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Appendix A: Table of Notations

Table 2 Notations
M setofsuppliersM={i:i=1,--- ,m};
N: setofdemandclasses={j:5=1,---,n};
0:: advance supply signal for suppligin periodt, 0, = (63,67, -- ,07");
7 : planning horizon7 ={t:t=1,...,T};
K}: capacity of suppliet in periodt, K; = (K}, KZ,--- , Ki™);
D7 : demand from demand clagsn periodt, D, = (D}, D?,--- , D});
[D.J}: =Y, Dl
[K]i: 222:1 Kf;
I : starting inventory level in periot}
xi: order quantity from supplierin periodt, x; = (zf, 2%, -, x);
|z¢| : total procurement quantity in periddi.e., |z| = Y7 | zi;
y) . selling quantity to demand clagsn periodt, y: = (y7, ..., y?);
lye| : total selling quantity in period, i.e., |y:| =>7_, vl
Ji: post-delivery inventory level in period J; = I; + |z|;
ci . unit purchasing cost of suppliein periodt, c; = (ct, ¢z, ,c");
f{ : unit marginal revenue of demand clgsm periodt, 7, = (71,77, -, 7);
bl : unit rejection cost of demand clagsn periodt, b; = (b}, b?,--- ,b});

rf :unit effective marginal revenue of demand clgss periodt, r{ = f{ + b{, re= (1, rE, )
ht(-): inventory (holding and shortage) cost in period
Vi(It, K¢,0¢) : maximal total profits in period$t,t—1,--- , 1}, given statg I, K+, 0:) in periodt;
Hy(I¢,x,6,) : maximal total profits in periodét,t—1,--- , 1}, given statg I, 6;) and procurement decisian;
Wi(Ji, Dy, 0:): maximal total profits in period$§t,t—1,--- , 1}, given staté,, post-delivery inventory level;, and demand);;
G¢(Jt,yt,0:) : maximal total profits in periodét,t—1,--- , 1}, given staté;, post-delivery inventory level:, and selling decision;;

)
)
)
)
mi*([t,Kt,Ht) :
yg*(Jtthvgt) :
)
)
)
)

optimal order quantity from suppliérnin periodt, given(I¢, K, 6:);
optimal selling quantity to demand clag periodt, given(J;, D¢, 6¢);
optimal base-stock level for suppliein periodt, given state,;

optimal demand rationing level for demand clgse periodt, given state);;
first-order stochastic dominance;

convex order;

14 : indicator function of even#;

=max{a,0};

a” : =max{—a,0}.

Appendix B: Concavity and Supermodularity
The following lemma summarizes the properties of concave functions and supermodular functions necessary for establishing our

structural results. Its proof can be found in Boyd and Vandenberghe (2004), Topkis (1998), and Simchi-Levi et al. (2005).

LEMMA 2. (i) Defineh o g(z) = h(gi(x),...,gm(x)), Wwithh: R™ - R, g;: R" - R,i=1,...,m. Thenho g(z) is
concave ifh is concave and nondecreasing in each argument,@rnsl concave for each

(i) If h: R™ — R is a concave function, thel( Az + b) is also a concave function af, whereA € R™ x R", z € R", and
beR™.

(iii) Assume that for any: € R", there is an associated convex 6&tz) C R™ and
{(z,y):y € C(x),z € R" } is a convex set. lk(x,y) is concave and the functigf(z) = sup,c ¢ () M(z,y) is well defined, then

g(z) is concave oveR™.
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(iv) If f(z) andg(z) are concave [supermodular] oX andc, 8 > 0, thenaf(x) 4+ Bg(x) is concave [supermodular] o .

(v) Assume thaf(z,y) is concave [supermodular] im on a convex set [latticeX for eachy € Y. LetZ be a random variable
onY and, for eachr € X, f(z, Z) is integrable. The(z) =Ez[f(x, Z)] is concave [supermodular] im on X.

(vi) If X andY are lattices,S is a sublattice ofX x Y, S, is the section of aty in Y, and f(x, y) is supermodular if{z, y)
on S, thenargmax, g f(z,y)isincreasinginyon{y € Y :argmax,cg f(z,y)#0}.

(vii) Suppose that” is a convex subset &', X is a sublattice oR™, a; >0fori=1,...,n, 31"  a;z; €Y forz € X. If
g(y) is concave iy onY’, thenf(z) := g(>_}_, a;z:) is submodular inz on X.

(viii) Suppose thal” is a convex subset &', X is a sublattice oR?, a; > 0 andas < 0, Zle a;x; €Y forz e X. If g(y) is

concave iny onY’, thenf(z) := g(3°7_, a;x;) is supermodular i on X.
The following lemma on the preservation of supermodularity/submodularity is central to the proof of our analytical results.

LEMMA 3. () If V(I,K) : R' x R™ — R is supermodular [submodular] i1, K*) for i = 1,2,---,m, and K*(8)
is increasing in6 € R for i = 1,2,--- ,m, then V(I,K(6)) is supermodular [submodular] in1,6), where K(0) :=
(K'(0), K*(0),--- . K™ (0)).

(i) If, for i=1,2,--- ,m, V(I,K):R' x R™ — R is supermodular [submodular] itf, K*) and K*(61) >.4. K*(62) for all
61 > 0> (61,02 € R), thenE[V (I, K (0))] is supermodular [submodular] itZ, §), whereK (9) := (K (), K2(9),--- , K™(9)).

(iii) (Corollary 1 in Chen et al. 2013) Assume thaty, 6) is a supermodular function iy, 8) on a sublatticeD ¢ R™*™* and
jointly concave iny for any 6. For everyf, assume that the sectiddy is convex. Letf(7,0) := max,{g(y,0) : >, aiy' +
o =1I,(y" % ,y",0) €D} andS := {37, aiy’ +b0,0) : (y,0) € D}, whereai,az, - - ,an,b > 0. We haveif(1,0) is
supermodular or8 and concave i for anyé.

(iv) If g(1,6) is supermodular [submodular] iG/, #) and concave i, then

f(179) = max g([_ ;Lzlyifo)"’_c'y
a'<y*<b?,1<i<n

is also supermodular [submodular] iff, §) and, for anyd, concave in, wherec = (¢!, c?,- -+, ¢™) is a constant vector.

(v) Suppose; (I) and g (I) are continuously differentiable and concavelinwith g5 (1) > g1 (I) for anyI. Let

i(I):= max (=" Yy +ej-y, forj=1,2,
fi(1) aigyigbi,lgigngj( YY)ty J

2

wherec; = (cj,c3, -+ ,c}) is a constant vector, with; > ¢} for any1 < i < n. We havefs (1) > fi(I) for any .

Appendix C: Proofs

Proof of Lemma 3
Part (i). We only show the supermodularity part, whereas the submodularity part follows from the same argument. Assume that
V (I, K) is supermodular ifI, K*) fori =1,2,--- ,m. ForI; < I andé; < 6., we have

V(I2,K(61) = V(I K(61)) = V (12, K" (61), K*(61),..., K™ (1)) = V(I1, K" (61), K (61), -+, K™ (61))

<V(I2, K'(02),K*(01), -, K™(61)) — V(I1, K (02), K*(01),--- , K™(61))
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<V(I2, K'(02), K*(0s),...,K™(02)) — V(I1, K" (02), K*(2),..., K™(62))

=V (I2,K(62)) — V(I1,K(62)),

where, for any i, the ith inequality holds sinceV is supermodular in (I,K%) for given K~i(0;) :=
(K'(61),K%(61),--- , K7 (01), K" (01),--- , K™(61)), andK*(0) is increasing ird. This completes the proof @rt (i) .

Part (ii). We only show the supermodularity part, whereas the submodularity part follows from the same argument. Assume
thatV (I, K) is supermodular iff, K*) for i = 1,2,--- ,m. ForI; < I> andf; < 6., since, for eacti=1,2,--- ,m, K*(9) is
stochastically increasing ifh, there exist two random vectof%(@l) andf((02) defined on the same probability space, such that

K(61) =4 K(0,) andK (02) =4 K (62), andK (0,) < K (62) with probability 1. Therefore, we have:

EV (I2, K(61)) —EV (11, K(61)) = EV (I2, K(61)) = EV (I, K (61))
<EV(I2, K(02)) —EV (1, K(62))

=EV(I2, K(02)) — EV(I1, K(02)),

where the equalities follow from the construction and the inequality follows from the supermodularity oK (9)) in (Z,6) and
K (61) < K(0) with probability 1.

Part (iii). See Chen et al. (2013).

Part (iv). To show the concavity and supermodularity/submodularity @f-), we invokepart (iii) . If g(Z, ) is supermodular
in (1,0) and, for anyd, concave inl, by part (i) , f(I,0) = max,{g(y°,0) +c-y: 3" v’ =1,y € [a*,b'] for 1 <i<n}is
also supermodular ifZ, #) and, for anyd, concave irnl.

If g(I,0) is submodular inZ,8) and, for anyd, concave inl, go(Z,0) := g(—1,0) is supermodular irfZ, ) and, for any,

concave inl. Let fo(Z,0) := f(—1,0), so

fo(1,0) = max  {g(=I=Y" y",0)+c-y}

at<yi<bi,1<i<n

= max  {go(I+>7" ,y',0)+c-y}

ai<yi<bi,1<i<n
= ey Ago(I =300, y0) — ey}
is supermodular ir{,#) and, for anyd, concave inl. Therefore,f(I,0) = fo(—1,0) is submodular in(,0) and, for anyé,
concave in/.
Part (v). Letg(1,0) := go(I) and f(1,0) := fo(I). g5(I) > g1 (I) implies thatg(I, 0) is supermodular i1, ) and, for anyd,

concave in/. By the envelope theorenf(I,0) is continuously differentiable ifi for anyd. Therefore, bypart (iii) ,
f(I1,0) =max{g(y®,0) +co-y: > y" =1,y" €[a’,b"] for 1 <i <n} is supermodular i, ).
Y

Hence,f5(I)=0rf(1,2) > 0rf(I,1) = fi(I) for any 1. ]
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Proof of Theorem 1
We show the concavity and differentiability of the functiofs(-,-,0:), G¢(-,-,0:), Vi(-,-,6:) andW,(-,-,6:) for any givend,
together by backward induction. Foe 0, V4 (-, -,-) = 0, so the initial condition holds.

Suppose that the joint concavity holds for 1. We will show that it also holds fot. Fix an advance supply signé). First
considerGy (Ji, y, 0:): the first termr, - y; is a linear function ofy; and hence jointly concave i{V;,y.) by part (iv) of Lemma
2; the second term-h.(J: — |y:|) is the composition of a concave functierh.(-) and an affine functiof.J, — |y.|) of (J¢,y:),
thus jointly concave inJ;,y:) by part (ii) of Lemma 2; the concavity of the third term, for givén vEx, , e, , [Vie1(J: —
lye|, Ke1(6:),0+1)|6¢], follows from the induction hypothesis, part (ii) and part (v) of Lemma 2. Since summation preserves
concavity (Lemma 2(iv)), we conclude th&t(J;, y:,6:) is jointly concave in(J;,y:) for any ;. Since concavity is preserved
under maximization (Lemma 2(iii)jnaxo<y, < p, Gt (Ji, yt, 0¢) is jointly concave in(Ji, D ) for eachd,, and so iV (J¢, Dy, 6;).
By a similar argument, the concavity &f.(-,-,6;) andV4(-,-,6;) follows analogously. This completes the induction step for the
proof of concavity.

Next, we show the differentiability. Suppose that the differentiability holds for peried. We will show that it also holds
for period¢. For fixed 6., the differentiability ofG.(-,-,0:) follows from the induction hypothesis and the differentiability of
ht(+), while that of W (., -, 6,) follows from the envelope theorem. Analogously, the differentiability#f-, -, 6;) follows from
that of (-, -, 0:), whereas that of% (-, -, 6;) follows from the envelope theorem. This completes the induction step for proof of
differentiability.

Now we show that (I, K¢, 6;) is increasing inK;. This is readily verified because, for ahy < K7, any feasible procurement

decisionz; under realized capacity vectdf; must also be feasible undéf;. Hence,

Vi(ly, Ki,0:) = max  Hy(Ii,z4,0:) < max  Hy(Iy,x¢,0:) < Vi(I, K7, 0¢).
0<z: <Ky 0<z<K]

Proof of Theorem 2
Forpart (i), the inequalities follow directly from the concavity and differentiabilityt®t (-, 6;) andc; < ¢} < --- < .

For parts (i) and (i) , we first show thai, is well-defined. IfI; + |K;| < af*(6:), ir = m. Otherwise {I; + [K]i }iem is
increasing ini, and{c’(6:)}ie m is decreasing in. Thus,i; = min{i € M : I, + [K,;]} > ai(6,)} exists and is unique. Lef =
I + |z} (I, K+, 6;)| denote the optimal post-delivery inventory level. We now show that;'if7;, K¢, 0;) > 0, z1* (I;, K, 60:) =

K7 forall j < i. Sincex* (I, K, 0;) > 0,
By Wi(J7,0:) — ¢l > 85, Wi (J,0,) —ci >0, forall j <.

Hence,z!" (I, K+,6;) = K} for all j < i. In particular, ifz}**(I;, K;,6;) > 0, zi*(I;, K;,6:) = K; for all i < i;. Otherwise,
T (I, Kt,0:) =0, J; < I + [K¢] ™. In this case, we hav@y, W:(J;,60:) — ci >0, for all i < i;—1. Hencexi* (Iy, K¢, 60:) =
K for all i < iy —1. If i > iy, 05, We(J7,0:) — ci < 05, Wi(Ie + [Ki]%,0:) — cit™' < 0, by the definition ofi;. Hence,
xt* (I, K¢, 0;) = 0fori > .. If i = 44, it is optimal to order, from suppliet up toa: (6;), but constrained by its capacify;. Since

m’é*([t,Kt,Gt) = Ktz for all 2 <i:—1, Iit*(1t7Kt,0t) = mm{oz%(@,g) — I — [Ktﬁt717K§}. | ]
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Proof of Theorem 3

The proof is analogous to that of Theorem 2 and hence omitted for hrevity |

Proof of Theorem 4
For part (i), since (11) implies (10), we only show (11). We first observe that<fi;, oi(0:) — I — [K]:™ " > Ki; if i >
is, oi(0s) — It — [K:]i7! < 0. Thereforezi* (11, K¢, 6:) = min{(ai(6:) — I — [K:]"" 1), Ki} for all i € M. It's clear that
xt* (I, K¢, 0;) is decreasing id; for all i € M. Hence |z} (I; + 3, K, 0:)| < |oF (I, Ky, 01)].
To prove the other inequality in (11), we first show thét(I; + 6, K, ;) > =i (I, K;,6;) — & for all i € M and anys > 0.
For anyé > 0,
oy (I, 4 6, Ky, 0;) =min{ (af (0,) — I — 6 — [K4),™ )T, K{}
>minf(aj(0:) — I — [Ka)i )" — 6, Ki}
(25)
>min{(ad(0:) — I — (K1)t Kl -6
=z (I, K¢,0:) — 6,
where the first inequality follows frorta + 6)* — o™ < 6 for any§ > 0, and the second fromnin{a + 6, k} — min{a,k} < ¢
for any§ > 0. Note that, for§ > 0 small enough, there is at most ohesuch thatc}* (I + 6, K, 0;) # zi* (I, K4, 6;). Therefore,
for anyé > 0, there exists a partitioh, = I, + do < I + 01 < I; + d2 < - -+ < Iy + 0 = I + 6 of [I;, I + 4], such that for any
8,8 €[61,0141), T (I 46" Ky, 00) # 2 (I, +6', Ky, 0;) andat* (I, + 6", K, 0;) = zi* (I, + 6", Ky, 0;) for i # i,. Therefore,
g (I + 6, K, 00)| =l (I, Ko, 00)| — 300 (|27 (I + 81, Ko, 00)| — |7 (I + 6141, Ko, 04)])
2|y (I, Ke, 00)] = 32025 (01 = &)
=|z; (I, K¢, 0:)| = 6,
where the inequality follows from (25), i.e., (11) follows.
Part (i) follows from the same argument part (i) except thay?* (J;, D¢, 0;) = min{(J; — [D,]2~" — 3{(6:))*, DI}, so we

omit its proof. m

Before giving the proofs of Lemma 1 and Theorem 5, we present the proofs of Theorem 7 and Theorem 9 first.

Proof of Theorem 7

Part (i). We prove this part by backward induction. Siﬁb§(~, ) =Vu(+,+,-) =0, the initial condition is satisfied. It suffices to
show that ifVs (15, K, 0s) < Vi(Is, K, 05) for s = t—1 andK;_, (6;) <cx Ki_1(6:) foralli € M, Vi(I, K¢, 0:) < Vi(It, K¢, 04).
SinceV: (I, K, 0:) < Vo(Is, K, 0) for s =t—1 andV; (I, K, 0,) andV.(I,, K, 0) are concave i,

‘73(13‘00 :Ef(s’es [‘7@(1.@7[(3793”‘91‘,] S EKS,GS [f/s(ls’Kags)Wt} S EKS,QS [‘/s(]s,Ks,es)Wz] = Vg([s|9t), fOI’ S = t—l.

Since monotonicity is preserved under maximization and expectatiuJ;, y:,0:) < Gi(Ji, e, 0:), Wi(J, De,0:) <
Wt(Jt, Dt,et), I:It(ft,mt, Ot) < Ht(It, Tt, Gt) anth(It, Kt, Qt) < ‘/t(-[t7 Kt, Gt) This Completes the prOOf (pfart (l) .
Part (ii). If I, + |K:| < of*(6:), the total optimal post-delivery inventory leve} (I;, K, 0:) := I + |z; (It, K, 0:)| =

I + | K| is increasing ink; for anyi € M. If I, + |K.| > of*(0:), J; (It, Ky, 0;) equals toai (6;). Moreover, since{l; +
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[K:]}} is increasing ink? for any j, i, is decreasing ink; for any by the definition ofi,. Becausen;(6,) is decreasing in
i, a'*(0,) is increasing inkK; for anyi. Therefore,J; (I, K:,0;) is increasing ink; for anyi € M. By the envelope theo-
rem, dr, Vi (It, K¢, 6:) = 05, Wi (J; (It, K+, 6:),60:), which is decreasing i/} (I, K¢,0:) by the concavity ofi#;(-,6:). Thus,
Or, Vi (I, Ky, 0:) is decreasing ik} for anyi € M, i.e.,V;(I;, K, 0;) is submodular i1, K}) for anyi € M.

We now show thatds, Wi(Ji,60:) < 85, Wi(Js,0:), 91,y Vit (I:-110:) < 01, Vier (It-1160:), and 8y, Vi (I, K¢, 0:) <
or,Vi(It, K;,0;) by backward induction. We will show that i®r, Vi(I,, Ks,0s) < 81, Va(Is, Ks,0) for s =t — 1 and
Ki1(0:) <s.a. Ki_1(6;) for eachi € M, 91, Vi (I|0:) < 01, Vi (Is|0:), By, Wi (Jy,0:) < 8.5, Wi (Ji, 0:) anddy, Vi (11, Ky, 6;) <
A1, VeI, K¢, 0:). SinceVo (-, -,-) = Vo (,-,-) = 0, the initial condition is satisfied. Sinag_ V (I, Ks,0s) < 01, Vs(Is, K, 05),

Vo(Is, Ks,0,) andVi (I, K, 0,) are submodular igl,, K) for eachi € M, the proof of Lemma 3(ii) yields that:
Or, Va(L:|0r) =B, 01, Ve (Ls, K+, 05)10:] < Exc, 0. 01, Vi (Ls, K+, 05)16:] < Exc, 0, 01,V (Ls, K+, 05) 6:] = Or, Vi (L:]60).

Moreover, by the concavity df; (-|6;) andV;(-|6;) and Lemma 3(v)d;, Vs (Is]6:) < 81, Vs (I:]0:) implies thatds, W (J;, 0;) <
85, W:(J:,0;) and, by the concavity dfv; (-, 6;) andW; (-, 6;) and Lemma 3(v)dz, Vi (I1, K+, 6;) < 81, Vi (I1, Ky, 6;). This estab-
lishespart (ii) .

Part (iii). By (6), the inequalityii (6;) < o (6;) follows from 85, Wy (J;,6:) < 8.5, W:(J,0:) and the concavity ofV (-, 6;)

andW(-, 6;). By the proof of Theorem 4,
(I, Ky, 0;) = min{ (& (0:) — [K]i ' — I)", Ki} <min{(e}(0;) — [K]i " — L))", K{} = 2i* (I, K}, 0,), for anyi e M.

Analogously, by (8), the inequalitg; (0;) < 3;(6;) follows from 8y, , Vi1 (I:-1|0:) < d1,_, Vi1 (I+—1|6;) and the concavity of
—he(+), Viea (+]6+), andVi1 (-|6;). By the proof of Theorem 4,

" (Je, De,6r) = min{(Je — [D]{~" = B](6:)) ", DI} > min{(J; — [D}; " = 8](6:)", Di} = yi" (Ji. Ds,6:), foranyj e N.

This establishepart (jii) . |

Theorem 9 and its Proof
We now characterize the optimal policy in the model with stationary forecast (see Section 5.1 for detail§). l(ét_,) :=

Ex,_, [‘25—1 (It-1,K¢-1)] and

Wi(h) i=Ep, { max Zmyt he(Je = ye]) +vBrc,_y (Vier (Je = el Kio1))] ZbJDJ

THEOREMO. (i) V;(I;, K,) is concave and continuously differentiablelirfor any K, and is submodular if/;, K}), Vi € M.
(ii) Let
(3(:'5 = min{Jt S R: Ci 2 8JtWt(Jt)}, 1€ M,
whered; ;= —oo if {J; € R: ¢} < 85, Wi(J:)} = 0. {& }iem are independent of the starting inventory leveand capacityk,

and decreasing i € M. The optimal procurement decision is

& (I, Ki) = K¢ -1, 5,y +min{ag — I — (K7 K125, (€M, (26)
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Whereit =m- 1{If,+\Kf,\§&I"} —|—min{i I+ [Kt]i > OAJ%} . 1{It+‘Kt|>d?l}.
(il Let
Bi = min{]tfl cR: Tg > —61t71ht(lt,1) +781t71‘z71(1t71)}, i €N7
wheref! := —coif {I;_1 €R: 7! < —8r,_ he(I—1) +~0r,_, Vie1(I;—1)} = 0. {3/ } jenr are independent of the post-delivery

inventory level/; and realized demanf);, and increasing iy € /. The optimal selling decision is
9" (Je, D) =D} 1, 5y +min{Jy — [DJ{" = B, DI} 1,5, JEN, (27)
whereje:=n -1, _ p, >0y +min{j: Je = [De] <BIY-1(5 b, 1<omy-

Part (i) follows from the same argument as the proof of Theorem 1 and TheoremP&it)(ii) [part (iii) ] follows from the

same argument as the proof of Theorem 2 [Theorem 3]. Hence, we omit the pitioéafem 9. |

Proof of Lemma 1

Let =% be the set of all advance supply signals for suppligvithout loss of generality, we assume tEatis compact for each We

taked; = max{='} andg’ = min{Z'}. Let {f;},c7 bei.i.d. random vectors with the stationary distribution{® }.c7. Since

©1(6}) are stochastically increasing f for anyi € M, conditioned o« = 0+, 6% >, 4. 0: for t < t* andi € M. Analogously,
conditioned orfyx =6,., 0! >4 00 fort <t* andi € M. SinceK; (6}) is stochastically increasing #j for anyi € M, condi-

tioned ord;- = 04+, Ki >..q4. Ki, fort <t* and anyi € M; and, conditioned 06+ = 0,.., KCi > 4. K, fort <¢* and anyi € M.

By Theorem 7(ii) and Theorem 9(i), bothi (I+, K, 6;) anth(It, K) are submodular itil;, K7) for anyi € M. Therefore, we

show inequality (15) by backward induction, with the same argument as the proof of Theorem 7(ii). More specifically, we show that,
foranyt < t*, if O, Ex, Vi(Is,Ks) > 01, Exe, 0. [Vs(Is, Ks,05)|0« = 0+] for s =t—1 and K >, 4. K} for all i € M, then we
havedr, Ex, Vi(It, Ki) > 01, Bk, 0, [Vi(It, Kt,0:)|00- = 04+]; and if 91, Exc, Vi (Is, Ks) < 01, Exe, 0, [V (Is, Ks,05) |0 = 6,.]

for s =t—1andKi >, 4. K; for all i € M, then we haved;, Ex, Vi(I+,K:) < 91, Exk, .0, [Vi(I1, K+, 0:)|0:« = 6,.]. The above

two backward inductions follow from the same argument as the proof of Theorem 7(ii). We omit their proofs for brevity. This

establishes Lemma. ]

Proof of Theorem 5

By Lemma 1, Theorem 5 follows from the same argument as the proof of Thetiii). |

Proof of Theorem 6

Part (i). We prove this part by backward induction. Becau®g,, (6;) is stochastically increasing #f for anyi € M, it suffices

to show that, for any € 7 andi € M, if Vi (Is, K, 05) is increasing irf? for s = t—1, Vi(I;, Ky, 0;) is increasing irf;. Since
Vo(-,+,-) = 0, the initial condition is satisfied. Assume tHas(7s, K, 0) is increasing i for s = t—1 and anyi € M. By
Theorem 1(ii),Vs(Is, K, 05) is increasing ink: for anyi € M ands = t—1. SinceK} (6;) is stochastically increasing # for all

i, Vit (I—1]6¢) and, thusG' (Jz, ye, 6:) are increasing if; for anyi € M. Because monotonicity is preserved under maximization

and expectationV; (J;, Dy, 0:), Hy(I1, z4,0;) andV; (I, K, 6;) are all increasing i} for anyi € M. This establishepart (i) .
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Parts (i) and (iii). We proveparts (ii) and (iii) together by backward induction. We will show that'a'fSVS(IS,Ks,és) <
01, Vs(I5, K, 0,) for anyd, > 0, for s = t—1, then we have: (&, , Vi1 (I+-1]0:) < 01, , Vi1 (Ir-1160:) anddy, Wi (J, 6;) <
5, Wi (Ji,0:); (b) ai(8:) < ai(6:) and zi*(Iy, K, 0;) < xi*(I:, K, 0;) for any i € M; (c) B/(6:) < B/(6;) and
yl* (Jy, Dy, 0,) > y2* (Jy, Dy, 0,) for any j € N; and (d)or, Vi(Iy, Ky, 0:) < 01, Vi(Iy, Ky, 0,). SinceVy(,-,-) = 0, the initial
condition is satisfied.

Since ©:_, (0;) and K, (0;) are stochastically increasing @i and independent of? for j # 4, and 9, Vi (Is, K5, 05) is
decreasing ir. and K¢ and anyi € M, Lemma 3(ii) implies tha®;, Vi (I,|0;) < 8;,Vs(I,|0;). Thus, by (8) and the con-
cavity of Vs(-|6;) and Vs (-|6:), 32 (0:) < 32(6;) for any j € N. Hence, by the same argument as the proof of Theorem 7(iii),
yl* (Ji, Dy, 0:) > yl* (Ji, Dy, 0:) j € N. SinceV,(I|0,) and Vi(I,|6,) are concave iy and d;, Vi (I|0:) < 81, Vs(Is]6:),
Lemma 3(v) implies thad;, W, (J;, Dy, 0;) < 85, Wi (J:, Dy, 0;). Hence 5, Wy (Ji, 0:) < 8.5, Wi (J:, 01).

By (6), the concavity ofV; (-, 6;) andW;(-,6;), and tha,;, W (J;, Dy, 0;) < 8.5, Wi(Js, Dy, 0:), ok (8:) < ok (6;) for anyi €
M. Hence, by the same argument as the proof of Theorem Zifij/;, Kz, 9}) < 2¥* (I, Ky, 0;) for anyi € M. SinceW, (J;, ét)
Wi (Jy,6,) are concave i, anddy, Wy (Ji,0;) < 85, Wi (Jy,0:), Lemma 3(v) implies thaby, V; (I;, Ky, 6,) < 01, Vi(I1, Ky, 0.

This completes the induction and, thus, the progbaits (ii) and (iii) . |

Before giving the proof of Theorem 8, we present Theorem 10 and its proof first.

Theorem 10 and its Proof

We now characterize the optimal policy in the model without discretionary selling (see Section 6 for details). We define
Wi(Je,0:) :=Ep, {7 Dt — he(J: — | Ds]) +7E(Kt,1,0t,1)[‘z71(a]t — |D¢|, Ki—1,6:-1)|6:]16: },

whereJ; = I; + |z:|. Hence,

Vt(]mKt,Qt)ZOSng(Kt{Wt(Jt,et)—Ctl‘t}- (28)

THEOREM10. (i) Vi (I;, K., 0;) is concave and continuously differentiablelin vt and (K, 6;).
(i) Let
&¢(0:) :==min{J; €R:¢; >, Wi(Ji,0:)}, i € M, (29)
whered’(6;) := —oo if {J; €R: i < 3y, Wi(Ji,0:)} = 0. We have{di(0:)}ic s are independent of the starting inventory level
I, and capacityK, and decreasing in € M, Vt andf,. The optimal decision is

@y (1, K, 00) = K 1,05, +min{ag(0:) — I — [Ki) T K} 1g,y, (€M, (30)

Whereit =m- 1{If,+\Kt\§dZ"(9t)} +m1n{z I+ [Kt}zl > &}5(01&)} . 1{If,+\Kf,\>dZ”(9t)}‘

(iii) For eacht andi € M, & (6;) andz}* (I, K¢, 0,) are decreasing i} for anyj € M.

Part (i) follows from the same argument as the proof of Theorem 1. The prqudro{ii) is identical to that of Theorem 2. The

proof of part (iii) follows from that of Theorem 6(iii). Hence, we omit the proofldfeorem 1Q |
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Proof of Theorem 8

Part (i). We proved;, Vi(I;, K;,0:) > 0r, Vi(1;, K;,0;) and &i(0;) > oi(6;) for anyi € M by backward induction. It suf-
fices to show that i9;, Vi(Is, Ks,0s) > 01, Vi(Is, Ks,0s) for s = t—1, then (a)ai(6:) > oi(8:) for any i € M and (b)
or, Vi(Iy, Ky, 01) > 01, Vi (I, Ky, 0:). 81, Vo (Io, Ko, 00) = 01, Vo (1o, Ko, 60) = 0, so the initial condition is satisfied.

Since y; (J;, Dy, 6:) < D, for any Dy, Vi(Is,K,,0s) and Vi (I, K,05) are concave inls, and 0;, Vi (I, Ks,05) >
Or. Vs(Is, K5, 85), it follows immediately tha#i; (-, ;) and Wy (-, 8;) are concave, andy, W (J;, 0:) > 85, W (J:, 6;). Together
with (6) and (29), we have;(6;) > o} (6;) for anyi € M. To complete the induction, by Lemma 3(dy, Vi (It, K¢, 60:) >
o1, Vi(I;, K+, 0,) follows from (2), (28), the concavity ofV;(-,8;) and Wy (-,0;), andd,s, W:(J:,0;) > 85, Wi (J:,0:). For any
i€ M, 3 (I, K, 0:) > 2t (I, K+, 0;) follows from & (6;) > ai(6:).

Part (ii). This part follows directly from equation (18) that the teE?:1 7 DY is separable from the decision variahie, in
the objective function.

Part (iii). We show by backward induction. Let two systems be equivalent excem{@watr{g for somety € 7 andjo € M.
It suffices to show that i > r andd;, Vi(Is, Ks,05) > 01, Vs(Is, Ks,05) for anyj € A ands =t —1, then (a)ai(0;) >
al(6,) for anyi € M and6;; and (b)d;, Vi(I:, Ky, 0:) > 01, Vi (It, Ky, 0:). Fort = to, the initial condition is clearly satisfied.
Or.Va(ls, Ko, 05) > 01,V (I, Ko, 0,) yields thatd;, V. (I,]0,) > 81, Va(Is|6;). Thus, by Lemma 3(v), the concavity &% (-|6;)
and V. (-|0;) and# > r! imply that 8, Wi (J:, Ds,0:) > 85, W:(J:, Dy, 6:) and, henceds, Wi (Ji,0:) > 95, Wi(J:,0:). The
concavity of W;(-,0;) and W (-,0;) anddy, W (Jz,0:) > 8.5, Wi (Jz, 0:), together with (6), yield that:(6:) > ai(6,) for any
i € M. Invoking Lemma 3(v) again, sincé’(-,0;) and W,(-,6;) are concave an@;, W:(J:,0:) > 05, W:(J:,0:), we have
01, Vi(Iy, Ky,0:) > 01, Vi (I, K, 0;). This completes the induction. For aiwg M, Zi* (I, Ky, 0;) > xi* (I}, Ky, 0;) follows from

6&%(91)20&%(90 ||



