.

6.3.3. Comparison with Benchmarks. Finally, we com-
pare the total adoptions of the AGA policy with bench-
mark policies, using the same experimental setting as in 
Section 6.3.1.

6.3.3.1. Benchmark Policies. To ensure a fair com-
parison, we simulate the benchmark policies using the 
same diffusion process as our algorithm and compare 
the generated virtual rewards: 
• CGPO with accelerated greedy algorithm (AGA): 

Our proposed algorithm as discussed in Section 4.3.2
with a planning horizon of L�13.
• CGPO without the diffusion effect (NoD): This 

benchmark ignores the network effect. This is equiva-
lent to the CGPO formulation when L�1. It is a com-
mon practice in the industry to ignore the diffusion 
effects when promoting content.

Figure 8. (Color online) The Impacts of Video Configurations on the AGA Policy Across Different Lifetime Stages 

(a) (b)

Notes. (a) Impacts of p and q. (b) Impact ratio between p and q.

Figure 9. (Color online) Illustration of the AGA Policy Clusters Corresponding to Different Video Configurations 

(a) (b)

Notes. (a) Clusters of different video configurations. (b) Cluster centers.
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• Candidate generation by attractiveness (ATT): 
This benchmark considers a heuristic CG strategy by 
selecting content that has the largest promotion poten-
tial pv(m�Av). This benchmark speeds up the CG pro-
cedure but overemphasizes the promotion effect.
• Candidate generation by timeliness (TIM): This 

benchmark considers a heuristic CG strategy by select-
ing content that is most recently added to the platform. 
This benchmark takes the timeliness of online content 
into account but overlooks the promotion effect.
• Candidate generation by potential (POT): This 

benchmark considers a heuristic CG strategy by select-
ing content that has the most number of new adopters 
at the previous time step. This benchmark illustrates 
the rich-get-richer principle.

6.3.3.2. Experiment Result. Table 1 compares the per-
formance of all benchmarks. We draw three key observa-
tions from the table. First, AGA consistently performs 
well, ranking second only when C � 2. The margin of 
AGA over others is remarkable. Second, ATT and TIM 

also show notable improvement over NoD, suggesting 
the benefits of considering diffusion effects in promotion 
decisions. These benchmarks can be practical alternatives 
to AGA in real-world scenarios. Third, POT performs 
even worse than NoD in most cases, indicating the draw-
backs of the rich-get-richer principle. These observations 
highlight the importance of both candidate generation 
and diffusion effects for content promotion and support 
the effectiveness of our proposed promotion policy.

7. Conclusion
In this study, we address the content promotion prob-
lem in online content platforms with the diffusion 
effect. We introduce a novel diffusion model to capture 
the platform’s policy and the timeliness factor in online 
content diffusion. Based on this model, we formulate 
the CGPO problem. The problem is proved to be 
NP-hard, and we offer an efficient approximation al-
gorithm that exploits the problem structure. We also 

propose a double OLS method to estimate model para-
meters, leveraging the online platform data. Finally, we 
use a real-world data set to validate the model, evaluate 
the performance, and provide managerial insights. Our 
empirical evidence underscores the importance of con-
sidering the diffusion effect in promotion optimization 
and supports the effectiveness of our proposed promo-
tion policy.

There are several future directions for this study. First, 
we could investigate the impact of externalities between 
content pieces. For instance, similar content could poten-
tially substitute for each other, complicating the CGPO 
problem as the current submodularity results no longer 
apply. Second, we focus on an off-line setting in this 
paper, in which parameters are estimated beforehand. It 
can be quite interesting to consider the online version in 
which parameters for new videos are estimated simulta-
neously with promotion optimization. The wealth of user 
and content information available on online platforms 
offers opportunities to explore this setting.
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