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Problem Definition: Live-streaming e-commerce, a thriving branch of online retailing, has a unique feature that
customers are constantly engaged in social interactions with peers, which could shape their purchase decisions
through the network effect – they are more likely to purchase if many others have done so. In a competitive
environment,we take a novel perspective to distinguish two types of network effects: The specific network effect
helps an individual retailer expand its own future market, whereas the non-specific network effect generates
a new market that is shared by competing retailers. Our goal is to investigate the impact of different types
of network effects on the dynamic competition in online retailing. Methodology/Results: We formulate a two-
period duopoly competition game between newsvendor-type online retailers with asymmetric costs, where
stock-out based substitution occurs within periods and the network effect regulates market dynamics across
periods. We then solve for the equilibrium outcomes and compare them in different scenarios. There are three
major findings. First, under the non-specific network effect, the high-cost retailer orders less in the first period
compared to under the specific network effect. Such an ordering strategy can be interpreted as free-riding
the low-cost retailer’s stockpiling and benefit from the common market expansion at a lower inventory cost.
Second, the comparison of the retailers’ profits between scenarios can be non-intuitive. The low-cost [high-
cost] retailer, which is in the advantageous [disadvantageous] position, may achieve a higher profit under
the non-specific [specific] network effect, which tends to soften [intensify] the duopoly competition. Third,
with pricing flexibility, the low-cost retailer can counteract the high-cost retailer’s free-riding by adopting a
pricemarkdown strategy, where its price decreases along the two periods.Managerial Implications:Our findings
offer an important managerial insight for online retailers: They need to be cautious about the type of network
effects in presence, because they would induce different market diffusion processes and lead to contrasting
equilibrium results for the dynamic duopoly competition. Moreover, retailers’ inventory and pricing decisions
must be paired with the type of network effects to achieve the best performance.

1. Introduction
Ever since online retailing was born, it has been constantly redefined by business and technology

innovations. In recent years, with the rapid growth of the social media platforms (e.g., Facebook,
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YouTube, and WeChat), online retailing has found its way to a revolutionary mode, called social

commerce, which combines e-commerce with online social medias. This newmode of online retail-

ing has seen great success and even greater potentials (Statista 2023b). Among various forms for

social commerce, live-streaming e-commerce is the most popular and successful one. In China,

where live-streaming e-commerce was pioneered, it has thrived to become a five-trillion-RMB

retail market by 2023 (Statista 2023a). Usually, online retailers will hire social media influencers

to sell their products on live-streaming platforms, and during the sales process, the influencers

introduce the features of the products, communicate with consumers, and answer their questions.

The resulting sales can be enormous, especially when the hired influencer is a celebrity and the

selling periods coincide with some special event. For example, it is reported that Austin Li, a star

e-commerce live-streamer in China, sold products worth $1.7 billion in Alibaba’s Singles Day in

2021 (Tan 2021). Bridging entertainment with online shopping, such live video selling creates a

highly engaging purchase experience for all customers, which substantially increases customer

acquisition and sales conversion for the online retailers.

A couple of interesting features about live-streaming e-commerce are noteworthy. First, many

famous influencers are hired only short-term by competing online retailers, e.g., few days before

and after e-commerce holidays such as Single Day and Cyber Monday. As a result, the selling sea-

son is relatively short, and the main body of the target market, which consists of the influencers’

followers, cannot last. Thus, the online retailers are effectively competing newsvendors selling sub-

stitutable short life-cycle products. Second, since live video sales involve substantial interactions

between the influencer and the customers and, more importantly, among the customers them-

selves, the market diffusion process for the online retailer can be significantly propelled. Indeed,

a customer can derive additional utility (e.g., psychological satisfaction) from making purchases

if many others are doing the same. Hence, the social contagions and interactions of existing cus-

tomers can greatly attract new customers and expand the potential market for retailers. Here, we

refer to such a common effect as the network effect.

To further characterize the impact of network effects on the competing online retailers’ individ-

ual market diffusion process, we take a novel perspective and distinguish two types of network

effects. First, when customers derive additional utility from patronizing a specific retailer, we have

the Specific Network Effect. In this case, the induced new demand is based on the specific retailer’s

existing sales and the market expansion is exclusively for that retailer. This could happen when

the product renders network externalities (e.g., Economides 1996, Katz and Shapiro 1994) or, in

our setting, when the hired live-streamer is a famous influencer or the retailer has a strong brand
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name (e.g., Wongkitrungrueng and Assarut 2020, Katona et al. 2011). Second, when customers’

additional utility can be derived from any one of the competing retailers, we have the Non-specific

Network Effect. This effect can be observed when the social interaction of customers with the prod-

ucts, especially in the form of word-of-mouth, is not brand specific. Such cross-brand communi-

cation and word-of-mouth spillover have also been well documented in the marketing literature

(see, e.g., Peres and Van den Bulte 2014, Libai et al. 2009). In fact, with similar products on the

market, new customers may not have a strong preference for a specific retailer. Therefore, as the

rising tide lifts all ships, existing sales of a particular product can contribute to the expansion of

the common market for retailers selling substitutable products.

Specific or non-specific, the network effects create a dependence between the current decisions

and future demand for retailers, because the current decisions affect current sales, which decide

the market expansion and, thus, future demand. Moreover, recognizing the different types of net-

work effects, retailers may react differently to resolve the trade-off between current profits and

future demand, leading to contrasting equilibrium outcomes and managerial implications. There-

fore, the central objective of this paper is to understand the impact of the two types of network

effects on the competition of online retailers. To that end,we develop a two-period duopoly compe-

tition model, in which two newsvendor-type retailers with asymmetric costs compete in inventory

(in the form of stock-out-based substitution) in each period, and the market diffusion across peri-

ods is regulated by the network effect. As a salient feature in our model, we explicitly consider the

two types of network effects and their implications on the dynamic online retailer competition.

Then, we seek to address the following key research questions: In the scenario with each type of

network effects, how do the network effect’s strength and the competition intensity interplay with

each other to determine the equilibrium?Howdoes each retailer’s equilibriumprofit change under

different types of network effects? When allowing pricing flexibility for the cost-efficient retailer,

how to characterize its pricing strategy and how does it affect the previous results?

To start with, we focus on the competing retailers’ inventory decisions by assuming that they

post the same price to the customers. As a result, they appear the same to the potential customers

and thus receive the same initial demand. However, since one retailer is assumed to have cost

advantage against the other, we find that the stock-out based substitution, if exists, can only hap-

pen from the high-cost retailer to the low-cost retailer (i.e., unmet demand at the high-cost retailer

switch to the low-cost retailer for fulfillment). Furthermore, such a unilateral demand spillover

prevails under both types of network effects and is the key to understand the retailers’ first-period

order quantities, which reflect the trade-off between current profit and future demand. Specifically,
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we find that the low-cost retailer’s order quantity is always positively correlated with the substi-

tution rate, which represents the competition intensity. As for the high-cost retailer, its ordering

decision is independent of the competition level under the specific network effect, but the corre-

lation becomes negative under the non-specific network effect. In addition, the high-cost retailer’s

order quantity is lower under the non-specific network effect thanunder the specific network effect.

This result gives rise to an interesting implication: Since both retailers’ sales help expand the com-

mon market under the non-specific network effect, the high-cost retailer may intentionally order

a smaller quantity to send unmet demand to the rival, so that it may enjoy an enlarged market at

a lower inventory cost – a free-riding behavior.

Then, turning to the retailers’ financial performance, we find and compare their equilibrium

profits under the two types of network effects. Since the specific network effect tends to intensify

the competition, intuition may suggest that the low-cost retailer will be better off under the spe-

cific network effect than the non-specific network effect; and for the high-cost retailer, the reverse

is true. However, we obtain a counter-intuitive result: Each retailer’s profit may be higher or lower

in either case, depending on the system parameters such as cost asymmetry, strength of network

effects, and competition intensity. For the low-cost retailer, when the cost difference and the substi-

tution rate are both large and network effects are strong, its equilibrium profit is higher under the

non-specific, rather than the specific, network effect. This is because, in this case, collaboratively

expanding the market with the rival has more benefits than engaging in intensified competition

and inducing new customers individually. For the high-cost retailer, with a small cost difference,

a small substitution rate, and strong network effects, its profit is lower under the non-specific net-

work effect. The underlying reason is that the free-riding behavior cannot achieve the expected

benefit and it is better for the retailer to generate future demand by itself, which can be done under

the specific network effect. Our result has an important managerial implication: In a duopoly rela-

tionship, the more advantageous firm may not always prefer an even more competitive environ-

ment, such as under the specific network effect, and the less advantageous firmmay not always like

the competition to be reduced, such as under the non-specific network effect. Firms’ best interests

are usually met at the balance between competition and collaboration.

Lastly, we extend our model to accommodate the pricing decision. We allow pricing flexibility

only for the low-cost retailer, because online retailing is such a competitive industry that near-zero

profit margin is not uncommon in practice. As such, the high-cost retailer’s price is exogenously

fixed at a certain level, and the low-cost retailer may set prices to change its share of the com-

mon market. Assuming a committed pricing scheme, we solve the extended model and derive
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insights into the retailer’s pricing strategy. Results reveal that, when the network effect is strong

enough, the retailer’s price is increasing in time under the specific network effect and decreasing

under the non-specific network effect. For the former case, it is intuitive that the retailer wants

to take advantage of the specific network effect in the first period, but has no incentive to lower

its price in the second period because the expanded market is exclusively its own. For the latter

case, however, it is interesting to note that the low-cost retailer’s price is lower in the second period

than in the first, which can be seen as a counteraction against the high-cost retailer’s free-riding

behavior under the non-specific network effect: The low-cost retailer contributes more to the com-

mon market expansion and is therefore just getting its fair share using a lower retail price. Finally,

we compare retailers’ profits under the different types of network effects and observe that, with

slightly modified conditions, the previous results continue to hold.

The rest of this paper is organized as follows. We position this paper in the related literature

in Section 2. Section 3 describes the essential elements of the model and presents the preliminary

results. We show our main results in Section 4. In Section 5, we extend our model to allow pricing

flexibility. Lastly, Section 6 concludes this paper. All proofs are relegated to the Appendix.

2. Literature Review
Caro et al. (2020) have recently provided a comprehensive research survey on retail operations

and discussed its new trends; our work belongs to this vast literature at large. While the landscape

of retailing industry has been constantly changed by fast technology development and novel busi-

ness models, live-streaming e-commerce is currently the most trendy way of retailing. Academic

research follows this trend as well. There is a growing stream of studies on the operations and eco-

nomics of live-streaming e-commerce; see, e.g., Wongkitrungrueng and Assarut (2020), Qi et al.

(2022), Hou et al. (2022), and Chen et al. (2020). These papers focus on some important aspects

such as customer trust and engagement, the role of influencers, and the mechanism design for the

platforms, and investigate how these aspects affect various stakeholders. In the similar vein, we

identify the two types of network effects motivated by the live-streaming e-commerce setting and

examine their impact on the retailers’ dynamic competition. Thus, our work expands the width of

the literature stream on online retailing and enriches its content.

The analytical model in our paper is based on the competitive newsvendors framework, which

has long been studied in the inventory literature; see, e.g., Parlar (1988), Lippman and McCardle

(1997), and Netessine and Rudi (2003). The inventory competition due to stock-out based sub-

stitution has been used to study firms’ strategic stocking decisions in various settings, some of
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which share similar flavor to our work. For instances, we assume the competing retailers have

asymmetric costs; Jiang et al. (2011) and Güler et al. (2018) focus on asymmetric information

regarding demand and cost, respectively. Our work is motivated by online retailing; Straubert

and Sucky (2023) study a problem from online marketplaces. Our results yield a discussion on

the competition-collaboration relationship between the retailers; Dong et al. (2023) develop a co-

opetitive newsvendor model in a supply chain setting. Departing from all the above prior works

with the single-period assumption, we investigate a multi-period newsvendor competition. In this

regard, our paper is more closely related to dynamic inventory competition model (see, e.g., Liu

et al. 2007, Hall and Porteus 2000, Nagarajan and Rajagopalan 2008, 2009, Olsen and Parker 2008,

2014). Aside from having different scopes and research agendas, our paper differs from those

related works in an important way: The market dynamic is determined by the product substitu-

tion/availability in their works, whereas it is the network effect that dictates the market diffusion

process in ours. Overall, we contribute to the competing newsvendor literature by incorporating

the notion of network effects into the problem. Being closely related to the inventory decisions on

the one hand and regulating the system dynamics on the other, network effect is a critical driver

in the online retailing setting and should not be ignored.

A salient feature of our paper is the consideration of network effects, which has always been

an intriguing topic for scholars in economics, marketing, and operations management. In its orig-

inal definition, network effect mainly refers to the positive externalities of the network products

(see, e.g., Economides 1996, Katz and Shapiro 1994); Shy (2011) provides a short survey on this

topic. More broadly, network effect can be understood as the potential demand increase due to

the realized sales volumes, and the reason for the demand attraction is not necessarily network

externality, but may be anything that gives customers additional satisfaction. Viewed in this way,

network effect has been extensively studied, especially in the retail operations settings. For exam-

ple, Katona et al. (2011) examine people’s adoption decisions in an online social network, where

the network effect is manifested via individual connections between members. Wang and Wang

(2017) endogenize network effects in a static consumer choice model and analyze the correspond-

ing assortment optimization; and Feng and Wang (2021) extend it to a dynamic model. Chen and

Chen (2021) study duopoly competitionwith quality differentiation and network effects. Feng and

Hu (2024) consider firms’ entry and quality decisions under network effects.

While the specific network effect is similar to those studied in the above papers, the non-specific

network effect can only occur in a competitive environment such as ours, and it emphasizes the

notion of free-riding or spillover – when firms’ sales jointly expand their common market, they
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may benefit from one another. Moreover, the non-specific network effect is often observed when

customers’ interactions on their social networks take the form of word-of-mouth (see, e.g. Godes

and Mayzlin 2004, Geng et al. 2022) or when customers engage in interpersonal communication

not specifying product brand (see, e.g., Krishnan and Vakratsas 2012, Libai et al. 2009). Hence,

although in different names, the non-specific network effect has been studied by prior works. For

example,Hu et al. (2020) study the innovation spilloverwhen an innovator outsources its products

to a contract manufacturer, which may also be a competitor in the end market. Peres and Van den

Bulte (2014) show that the positiveword-of-mouth spillover from rivalsmaymake a newproduct’s

reseller unprofitable when the product is exclusively sold. Haviv et al. (2020) empirically quantify

the positive intertemporal spillover effect between sellers on console video game platforms.

To sum, our contribution to the literature of network effects is twofold. First, we analyze the

impact of network effects on a dynamic newsvendor competition in an online retailing setting. Sec-

ond, we explicitly examine the two distinct types of network effects and compare their respective

implications on the retailers’ operational decisions and financial performances.

3. Model and Analysis
We study a two-period duopoly competitionwhere themarket dynamic is dictated by the network

effect among customers. In this section, we first give the model setup and problem formulation,

then distinguish the two types of network effects and describe how they work, and finally solve

the dynamic game in different scenarios.

3.1. General Model Framework

3.1.1. Firms. Consider two online retailers, A and B, selling substitutable perishable products

to a market with a random size. The two retailers are assumed to be asymmetric only in unit order-

ing cost, but otherwise identical. Without loss of generality, let retailer A’s cost cA be smaller than

retailer B’s cost cB.We further assume that the two retailers post the same, exogenously given, retail

price to the customers. The above assumptions capture two commonly observed features of online

retailers: First, asmany competing online retailers are fromgeographically different locations, their

cost asymmetry may be due to different transportation expenses. Second, online retailing is highly

competitive and the retail price for similar products are usually the same. Being the more cost-

efficient firm, retailer A may have more pricing flexibility than its rival; e.g., retailer A could be

more able to afford a price markdown in order to snatch market. We do not consider such possi-

bility in the main model, but will defer relevant discussions to Section 5. Until then, we assume

the posted retail price is always p > cB > cA for both firms.
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In each period, facing a random demand and possible stock-out based substitution, the two

retailers are essentially competing newsvendors, just as modeled by Lippman and McCardle

(1997). Specifically, in period t, retailer i (i = A, B) decides the order quantity yi,t first and then

receives a random initial demand allocation Mi,t (to be detailed in a moment). Any leftovers after

each period ends are salvaged through other non-profitable channels; we normalize the salvage

value to zero. When a shortage occurs at one retailer, part of its excess demand will spillover to

the other retailer. As such, the effective demand for retailer i is given by

Di,t = Mi,t + θ(Mj,t − yj,t)
+.

Here, θ ∈ [0, 1] is an exogenous parameter measuring the degree of substitution due to stock-out.

Larger θ value means higher substitution rate, which implies more intensified inventory competi-

tion between the retailers. Finally, in period t, retailer i’s realized sales is Ri,t = min{Di,t, yi,t} and

its profit is πi,t = pRi,t − ciyi,t.

3.1.2. Demand and Market Dynamics. Next, we detail the assumptions about the demand

process and how themarket evolves across periods. First, in every period t, there is a seed demand

Xt that characterizes the size of the customer base, which serves as the common market for both

retailers. The seed demand {Xt} form an independent and identically distributed sequence of ran-

dom variables, with distribution F(·) and density f (·). This portion of the demand can be seen as

the relatively stable market of patrons with a fixed distribution. Second, newly attracted customers

arrive every period and become part of the demand. This market diffusion process is dictated by

the network effect, which is operated on new customers through the old customerswho purchased

before. In particular, we assume that the new market induced by the network effect in the current

period is based on the realized sales of the retailers from the previous period. Therefore, for retailer

i in period t, its initial allocation of the demand, Mi,t, consists of two parts:

Mi,t = αi,tXt + Zi,t. (1)

The first part represents a split of the seed demand. We employ the deterministic splitting rule

fromLippman andMcCardle (1997). Specifically, αi,t is the split ratio, which satisfies αA,t + αB,t = 1.

Moreover, we assume that the splitting is based on the posted price, which is the foremost influen-

tial factor to customers’ purchase decision. In our main model, since the two retailers always post

the same price, they will get an equal share of the common stable market, i.e., αi,t = 1/2. We will

assume other forms of αi,t in Section 5 when the pricing flexibility is considered.
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The second part of retailer i’s initial allocation, Zi,t, represents retailer i’s demand induced by the

network effect. In general, the induced demand is a non-decreasing function of firms’ sales in the

previous period, i.e., Zi,t = zi(RA,t−1, RB,t−1). That is, more past sales tend to generatemore potential

demand. In the duopoly online retailing context, we identify two types of network effects, which

give rise to different functional forms of Zi,t. They are delineated later in Section 3.2.

3.1.3. Problem Formulation. The aforementioned major components of our model yield a

dynamic competitive newsvendor problem facing the two online retailers: They stock up to com-

pete for demand from a common market in each period, and the market diffusion across periods

is regulated by the network effect. We formulate this problem as a two-period two-person Nash

game with complete information.

Recall that our primary research goal is to investigate the role of the network effect and how it

affects the dynamic newsvendor competition. Since the market dynamics in our model is solely

determined by the network effect, the impact of the network effect can fully manifest as soon as

the period moves forward once; therefore, concentrating on a two-period model suffices to serve

the purpose. Besides, compared to a general multi-period model, the two-period model admits

tractable analysis, which allows derivation of clean and useful managerial insights.

The sequence of events in each period t is as follows. (1) Both retailers observe the previous

sales of each firm, (RA,t−1, RB,t−1), and thus obtain the distribution of the initial allocation Mi,t; if

t = 1, we set Ri,0 = 0. (2) The retailers simultaneously decide the order quantity yi,t based on the

observed previous sales. (3) The seed demand Xt is realized, and so is the initial allocation. For

each retailer, if there is an excess demand, a fixed proportion (θ) of the unsatisfied customers will

attempt to purchase from the other retailer; otherwise, any unused products are salvaged with

zero value. (4) The sales of each retailer, Ri,t, is realized and the profit collected. The objective of

each retailer is to maximize its total (discounted) profit of all periods. As such, retailer i solves the

following problem simultaneously with retailer j:

(P) max
yi,1,yi,2

EX1,X2 [(pRi,1 − ciyi,1) + ρ (pRi,2 − ciyi,2)] ,

subject to

Ri,t = min{Di,t, yi,t}, Di,t = Mi,t + θ(Mj,t − yj,t)
+, and Mi,t = αi,tXt + Zi,t; t = 1, 2.

The parameter 0 < ρ ≤ 1 is the discount factor. The equilibrium concept adopted is feedback Nash

equilibrium. We treat the sales Ri,t as state variables in each period, and solve for the order quan-

tities yi,t via backward induction.
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3.2. Two Types of Network Effects

The previous subsection formulates a general problem in the sense that the network effect is not

defined in details. In this subsection, we identify two types of network effects, discuss their differ-

ences, and describe how each of them decides the retailers’ initial demand allocations.

A common practice of online retailing nowadays is to hire social-media influencers to sell the

products in their live-streaming rooms. Owing to the strong social contagion nature of the live-

streaming platforms, this sellingmodality can easily attract a large number of customers and drive

up sales. Indeed, a high transaction volume in an influencer’s live-streaming room can effectively

draw new customers and generate new demand. Such market expansion is due to the network

effect pertaining to the customers’ social interactions. That is, a customer can derive higher utility

from purchasing the product when more peers make the purchases as well. Note that the extra

utility may be from the network externality of product usage, or it may be from the pure psycho-

logical satisfaction1. Hence, the network effect studied in our paper is a more general concept than

that for the network products (e.g., Economides 1996, Katz and Shapiro 1994). While the network

effect will always expand the potential market, the true impact on the competing retailers’ indi-

vidual customer base needs a more careful examination. We distinguish the two types of network

effects in our duopoly online retailing setting.

3.2.1. Specific Network Effects. First, the network effect could be specifically attributed to one

retailer; hence the name specific network effect. In this case, past sales of retailer i (i = A, B) induce

new customers exclusively for retailer i. Practically, there are two possible situations in which the

specific network effect comes into being. Customer’s extra utility/satisfaction is specific to either

the brand name or the influencer who sells for the retailer. In the former situation, the retailers

usually possess highly differentiating brand names (not to be confused with rivals) or their prod-

ucts have certain exclusive features (e.g., video game console). Hence, when new customers are

attracted to the market by the size of old users, they have already chosen the specific retailer to

patronize. In the latter situation, the retailers hire famous influencers or even key opinion leaders

to live-streaming their product sales. Here, the new customers generated by the network effect are

mainly followers of the specific influencer.

We use “Scenario S” to refer to the case with the specific network effect and give the notations

a superscript “S” whenever necessary. In Scenario S, the newly induced demand in period t for

retailer i can be written as ZS
i,t = γRS

i,t−1, a linear function of its previous sales. The parameter γ > 0

1 An example is the herding behavior, which is commonly observed in live-streaming ecommerce. New customers are
more likely to purchase if there is already a high sales volume.
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represents the strength of the network effect (e.g., it could measure how famous the influencers

are). Finally, the market dynamic equation (1) can be further written as

MS
i,t =

1
2

Xt + γRS
i,t−1. (2)

One direct observation from (2) is that, each retailer’s initial allocation only depends on the seed

demand and its own sales from the previous period.

3.2.2. Non-specific Network Effects. Second, the network effect may not be specific regarding

either retailer; we call it the non-specific network effect and we refer to the induced case as Scenario

N. In practice, the non-specific network effect may be observed when the brand name of a specific

retailer is not the root driver of the network effect. Since the two retailers are selling substitutable

products, the new customers may not be able to tell them apart. As a result, the customers derive

extra utility/satisfactionmainly because they are using similar, but not necessarily the same, prod-

ucts as their peers. In the context of live-streaming e-commerce, the non-specific network effect is

especially common – with noisy interpersonal communications/recommendations from various

socialmedia platforms, it is hard for customers to perfectly discern one product from the other; see,

for example, Libai et al. (2009) and Krishnan and Vakratsas (2012) for discussions on the cross-

brand word-of-mouth spillover that explains such a phenomenon. Hence, when fresh customers

are drawn to the potential market, they could end up purchasing from either retailer.

Given the nature of the non-specific network effect, its generated demand is modeled as a linear

function of the retailers’ total past sales, denoted by RN
t−1 = RN

A,t−1 + RN
B,t−1 (similar to before, super-

script “N” indicates Scenario N). Then, γRN
t−1 is the newly induced market that is to be shared by

both firms; the parameter γ again denotes the strength of the network effect. We further assume

that the two retailers split this market in the same way as they split the seed demand; i.e., ZN
i,t =

γRN
t−1/2. Therefore, we can write the initial allocation equation in this scenario as

MN
i,t =

1
2
(
Xt + γRN

t−1

)
. (3)

Therefore, newly attracted customers do not have ex ante preference towards the retailers and they

will simply choose from the two according to the same splitting rule of the seed demand. Finally,

it is worth mentioning that, unlike Scenario S, retailer i’s initial allocation in (3) depends on not

only its own but also its rival’s previous sales.
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3.3. Equilibrium Analysis

In this subsection, we solve the dynamic duopoly competition in different scenarios and provide

preliminary analysis to the equilibrium results. Before analyzing Scenarios S and N, we first look

at a benchmark scenario, in which the network effect in absent. In each scenario, we solve for the

retailers’ equilibrium order quantities and discuss some immediate observations.

3.3.1. Benchmark Scenario: NoNetwork Effect. Without network effects, themarket dynamic

across the two periods is gone, and themodel is reduced to repeated static games. Hence, it suffices

to solve the single-period competitive newsvendor model, which has been studied by Lippman

and McCardle (1997). Thus, we can obtain the retailers’ equilibrium order quantities, y0
A and y0

B,

which are the same in each period.

Lemma 1. Suppose there is no network effect. A unique Nash equilibrium exists: y0
A = 1+θ

2 ζ0
A − θ

2 ζ0
B and

y0
B =

1
2 ζ0

B, where ζ0
i = F−1(1 − ci

p ) (i = A, B).

Note that ζ0
i is exactly the classic newsvendor’s critical z-score for retailer i, and ζ0

A > ζ0
B because

cA < cB. Moreover, we have y0
A > y0

B for all θ. That is, both the competition intensity and the cost

asymmetry together boost the order quantity of retailer A, the low-cost firm. Retailer B, on the

other hand, is in a disadvantageous position in the duopoly relationship.

3.3.2. Scenario S: Specific Network Effects. Next, we include network effects in our analysis.

Under the specific network effect, the market dynamic equation is given by (2). In this scenario,

it is each retailer’s individual past sales that determines the expansion of its own market, so they

take advantage of the network effect independently.

Lemma 2. Suppose the specific network effect is present. A unique Nash equilibrium exists: In the first

period, yS
A,1 =

1+θ
2 ζS

A − θ
2 ζS

B and yS
B,1 =

1
2 ζS

B, where ζS
i = F−1(1 − ci

p+ργ(p−ci)
); in the second period, given

the two retailers’ sales, RS
A,1 and RS

B,1, yS
A,2 = y0

A + γRS
A,1 and yS

B,2 = y0
B + γRS

B,1. Moreover, the retailers’

equilibrium sales and profits are specified in appendix.

The retailers’ first-period order quantity has the same form as in the benchmark case, but with

different critical z-scores. Moreover, we have ζS
A > ζS

B due to the cost asymmetry cA < cB. Therefore,

yS
A,1 > yS

B,1. For the second-period order quantity yS
i,2, it must first satisfy the induced demand γRS

i,1

(contingent on the previous sales), and the rest is the same as the benchmark scenario, due to

the end-of-horizon effect. Furthermore, we remark that the network effect has essentially risen the

underage cost in the first period – the stock-out risk means not only losing current customers, but

also potential future customers, to the rival. Hence, the critical z-score increases, i.e., ζS
i > ζ0

i (see

proof in appendix). This is especially true for the high-cost retailer B, and we can see that retailer

B orders more in the first period compared to the benchmark case.
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3.3.3. Scenario N: Non-specific Network Effects. Now, we turn to the non-specific network

effect. In Scenario N, themarket expansion characterized by equation (3) is based on the joint sales

of both retailers, and thus the induced new demand is pooled into the seed demand and shared by

the two firms. Hence, the initial allocation of a retailer in the second period is positively correlated

with how much the other retailer sold in the first period. In this regard, the retailers enjoy the

benefit of the network effect in a collaborative manner. In addition, since retailers’ sales affect each

other’s customers acquisition, their order quantities may also intertwine.

Lemma 3. Suppose the non-specific network effect is present. A unique Nash equilibrium exists: In the

first period, yN
A,1 =

1+θ
2 ζN

A − θ
2 ζN

B and yN
B,1 =

1
2 ζN

B , where

ζN
A = F−1

(
1 − cA

p + 1
2 ργ(p − cA)

)
and ζN

B = F−1

1 −
cB − 1

2 ργθ(p − cB)
cA

p+ 1
2 ργ(p−cA)

p + 1
2 ργ(1 − θ)(p − cB)

 ;

in the second period, given the two retailers’ total sales RN
1 := RN

A,1 + RN
B,1, yN

A,2 = y0
A + 1

2 γRN
1 and yN

B,2 =

y0
B +

1
2 γRN

1 . Moreover, the retailers’ equilibrium sales and profits are specified in appendix.

Despite the similarities in solution format between the two scenarios, as shown in Lemma 3, we

highlight a couple of interesting differences here. First, for retailer A, we have ζN
A < ζS

A (see proof

in appendix). Thus, although the non-specific network effect also tends to increase the underage

cost, it does not increase it as much as the specific network effect does. After all, the increased sales

expand the common, not individual, market.

Second, for retailer B, its critical z-score and order quantity become quite involved. Particularly,

retailer B’s objective function contains a part proportional to retailer A’s first-period sales, and this

part is decreasing in retailer B’s order quantity at equilibrium. Indeed,when retailer B ordersmore,

there is less demand spillover to retailer A, negatively affecting retailer A’s sales and the market

expansion, which essentially increases retailer B’s overage cost. Therefore, since the rival’s sales is

helpful to its profit, retailer B may somehow “free-ride” retailer A’s order quantity – it saves on

ordering cost and still enjoys the benefit of the network effect, an enlarged market.

4. Main Results
Given the equilibrium outcomes obtained above, in this section, we present the main results

regarding the comparison between different scenarios. While the benchmark scenario provides a

basic characterization of the duopoly game without network effects, we will mainly compare Sce-

narios S and N and examine the retailers’ ordering strategies and financial performances in the

presence of the two types of network effects respectively. Although network effects in general will
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benefit both retailers, we are interested in the relative improvement of their profits with the dif-

ferent types of network effects. The specific network effect is competitive in nature, whereas the

non-specific network effect has a cooperative feature. Therefore, it is interesting to investigate in

each scenario whether the duopoly competition is intensified or softened and, more importantly,

whether each retailer enjoys more or less benefit from the network effect induced demand.

In the following, we look into the equilibrium order quantities, sales volumes, and profits of

the retailers. Since the second (i.e., the last) period would be controlled by the end-of-horizon

effect, we focus on the first-period equilibrium to highlight the impact of the network effect across

periods. Three parameters are of particular interests, namely, the network effect strength γ (mea-

suring the benefit of the network effect), the stock-out based substitution factor θ (measuring the

degree of competition), and the cost difference ∆c := cB − cA (measuring the asymmetry level of

the retailers). Our results and discussions will anchor on the three parameters. Lastly, to maintain

tractability of the analysis and provide clean results with clear managerial insights, we will set

the discount factor ρ = 1 and assume uniform distribution for the seed demand for the rest of the

paper; that is, let Xt ∼ U[µ− σ, µ+ σ] for t = 1, 2. We have numerically tested the robustness of this

assumption and our results will remain qualitatively the same if other distribution is assumed.

4.1. Order Quantities

We start by examining the retailers’ equilibrium order quantities from two aspects. First, we iden-

tify the unilateral substitution effect in demand across the twofirms. Second,we compare the order

quantities of each retailer between scenarios, which showcases the different impacts caused by the

specific and the non-specific network effect.

Lemma 4. (a) In the benchmark scenario, retailer A always has a higher stock level than retailer B,

i.e., y0
A > y0

B.

(b) Consider Scenario k (k = S, N). In the first period, retailer A orders more than retailer B, i.e., yk
A,1 >

yk
B,1. In the second period, retailer A still has a higher stock level than retailer B after they both satisfy the

demand generated by the network effect, i.e., yk
A,2 − Zk

A,2 > yk
B,2 − Zk

B,2.

Lemma 4 states that in all scenarios, retailer A always has more supplies than retailer B. Indeed,

the order quantities depend on the critical z-scores, which further depend on the system param-

eters, especially on the order cost ci. Therefore, the dominance of retailer A’s stock level is mainly

due to the cost advantage it has over retailer B. Posting the same retail price, the retailer with less

ordering cost tend to order more. This feature is unaltered even in the presence of network effects:

According to Lemma 4(b), retailer A orders more in the first period, and in the second period, it
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has more leftover supplies after satisfying the network effect induced demand. In fact, Lemmas

1-3 indicate that yk
i,2 − Zk

i,2 = y0
i , i.e., the duopoly competition in the second period after fulfilling

the demand Zi,2 becomes the same as the single-period game.

One important implication of Lemma 4 is that there exists a unilateral demand spillover, from

retailer B to retailer A. Specifically, since the two retailers face the same demand in the first period,

i.e., X1/2, stock-out based substitution can only occurwhen retailer B fails to satisfy all the demand

and the retailer A has excess supplies. Similarly, in the second period for Scenarios S and N, the

retailers’ stocks are first used to fill the demand from newly induced customers; then, the remain-

ing stocks are facing the same demand X2/2. Hence, the demand spillover, if exists, should only

be possible that part of retailer B’s customers turn to seek purchase from retailer A. Therefore, at

the equilibrium in any situation, we can only observe such one-sided substitution.

Knowing that the demand spillover is always from retailer B to retailer A, we can better under-

stand the incentives of each retailer’s ordering behavior. In fact, the characteristics of the duopoly

game are largely affected by the one-sided demand substitution. Retailer A is likely to increase its

order, compared to the non-competitive case, in order to accommodate the excess demand from

retailer B. This asymmetric demand spillover has its root in the cost asymmetry, and retailer A,

who is in the advantageous position, tends to benefit from the substitution; i.e., the larger the

degree of competition θ is, the more beneficial the demand spillover is to retailer A. For retailer B,

on the other hand, the higher ordering cost is to its disadvantage. However, as we will see later,

the impact of the unilateral demand spillover on retailer B is not necessarily all negative when the

network effect is brought into the equation.

Next, we study the equilibrium order quantity for each retailer. Our focus is on the retailers’

ordering behavior in the first period to highlight the impact of market dynamics caused by the

network effect. The proposition below summarizes the results concerning retailer A.

Proposition 1. Retailer A’s equilibrium first-period order quantity in different scenarios, namely y0
A,

yS
A,1, and yN

A,1, are all increasing in θ. Moreover, when γ is large, the following statements hold.

(a) There exists a θS0 ∈ [0, 1] such that yS
A,1 ≤ y0

A if cA < 1
2 cB and θ ∈ [θS0, 1]; moreover, there exist

θN0, θ
N0 ∈ [0, 1] such that yN

A,1 ≤ y0
A if θ ∈ [θN0, θ

N0
].

(b) There exists a θSN ∈ [0, 1] such that yS
A,1 ≥ yN

A,1 for θ ∈ [0, θSN] and yS
A,1 ≤ yN

A,1 for θ ∈ [θSN, 1].

Proposition 1 shows that retailer A’s order quantity increases in the substitution rate θ in all three

scenarios. Recall that the stock-out based substitution is one-sided,with the excess demand spilling

from retailer B to retailer A. Hence, as θ increases, retailer A will face more potential spillover
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demand, leading to a larger order quantity in equilibrium. Interestingly, however, the functional

dependence on θ is not the same in different scenarios. As shown in the proof (see appendix for

details), y0
A and yS

A,1 is linear, whereas yN
A,1 is convex in θ. Therefore, compared to the benchmark

scenario, the specific network effect does not change the underlying logic of the duopoly compe-

tition: Due to the cost advantage, retailer A enjoys the unilateral demand spillover and the benefit

is proportionate to the competition intensity. This fact will not change in the presence of the spe-

cific network effect because the substitution independently affects each retailer’s individualmarket

expansion. However, when the non-specific network effect is present, the demand spillover in the

first period has multiple implications. It increases retailer A’s current demand on the one hand,

and it expands both retailers’ future market on the other. The later sends incentives to retailer B to

strategically spill demand over to the rival, which causes retailer A’s equilibrium first-period order

quantity yN
A,1 to have a more complex functional relationship with the competition intensity θ. As

such, the non-specific network effect tends to make the duopoly game more involved.

Proposition 1(a) indicates that retailer Amay or may not order more in Scenario S/N than what

it would order in the benchmark scenario. Note that the conditions include γ being large, meaning

that the network effect should be strong enough. Since retailer A always enjoys the one-sided

substitution, with a strong network effect (no matter which type), it does not have to order a lot

if the demand spillover is not small; by contrast, if θ is small, then retailer A’s underage cost will

rise facing a strong network effect, and thus its order quantity will be larger than the benchmark

case. Hence, strong network effect and intensified competition together lead to a lower first-period

order quantity for retailer A compared to benchmark. With the specific network effect, this is true

after θ exceeds a threshold, because both yS
A,1 and y0

A are linear function of θ. However, with the

non-specific network effect, the positive effect of a large substitution rate disappears when θ is too

large. This is due to the convexity of yN
A,1; moreover, it reveals that retailer A’s order incentive could

be enhanced by the competition intensity when the non-specific network effect is strong enough.

Finally, Scenarios S and N are compared in Proposition 1(b) regarding retailer A’s first-period

order quantity, whichwe findmay cross each other depending on the systemparameters. Basically,

retailer A orders more in Scenario S when the substitution rate is small, but it orders more in Sce-

nario N otherwise. Compared to the specific network effect, when the non-specific network effect

is present, retailer A’s first-period sales are used to expand the total market, only half of which con-

tributes to its own futuremarket. Hence, retailer A faces a smaller underage cost in ScenarioN than

in Scenario S, especially when there is only limited demand spillover. As a result, yN
A,1 ≤ yS

A,1 when

θ is small. On the other hand, when θ is large, the overage cost for retailer A also becomes small.
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Besides, seeing a large substitution rate and the presence of the non-specific network effect, retailer

B may strategically send its demand to retailer A, hoping the total future market gets enlarged (as

shown later in Proposition 2). This will further lower retailer A’s overage cost. However, retailer B

does not have such an incentive in Scenario S, where each retailer is responsible for its ownmarket

expansion. Therefore, with a large demand spillover rate, we have yN
A,1 ≥ yS

A,1.

Now, we turn to study retailer B’s ordering decision in each scenario. The comparison results

are given in the next proposition.

Proposition 2. Consider retailer B’s equilibrium first-period order quantity in different scenarios. The

following statements hold.

(a) yN
B,1 is decreasing in θ, whereas y0

B and yS
B,1 are independent of θ.

(b) y0
B < yN

B,1 < yS
B,1.

(c) As a function of γ, yS
B,1 − yN

B,1 is first increasing then decreasing (to zero) in γ.

First, Proposition 2(a) shows that how retailer B’s order quantity depends on θ is in contrast to

the results concerning retailer A. Specifically, only in Scenario N will the substitution rate affect

retailer B’s order, and the correlation is negative; in other scenarios, however, the substitution rate

is irrelevant to retailer B’s order decision. Due to the unilateral demand spillover, retailer B is

not concerned with the possible stock-out based substitution when there is no network effect, or

when the network effect only operates on individual sales. After all, in these scenarios, larger or

smaller θ will not affect retailer B’s overage or underage costs. In Scenario N, however, the demand

spillover does have an indirect impact on retailer B’s second-period market size. By spilling the

excess demand over to retailer A, the shared market induced by the non-specific network effect

may benefit retailer B. Hence, the larger the demand spillover is, the more incentive retailer B has

to order less – so it can enjoy the expanded future market with a smaller cost. This explains why

yN
B,1 is decreasing in θ.

Second, regardless of the system parameters, we always have the same ordered relationship

of retailer B’s order quantities across scenarios, as given in Proposition 2(b). To understand the

comparison y0
B < yN

B,1 and y0
B < yS

B,1, it is intuitive that, specific or non-specific, the network effect

always increases the underage cost of retailer B, and thus it tends to increase the order quantity

in the first period. In this way, the sales volume could be higher and the second-period market

may be larger due to the network effect. For the comparison yN
B,1 < yS

B,1, i.e., retailer B always orders

more in Scenario S than in Scenario N, the underlying reason is twofold. On the one hand, retailer

B faces a larger underage cost under the specific, rather than the non-specific, network effect. On
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the other hand, as discussed previously, the non-specific network effect depresses retailer B’s order

incentive: It will limit its order quantity to utilize the (total) market expansion at a lower cost.

Therefore, under the above two driving forces, retailer B’s first-period order quantity in Scenario

N is dominated by that in Scenario S.

In summary, although both types of network effects increase retailer B’s order quantity, the

increase is smaller under the non-specific network effect. Indeed, when the future market expan-

sion is from both retailers’ past sales and is going to be shared, the less cost-efficient firm may

want to take advantage of such collaborative feature of the network effect and strategically shift

excess demand to the rival who is more capable of stocking up to meet the demand. In this sense,

retailer B’s behavior of limiting its order quantity to send customers to retailer A can be seen as

“free-riding” the rival’s more cost-efficient stockpiling. The difference yS
B,1 − yN

B,1 reflects and mea-

sures such a free-riding behavior. Proposition 2(c) characterizes how the order difference depends

on the strength of the network effect: yS
B,1 − yN

B,1 is first increasing and then decreasing in γ. Hence,

when the network effect is relativelyweak, any incremental growth in the strength enlarges retailer

B’s free-riding behavior; that is, retailer B’s order increases less under the non-specific network

effect than it does under the specific network effect. However, when the network effect is already

strong, as it gets stronger, retailer B’s order will increase in similar magnitudes in both Scenarios

S and N, rendering the free-riding behavior diminishing in scale, even approaching zero.

4.2. Sales

Before investigating the retailers’ equilibrium profits, we use this subsection to first examine their

first-period expected sales in different scenarios. The reason why we focus on the sales in the first

period is threefold. First, in our two-period dynamicmodel, the first-period sales are the only effec-

tive state variables and thus deserve attention. Second, together with the order quantities, the sales

can offer useful insights into retailers’ profit generating performance. Third, most importantly, it is

through the retailers’ sales in the first period that the network effect influences the market dynam-

ics, so studying sales helps us understand how retailers’ strategies are formed.

We start with the individual retailer’s first-period sales under different types of network effects.

Proposition 3. Consider retailer i’s equilibrium first-period sales in Scenario k, i.e., Rk
i,1 for i = A, B and

k = S, N. The following statements hold.

(a) E[RS
A,1] and E[RN

A,1] are increasing in θ. Moreover, when γ is large, there exists a θ′ ∈ [0, 1] such that

E[RS
A,1]≥ E[RN

A,1] for θ ∈ [0, θ′] and E[RS
A,1]< E[RN

A,1] for θ ∈ [θ′, 1].

(b) E[RN
B,1] is decreasing in θ, whereas E[RS

B,1] is independent of θ. Moreover, E[RN
B,1]< E[RS

B,1].
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It is noteworthy that the monotonicity and the relative magnitude of each retailer’s sales in Scenar-

ios S and N are consistent with those of their order quantities; see Propositions 1&2. For retailer B,

due to the unilateral demand spillover, it is clear that its sales Rk
B,1 = min{X1/2, yk

B,1} has the same

property as its order yk
B,1 in Scenario k. For retailer A, however, it is not straightforward to have

the above result. In particular, the threshold in Proposition 3(a) is different from that in Proposi-

tion 1(b). Yet, qualitatively, we obtain a similar result that retailer A sells more [less] in Scenario

S when the substitution rate θ is small [large]. Therefore, our finding indicates that the retailers’

sales are mostly determined by its own order, even in the presence of stock-out based substitution.

Under the non-specific network effect, the market expansion is based on the total, rather than

individual, sales. Hence, for Scenario N, we scrutinize the retailers’ total sales in the first period.

Proposition 4. Consider retailers’ total equilibrium first-period sales in Scenario N, i.e., RN
1 . There exists

a γR > 0 such that, if γ > γR, E[RN
1 ] is first decreasing and then increasing in θ.

The above result does not directly follow from Proposition 3, because, with the non-specific net-

work effect, the two retailers’ sales change in opposite directions as θ increases: Retailer A’s sales

is boosted whereas retailer B’s sales diminish. As a result, as shown in Proposition 4, the impact

of the substitution rate on the total sales RN
1 is non-monotone if the non-specific network effect is

strong enough. Basically, as θ increases, each retailer receives an incentive to change its order quan-

tity. For retailer A, it tends to order more so that the sales go up to drive the next period demand

via the network effect, and this incentive gets stronger when θ is larger (more demand spillover

increases its underage cost). For retailer B, it decides to order less to free-ride the rival’s sales and

take advantage of the expanded common market; and this incentive is diminishing as θ becomes

large (more demand spillover makes the free-riding more effective so it does not have to sacrifice

too much first-period demand). Consequently, the total sales first decreases and then increases in

θ. In summary, the non-monotone impact of substitution rate on the two retailers’ total first-period

sales offers a perspective for us to understand how the non-specific network effect influences the

retailers’ profits, as we will see in the next subsections.

4.3. Profits

In this subsection, we investigate the impact of different types of network effects on the retailers’

equilibrium profits. The focus is on the comparison between Scenarios S and N, so that insights

could be shed on how the results of the duopoly competition are driven by the network effect with

contrasting natures. Our findings pivot on three parameters, namely, the stock-out based substitu-

tion rate θ, the retailers’ cost difference ∆c, and the strength of the network effect γ. In the duopoly
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competition, due to the cost asymmetry, retailer A enjoys an advantage against retailer B; more-

over, this advantage is naturally enhanced when θ or ∆c increases. Recall that the specific network

effect tends to ignite fierce competition while the non-specific network effect fosters collaboration

between firms. Hence, one may intuit that in Scenario S, the competition is intensified by the spe-

cific network effect, and retailer A will have more advantage and thus better outcome; by contrast,

in Scenario N, the non-specific network effect will soften the competition, which is beneficial to

retailer B. However, our results counter the above intuition by showing that there are exceptions

in both cases. That is, under certain conditions, retailer A [B] may be better [worse] off in Scenario

N than in Scenario S. In the following, Πk
i is retailer i’s total profit in Scenario k (i = A, B; k = S, N).

For retailerA, the next proposition gives themonotonicity property of its profit and characterizes

the situation where ΠS
A and ΠN

A cross each other.

Proposition 5. Consider retailer A’s equilibrium profit under different types of network effects. The fol-

lowing statements hold.

(a) ΠS
A is increasing in θ.

(b) There exist three thresholds, ∆A ∈ (0, p − cA), γA > 0, and θA ∈ [0, 1], such that, if ∆c ≥ ∆A and

γ ≥ γA, then we have ΠS
A ≥ ΠN

A for θ ∈ [0, θA] and ΠS
A ≤ ΠN

A for θ ∈ [θA, 1].

Since retailer A is in the advantageous position in the duopoly competition, the substitution rate

θ, which represents the intensity of the competition, is positively correlated with retailer A’s total

profit, regardless which type of the network effect is in presence. The unilateral demand spillover

to the more cost-efficient retailer is the main reason behind this result.

When comparing retailer A’s equilibrium profit in Scenarios S and N, we identify a counter-

intuitive case where ΠS
A ≤ ΠN

A . In particular, this case occurs when θ, ∆c, and γ are all relatively

large. As we mentioned, with a strong non-specific network effect, retailer B tends to order less in

the expectation that retailer A gets more demand and the future market expands more. This effect

is enhanced when the substitution rate θ and the cost difference are also large – because retailer

B’s “free-riding” behavior becomes even more efficient. This behavior in turn benefits retailer A’s

sales and profit (not only the first-period profit but also the second-period because the market is

expanded more). On the other hand, under a strong specific network effect, retailer B is taking a

rather different action, which is to order more quantity to drive up its own sales so that its own

futuremarket can be enlargedmore. As a consequence, retailer Awill get less substitution demand

and its profit performance will not be as good as in Scenario N.

Another angle of viewing this result is from the competition and collaboration relationship

between the two retailers. The conditions on parameters θ and ∆c (i.e., they are both large) imply
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that the duopoly competition is intensified and retailer A is in a very advantageous position. With

large γ, the retailers also face a strong network effect, and in Scenario S [N], a strong network effect

meansmore [less] competition. Hence, when the competition is already intense, an even escalated

competition level (e.g., due to the specific network effect) is not necessarily always beneficial to

the advantageous firm; rather, introducing some collaborative element (such as the non-specific

network effect) may be a better strategy.

Next, we look at retailer B’s profit in different scenarios. Similarly, we examine how its profit

depends on the system parameters and how the profit changes across scenarios. Our findings are

in parallel with those for retailer A.

Proposition 6. Consider retailer B’s equilibrium profit under different types of network effects. The fol-

lowing statements hold.

(a) ΠS
B is independent of θ, whereas ΠN

B is increasing in θ.

(b) There exist three thresholds, ∆B > 0, γB > 0, and θB ∈ [0, 1], such that, if 0 < ∆c ≤ ∆B and γ ≥ γB,

then we have ΠS
B ≥ ΠN

B for θ ∈ [0, θB] and ΠS
B ≤ ΠN

B for θ ∈ [θB, 1].

Here, retailer B’s profit is independent of the substitution rate in Scenario S but increases in θ in

Scenario N. Under the specific network effect, the two retailers are relatively independent in terms

of utilizing the network effect to generate new demand. Due to the one-sided substitution, retailer

B never receives excess demand from retailer A, and therefore its profit does not interact with

the substitution rate. Under the non-specific network effect, however, the demand spillover from

retailer B to retailer A turns out to have an impact back on retailer B, because the future market

induced by the network effect is for both retailers. Furthermore, we show that this positive impact

of θ on ΠN
B dominates the negative impact related to disadvantageous position in the competition,

resulting in the increasing relationship given in Proposition 6(a).

In Scenario N, retailer B has the incentive to order less and “free-ride” retailer A’s first-period

sales to get a larger second-period market. By contrast, in Scenario S, retailer B has to depend on

itself, so it tends to order more in the first-period (and thus has to sacrifice its first-period profit)

for the sake of network effects induced market expansion. In fact, retailer B always obtains higher

first-period profit in Scenario N. However, the benefit of the non-specific network effect for retailer

B does not seem to always extend to the second period. The comparison between ΠS
B and ΠN

B again

provides a counter-intuitive situation where retailer B is worse off in Scenario N. In this case, the

substitution rate is relatively small, the two retailers have a small cost difference, and the network

effect is strong. The underlying logic goes as follows. Seeing a strong non-specific network effect,
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retailer B wants to send many customers to retailer A by ordering small quantity, but the demand

spillover is only moderate due to a small substitution rate. As a result, retailer B’s second-period

profit is hurt. On the other hand, with a strong specific network effect, retailer B could achieve

a high second-period profit when it orders large quantity to obtain high sales in the first period,

especially when the competition is soft (both substitution rate and the cost difference are small).

Therefore, retailer B’s total profit turns to be higher in Scenario S than in Scenario N.

From the viewpoint of the duopoly competitive/collaborative relationship, the above results can

be interpreted as follows. When θ and ∆c are small, the duopoly competition is relaxed. Partic-

ularly, retailer B’s disadvantage with respect to the unilateral demand spillover becomes allevi-

ated and the retailers’ cost gap tends to close up. In this case, will retailer B continues to benefit

further when the competition intensity is reduced even more? Not necessarily. In fact, the more

collaborative-oriented non-specific network effect could actually hurt retailer B’s profit, compared

to when the competition-inducing specific network effect is present.

The above comparison results generate interesting insights into competing firms’ relationship.

Facing multiple levers to adjust the degrees of competition and collaboration between rivalries,

a healthy duopoly relationship should not go to extremities. Adding competitiveness may not

always benefit the advantageous firmwhen the competition is already intense; and, facing already

softened competition, the disadvantageous firm may not always prefer collaborative initiatives.

The proper level of competition is likely to be a mix of both.

5. Pricing Flexibility for Retailer A
Up to now, we have assumed that the two retailers post the same price p in both periods, and

this retail price is exogenous. This is the reason why the split of the seed demand is always half-

half – the customers are assumed to make their initial choice of purchase by just looking at the

posted price. In other words, although the retailers are not symmetric in nature due to the cost

difference, they appear the same to customers and each attract half of the market initially. The

primary goal of this section, therefore, is to include pricing strategy, an important marketing lever,

into the problem and study how the network effect affects the pricing. Price-setting newsvendors’

problem, in monopoly or in competitive settings, has been intensively studied in the literature

(see, e.g., Petruzzi and Dada 1999, Zhao and Atkins 2008, Salinger and Ampudia 2011). Departing

from the prior works, our paper focuses on the impact of the different types of network effects in a

dynamic duopoly game. Hence, to concentrate on the focal features, we will consider the pricing

flexibility for retailer A only. Specifically, we make the following assumptions in this section.
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Assumption 1. Retailer A has a certain level of pricing flexibility, whereas retailer B does not. That is,

retailer A can set its retail price but retailer B’s price is fixed at p.

We justify the above assumption from two aspects. First, since retailer A is advantageous against

retailer B in term of cost, it naturally has more rooms to price to its own benefit. In our online

retailing contexts, firms often face intense competition, and near-zero profit margin is not uncom-

mon across the industry. Hence, once the two retailers engage in a price war, retailer B will be the

first one to reach the minimum price for survival. From there on, retailer A still has some pric-

ing flexibility, but retailer B does not anymore. Second, endowing retailer A the pricing flexibility

complements our study. From previous sections, we identify a case that retailer B can “free-ride”

retailer A’s sales under the non-specific network effect to enjoy a larger future market. Having the

same posted price, retailer A has no way to counteract retailer B’s actions. Therefore, in this sec-

tion, we particularly investigate retailer A’s pricing strategy as a counteraction against retailer B’s

order decision under different types of network effects. Following the common practice in online

retailing, retailer A’s pricing decision is assumed to take the form of price discount: In period t,

there is a price markdown et ≥ 0 from retailer A, and thus its effective price is pA,t = p − et ≤ p.

Assumption 2. Retailer A decides its pricing strategy {et : t = 1, 2} before the two-period inventory com-

petition and commits to it throughout the game.

This assumption simply states that retailer A’s markdown pricing strategy is a longer-term deci-

sion than the inventory ordering decision. Indeed, newsvendor model is for perishable products

or products with short life cycle, and the classic model does not even consider the pricing decision.

Hence, in a newsvendor model, the pricing decision by default is at the long-term strategic level,

rather than at the short-term operational level. Practically, there are real-life evidences that sup-

port what we highlight here, namely, firms typically adjust prices less often than making ordering

decisions. According to the study conducted by Gautier et al. (2022), only 12.3% of products (out

of 166 products) in Europe see price changes within a month, and most of the changes are due to

sales and promotions; moreover, the study shows that similar result holds for different countries.

Therefore, in our model, the price markdown et (t = 1, 2) is decided by retailer A up front and is

committed to during the ensuing dynamic inventory competition. We further assume et ≤ ∆c so

that retailer A still has the advantage in margin after offering discount (as a result, the stock-out

based substitution is still one-sided).

Assumption 3. Given retailer A’s price markdown et, the splitting rule of the common market is given

by αA,t = 1/2 + βet, and αB,t = 1 − αA,t for t = 1, 2, where β > 0 is an exogenous parameter.
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Our assumption concerning the demand allocation captures the natural intuition that deeper price

markdown draws more customers. It is a direct generalization of the splitting rule in the base

model where both retailers set the same price. In fact, one way to interpret the assumed splitting

rule is to replace β with β′/p; then, it means that the extra market share gained by offering pro-

motion is proportional to the percentage price discount (i.e., the discount rate et/p). Furthermore,

the functional form of the demand allocation has a sound theoretical foundation: From consumer

choice perspective, the splitting of the common market, αi,t, can be derived from the Hotelling

model with chosen parameters (assuming full market coverage and setting the transportation cost

as (2β)−1). Finally, it is worth noting that, under the specific network effect, the price-dependent

splitting rule only applies to the seed demand, because the network effect induced market is not

for share. Under the non-specific network effect, however, it is the seed market plus the newly

generated market that is split based on the factor αi,t.

Incorporating the above assumptions, we modify the model formulated in Section 3 by adding

a Stage 0 before the two-period game, which is retailer A’s strategic decision on the markdowns in

the two periods. Therefore, given the pricing strategy, wemay solve the dynamic duopoly game in

the sameway as before, yielding retailers’ equilibrium inventory decisions and retailer A’s profit as

a function of price markdowns, i.e., Πk
A(e1, e2) for Scenario k = S, N. Note that the initial allocation

equations are given by (1), not by (2) or (3) anymore. In addition, we keep assuming the seed

demand follows a uniform distribution and the second-period profit is not discounted, i.e., ρ = 1.

Then, the modified model can be directly solved by optimizing retailer A’s profit:

max
0≤e1,e2≤∆c

Πk
A(e1, e2).

In the following, we attempt to answer three questions. How does the pricing strategy affect the

equilibrium results of the dynamic duopoly game? How to characterize retailer A’s optimal mark-

down pricing strategy in different scenarios? How does retailer A’s optimal profit under different

types of network effects compare with each other?

5.1. The Impact of the Price Markdowns on Order Quantities

Given a pricing strategy, after solving the two-period competitive newsvendor game, the equilib-

rium outcomes are all functions of (e1, e2). This subsection focuses on the retailers’ equilibrium

first-period order quantities and conducts comparative statics analysis to identify some interesting

monotonicity properties in different scenarios.

Proposition 7. Consider retailer i’s equilibrium first-period order quantity yk
i,1 as a function of (e1, e2)

in Scenario k (i = A, B, k = S, N).
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(a) There exists a γD
1 > 0 such that if γ > γD

1 , then yk
A,1 increases in e1 and yk

B,1 decreases in e1.

(b) In Scenario S, yS
A,1 decreases in e2 whereas yS

B,1 is independent of e2.

(c) In Scenario N, there exist three thresholds, θD ∈ [0, 1], βD > 0, and γD
2 > 0, such that yN

A,1 decreases

in e2 and yN
B,1 increases in e2 if θD ≤ θ ≤ 1, 0 < β < βD, and γ > γD

2 .

Proposition 7(a) characterizes the monotonicity of yk
i,1 regarding the first-period price markdown

e1. Interestingly, the two types of network effects give rise to a similarmonotonicity property:When

the network effect is strong enough, retailer A’s [B’s] first-period order quantity is positively [neg-

atively] affected by e1. The underlying reason for this result is the dominating role of retailers’

initial demand allocation in the first period. Specific or non-specific, a strong network effect pro-

vides great incentives for retailer A to concentrate on increasing the sales and expand its future

market. Thus, as e1 increases, retailer A enjoys a larger market share in the first period and it must

order more to guarantee larger sales. On the other hand, retailer A’s reduced price will divert more

customers away, leaving a smaller market for retailer B. As such, ordering less in the first period

is simply retailer B’s response to the declined demand.

Proposition 7(b)&(c) reveals that the monotonicity properties of retailers’ order quantities

regarding the second-period price markdown e2 is not the same anymore in different scenarios. In

Scenario S, larger e2 means that retailer A gets less unit margin in the second period, which renders

a lower underage cost via the specific network effect; as such, yS
A,1 becomes smaller. However, since

retailer B is in a disadvantageous position in the duopoly competition and it never gets substitu-

tion demand from the rival, its first-period order is independent of retailer A’s pricing strategy in

the second period.

In Scenario N, due to the interplay of retailers’ ordering strategies under the non-specific net-

work effect, the monotonicity properties become more involved. While retailer A’s order quantity

may still decrease in e2, just as in Scenario S, it is a completely different case for retailer B. In partic-

ular, Proposition 7(c) reveals an interesting situation where retailer A utilizes its pricing flexibility

to make retailer B order more in the first period, influencing its free-riding behavior. In this case,

retailer B’s first-period order quantity, which is independent in e2 under the specific network effect,

becomes increasing in e2. There are two drivers for this result. First, a larger second-period price

markdown leads to a lower underage cost for retailer A in the first period (via a strong network

effect), causing its order quantity to decrease. Hence, retailer B has to order more by itself to take

advantage of the network effect. Second, larger e2 decreases retailer B’s market allocation, hurting

its second-period profit. This sends incentive to retailer B to gain more profit in the first period

by ordering more and securing more sales. Note that, while the first driver originates from the
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collaborative nature of the non-specific network effect, the second driver reflects retailer A’s coun-

teraction against retailer B’s free-riding behavior.

5.2. Optimal Pricing Strategy

Next, we examine retailer A’s optimization problem over its pricing strategy under different types

of network effects. Since the objective function Πk
A(e1, e2) is complex, it is analytically difficult, if

not impossible, to obtain the close form solution. However, based on the properties of the profit

functions, we are able to compare retailer A’s optimal prices between periods under the specific

or the non-specific network effect. Furthermore, we present an interesting finding that retailer A

may adopt contrastingly different pricing strategies in Scenarios S versus N.

Proposition 8. Consider retailer A’s optimal pricing strategy under the two types of network effects.

There exists a γD ≥ 0 such that the following statements hold for γ > γD:

(a) In Scenario S, we have eS
1 ≥ eS

2 = 0; therefore αS
A,1 ≥ αS

A,2 =
1
2 and pS

A,1 ≤ pS
A,2 = p.

(b) In Scenario N, we have eN
2 ≥ eN

1 ≥ 0; therefore αN
A,2 ≥ αN

A,1 ≥ 1
2 and pN

A,2 ≤ pN
A,1 ≤ p.

Proposition 8 reveals that retailerA’s optimal pricing strategymay exhibit oppositemonotonicity

when the network effect is specific vis-à-vis non-specific. If the strength of the network effect is

large, then retailer A’s prices are increasing across the two periods in Scenario S but decreasing in

Scenario N. Let us first understand the underlying drivers of this result. In Scenario S, since the

network effect is based on individual sales, when γ is large enough, it makes sense for retailer A to

set relatively low first-period price to attract customers and expand its own market. In the second

period, retailer A will raise its price, pS
A,2 = p, and simply not give in profit because there is no

future market to consider. Overall, setting increasing prices in this scenario fits the exploration-

exploitation intuition, where firms first use low price to “explore” (expandmarket via the network

effect) and then “exploit” the market by pricing high.

In Scenario N, interestingly, retailer A’s pricing strategy is against the above intuition. The root

cause for retailerA’s prices to decrease across periods is that the non-specific network effect induces

a common market to share. When the non-specific network effect is strong, the newly generated

market can be very large. However, as we mentioned before, for this to work, retailer A invests

more in stockpiling and contributesmore sales than retailer B,who tends to “free-ride” this benefit.

Hence, for retailer A to get its fair share of the expandedmarket in the second period, it must price

low to attract more customers. The lowered price can be seen as retailer A using a marketing lever

to counteract retailer B’s operational decisions (which could potentially harm retailer A).
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Viewing the result from a higher level, we obtain a nice perspective towards the balanced com-

petitive relationship between the duopoly. Under a strong specific network effect, the competition

is intensified. Thus, the price competition is getting softened along time; in fact, retailer A in the

second period voluntarily forgoes its pricing flexibility, which is a relief of the pressure on retailer

B due to the price competition. Under the non-specific network effect, the collaborative aspect of

the firms is emphasized. When this effect is strong, the duopoly relationship is tilted towards the

non-competitive direction. As a result, retailer A’s pricing gets more aggressive as it attempts to

seize more market from retailer B. Therefore, similar to the insights derived in Section 4, even with

pricing decisions, we see that the competitive-collaborative relationship should not go to extrem-

ities but needs to be balanced.

5.3. Comparing Optimal Profit Between Scenarios

As parallel results with those in Section 4.3, retailers’ optimal profits are compared between Sce-

narios S and N. Recall that, in the main model with exogenous identical price, each retailer’s profit

may cross under the different types of network effects. That is, retailer A may gain more profit in

Scenario N whereas retailer B may achieve higher gains in Scenario S. Will this result hold when

retailer A possesses pricing flexibility? The main purpose of this subsection is to answer this ques-

tion. Since solving retailer A’s price optimization problem is intractable analytically, we resort to

numerical studies and make observations based on extensive experiments. Overall, when retailer

A optimally chooses the price markdowns, we can still observe the previous results; however, in

this case, we require slightly more restrictive conditions on the network effect strength.

We present a graphical illustration to visualize our findings; see Figure 1. From these graphs,

we gather observations regarding the retailers’ total profit (after price optimization) compari-

son in different scenarios, with the network effect being weak and strong, respectively. First, Fig-

ure 1(a)&(c) replicate the results in Propositions 5&6 for γ of median value. For retailer A, as θ

becomes large (approaching to 1), retailer A performs better in Scenario N than in Scenario S. For

retailer B, its profit is higher in Scenario S when θ is not large. Note that our choice of parameters

reflects the conditions in those propositions: The strength of network effects is not too small, and

the cost difference is large for retailer A’s comparison but small for retailer B’s.

Second, Figure 1(b)&(d) exemplify a violation of our previous propositions. Indeed, all other

parameters being the same, when γ gets even larger, the retailers’ profits in the two scenarios will

not cross each other anymore; instead, retailer A [B] always achieves higher profit in Scenario

S [N]. Hence, when retailer A is allowed to set prices, if the network effect is very strong, then

retailers’ profit under one type of network effects can dominate that under the other. This means
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Figure 1 Retailers’ final equilibrium profits comparison between Scenarios with different network effect strength.
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(a) Retailer A comparison; γ = 1.5
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(b) Retailer A comparison; γ = 4
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(c) Retailer B comparison; γ = 1.5
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(d) Retailer B comparison; γ = 4

Parameters: We fix p = 1, β = 1/4, and Xt ∼ U[0, 1], t = 1, 2. For retailer A’s comparison, we choose cA = 0.05, cB = 0.5;

and for retailer B’s comparison, we choose cA = 0.46, cB = 0.5.

that, for Propositions 5&6 to hold true here, their conditions need to be modified such that γ is

upper bounded. Moreover, the underlying reason behind the change is the same for both propo-

sitions: With pricing flexibility, retailer A will simply offer aggressive price markdowns, which

lets it win more market share on one hand and take advantage of the very strong network effect

on the other, both driving up retailer A’s profit. Note that, under the non-specific network effect,

although retailer B would also benefit from the strong network effect, it still cannot obtain more

profit because retailer A’s aggressive pricing will take away too much market.
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6. Concluding Remarks
Live-streaming e-commerce is a highly competitive market where customers, unlike traditional

retail, constantly engage in social interactions that shape their purchase decisions. A typical obser-

vation in such a context is that past sales can expand the future market – this is referred to as the

network effect. We take a novel approach to identify two types of network effects in a competitive

environment and distinguish the different ways they regulate the market diffusion process. Under

the specific network effect (Scenario S), an individual retailer’s market expansion is solely deter-

mined by its own past sales. Under the non-specific network effect (Scenario N), however, com-

peting retailers’ total past sales together generate new customers who are added to the common

market. As such, the two types of network effects inject different dynamics to the system and will

lead to contrasting results. To study them in details, we formulate and solve a two-period duopoly

competition between newsvendor-type online retailers with asymmetric costs. Three major find-

ings and their managerial implications are highlighted and discussed below.

First, under the non-specific network effect, the high-cost retailer (retailer B) may free-ride the

sales of the low-cost retailer (retailer A) and benefit from the common market expansion without

paying too much on inventory. Indeed, to take advantage of the expansion of the commonmarket,

retailer B can divert excess demand to its rival rather than trying to meet the demand by itself with

a higher cost. An implication of this result is that, facing a competitive rival with a lower operating

cost and when the non-specific network effect is in presence, an online retailer with a higher cost

can utilize the rival’s cost efficiency in inventory stockpiling and enjoy an enlarged future total

market. For retailer A, its order quantities exhibit different changes between the two scenarios, and

the intensity of the duopoly competition is a deciding factor.

Second, the comparison of the retailers’ profits between scenarios may sometimes go against the

intuition that, the low-cost [high-cost] retailer will do better under the specific [non-specific] net-

work effect. Such a seemingly plausible conjecture could be false, and we identify the conditions

underwhich the opposite is true. Interestingly, the conditions have a consistent implication regard-

ing the duopoly relationship: If the low-cost retailer already retains highly competitive advantages

against its rival, then compared to the non-specific network effect, it will not achieve a higher profit

under the specific network effect, which escalates the competition; if the high-cost retailer is in a

not-so-disadvantageous position, then it can perform better under the specific network effect than

the non-specific network effect, which entails a collaborative nature. Thus, online retailers may

meet their best interests with a balanced competitive-collaborative relationship.
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Third, with pricing flexibility, the low-cost retailer can counteract the high-cost retailer’s free-

riding by adopting an appropriate price markdown strategy. Here, we find that, under the non-

specific network effect, retailer A’s price is decreasing across periods. The low price in the second

period signifies retailer A’s intention to seize a larger portion of the common market, which is

expanded (mostly) due to its past sales. In other words, the low-cost retailer is trying to get a fair

share of the jointly induced market. By contrast, under the specific network effect, retailer A sets

increasing prices because it focuses more on exploiting the increased market in the second period.

Moreover, we find that our previous results can largely hold (with slightly more restrictive condi-

tions) when pricing flexibility is allowed. One practical implication is that, based on the interplay

between network effects and pricing strategies, the low-cost retailer can leverage its pricing flexi-

bility to its advantage and benefit more from the network effect.

To conclude, we point out some interesting avenues for future research, which could extend this

paper in multiple directions. (1) In practice, both types of network effects may co-exist and their

joint impact deserves further studies. The co-existence may arise from customers’ heterogeneous

means of social interactions; it may also come into being because of retailers’ different marketing

strategies (e.g., whether to clearly distinguish the brand names or not). (2) The online retailers

may sell non-perishable products and therefore inventory may be carried over across periods. In

this case, the systemdynamicsmust include the changes in inventory position, and the equilibrium

order quantities are expected to be more complicated. (3) Viewing through the lens of supply

chain management, our model can be extended to include the upstream manufacturers in the

distribution channels. The impact of network effects will ripple along the supply chains and, as a

result, trigger strategic reactions from different firms.
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Online Appendices to “Dynamic Competition in Online Retailing: The
Implications of Network Effects”

Appendix A: Proof of Statements

A.1. Proof of Statements in Section 3

Proof of Lemma 1: In benchmark scenario, retailer A maximizes its single-period profit in each period t:

max
yA,t

pE [yA,t ∧ DA,t]− cAyA,t = (p − cA)yA,t − pE [yA,t − DA,t]
+ ,

where DA,t =
1
2 Xt + θ

[
1
2 Xt − yB,t

]+
. Retailer A’s profit is concave in yA,t and its derivative w.r.t yA,t is p −

cA − pProb (DA,t ≤ yA,t), where

Prob (DA,t ≤ yA,t) =
∫ 2yB,t

0
1{z≤2yA,t

} f (z)dz +
∫ +∞

2yB,t

1{
z≤ 2

1+θ yA,t+
2θ

1+θ yB,t

} f (z)dz. (4)

If yA,t ≥ yB,t, 2yB,t ≤ 2
1+θ yA,t +

2θ
1+θ yB,t ≤ 2yA,t for θ ∈ [0, 1]. Thus, by (4), we have Prob (DA,t ≤ yA,t) =

F
(

2
1+θ yA,t +

2θ
1+θ yB,t

)
. If yA,t < yB,t, 2yA,t ≤ 2

1+θ yA,t +
2θ

1+θ yB,t ≤ 2yB,t for θ ∈ [0, 1]. Thus, by (4), we have

Prob (DA,t ≤ yA,t) = F (2yA,t). Therefore, the best response of retailer A is

y∗A,t(yB,t) =

{
1+θ

2 ζ0
A − θyB,t, if yB,t ≤ 1

2 ζ0
A,

1
2 ζ0

A, if yB,t >
1
2 ζ0

A,
(5)

where ζ0
A := F−1(1 − cA

p ). On the other hand, retailer B’s problem is as follows:

max
yB,t

pE [yB,t ∧ DB,t]− cByB,t = (p − cB)yB,t − pE [yB,t − DB,t]
+ ,

where DB,t =
1
2 Xt + θ

[
1
2 Xt − yA,t

]+
. By analogous arguments, the best response of retailer B is

y∗B,t(yA,t) =

{
1+θ

2 ζ0
B − θyA,t, if yA,t ≤ 1

2 ζ0
B,

1
2 ζ0

B, if yA,t >
1
2 ζ0

B,
(6)

where ζ0
B := F−1(1 − cB

p ).

Since cA < cB, we have ζ0
A > ζ0

B. By combining (5) and (6), there exists a unique Nash equilibrium

(y0
A,t, y0

B,t), where y0
A,t ≡ y0

A := 1+θ
2 ζ0

A − θ
2 ζ0

B and y0
B,t ≡ y0

B := 1
2 ζ0

B for t = 1, 2.

Last, by substituting y0
A,t and y0

B,t into retailers’ profit functions, retailers A’s and B’s equilibrium

profit in benchmark scenario is π0
A,t and π0

B,t, respectively: π0
A,t = π0

A := (p − cA)y0
A − pE[L0

A] and

π0
B,t = π0

B := (p − cA)y0
B − pE[L0

B], where L0
A := 1

2
[
(1 + θ)ζ0

A − θζ0
B − Xt − θ(Xt − ζ0

B)
+
]+ and L0

B :=
1
2

[
ζ0

B − Xt − θ
{

Xt − (1 + θ)ζ0
A + θζ0

B
}+]+, t = 1, 2. Furthermore, retailer i’s equilibrium sales in each

period are R0
i,t = R0

i := y0
i − L0

i , i = A, B and t = 1, 2. Thus, we have proved Lemma 1. Q.E.D.

Proof of Lemma 2: We first study the subgame in the second period. Given the first-period seed demand X1

and retailers’ first-period sales, retailer A maximizes its second-period profit:

max
yA,2

E [p(yA,2 ∧ DA,2)− cAyA,2|X1]
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= E

(p − cA)yA,2 − p

(
yA,2 −

1
2

X2 − γRA,1 − θ

(
1
2

X2 + γRB,1 − yB,2

)+
)+ ∣∣∣∣X1


= E

(p − cA)yA,2 − p

(
yA,2 −

1
2

X2 − θ

(
1
2

X2 − yB,2

)+
)+

+ (p − cA)γRA,1

∣∣∣∣X1

 (7)

where DA,2 =
1
2 X2 + γRA,1 + θ

[
1
2 X2 + γRB,1 − yB,2

]+
, yA,2 := yA,2 − γRA,1, and yB,2 := yB,2 − γRB,1. Given

firm i’s first-period sales, yi,2 is uniquely determined by yi,2. Thus, we use yA,2 and yB,2 as firm A’s and firm

B’s second-period decision, respectively. Note that the profit function in (7) is concave in yA,2. By analogous

arguments in the proof of Lemma 1, retailer A’s best response in the second period is:

y∗A,2(yB,2) =

{
1+θ

2 ζ0
A − θyB,2, if yB,2 ≤ 1

2 ζ0
A,

1
2 ζ0

A, if yB,2 >
1
2 ζ0

A.
(8)

On the other hand, given X1 and retailers’ first-period sales, retailer B maximizes its second-period profit:

max
yB,2

E [p(yB,2 ∧ DB,2)− cByB,2|X1]

= E

(p − cB)yB,2 − p

(
yB,2 −

1
2

X2 − γRB,1 − θ

(
1
2

X2 + γRA,1 − yA,2

)+
)+ ∣∣∣∣X1


= E

(p − cB)yB,2 − p

(
yB,2 −

1
2

X2 − θ

(
1
2

X2 − yA,2

)+
)+

+ (p − cB)γRB,1

∣∣∣∣X1

 , (9)

where DB,2 =
1
2 X2 + γRB,1 + θ

[
1
2 X2 + γRA,1 − yA,2

]+
. Retailer B’s profit function in (9) is concave in yB,2.

By analogous arguments in the proof of Lemma 1, retailer B’s best response in the second period is:

y∗B,2(yA,2) =

{
1+θ

2 ζ0
B − θyA,2, if yA,2 ≤ 1

2 ζ0
B,

1
2 ζ0

B, if yA,2 >
1
2 ζ0

B,
(10)

By combining (8) and (10), there exists a uniqueNash equilibrium in the secondperiod, (yS
A,2, yS

B,2), where

yS
A,2 = y0

A and yS
B,2 = y0

B. That is, retailers’ equilibrium order quantities are yS
A,2 = y0

A + γRA,1 and yS
B,2 =

y0
B + γRB,1. Furthermore, by substituting yS

A,2 and yS
B,2 into (7) and (9), retailer A’s second-period profit

equals π0
A + (p − cA)γE [RA,1|X1] and retailer B’s second period profit equals π0

B + (p − cB)γE [RB,1|X1].

Next, we study two retailers’ competition in the first period. Firm A’s optimizes its order quantity to max-

imize its profit in two periods:

max
yA,1

pE [yA,1 ∧ DA,1]− cAyA,1 + ρ(p − cA)γE [yA,1 ∧ DA,1] + ρπ0
A

= [p − cA + ρ(p − cA)γ]yA,1 − [p + ρ(p − cA)γ]E [yA,1 − DA,1]
+ + ρπ0

A, (11)

where DA,1 =
1
2 X1 + θ

[
1
2 X1 − yB,1

]+
. Note that profit function in (11) is concave in yA,1 and it derivative

w.r.t. yA,1 is (p − cA) + ργ(p − cA)− [p + ργ(p − cA)]Prob (DA,1 ≤ yA,1), where Prob (DA,1 ≤ yA,1) follows

(4). Thus, by analogous arguments in the proof of Lemma 1, the best response of retailer A is

y∗A,1(yB,1) =

{
1+θ

2 ζS
A − θyB,1, if yB,1 ≤ 1

2 ζS
A,

1
2 ζS

A, if yB,1 >
1
2 ζS

A,
(12)
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where ζS
A := F−1(1− cA

p+ργ(p−cA)
). On the other hand, retailer B optimizes its order quantity to maximize its

total profit in two periods:

max
yB,1

pE [yB,1 ∧ DB,1]− cByB,1 + ρ(p − cB)γE [yB,1 ∧ DB,1] + ρπ0
B

= [p − cB + ρ(p − cB)γ]yB,1 − [p + ρ(p − cB)γ]E [yB,1 − DB,1]
+ + ρπ0

B, (13)

where DB,1 =
1
2 X1 + θ

[
1
2 X1 − yA,1

]+
. Note that the profit function in (13) is concave in yB,1. By analogous

arguments, retailer B’s best response is

y∗B,1(yA,1) =

{
1+θ

2 ζS
B − θyA,1, if yA,1 ≤ 1

2 ζS
B,

1
2 ζS

B, if yA,1 >
1
2 ζS

B,
(14)

where ζS
B := F−1(1 − cB

p+ργ(p−cB)
). Note that ζS

i > ζ0
i when γ > 0 since ρ > 0 and p > ci, i = A, B.

Since cA < cB, we have cA
p+ργ(p−cA)

< cB
p+ργ(p−cB)

and thus ζS
A > ζS

B. By combining (12) and (14), there

exists a unique Nash equilibrium (yS
A,1, yS

B,1), where yS
A,1 = 1+θ

2 ζS
A − θ

2 ζS
B, yS

B,1 = 1
2 ζS

B, and ζS
i := F−1(1 −

ci
p+ργ(p−ci)

), i = A, B.

Last, by substituting yS
A,1 and yS

B,1 into (11) and (13), we have retailers’ equilibrium profits as fol-

lows: ΠS
A = [p − cA + ρ(p − cA)γ]yS

A,1 − [p + ρ(p − cA)γ]E[LS
A,1] + ρπ0

A and ΠS
B = [p − cB + ρ(p −

cB)γ]yS
B,1 − [p + ρ(p − cB)γ]E[LS

B,1] + ρπ0
B, where LS

A,1 := 1
2
[
(1 + θ)ζS

A − θζS
B − X1 − θ(X1 − ζS

B)
+
]+ and

LS
B,1 := 1

2

[
ζS

B − X1 − θ
{

X1 − (1 + θ)ζS
A + θζS

B
}+]+. Furthermore, retailers’ equilibrium first-period sales

are RS
A,1 := yS

A,1 − LS
A,1 and RS

B,1 := yS
B,1 − LS

B,1. Retailers’ second-period order quantities are yS
A,2 = y0

A +

γRS
A,1 and yS

B,2 = y0
B + γRS

B,1. Thus, we have proved Lemma 2. Q.E.D.

Proof of Lemma 3: We first study the subgame in the second period. Retailers’ demand is DA,2 =
1
2 X2 +

1
2 γR1 + θ

[
1
2 X2 +

1
2 γR1 − yB,2

]+
and DB,2 =

1
2 X2 +

1
2 γR1 + θ

[
1
2 X2 +

1
2 γR1 − yA,2

]+
. Let yA,2 := yA,2 − 1

2 γR1

and yB,2 := yB,2 − 1
2 γR1, by analogous arguments in the proof of Lemma 2, we have retailer A’s second-

period best response, which has the same form as (8). Moreover, by analogous arguments in the proof of

Lemma 2, we have retailer B’s second-period best response, which has the same form as (10).

By combining two retailers’ best responses, there exists a unique Nash equilibrium in the second period,

(yN
A,2, yN

B,2), where yN
A,2 = y0

A and yN
B,2 = y0

B. That is, retailer A’s equilibrium order quantity is yN
A,2 = y0

A +

1
2 γR1 and yN

B,2 = y0
B + 1

2 γR1. Furthermore, by substituting yN
A,2 and yN

B,2, retailer A’s second-period profit

equals π0
A + 1

2 (p − cA)γE [R1|X1] and retailer B’s second-period profit equals π0
B + 1

2 (p − cB)γE [R1|X1].

Next, we study two firms’ competition in the first period. Retailer A’s maximizes its profit in two periods:

max
yA,1

pE [yA,1 ∧ DA,1]− cAyA,1 + ρ
1
2
(p − cA)γE [(yA,1 ∧ DA,1) + (yB,1 ∧ DB,1)] + ρπ0

A

= [p − cA +
1
2

ρ(p − cA)γ]yA,1 − [p +
1
2

ρ(p − cA)γ]E [yA,1 − DA,1]
+

+
1
2

ρ(p − cA)γyB,1 −
1
2

ρ(p − cA)γE [yB,1 − DB,1]
+ + ρπ0

A, (15)

where Di,1 =
1
2 X1 + θ

[
1
2 X1 − yj,1

]+
, j 6= i and i, j = A, B. The first-order derivative of profit function in (15)
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w.r.t. yA,1 is p− cA + 1
2 ρ(p− cA)γ− [p+ 1

2 ρ(p− cA)γ]Prob(DA,1 ≤ yA,1)− 1
2 ρ(p− cA)γ

∂E[yB,1−DB,1]
+

∂yA,1
, where

Prob(DA,1 ≤ yA,1) is same to (4) and

E (yB,1 − DB,1)
+ =

∫ 2yA,1

0
(yB,1 −

1
2

z)+ f (z)dz +
1 + θ

2

∫ +∞

2yA,1

(
2

1 + θ
yB,1 +

2θ

1 + θ
yA,1 − z

)+

f (z)dz. (16)

If yA,1 ≥ yB,1, 2
1+θ yA,1 + 2θ

1+θ yB,1 ∈ [2yB,1, 2yA,1] and 2
1+θ yB,1 + 2θ

1+θ yA,1 ∈ [2yB,1, 2yA,1] for θ ∈ [0, 1].

Thus, Prob (DA,1 ≤ yA,1) = F
(

2
1+θ yA,1 +

2θ
1+θ yB,1

)
and ∂E[yB,1−DB,1]

+

∂yA,1
= ∂

∂yA,1

∫ 2yB,1
0 (yB,1 − 1

2 z) f (z)dz = 0.

If yA,1 < yB,1, 2
1+θ yA,1 + 2θ

1+θ yB,1 ∈ [2yA,1, 2yB,1] and 2
1+θ yB,1 + 2θ

1+θ yA,1 ∈ [2yA,1, 2yB,1] for θ ∈ [0, 1].

Thus, P (DA,1 ≤ yA,1) = F (2yA,1) and ∂E[yB,1−DB,1]
+

∂yA,1
= θ

[
F
(

2
1+θ yB,1 +

2θ
1+θ yA,1

)
− F (2yA,1)

]
. Therefore,

if yA,1 ≥ yB,1, the first-order derivative of retailer A’s profit function in (15) is p − cA + 1
2 ρ(p −

cA)γ − [p + 1
2 ρ(p − cA)γ]F

(
2

1+θ yA,1 +
2θ

1+θ yB,1

)
, and its second-order derivative is − 2

1+θ [p + 1
2 ρ(p −

cA)γ] f
(

2
1+θ yA,1 +

2θ
1+θ yB,1

)
. If yA,1 < yB,1, the first-order derivative of retailer A’s profit function in (15)

is p − cA + 1
2 ρ(p − cA)γ − [p + 1

2 ρ(p − cA)γ(1 − θ)]F (2yA,1) − 1
2 ρ(p − cA)γθF

(
2

1+θ yB,1 +
2θ

1+θ yA,1

)
, and

its second-order derivative is −2[p + 1
2 ρ(p − cA)γ(1 − θ)] f (2yA,1)− ρ(p − cA)γ

θ2

1+θ f
(

2
1+θ yB,1 +

2θ
1+θ yA,1

)
.

Therefore, given yB,1 ≥ 0, retailer A’s profit function in (15) has two concave pieces for yA,1 ≥ yB,1 and yA,1 <

yB,1. Furthermore, the first-order derivative of retailer A’s profit function is continuous at yA,1 = yB,1. Thus,

retailer A’s profit function is concave in yA,1 for yA,1 ≥ 0. Therefore, retailer A’s best response is as follows:

If yB,1 ≤ 1
2 ζN

A , where ζN
A := F−1

(
1 − cA

p+ 1
2 ργ(p−cA)

)
, y∗A,1(yB,1) =

1+θ
2 ζN

A − θyB,1; If yB,1 >
1
2 ζN

A , the following

equation,

p− cA +
1
2

ρ(p− cA)γ = [p+
1
2

ρ(p− cA)γ(1− θ)]F
(
2y∗A,1(yB,1)

)
+

1
2

ρ(p− cA)γθF

(
2yB,1 + 2θy∗A,1(yB,1)

1 + θ

)
,

implicitly characterizes y∗A,1(yB,1). By the above equation, y∗A,1(yB,1) is decreasing in yB,1 and goes to
1
2 F−1

(
1 − cA

p+ 1
2 ρ(p−cA)γ(1−θ)

)
as yB,1 →+∞.

On the other hand, retailer B maximizes its profits in two periods:

max
yB,1

pE [yB,1 ∧ DB,1]− cByB,1 +
1
2

ρ(p − cB)γE [(yA,1 ∧ DA,1) + (yB,1 ∧ DB,1)] + ρπ0
B

= [p − cB +
1
2

ρ(p − cB)γ]yB,1 − [p +
1
2

ρ(p − cB)γ]E [yB,1 − DB,1]
+

+
1
2

ρ(p − cB)γyA,1 −
1
2

ρ(p − cB)γE [yA,1 − DA,1]
+ + ρπ0

B. (17)

By analogous arguments for retailer A’s problem, the best response of retailer B is as follows: If yA,1 <

1
2 F−1

(
1 − cB

p+ 1
2 ργ(p−cB)

)
, y∗B,1(yA,1) =

1+θ
2 F−1

(
1 − cB

p+ 1
2 ργ(p−cB)

)
− θyA,1; If yA,1 ≥ 1

2 F−1
(

1 − cB
p+ 1

2 ργ(p−cB)

)
,

the following equation

p − cB +
1
2

ρ(p − cB)γ = [p +
1
2

ρ(p − cB)γ(1− θ)]F
(
2y∗B,1(yA,1)

)
+

1
2

ρ(p − cB)γθF

(
2yA,1 + 2θy∗B,1(yA,1)

1 + θ

)
,

implicitly characterizes y∗B,1(yA,1). By the above equation, y∗B,1(yA,1) is decreasing in yA,1 and goes to
1
2 F−1

(
1 − cB

p+ 1
2 ρ(p−cB)γ(1−θ)

)
as yA,1 →+∞.

We show that there exists a unique Nash equilibrium of the two-period game, (yN
A,1, yN

B,1), which is in area

{(yA,1, yB,1) : yA,1 ≥ yB,1}: We first show that there exists no equilibrium in area {(yA,1, yB,1) : yA,1 < yB,1},
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i.e., two firms’ best responses do not intersect each other in the area. We assume, to the contrary, there exists

an equilibrium in area {(yA,1, yB,1) : yA,1 < yB,1}. Thus, it must satisfy the following system:p − cA + 1
2 ρ(p − cA)γ = [p + 1

2 ρ(p − cA)γ(1 − θ)]F (2yA,1) +
1
2 ρ(p − cA)γθF

(
2

1+θ yB,1 +
2θ

1+θ yA,1

)
p − cB + 1

2 ρ(p − cB)γ = [p + 1
2 ρ(p − cB)γ]F

(
2

1+θ yB,1 +
2θ

1+θ yA,1

)
.

(18)

Since yA,1 < yB,1, 2
1+θ yB,1 + 2θ

1+θ yA,1 ≥ yB,1 + yA,1 > 2yA,1 for θ ∈ [0, 1]. Thus, F
(

2
1+θ yB,1 +

2θ
1+θ yA,1

)
>

F (2yA,1) for θ ∈ [0, 1]. Thus, by the first equation in (18), we have p − cA + 1
2 ρ(p − cA)γ < [p + 1

2 ρ(p −

cB)γ]F
(

2
1+θ yB,1 +

2θ
1+θ yA,1

)
, which contradicts with the second equation in (18). Therefore, there exists no

equilibrium in area {(yA,1, yB,1) : yA,1 < yB,1}. Next, by the above arguments, both retailers’ best responses

are decreasing in yB,1 in area {(yA,1, yB,1) : yA,1 ≥ yB,1}, where retailer A’s best response drops from 1+θ
2 ζN

A

to 1
2 ζN

A on interval [0, 1
2 ζN

A ] and retailer B’s best response drops from infinity to 1
2 F−1

(
1 − cB

p+ 1
2 ργ(p−cB)

)
on

interval
(

1
2 F−1

(
1 − cB

p+ 1
2 ρ(p−cB)γ(1−θ)

)
, 1

2 F−1
(

1 − cB
p+ 1

2 ργ(p−cB)

)]
. Therefore, there exists a unique equilib-

rium, (yN
A,1, yN

B,1), which solves the following system:p − cA + 1
2 ρ(p − cA)γ = [p + 1

2 ρ(p − cA)γ]F
(

2
1+θ yA,1 +

2θ
1+θ yB,1

)
p − cB + 1

2 ρ(p − cB)γ = [p + 1
2 ρ(p − cB)γ(1 − θ)]F (2yB,1) +

1
2 ρ(p − cB)γθF

(
2

1+θ yA,1 +
2θ

1+θ yB,1

)
.

By the above system, we have yN
A,1 =

1+θ
2 ζN

A − θ
2 ζN

B and yN
B,1 =

1
2 ζN

B , where

ζN
A = F−1

(
1 − cA

p + 1
2 ργ(p − cA)

)
and ζN

B = F−1

1 −
cB − 1

2 ργθ(p − cB)
cA

p+ 1
2 ργ(p−cA)

p + 1
2 ργ(1 − θ)(p − cB)

 . (19)

Moreover, by the definition, we have ζN
A < ζS

A.

Last, by substituting yN
A,1 and yN

B,1 into (15) and (17), retailers’ equilibrium profits are ΠN
A :=

[p − cA + 1
2 ρ(p − cA)γ]yN

A,1 − [p + 1
2 ρ(p − cA)γ]E[LN

A,1] +
1
2 ρ(p − cA)γyN

B,1 − 1
2 ρ(p − cA)γE[LN

B,1] +

ρπ0
A and ΠN

B := [p − cB + 1
2 ρ(p − cB)γ]yN

B,1 − [p + 1
2 ρ(p − cB)γ]E[LN

B,1] +
1
2 ρ(p − cB)γyN

A,1 − 1
2 ρ(p −

cB)γE[LN
A,1] + ρπ0

B, where LN
A,1 := 1

2 [(1 + θ)ζN
A − θζN

B − X1 − θ(X1 − ζN
B )+]+ and LN

B,1 := 1
2 [ζ

N
B − X1 −

θ
{

X1 − (1 + θ)ζN
A + θζN

B
}+

]+. Furthermore, retailers’ equilibrium first-period sales are RN
A,1 := yN

A,1 − LN
A,1,

RN
B,1 := yN

B,1 − LN
B,1, and RN

1 := RN
A,1 + RN

B,1. Retailers’ second-period equilibrium order quantities are yN
A,2 =

y0
A + 1

2 γRN
1 and yS

B,2 = y0
B + 1

2 γRN
1 . Thus, we have proved Lemma 3. Q.E.D.

A.2. Proof of Statements in Section 4

Proof of Lemma 4: (a). By Lemma 1, since cA < cB and thus ζ0
A > ζ0

B, we have y0
A − y0

B = 1+θ
2 (ζ0

A − ζ0
B)> 0,

t = 1, 2, for θ ∈ [0, 1].

(b). We first study Scenario S. By Lemma 2, since cA < cB and ζS
A > ζS

B, we have yS
A,1 − yS

B,1 =
1+θ

2 (ζS
A −

ζS
B)> 0. Furthermore, by Lemma 2 and part (a), yS

A,2 − ZS
A,2 = y0

A > y0
B = yS

B,2 − ZS
B,2, for θ ∈ [0, 1].

Second, we study Scenario N. Since

∂

∂θ

cB − 1
2 ργθ(p − cB)

cA
p+ 1

2 ργ(p−cA)

p + 1
2 ργ(1 − θ)(p − cB)

=
2γpρ(γρ + 2)(cB − cA)(p − cB)

(p(γρ + 2)− cAγρ)[p(2 + γρ(1 − θ))− cBγρ(1 − θ)]2
≥ 0 (20)
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for θ ∈ [0, 1], we have

cB − 1
2 ργθ(p − cB)

cA
p+ 1

2 ργ(p−cA)

p + 1
2 ργ(1 − θ)(p − cB)

≥ cB

p + 1
2 ργ(p − cB)

>
cA

p + 1
2 ργ(p − cA)

,

where the first inequality holds by (20) and the second holds by cA < cB. Thus, by their definition in Lemma

4, we have ζN
A > ζN

B . By Lemma 3, yN
A,1 − yN

B,1 =
1+θ

2 (ζN
A − ζN

B )> 0. Furthermore, by Lemma 3 and part (a),

yN
A,2 − ZN

A,2 = y0
A > y0

B = yN
B,2 − ZN

B,2, for θ ∈ [0, 1]. Q.E.D.

Proof of Proposition 1: By Lemma 1, y0
A,1 =

1+θ
2 ζ0

A − θ
2 ζ0

B = 1
2 ζ0

A + θ
2 (ζ

0
A − ζ0

B). Since cA < cB, ζ0
A > ζ0

B and

thus y0
A,1 is increasing in θ ∈ [0, 1]. By Lemma 2, yS

A,1 =
1+θ

2 ζS
A − θ

2 ζS
B = 1

2 ζS
A + θ

2 (ζ
S
A − ζS

B). Since cA < cB,

ζS
A > ζS

B and thus yS
A,1 is increasing in θ ∈ [0, 1]. By Lemma 3, yN

A,1 =
1+θ

2 ζN
A − θ

2 ζN
B = 1

2 ζN
A + θ

2 (ζ
N
A − ζN

B ). By

the proof of Lemma 4, we have ζN
A > ζN

B . Furthermore, we have

∂ζN
B

∂θ
=

∂

∂θ
F−1

1 −
cB − 1

2 ργθ(p − cB)
cA

p+ 1
2 ργ(p−cA)

p + 1
2 ργ(1 − θ)(p − cB)


= − 1

f

(
1 −

cB− 1
2 ργθ(p−cB)

cA
p+ 1

2 ργ(p−cA)

p+ 1
2 ργ(1−θ)(p−cB)

) ∂

∂θ

cB − 1
2 ργθ(p − cB)

cA
p+ 1

2 ργ(p−cA)

p + 1
2 ργ(1 − θ)(p − cB)

≤ 0, (21)

where the inequality holds by (20). Thus, we have ∂yN
A,1

∂θ = 1
2 (ζ

N
A − ζN

B ) − θ
2

∂ζN
B

∂θ > 0, where the inequality

holds by ζN
A > ζN

B and (21). Thus, yN
A,1 is increasing in θ.

(a). First, we compare y0
A,1 and yS

A,1. Since X1 ∼ U[µ − σ, µ + σ], by Lemma 1 and Lemma 2, we have the

closed forms of y0
A,1 and yS

A,1. Note that y0
A,1 and yS

A,1 are linearly increasing in θ. If θ = 0, we have yS
A,1 −

y0
A,1 = γcA(p−cA)σ

p(γp−γcA+p) > 0. If θ = 1, we have yS
A,1 − y0

A,1 = γσ
p(−γcA+γp+p)(−γcB+γp+p) gS0

A (γ), where gS0
A (γ) =

(2cA − cB)(p − cA)(p − cB)γ + p(−2c2
A − cB(p − cB) + 2cA p). Note that, if cA < 1

2 cB, since γ is large, then

(2cA − cB)(p − cA)(p − cB)< 0 and gS0
A (γ)< 0. Thus, there exists a θS0 such that yS

A,1 ≤ y0
A,1 for θ ∈ [θS0, 1]

if cA < 1
2 cB.

Second, we compare y0
A,1 and yN

A,1. Since X1 ∼ U[µ − σ, µ + σ], by Lemma 3, we have the closed forms of

yN
A,1. Note that yN

A,1 is convexly increasing in θ since ∂2yN
A,1

∂θ2 = 4γ(γ+2)pσ(cB−cA)(p−cB)[(γ+2)p−γcB ]
((γ+2)p−γcA)[p(γ(1−θ)+2)−γcB(1−θ)]3

≥ 0. If θ = 0,

we have yN
A,1 − y0

A,1 =
γcAσ(p−cA)

p((γ+2)p−γcA)
> 0. If θ = 1, we have yN

A,1 − y0
A,1 =

γcAσ(−2cA+cB+p)
p((γ+2)p−γcA)

> 0. For θ ∈ (0, 1), we

have yN
A,1 − y0

A,1 =
γσ

p((γ+2)p−γcA)(p(γ(1−θ)+2)+γcB(1−θ))
gN0

A (θ), where gN0
A (θ) = (cB − cA)(p − cB)((γ + 2)p −

γcA)θ
2 + [−2c2

A p + cA
(
−γc2

B + γcB p + 2p2) + (γ + 2)cB p(cB − p)]θ + cA(p − cA)((γ + 2)p − γcB). Note

that (cB − cA)(p − cB)((γ + 2)p − γcA) > 0. Furthermore, when γ is large, the quadratic function gN0
A (θ)

must have two roots on [0, 1], i.e., θN0, θ
N0 ∈ [0, 1]. Thus, gN0

A (θ)≤ 0 (and thus, yN
A,1 ≤ y0

A,1) for θ ∈ [θN0, θ
N0

].

(b). We already show that yS
A,1 is linearly increasing in θ and yN

A,1 is convexly increasing in θ.

Furthermore, if θ = 0, we have yS
A,1 − yN

A,1 = γcAσ(p−cA)
(−γcA+γp+p)((γ+2)p−γcA)

> 0. If θ = 1, we have yS
A,1 −

yN
A,1 =

σγ
(−γcA+γp+p)((γ+2)p−γcA)(−γcB+γp+p) gSN

A (γ), where gSN
A (γ) :=−(cB − cA)(p − cA)(p − cB)γ

2 − (p −
cB)(3c2

A + 3cB p − 2cA(cB + 2p))γ + p(−2c2
A − cAcB − 2cB(p − cB) + 3cA p) and has the same sign as yS

A,1 −
yN

A,1. Since γ is large, gSN
A (γ) < 0 and thus yS

A,1 < yN
A,1 at θ = 1. By the above arguments, there exists a



: Dynamic Competition with Network Effects
7

θSN ∈ [0, 1] such that yS
A,1 ≥ yN

A,1 for θ ∈ [0, θSN ] and yS
A,1 ≤ yN

A,1 for θ ∈ [θSN , 1]. Q.E.D.

Proof of Proposition 2: (a). By Lemma 1 and Lemma 2, y0
B,1 =

1
2 ζ0

B and yS
B,1 =

1
2 ζS

B are both independent of

θ. By Lemma 3, yN
B,1 =

1
2 ζN

B . By (21), we have ∂yN
B,1

∂θ = 1
2

∂ζN
B

∂θ ≤ 0. Thus, yN
B,1 is decreasing in θ.

(b). When γ > 0, y0
B,1 < yN

B,1 < yS
B,1 holds if and only if

cB
p
>

cB − 1
2 ργθ(p − cB)

cA
p+ 1

2 ργ(p−cA)

p + 1
2 ργ(1 − θ)(p − cB)

>
cB

p + ργ(p − cB)
(22)

for θ ∈ [0, 1]. By (20), we have

cB − 1
2 ργ(p − cB)

cA
p+ 1

2 ργ(p−cA)

p
≥

cB − 1
2 ργθ(p − cB)

cA
p+ 1

2 ργ(p−cA)

p + 1
2 ργ(1 − θ)(p − cB)

≥ cB

p + 1
2 ργ(p − cB)

. (23)

Furthermore, since

cB
p
>

cB − 1
2 ργ(p − cB)

cA
p+ 1

2 ργ(p−cA)

p
and cB

p + 1
2 ργ(p − cB)

>
cB

p + ργ(p − cB)
,

(22) holds for all θ ∈ [0, 1].

(c). By Lemma 2 and Lemma 3, we have ∂
∂θ (y

S
B,1 − yN

B,1) = (p − cB)gSN
B (γ)/[(−γcA + γp + 2p)2(γcB −

γp − p)2(γcBθ − γcB − γθp + γp + 2p)2], where gSN
B (γ) = ∑4

j=0 aSN
j γj with aSN

4 ≤ 0, aSN
3 ≤ 0, aSN

1 ≥ 0, and

aSN
0 ≥ 0. By Descartes’ Rule of Signs, gSN

B (γ) has only one positive real root and decreases in γ for γ ≥ 0.

So, gSN
B (γ) is first positive then negative, as γ increases. Hence, yS

B,1 − yN
B,1 first increases then decreases in

γ. Furthermore, yS
B,1 − yN

B,1 =
γσ(cB−p)(γcAcB(θ−1)−2(γ+1)cAθp+(γ+2)cB(θ+1)p)
((γ+2)p−γcA)(−γcB+γp+p)(p(γ(θ−1)−2)−γcB(θ−1)) , which goes to zero as γ →+∞.

Q.E.D.

Proof of Proposition 3: (a). By Lemma 2, we have the closed form of E[RS
A,1]. Since ∂E[RS

A,1]

∂θ =
(γ+1)pσ(cB−cA)(cA(−2γcB+γp+p)+(γ+1)cB p)

2(−γcA+γp+p)2(−γcB+γp+p)2 > 0, E[RS
A,1] is increasing in θ. Moreover, by Lemma 3, we have the

closed form of E[RN
A,1]. Similarly, ∂E[RN

A,1]

∂θ can also be shown to be positive and thus E[RN
A,1] is increasing in θ.

If θ = 0, we have E[RS
A,1]− E[RN

A,1] =
γc2

Aσ(p−cA)(−3γcA+(3γ+4)p)
2(−γcA+γp+p)2(γcA−(γ+2)p)2 > 0. If θ = 1, we have E[RS

A,1]− E[RN
A,1] =

γσ
2(−γcA+γp+p)2(−γcA+γp+2p)2(−γcB+γp+p)2 gSN

R (γ), where gSN
R (γ) is a quartic function of γ with ∂4gSN

R (γ)

∂γ4 =

−(cA − cB)
2(cA − p)2(cB − p)2 < 0. Thus, since γ is large, gSN

R (γ)< 0 and thus E[RS
A,1]< E[RN

A,1] at θ = 1.

Therefore, there exists a θ′ ∈ [0, 1] such that E[RS
A,1] ≥ E[RN

A,1] for θ ∈ [0, θ′] and E[RS
A,1] < E[RN

A,1] for θ ∈

[θ′, 1].

(b). Since Rk
B,1 = min{X1/2, yk

B,1}, part (b) follows Proposition 2. Q.E.D.

Proof of Proposition 4: By Lemma 3, we have the closed form of E[RN
1 ]. Moreover, ∂

∂θ E[RN
1 ] =

2(cB−cA)(2+γ)p2σ

(γcA−(γ+2)p)2(p(γ(1−θ)+2)−γcB(1−θ))3 gN
R (θ), where gN

R (θ) = γ(p − cB)((γ + 6)cA − (γ + 2)cB)θ + cA[(γ +

2)2 p − γ(γ + 6)cB] + (γ + 2)cB(γcB − (γ − 2)p), is a linear function of θ, and has the same sign as ∂
∂θ E[RN

1 ].

Note that, if γ > γR :=
√

9c2
Ac2

B−8c2
AcB p−6cAc3

B+4cAc2
B p+c4

B−4c3
B p+4c2

B p2

(cA−cB)2(cB−p)2 +
−3cAcB+2cA p+c2

B
(cA−cB)(cB−p) , gN

R (0) < 0. Moreover,
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gSN
R (1) = 2p((γ + 2)cB − (γ − 2)cA)> 0 for all γ > 0. Thus, if γ > γR, ∂

∂θ E[RN
1 ] is first negative then positive

and E[RN
1 ] first decreases then increases in θ for θ ∈ [0, 1]. Q.E.D.

Proof of Proposition 5: (a). By Lemma 2&3, we have the closed forms of ΠS
A and ΠN

A . Furthermore, we have
∂ΠS

A
∂θ = σ(cA−cB)

2

2p(−γcA+γp+p)(−γcB+γp+p)2 hS
A(γ), where hS

A(γ) is cubic function of γ and hS
A(γ) = γ3(p − cA)(p −

cB)
2 + γ2 [−2p2(cA + 2cB) + cB p(2cA + cB) + 4p3] + γ

[
−p2(cA + 2cB) + 5p3] + 2p3. Note that ∂3hS

A(γ)

∂γ3 =

6(p − cA)(p − cB)
2 > 0, hS

A(0) = 2p3 > 0, and the two roots of ∂hS
A(γ)
∂γ = 0 are both smaller than 0. Thus,

hS
A(γ)≥ 0 for γ ≥ 0. So ∂ΠS

A
∂θ ≥ 0 and ΠS

A is increasing in θ.

(b). Note that

ΠS
A − ΠN

A =
γσhA(θ, γ)

2(−γcA + γp + p)(−γcA + γp + 2p)2(−γcB + γp + p)2(−γcBθ + γcB + γθp − γp − 2p)2 ,

where hA(θ, γ) is a cubic function of θ and has the same sign as ΠS
A − ΠN

A .

We first show that ΠS
A > ΠN

A at θ = 0. If θ = 0, hA(0, γ) has the same sign as [c2
A
(
c2

B + 2cB p − p2) −
4cAc2

B p + 2c2
B p2]γ2 + 2p(2c2

A(cB − p)− 3cAc2
B + 3c2

B p)γ + 4p2 (c2
B − c2

A
)
. Note that, the polynomial is posi-

tive for γ ≥ 0, so we have hA(0, γ)> 0. On the other hand, at θ = 1, hA(1, γ) is a quartic function of γ with
∂4hA(1,γ)

∂γ4 = 24(cA − cB)(cA − p)(cB − p)2 (2c2
A − 3cA p + cB p

)
. Thus, if cA < 3

4 p − 1
4

√
9p2 − 8cB p, we have

∂4hA(1,γ)
∂γ4 < 0. Thus, there exists a ∆A ∈ (0, p − cA) and γA > 0 such that hA(1, γ)< 0 if ∆c ≥ ∆A and γ ≥ γA,

where γA is the maximum of zero and the largest real root of hA(1, γ) = 0.

Last, note that ∂3hA(θ,γ)
∂θ3 = 6γ(γ + 1)2 p2(cA − cB)

2(cB − p)2(γcA − (γ + 2)p)2 ≥ 0 for γ ≥ 0. If ∆c ≥ ∆A

and γ ≥ γA, by the above arguments, hA(1, γ) ≤ 0 < hA(0, γ). Since hA(θ, γ) is a cubic function of θ, there

exists only one root of hA(θ, γ) = 0 on [0, 1]. Let θA be the root. Thus, we have hA(θ, γ) ≥ 0 on [0, θA] and

hA(θ, γ)≤ 0 on [θA, 1]. Since hA(θ, γ) and ΠS
A − ΠN

A have the same sign, we have proved Proposition 5(b).

Q.E.D.

Proof of Proposition 6: (a). By Lemma 2, we have the closed form of ΠS
B. Furthermore, since E[Lk

B] =∫ ζk
B

0 (ζk
B − z) f (z)dz, k = 0, S, ΠS

B is independent of θ. By Lemma 3, we have the closed form of ΠN
B . Since

∂ΠN
B

∂θ = γ(γ + 2)pσ(cB − cA)(p − cB)[(γ + 2)cA p + (γ + 2)cB p − 2γcAcB]/[(γcA − (γ + 2)p)2[p(γ(θ − 1)−
2)− γcB(θ − 1)]2]> 0 if γ > 0. So ΠN

B is increasing in θ.

(b).Note that ΠS
B −ΠN

B = (p− cB)γhB(θ, γ)/[2(−γcA + γp+ 2p)2(−γcB + γp+ p)(γcBθ − γcB − γθp+

γp + 2p)], where hB(θ, γ) is a linear function of θ and has the same sign as ΠS
B − ΠN

B . When θ = 0, hB(0, γ) =

[c2
A
(
c2

B − 4cB p + 2p2) + 2cAc2
B p − c2

B p2]γ2 + 2p
[
−3c2

A(cB − p) + 2cAc2
B − 2c2

B p
]

γ + 4p2 (c2
A − c2

B
)
, where

c2
A
(
c2

B − 4cB p + 2p2) + 2cAc2
B p − c2

B p2 ≥ 0 if ∆c ≤ ∆B := c3
A−cA p2

c2
A+2cA p−p2 +

√
2
√

c4
A p2−2c3

A p3+c2
A p4(

c2
A+2cA p−p2

)2 . Thus, there

exists a γB
0 > 0 such that hB(0, γ)≥ 0 if 0 < ∆c ≤ ∆B and γ ≥ γB

0 . When θ = 1, hB(1, γ) = 2p[−2c2
AcB + c2

A p +

2cAc2
B − c2

B p]γ2 + 2p[−5c2
AcB + 5c2

A p+ 4cAc2
B − 4c2

B p]γ+ 2p
(
4c2

A p − 4c2
B p
)
, where−2c2

AcB + c2
A p+ 2cAc2

B −
c2

B p < 0. Thus, there exists a γB
1 > 0 such that hB(1, γ) < 0 if γ ≥ γB

1 . Along with part (a), if 0 < ∆c ≤ ∆B

and γ ≥ γB := max{γB
0 , γB

1 }, there exists a θB such that ΠS
B ≥ ΠN

B for θ ∈ [0, θB] and ΠS
B ≤ ΠN

B for θ ∈ [θB, 1].

Q.E.D.



: Dynamic Competition with Network Effects
9

A.3. Proof of Statements in Section 5

We first consider the two-period inventory game between retailers A&B. Given retailer A’s discounts and

market split ratios in two periods, Lemma 5 [Lemma 6] characterizes the two retailers’ equilibrium order

quantities and profits in Scenario S [N].

Lemma 5. Suppose the specific network effect is present. Given retailer A’s discounts et and split ratios αA,t, t =

1, 2, a unique Nash equilibrium exists: In the first period, yS
A,1 = [αA,1 + θ(1 − αA,1)]ζ̂

S
A,1 − θ(1 − αA,1)ζ̂

S
B,1 and

yS
B,1 = (1 − αA,1)ζ̂

S
B,1, where

ζ̂S
A,1 = F−1

(
1 − cA

p − e1 + ργ(p − e2 − cA)

)
and ζ̂S

B,1 = F−1
(

1 − cB
p + ργ(p − cB)

)
;

in the second period, given the two retailers’ sales, RS
A,1 and RS

B,1, y
S
A,2 = [αA,2 + θ(1− αA,2)]ζ̂

S
A,2 − θ(1− αA,2)ζ̂

S
B,2 +

γRS
A,1 and yS

B,2 = (1 − αA,2)ζ̂
S
B,2 + γRS

B,1, where ζ̂S
A,2 = F−1

(
1 − cA

p−e2

)
and ζ̂S

B,2 = ζ0
B. Furthermore, retailer A’s

and B’s total profits are

ΠS
A(e1, e2) = [p − e1 − cA + ρ(p − e2 − cA)γ]yS

A,1 − [p − e1 + ρ(p − e2 − cA)γ]E[L̂S
A,1]

+ρ
{
[p − e2 − cA]yS

A,2 − [p − e1]E[L̂S
A,2]
}

and (24)

ΠS
B(e1, e2) = [p − cB + ρ(p − cB)γ]yS

B,1 − [p − cB + ρ(p − cB)γ]E[L̂S
B,1] + ρ{[p − cB]yS

B,2 − pE[L̂S
B,2]},(25)

where L̂S
A,t =

[
[αA,t + θ(1 − αA,t)]ζ̂

S
A,t − θ(1 − αA,t)ζ̂

S
B,t − αA,tXt − θ(1 − αA,t)(Xt − ζ̂S

B,t)
+
]+

and L̂S
B,t =[

(1 − αA,t)(ζ̂
S
B,t − Xt)− θ

{
αA,tXt − [αA,t + θ(1 − αA,t)]ζ̂

S
A,t + (1 − αA,t)θζ̂S

B,t

}+]+
, t = 1, 2.

Proof of Lemma 5: We first study the subgame in the second period. Let yA,2 := yA,2 − γRA,1 and yB,2 :=

yB,2 − γRB,1. By analogous arguments in the proof of Lemma 2, retailer A’s best response in the second

period is

y∗A,2(yB,2) =

{
[αA,2 + θ(1 − αA,2)]ζ̂

S
A,2 − θyB,2, if yB,2 ≤ (1 − αA,2)ζ̂

S
A,2,

αA,2ζ̂S
A,2, if yB,2 > (1 − αA,2)ζ̂

S
A,2.

(26)

On the other hand, retailer B’s best response in the second period is

y∗B,2(yA,2) =

{
[1 − αA,2 + θαA,2] ζ̂S

B,2 − θyA,2, if yA,2 ≤ αA,2ζ̂S
B,2,

(1 − αA,2)ζ̂
S
B,2, if yA,2 > αA,2ζ̂S

B,2.
(27)

Furthermore,we show ζ̂S
B,2 < ζ̂S

A,2: By assumption, e2 ≤ cB − cA = cB

(
1 − cA

cB

)
< p

(
1 − cA

cB

)
, and thus, p cA

cB
<

p − e2. Thus, cA
p−e2

< cB
p and ζ̂S

A,2 > ζ̂S
B,2. Since ζ̂S

B,2 < ζ̂S
A,2, by combining (26) and (27), there exists a unique

Nash equilibrium in the second period, (yS
A,2, yS

B,2), where yS
A,2 = [αA,2 + θ(1 − αA,2)]ζ̂

S
A,2 − θ(1 − αA,2)ζ̂

S
B,2

and yS
B,2 = (1 − αA,2)ζ̂

S
B,2. Thus, yS

A,2 and yS
B,2 follow the forms in Lemma 5.

Then, we study the game in the first period. By analogous arguments, retailer A’s best response in the first

period is

y∗A,1(yB,1) =

{
[αA,1 + θ(1 − αA,1)]ζ̂

S
A,1 − θyB,1, if yB,1 ≤ (1 − αA,1)ζ̂

S
A,1,

αA,1ζ̂S
A,1, if yB,1 > (1 − αA,1)ζ̂

S
A,1.

(28)

On the other hand, retailer B’s best response in the first period is

y∗B,1(yA,1) =

{
[1 − αA,1 + θαA,1] ζ̂S

B,1 − θyA,1, if yA,1 ≤ αA,1ζ̂S
B,1,

(1 − αA,1)ζ̂
S
B,1, if yA,1 > αA,1ζ̂S

B,1,
(29)
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We show that ζ̂S
B,1 < ζ̂S

A,1: e1 + ρe2γ ≤ cB(1+ ργ)(1− cA
cB
)< p(1+ ργ)(1− cA

cB
). Thus, p − e1 + ργ(p − e2 −

cA)> p(1+ ργ)− ργcA − (1+ ργ)p(1− cA
cB
) = cA

cB
(p+ ργ(p− cB)), leading to cA

pA,1+ργ(pA,2−cA)
< cB

p+ργ(p−cB)
.

So, ζ̂S
B,1 < ζ̂S

A,1. Therefore, by combining (28) and (29), there exists a unique Nash equilibrium in the first

period, (yDS
A,1, yDS

B,1), where yDS
A,1 = [αA,1 + θ(1 − αA,1)]ζ̂

S
A,1 − θ(1 − αA,1)ζ̂

S
B,1 and yDS

B,1 = (1 − αA,1)ζ̂
S
B,1. Fur-

thermore, by substituting yS
A,t and yS

B,t, t = 1, 2, we have retailers’ profits (24) and (25). Q.E.D.

Lemma 6. Suppose the non-specific network effect is present. Given retailer A’s discounts et and split ratios αA,t, t =

1, 2, a unique Nash equilibrium exists: In the first period, yN
A,1 = [αA,1 + θ(1 − αA,1)]ζ̂

N
A,1 − θ(1 − αA,1)ζ̂

N
B,1 and

yN
B,1 = (1 − αA,1)ζ̂

N
B,1, where

ζ̂N
A,1 = F−1

(
1 − cA

p − e1 + ραA,2γ(p − e2 − cA)

)
and

ζ̂N
B,1 = F−1

(
1 −

cB − ρ(1 − αA,2)γθ(p − cB)
cA

p−e1+ραA,2γ(p−e2−cA)

p + ρ(1 − αA,2)γ(1 − θ)(p − cB)

)
;

in the second period, given the two retailers’ total sales, RN
1 := RN

A,1 + RN
B,1, yN

A,2 = [αA,2 + θ(1− αA,2)]ζ̂
N
A,2 − θ(1−

αA,2)ζ̂
N
B,2 + γαA,2RN

1 and yN
B,2 = (1 − αA,2)ζ̂

N
B,2 + γ(1 − αA,2)RN

1 , where ζ̂N
A,2 = ζ̂S

A,2 and ζ̂N
B,2 = ζ0

B. Furthermore,

retailer A’s and B’s profits are

ΠN
A (e1, e2) = [p − e1 − cA + ρ(p − e2 − cA)αA,2γ]yN

A,1 − [p − e1 + ρ(p − e2 − cA)αA,2γ]E[L̂N
A,1]

+ρ(p − e2 − cA)αA,2γyN
B,1 − ρ(p − e2 − cA)αA,2γE[L̂N

B,1]

+ρ
{
[p − e2 − cA]yN

A,2 − [p − e1]E[L̂N
A,2]
}

and (30)

ΠN
B (e1, e2) = [p − cB + ρ(p − cB)(1 − αA,2)γ]yN

B,1 − [p − cB + ρ(p − cB)(1 − αA,2)γ]E[L̂N
B,1]

+ρ(p − cB)(1 − αA,2)γyN
A,1 − ρ(p − cB)(1 − αA,2)γE[L̂N

A,1]

+ρ{[p − cB]yS
B,2 − pE[LS

B,2]}. (31)

where L̂N
A,t =

[
[αA,t + θ(1 − αA,t)]ζ̂

N
A,t − θ(1 − αA,t)ζ̂

N
B,t − αA,tXt − θ(1 − αA,t)(Xt − ζ̂N

B,t)
+
]+

and L̂N
B,t =[

(1 − αA,t)(ζ̂
N
B,t − Xt)− θ

{
αA,tXt − [αA,t + θ(1 − αA,t)]ζ̂

N
A,t + (1 − αA,t)θζ̂N

B,t

}+]+
, t = 1, 2.

Proof of Lemma 6: We first study the subgame in the second period. Let yA,2 := yA,2 − αA,2γR1, and

yB,2 := yB,2 − (1 − αA,2)γR1. By analogous arguments in the proof of Lemma 5, retailer A’s best response in

the second period has the same form as (26), except we replace ζ̂S
A,2 with ζ̂N

A,2. On the other hand, retailer

B’s best response in the second period has the same form as (27), except we replace ζ̂S
B,2 with ζ̂N

B,2. Thus, by

two firms’ best responses, there exists a unique Nash equilibrium in the second period, (yN
A,2, yN

B,2), where

yN
A,2 = [αA,2 + θ(1 − αA,2)]ζ̂

N
A,2 − θ(1 − αA,2)ζ̂

N
B,2 and yN

B,2 = (1 − αA,2)ζ̂
N
B,2. Thus, yN

A,2 and yN
B,2 follow the

forms in Lemma 6.

Then we study the game in the first period. By analogous arguments in the proof of Lemma

3, the best response of retailer A in the first period is as follows: If yB,1 ≤ (1 − αA,1)ζ̂
N
A,1, where

ζ̂N
A,1 := F−1

(
1 − cA

pA,1+ραA,2γ(pA,2−cA)

)
, y∗A,1(yB,1) = [αA,1 + θ(1 − αA,1)]ζ̂

N
A,1 − θyB,1; If yB,1 > (1 − αA,2)ζ̂

N
A,1,

y∗A,1(yB,1), which is implicitly characterized by the equation

pA,1 − cA + ρ(pA,2 − cA)αA,2γ
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= [pA,1 + ρ(pA,2 − cA)αA,2γ(1 − θ)]F

(
y∗A,1(yB,1)

αA,1

)
+ ρ(pA,2 − cA)αA,2γθF

(
yB,1 + θy∗A,1(yB,1)

1 − αA,1 + θαA,1

)
,

is decreasing in yB,1 and goes to αA,1F−1
(

1 − cA
pA,1+ρ(pA,2−cA)αA,2γ(1−θ)

)
as yB,1 →+∞. On the other hand, the

best response of firm B is characterized as follows: If yA,1 < αA,1F−1
(

1 − cB
p+ρ(p−cB)(1−αA,2)γ

)
, y∗B,1(yA,1) =

[1 − αA,1 + θαA,1] F−1
(

1 − cB
p+ρ(p−cB)(1−αA,2)γ

)
− θyA,1; If yA,1 ≥ αA,1F−1

(
1 − cB

p+ρ(p−cB)(1−αA,2)γ

)
, y∗B,1(yA,1),

which is implicity characterized by the equation

p − cB + ρ(p − cB)(1 − αA,2)γ

= [p + ρ(p − cB)(1 − αA,2)γ(1 − θ)]F

(
y∗B,1(yA,1)

1 − αA,1

)
+ ρ(p − cB)(1 − αA,2)γθF

(
yA,1 + θy∗B,1(yA,1)

αA,1 + (1 − αA,1)θ

)
,

is decreasing in yA,1 and goes to (1 − αA,1)F−1
(

1 − cB
p+ρ(p−cB)(1−αA,2)γ(1−θ)

)
as yA,1 →+∞.

We show that there exists a unique equilibrium of the two-period game, (yN
A,1, yN

B,1), which is in

area {(yA,1, yB,1) : 1
αA,1

yA,1 ≥ 1
1−αA,1

yB,1}. We first show that ζ̂N
A,1 = F−1

(
1 − cA

pA,1+ρ(pA,2−cA)αA,2γ

)
>

F−1
(

1 − cB
p+ρ(p−cB)(1−αA,2)γ

)
: We have e1 + ραA,2γe2 ≤ cB(1 + ραA,2γ)(1 − cA

cB
) < p(1 + ραA,2γ)(1 − cA

cB
).

Thus, p − e1 + ραA,2γ(p − e2 − cA) > p(1 + ραA,2γ) − ραA,2γcA − (1 + ραA,2γ)p(1 − cA
cB
) = cA

cB
(p +

ραA,2γ(p − cB)) ≥ cA
cB
(p + ρ(1 − αA,2)γ(p − cB)). Thus, cA

pA,1+ραA,2γ(pA,2−cA)
< cB

p+ρ(1−αA,2)γ(p−cB)
. Next, we

show that there exists no equilibrium in area {(yA,1, yB,1) : 1
αA,1

yA,1 < 1
1−αA,1

yB,1}, i.e., two firms’ best

responses do not intersect each other in the area. We assume, to the contrary, there exists an equilibrium in

area {(yA,1, yB,1) : 1
αA,1

yA,1 <
1

1−αA,1
yB,1}. Thus, it must satisfy the following system:

pA,1 − cA + ρ(pA,2 − cA)αA,2γ = [pA,1 + ρ(pA,2 − cA)αA,2γ(1 − θ)]F
(

yA,1
αA,1

)
+ρ(pA,2 − cA)αA,2γθF

(
yB,1+θyA,1

1−αA,1+θαA,1

)
,

p − cB + ρ(p − cB)(1 − αA,2)γ = [p + ρ(p − cB)(1 − αA,2)γ]F
(

yB,1+θyA,1
1−αA,1+θαA,1

)
.

(32)

Since 1
αA,1

yA,1 < 1
1−αA,1

yB,1, we have yB,1+θyA,1
1−αA,1+θαA,1

>
yA,1
αA,1

for θ ∈ [0, 1]. Thus, by the first equa-

tion in (32), pA,1 − cA + ρ(pA,2 − cA)αA,2γ < [pA,1 + ρ(pA,2 − cA)αA,2γ]F
(

yB,1+θyA,1
1−αA,1+θαA,1

)
, i.e., 1 −

cA
pA,1+ραA,2γ(pA,2−cA)

< F
(

yB,1+θyA,1
1−αA,1+θαA,1

)
. Furthermore, by the second equation in (32), 1− cB

p+ρ(1−αA,2)γ(p−cB)
=

F
(

yB,1+θyA,1
1−αA,1+θαA,1

)
. Thus, we have 1 − cA

pA,1+ραA,2γ(pA,2−cA)
< 1 − cB

p+ρ(1−αA,2)γ(p−cB)
, leading to a contradic-

tion with the above statement F−1
(

1 − cA
pA,1+ρ(pA,2−cA)αA,2γ

)
> F−1

(
1 − cB

p+ρ(p−cB)(1−αA,2)γ

)
. Thus, there

exists no equilibrium in area {(yA,1, yB,1) : 1
αA,1

yA,1 < 1
1−αA,1

yB,1}. Furthermore, by the above argu-

ments, both firms’ best responses are decreasing in yB,1 in area {(yA,1, yB,1) : 1
αA,1

yA,1 ≥ 1
1−αA,1

yB,1},

where firm A’s best response drops from [αA,1 + θ(1 − αA,1)]ζ̂
N
A,1 to αA,1ζ̂N

A on interval [0, (1 −

αA,1)ζ̂
N
A,1] and firm B’s best response drops from infinity to αA,1F−1

(
1 − cB

p+ρ(1−αA,2)γ(p−cB)

)
on inter-

val
(
(1 − αA,1)F−1

(
1 − cB

p+ρ(p−cB)(1−αA,2)γ(1−θ)

)
, (1 − αA,1)F−1

(
1 − cB

p+ρ(p−cB)(1−αA,2)γ

)]
. Therefore, there

exists a unique equilibrium, (yN
A,1, yN

B,1), which solves the following system:
pA,1 − cA + ρ(pA,2 − cA)αA,2γ = [pA,1 + ρ(pA,2 − cA)αA,2γ]F

(
yA,1+θyB,1

αA,1+θ(1−αA,1)

)
p − cB + ρ(p − cB)(1 − αA,2)γ = [p + ρ(p − cB)(1 − αA,2)γ(1 − θ)]F

(
yB,1

1−αA,1

)
+ρ(p − cB)(1 − αA,2)γθF

(
yA,1+θyB,1

αA,1+(1−αA,1)θ

)
.

(33)
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By (33), we have yN
A,1 and yN

B,1. Furthermore, by substituting yN
A,t and yN

B,t, t = 1, 2, we have retailers’ profits

(30) and (31). Q.E.D.

Weare going to prove Propositions 7&8.Note that, by assumptions, et ∈ [0, cB − cA]. Furthermore, retailerA’s

optimal discount ek
t should be smaller than 1

2β , k = S, N; otherwise, any excessive discount cannot improve

retailer A’s market split ratio (limited by 1) but reduces the firm’s margin.

Proof of Proposition 7: (a). By Lemma 5, we have the closed forms of yS
A,1 and yS

B,1. Thus, we have
∂yS

A,1
∂e1

= 1
(−γcB+γp+p)(−γcA−e1−γe2+γp+p)2 φS

A,1(γ), where φS
A,1(γ) has the same sign as ∂yS

A,1
∂e1

with ∂3φS
A,1(γ)

∂γ3 =

6β(p − cB)(µ + σ)(cA + e2 − p)2 > 0. Moreover, we have ∂yS
B,1

∂e1
= βcB(γ(µ+σ)+2σ)−β(γ+1)p(µ+σ)

−γcB+γp+p < 0.

By Lemma 6, we have the closed forms of yN
A,1 and yN

B,1. Thus, we have ∂yN
A,1

∂e1
= φN

A,1(γ)/[(−γcA −

2βγcAe2 − 2e1 − 2βγe2
2 − γe2 + 2βγe2 p + γp + 2p)2(γcBθ − γcB − 2βγcBe2θ + 2βγcBe2 + 2βγe2θp −

2βγe2 p − γθp + γp + 2p)], where φN
A,1(γ) has the same sign as ∂yN

A,1
∂e1

and ∂3φN
A,1(γ)

∂γ3 = −6β(θ − 1)(cB −

p)(2βe2 − 1)(2βe2 + 1)2(µ + σ)(cA + e2 − p)2 ≥ 0 since βe2 ≤ 1
2 . Moreover, ∂yN

B,1
∂e1

= φN
B,1(γ)/[(γcA +

2βγcAe2 + 2e1 + 2βγe2
2 + γe2 − 2βγe2 p − γp − 2p)2(γcBθ − γcB − 2βγcBe2θ + 2βγcBe2 + 2βγe2θp −

2βγe2 p− γθp+ γp+ 2p)], where φN
B,1(γ) has the same sign as ∂yN

B,1
∂e1

and ∂3φN
B,1(γ)

∂γ3 = 6β(θ − 1)(cB − p)(2βe2 −

1)(2βe2 + 1)2(µ + σ)(cA + e2 − p)2 ≤ 0 since βe2 ≤ 1
2 .

Therefore, there exits a γD
1 such that, if γ > γD

1 , yk
A,1 increases in e1 and yk

B,1 decreases in e1, k = S, N.

(b). We have ∂yS
A,1

∂e2
= γcAσ(2βe1θ−2βe1−θ−1)

(−γcA−e1−γe2+γp+p)2 ≤ 0. Moreover, by Lemma 5, yS
B,1 is independent of e2.

(c). We have ∂yN
A,1

∂e2
= [2γσψN

A,1(θ, γ)]/[(−γcA − 2βγcAe2 − 2e1 − 2βγe2
2 − γe2 + 2βγe2 p + γp +

2p)2(γcBθ − γcB − 2βγcBe2θ + 2βγcBe2 + 2βγe2θp − 2βγe2 p − γθp + γp + 2p)2], where ψN
A,1(θ, γ) has the

same sign as ∂yN
A,1

∂e2
. If θ = 1, ψN

A,1(1, γ) is a linear function in γ with ∂ψN
A,1(1,γ)

∂γ = 2cA p(p − cB)(2βe1 −

1)
(
4βcA − 4β2e2

2 + 4βe2 − 4βp + 1
)
. Note that, if β ≤ 1

4(p−cA)
, ∂ψN

A,1(1,γ)
∂γ < 0 for all feasible e1 and e2, since

et ≤ min{cB − cA, 1
2β}, t = 1, 2.

On the other hand, ∂yN
B,1

∂e2
= [2γσ(p − cB)(1 − 2βe1)ψ

N
B,1(θ, γ)]/[(γcA + 2βγcAe2 + 2e1 + 2βγe2

2 + γe2 −

2βγe2 p − γp − 2p)2(γcBθ − γcB − 2βγcBe2θ + 2βγcBe2 + 2βγe2θp − 2βγe2 p − γθp + γp + 2p)2], where

ψN
B,1(θ, γ) has the same sign as ∂yN

B,1
∂e2

. If θ = 1, ψN
B,1(1, γ) is a linear function in γ with ∂ψN

B,1(1,γ)
∂γ =

2cA p
(
4βcA − 4β2e2

2 + 4βe2 − 4βp + 1
)
. Note that, if β ≤ 1

4(p−cA)
, ∂ψN

B,1(1,γ)
∂γ > 0 for all feasible e1 and e2, since

et ≤ min{cB − cA, 1
2β}, t = 1, 2.

Therefore, by the above statements, when θ = 1, there exists a γD
2 > 0 such that yN

A,1 decreases in e2 and

yN
B,1 increases in e2 if β < βD := 1

4(p−cA)
and γ > γD

2 . Thus, by the continuity of yN
A,1 and yN

B,1 in θ, there exists

a θD ∈ [0, 1] such that the statement in part (c) holds. Q.E.D.

Proof of Proposition 8: Because et =
1
β (αA,t − 1

2 ), in this proof, we use (αA,1, αA,2) as decisions of retailer A

at Stage 0. Thus, retailer A’s profit in Scenario k can be written as Πk
A(αA,1, αA,2), k = S, N. By assumptions,

αA,t ≤ αA := min{1, 1
2 + β(cB − cA)}, t = 1, 2. To show part (a)-(b), it is sufficient to show that there exists a

γD > 0 such that αS
A,1 ≥ αS

A,2 =
1
2 and αN

A,1 ≤ αN
A,2 if γ ≥ γD.
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Scenario S: By Lemma 5, we have the closed form of ΠS
A(αA,1, αA,2). Then ∂ΠS

A(αA,1,αA,2)
∂αA,2

=

ψS
D(γ)/[2βp2(−γcB + γp + p)2(2βp − 2αA,2 + 1)2(−γ + 2βγcA − 2βγp − 2βp + 2αA,1 + 2γαA,2 − 1)2],

where ψS
D(γ) has the same sign as ∂ΠS

A(αA,1,αA,2)
∂αA,2

with ∂5ψS
D(γ)

∂γ5 = −240µp2αA,1(cB − p)2(2βp − 2αA,2 +

1)2(−2βcA + 2βp − 2αA,2 + 1)2 < 0 for all feasible (αA,1, αA,2). Thus, there exists a γS
D > 0 such that ψS

D(γ)<

0 if γ ≥ γS
D. Hence, if γ ≥ γS

D, ΠS
A(αA,1, αA,2) is decreasing in αA,2 for all feasible (αA,1, αA,2). Therefore,

αS
A,1 ≥ αS

A,2 =
1
2 .

Scenario N: By Lemma 6, we have the closed form of ΠN
A (αA,1, αA,2). We prove Scenario N in two

steps. First, we have ∂ΠN
A (αA,1,αA,2)

∂αA,1
= −ψN

1 (γ)/[2β(−γcBθ + γcB + γcBθαA,2 − γcBαA,2 + γθp − γp −

γθpαA,2 + γpαA,2 − p)2
(

2βγcAαA,2 − 2βp − 2βγpαA,2 + 2αA,1 + 2γα2
A,2 − γαA,2 − 1

)3
], where ψN

1 (γ) has

the same sign as ∂ΠN
A (αA,1,αA,2)

∂αA,1
with ∂5ψN

1 (γ)

∂γ5 = 120(θ − 1)2(αA,2 − 1)2α3
A,2(cB − p)2(−2βcA + 2βp − 2αA,2 +

1)3[µ(−2βcA + 2βp − 4αA,1 + 1) − 2βcAσ]. Note that ∂5ψN
1 (γ)

∂γ5 < 0 if and only if µ(−2βcA + 2βp − 4αA,1 +

1) − 2βcAσ < 0, i.e., αA,1 > −2βcAµ−2βcAσ+µ+2βµp
4µ . Since αA,1 ∈ [ 1

2 , αA], αA,1 > −2βcAµ−2βcAσ+µ+2βµp
4µ holds

for all feasible αA,1 if and only if 1
2 ≥ −2βcAµ−2βcAσ+µ+2βµp

4µ , which holds if and only if condition (i) holds:(
0 < p ≤ 1

2β ∧ 0 < cA < p
)
or
(

p > 1
2β ∧ 2βµp−µ

2βµ+2βσ ≤ cA < p
)
. Thus, if condition (i) holds, there exists a γN

D,1 >

0 such that ΠN
A (αA,1, αA,2) is decreasing in αA,1 for all feasible αA,1 when γ ≥ γN

D,1. Thus, αN
A,1 =

1
2 ≤ αN

A,2.

Therefore, we have proved part (b) under condition (i). Now we study ΠN
A (αA,1, αA,2) if condition (i) does

not hold, i.e., p > 1
2β and 0 < cA < 2βµp−µ

2βµ+2βσ .

Second, we consider the case where condition (i) does not hold. In this case, we have ∂ΠN
A (αA,1,αA,2)

∂αA,2
=

−ψN
2 (γ)/[2βp2(2βp − 2αA,2 + 1)2(γcBθ − γcB − γcBθαA,2 + γcBαA,2 − γθp + γp + γθpαA,2 − γpαA,2 +

p)3
(

2βγcAαA,2 − 2βp − 2βγpαA,2 + 2αA,1 + 2γα2
A,2 − γαA,2 − 1

)3
], where ψN

2 (γ) has the same sign as
∂ΠN

A (αA,1,αA,2)
∂αA,2

with ∂7ψN
2 (γ)

∂γ7 = −5040(θ − 1)3µp2(αA,2 − 1)3α3
A,2(cB − p)3(2βp − 2αA,2 + 1)2(−2βcA + 2βp −

4αA,2 + 1)(−2βcA + 2βp − 2αA,2 + 1)3. Thus, ∂7ψN
2 (γ)

∂γ7 > 0 if and only if −2βcA + 2βp − 4αA,2 + 1 > 0,

which holds if and only if αA,2 <
1
4 (−2βcA + 2βp + 1). Note that 1

4 (−2βcA + 2βp + 1) > 1
2 always holds.

Thus, there exists a γN
D,2 ≥ γN

D,1 > 0 such that the following two sub-cases hold if γ ≥ γN
D,2: First, if condi-

tion (i) does not hold and condition (ii) holds, i.e., 0 < cA < 2µp
2µ+3σ , −

µ
2cAµ+2cAσ−2µp < β ≤ − 3

2cA−2p and

cB ≥ 2βcA+2βp−1
4β , we have 1

4 (−2βcA + 2βp + 1) ∈ [ 1
2 , αA]. In this case, ΠN

A (αA,1, αA,2) increases in αA,2 on

[ 1
2 , 1

4 (−2βcA + 2βp+ 1)] anddecreases on [ 1
4 (−2βcA + 2βp+ 1), αA]; by the arguments above, ΠN

A (αA,1, αA,2)

increases in αA,1 on [ 1
2 , −2βcAµ−2βcAσ+µ+2βµp

4µ ] and decreases on [−2βcAµ−2βcAσ+µ+2βµp
4µ , αA]. Thus, the optimal

solution is (αN
A,1, αN

A,2) = (−2βcAµ−2βcAσ+µ+2βµp
4µ , 1

4 (−2βcA + 2βp + 1)), which satisfies αN
A,1 ≤ αN

A,2. Second,

both conditions (i)-(ii) do not hold, then 1
4 (−2βcA + 2βp + 1) > αA. In this case, ΠN

A (αA,1, αA,2) increases

in αA,2 on [ 1
2 , αA]. Thus, αN

A,2 = αA ≥ αN
A,1.

Let γD := max{γS
D, γN

D,2}, we have proved part (a)-(b). Q.E.D.
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