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Problem Definition: Thanks to the ubiquity of social media and the new business model of live-

streaming e-commerce, online retailing has recently embraced increasing interactions among customers. Such

interactions give rise to strong network effects, i.e., customers are attracted to purchase the products with

higher sales, and raise a crucial challenge for competing retailers: current operations decisions (such as

promotion, price, and inventory) impact not only the current market, but also the future demands and

profits of all the retailers through the network effects. To understand the implications of such network effects,

we study a dynamic competition model, in which retailers periodically compete on promotional effort (e.g.,

advertising) and price, while operating their inventories over a finite planning horizon.

Methodology/Results: We find that, under the Markov perfect equilibrium, the state space of each

firm is linearly separable for both the simultaneous (promotion, price, and inventory) competition and the

promotion-first competition, which leads to a simple characterization of the equilibrium strategy in both

competitions. The equilibrium characterization also enables us to investigate the impact of the network

effects, and to compare the equilibria under the different competition modes.

Managerial Implications: The network effects give rise to a natural trade-off between generating cur-

rent profits and inducing future demands for competing retailers, thus having several important implications

upon their operations decisions. The trade-off between current profits and future demands is more intensive

at an earlier stage than at later stages, so the equilibrium prices are increasing, whereas the equilibrium pro-

motional efforts are decreasing, over the planning horizon. The retailers need to balance the aforementioned

trade-off inter-temporally under the simultaneous competition, whereas they need to balance this trade-off

both inter-temporally and intra-temporally under the promotion-first competition. Finally, in the dynamic

game between online retailers, the network effects could be a new driving force for the “fat-cat” effect, i.e.,

the equilibrium promotional efforts are higher under the promotion-first competition than those under the

simultaneous competition.
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1. Introduction

Social media platforms, such as Facebook, YouTube, and WeChat, have witnessed a dramatic

growth in scale over the past decade. The number of active users on these platforms already

surpassed 4.2 billion in 2021 (Statista 2021a). Such development of online social media drives a

rising trend of new online retailing model called social commerce, where e-commerce meets online

social media. In the U.S., there were about 80 million social commerce buyers who contributed to

the $27 billion sales in 2020, which implies a 30% year-over-year increase (see, Statista 2021c,d).

The rise of social commerce also creates successful new business models, such as live-streaming

e-commerce and community group buying. Live-streaming e-commerce became popular during the

COVID-19 pandemic, and has already grown to a trillion-RMB retail market in China (the live

streaming e-commerce market size in China reached about RMB 1237.9 billion in 2021, see, Statista

2021b). Retailers hire social-media influencers/live-streamers (e.g., Austin Li, a star e-commerce

live-streamer in China, sold products worth $1.7 billion in Alibaba’s Singles Day in 2021, see, Tan

2021) to promote their products on live-streaming platforms (e.g., Tiktok, Facebook, and Amazon).

Through live-streaming, the influencers introduce the features of the products, communicate with

consumers, and answer their questions. Thanks to such an interactive channel together with the

trust between the live-streamers and their followers on social media, liver-streaming e-commerce

could substantially boost the consumer conversions for the retailers. In addition to live-streaming

e-commerce, grocery retailers also leverage online social networks to boost their sales. This new

business model, referred to as community group buying (see, e.g., Li 2020), facilitates consumers

to form groups on a social network (e.g., WeChat) and launch group-buying campaigns that offer

discounts to the group members if sufficiently many consumers sign up to make a purchase. Com-

munity group buying has already greatly impacted the traditional offline grocery retailing market

in China, which has long accounted for 90% of the grocery market.

Social commerce involves substantial consumer interactions for an online retailer, which in turn

significantly propel the market-diffusion process of the retailer. Indeed, interactions between con-

sumers could improve their surplus of purchasing the product from a retailer under discussion on

the platform (see, e.g., Katona et al. 2011). Such phenomenon naturally drives the network effect,

referred to as a common effect that a consumer gain additional surplus of purchasing a certain

product if the sales volume of the product increases (see, e.g., Economides 1996). Network effects

create a dependence between the current decisions and future demands for retailers, because the

current decisions affect current sales, which will impact future consumer utilities and, thus, future

demands. For example, consumers in live-streaming rooms are easily attracted by the bestsellers

therein, and are more likely to revisit the retailer and make a purchase in the near future (see,

e.g., Wongkitrungrueng and Assarut 2020). Moreover, different retailers compete with each other
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in social commerce, so the competition will interact with the strong network effects, which together

pose an important challenge for managing their operations strategies (e.g., price, inventory, and

promotion policies). Myopically optimizing the current profits may lead to significant losses in

future demands and, thus, hurt the profits in the long run. On the other hand, overemphasizing

market share growth may significantly compromise current profits, which is another extreme of

undesirable outcome. Recognizing the trade-off between current profits and future demands in a

competitive market calls the retailers for carefully re-designing their operations strategies under

network effects.

It is worth noticing that online retailers have different preferences on the timing of promotions,

depending on the specific marketing tool the retailer is adopting. For example, immediately re-

targeting consumers who just made a purchase and encouraging them to purchase again with

personalized content are fairly effective. See, e.g., Bleier and Eisenbeiss (2015). However, the cart

re-targeting that sends reminders to consumers about their carted products are not as effective,

and may negatively affect their willingness to purchase. See, e.g., Li et al. (2021). Given that the

timing of promotional efforts may have significant impact on their effectiveness, competing retailers

must carefully time their price, inventory, and promotion decisions.

The main goal of this paper is to explore the dynamic competition between online retailers in

the presence of network effects. Motivated by online retailing practices, we seek to address the

following key research question:

Taking into account network effects and different competition modes, how should online retail-

ers dynamically compete with each other on price, inventory, and promotion to well balance

current profits and future demands?

To address this question, we develop a periodic-review dynamic competition model, in which online

retailers compete with each other in a Markov game over a finite planning horizon. Each retailer

makes the promotional effort, retail price, and inventory decisions in each period to maximize

its total profit of the entire planning horizon. The promotional effort of the retailer includes all

costs of marketing and promotion to its products, such as hiring famous influencers, subsidizing

audiences/subscribers in live-streaming, and procuring consumer traffic through platform ads. See,

e.g., Li (2020), Li et al. (2021). The random demand of each retailer in each period is determined

by its own market size, and the current prices and promotional efforts of all competing retailers in

the market. Each retailer chooses its promotional effort, price, and inventory stocking quantity in

any period. The promotional effort and price discounts of a retailer boost the current demand of

itself and diminish that of its competitors. We emphasize that the salient feature of our model is

that the market sizes of the competing retailers are evolving under the network effects throughout

the planning horizon. More specifically, to capture the network effects in the social commerce of
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modern online retailing, we assume that the future market size of each retailer is increasing in its

current demand. We also investigate the impact of promotional efforts’ timing. We consider two

competition modes: (a) the simultaneous competition, under which retailers simultaneously make

promotion, price, and inventory decisions in each period; and (b) the promotion-first competition,

under which the retailers first choose their promotional efforts, and after observing the promotion

decisions of all retailers in the market, make price and inventory decisions in each period.

We use the Markov perfect equilibrium (MPE) paradigm to analyze our dynamic competition

model, and employ the linear separability approach (see, e.g., Olsen and Parker 2008) to show that,

if the initial inventory level at the beginning of the planning horizon is zero for each retailer, an

MPE exists in the dynamic competition model. Under the MPE, the equilibrium profit of each firm

in each period is linearly separable in its private information - its own inventory level and market

size. We also find mild sufficient conditions to ensure the uniqueness of MPE. Specifically, we

study the subgame in each period under the two competition modes, and show that (a) under the

simultaneous competition, the subgame can be decomposed into a noncooperative game, in which

the firms compete jointly on promotional effort and sales price, and an inventory optimization

problem, if the starting inventory level of each retailer at the beginning of the planning horizon is 0;

and (b) under a similar assumption regarding the starting inventory level of each firm, the subgame

under the promotion-first competition can be converted to a two-stage competition, in which the

retailers compete on promotional effort in the first stage and on price in the second stage, when

they also optimize their respective inventory stocking quantities. The analysis of the subgame in

each period under the two competition modes allows us to identify conditions under which there

exists a unique pure strategy Nash equilibrium, thus ensuring the existence and uniqueness of a

pure strategy MPE in the Markov game.

1.1. Main Contributions

We make the following contributions in this paper:

Given the prevailing consumer interactions in social commerce, retailers must take into account

the network effects in their operations. Despite the abundant literature of dynamic competition on

operational decisions, to our best knowledge, we are the first to explicitly model network effects

in the dynamic competition between retailers. Our proposed model helps deliver insights on the

operations implications of network effects on competing retailers in a dynamic market environment.

We characterize the MPE in the dynamic competition model under the simultaneous competi-

tion and the promotion-first competition. The analysis also provides managerial implications for

competing retailers facing network effects. We show that retailers can boost promotional efforts,

offer price discounts, and, consequently, increase inventory stocking level to balance the trade-off
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between current profits and future demands that is driven by network effects. The stronger the

network effects, the more intensive the aforementioned trade-off, which leads to more promotional

efforts, heavier price discounts, and higher inventory levels for all retailers. By adopting these

strategies, each retailer leverages the network effects to expand the market size in the future. Fur-

thermore, we show that the trade-off between current profits and future demands becomes less

intensive towards the end of the planning horizon regardless of the competition mode. Hence, the

equilibrium prices are increasing, whereas the equilibrium promotional efforts are decreasing, over

the planning horizon.

By comparing the equilibria of the dynamic competition model under the two competition modes,

we derive two critical insights with regard to the timing of promotional efforts. Under the simul-

taneous competition, the competing retailers need to balance the trade-off between current profits

and future demands inter-temporally ; whereas, under the promotion-first competition, they have to

balance this trade-off both inter-temporally and intra-temporally. Besides that, we identify a new

driving force for the “fat-cat” effect (i.e., in each period, the equilibrium promotional efforts may

be higher under the promotion-first competition than those under the simultaneous competition):

The trade-off between current profits and future demands is more intensive in the promotion-first

competition than in the simultaneous competition, thus prompting more promotional efforts under

the promotion-first competition.

The rest of this paper is organized as follows. We position this paper in the related literature in

Section 2. Section 3 introduces the model setup. We analyze the simultaneous competition model

in Section 4, and the promotion-first competition model in Section 5. We compare the equilibrium

outcomes in these two competition models in Section 6. Section 7 concludes this paper. All proofs

are relegated to the Appendix. We use the bold face to represent a vector or a matrix throughout

this paper.

2. Literature Review

Our work is related to several streams of research in the literature. First, there are emerging stud-

ies on live-streaming and other new business models in online retailing. Wongkitrungrueng and

Assarut (2020) find that live-streaming e-commerce can improve customers’ trust on the products

and sellers, thus increasing customer engagement, loyalty, and purchase. Qi et al. (2020) study the

capacity investment problem of a manufacturer which sells products through a live-streaming plat-

form, however has no direct access to demand information and tries to infer it from the commission

rate of the platform. Hou et al. (2021) analyze the optimal live-streaming adoption and influencer

selection strategy for retailers. Chen et al. (2020) study the position auctions of live-streaming

advertising, by endogenizing product information provision in a mechanism design framework. We
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refer interested readers to Caro et al. (2020) for a comprehensive review on the new trends of retail

operations and the directions for future research.

Network effects have drawn significant attention in the economics and operations literature.

Several studies embed network effects into a firm’s revenue management and sourcing decisions.

Dhebar and Oren (1986) characterize the optimal nonlinear pricing strategy for a network product

with heterogeneous customers. Xie and Sirbu (1995) examine the equilibrium dynamic pricing

strategies of an incumbent and an entrant under network externalities. Bensaid and Lesne (1996)

consider the optimal dynamic monopoly pricing under network externalities and show that the

equilibrium prices increase as time passes. Bloch and Quérou (2013) study the optimal pricing

strategy in a network with a given network structure and characterize the relationship between

optimal prices and consumers’ centrality. Wang and Wang (2017) endogenize network externalities

in consumer choice models and analyze the assortment optimization problem under the choice

models. Hu et al. (2020) study the innovation spillover when an innovator outsources its products

to a contract manufacturer, which may also be a competitor in the end market. We contribute to

this stream of literature by analyzing the impact of network externalities upon the competing firms’

operations (i.e., the inventory policies) and marketing (i.e., promotional investments) decisions in

a dynamic retail competition.

Our paper is also related to the extensive literature on dynamic pricing and inventory man-

agement. This literature diverges into two lines of research: (i) the monopoly model, in which a

single firm maximizes its total expected profit over a finite or infinite planning horizon, and (ii) the

competition model, in which multiple firms play a non-cooperative game to maximize their respec-

tive expected per-period profits over an infinite planning horizon. The literature on the monopoly

model of joint pricing and inventory management is very rich. See Chen and Simchi-Levi (2012)

for a review. Chen and Simchi-Levi (2004a,b) study the joint pricing and inventory management

problem with fixed ordering costs for the finite horizon and infinite horizon. Pang et al. (2012)

and Chen et al. (2014) study a difficult problem - the joint pricing and inventory control problem

with periodic review and positive lead-time. Feng et al. (2020) study another challenging prob-

lem, joint pricing and inventory management under lost sales. Federgruen et al. (2020) propose a

novel method to characterize the optimal inventory strategy for a general review inventory control

problem which considers bilateral inventory adjustment, associated fixed costs, and capacity limits.

Some other features are also considered for the joint pricing and inventory management problem

such as customers’ bargaining (Feng and Shanthikumar 2018), production substitution (Feng et

al. 2019), delayed differentiation (Yang and Zhang 2022a), and online reviews (Yang and Zhang

2022b).
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Dynamic competition on inventory and price has also received abundant attention in the lit-

erature. Under deterministic demands, Bernstein and Federgruen (2004a) address infinite-horizon

models for oligopolies with competing retailers under price-sensitive uncertain demand. Bernstein

and Federgruen (2004b) develop a stochastic general equilibrium inventory model, in which retail-

ers compete on both sales price and service level throughout an infinite horizon. Feng et al. (2020)

consider a dynamic pricing competition problem in which buyers are allowed to bargain down the

prices. Li et al. (2013) study an infinitely repeated contracting problem with imperfect monitoring,

in which a manufacturer incentivizes two competing suppliers’ private efforts by allocating future

business due to suppliers’ overall performances. Our work differs from this line of literature in

that we study the trade-off between current profits and future demands in the presence of network

effects in a dynamic and competitive market. To this end, we adopt the MPE (i.e., the closed-

loop equilibrium) in a finite-horizon model as opposed to the commonly used stationary strategy

equilibrium (i.e., the open-loop equilibrium) in an infinite-horizon model.

Finally, from the methodological perspective, our work is related to the literature on the analysis

of MPE in dynamic competition models. MPE is a prevalent equilibrium concept in the economics

literature on dynamic oligopoly models (see, e.g., Maskin and Tirole 1988, Ericson and Pakes 1995,

Curtat 1996). In the operations management literature, this equilibrium concept has been widely

adopted to study the strategic behaviors in dynamic games. Employing the linear separability

approach, Hall and Porteus (2000), Liu et al. (2007) and Olsen and Parker (2008) characterize the

MPE in dynamic duopoly models with market size dynamics, and Ahn and Olsen (2007) analyze

the structure of the pure strategy MPE in a dynamic inventory competition with subscriptions. Due

to limited technical tractability, the analysis of MPE in nonlinear and nonseparable dynamic games

is scarce. Mart́ınez-de-Albéniz and Talluri (2011) characterize the MPE price strategy in a finite-

horizon dynamic Bertrand competition with fixed capacities. Lu and Lariviere (2012) numerically

compute the MPE in an infinite-horizon model, in which a supplier allocates its limited capacity to

competing retailers. Olsen and Parker (2014) give conditions under which the stationary infinite-

horizon equilibrium is also an MPE in the context of inventory duopolies. Our paper adopts the

linear separability approach to characterize the pure strategy MPE in a dynamic joint promotion,

price, and inventory competition of online retailers under network effects, and analyze the trade-off

between current profits and future demands therein.

3. Model

Consider an online retailing market with N competing retailers, which serve the market with

partially substitutable products over a T−period planning horizon, labeled backwards as {T,T −

1, · · · ,1}. In each period t, each firm i selects a promotional effort γi,t ∈ [0, γ̄i], which represents
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the effort the firm makes in advertising, consumer subsidy, after-sales service, and other efforts to

promote the demand of its product in the current period. With the recent boom of live-streaming

online retailing, the promotional effort may take the form of commission fees paid by the retailer to

the influencers who help sell its product through live-streaming. In period t, the total promotional

investment cost of each firm i is proportional to its realized demand, Di,t, and given by νi(γi,t)Di,t.

The per-unit demand cost rate, νi(·), is a non-negative, convexly increasing, and twice continuously

differentiable function of the promotional effort γi,t, with νi(0) = 0. Before the demand is realized

in period t, each retailer i selects a sales price pi,t ∈ [p
i
, p̄i] and adjusts its inventory level to

xi,t(xi,t ≥ Ii,t), where Ii,t is the inventory level of retailer i at the beginning of period t. We assume

that the excess demand of each firm is fully backlogged. In summary, each retailer i makes three

decisions at the beginning of any period t: (i) the promotional effort γi,t, (ii) the sales price pi,t,

and (iii) the inventory level xi,t.

The demand of each retailer i in period t depends on the entire vector of promotional efforts

γt := (γ1,t, γ2,t, · · · , γN,t) and the entire vector of sales prices pt := (p1,t, p2,t, · · · , pN,t) in period t.

We denote the demand of retailer i as Di,t(γt,pt) to capture such dependence. More specifically,

we base our analysis on the following multiplicative form of Di,t(·, ·):

Di,t(γt,pt) = Λi,tdi(γt,pt) + ξi,t, (1)

where Λi,t > 0 is the market size of retailer i in period t, di(γt,pt)> 0 captures the impact of γt and

pt on retailer i’s demand, and ξi,t is a continuous random variable with a connected support and

a zero mean, i.e., E[ξi,t] = 0. For each retailer i, the random perturbations ξi,t,1≤ t≤ T are i.i.d.

throughout the whole planning horizon, and are also independent of the market size vector Λt :=

(Λ1,t,Λ2,t, · · · ,ΛN,t), the price vector pt, and the promotional effort vector γt. Therefore, di(γt,pt)

can be viewed as the normalized expected demand of retailer i in period t and E[Di,t(γt,pt)] =

Λi,tdi(γt,pt). Let Fi(·) be the c.d.f. and F̄i(·) be the c.c.d.f. of ξi,t for all t. The market size Λi,t

is observable by retailer i at the beginning of period t through the pre-order sign-ups before the

release of its product and/or the subscriptions to the retailer’s social media account (on, e.g.,

Facebook or Tiktok) in period t. Without loss of generality, we assume that the demand of each

retailer i in each period t is larger than 0 with probability 1, i.e., P [Λi,tdi(γt,pt) + ξi,t ≥ 0] = 1 for

any (γt,pt).

We assume that di,t(·, ·) is twice continuously differentiable on [0, γ̄1]× [0, γ̄2]× · · · × [0, γ̄N ]×

[p
1
, p̄1]× [p

2
, p̄2]× · · ·× [p

N
, p̄N ], and satisfies the following monotonicity properties:

∂di(γt,pt)

∂γi,t
> 0,

∂di(γt,pt)

∂γj,t
< 0,

∂di(γt,pt)

∂pi,t
< 0, and

∂di(γt,pt)

∂pj,t
> 0, for all j 6= i. (2)
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In other words, an increase in a retailer’s promotional effort increases the current-period demand of

itself, and decreases the demands of its competitors. On the other hand, an increase in a retailer’s

price decreases the demand of itself, and increases the demands of its competitors. Moreover, we

assume that di(·, ·) is log-separable, i.e., di(γt,pt) =ψi(γt)ρi(pt), where ψi(·) and ρi(·) are positive

and twice-continuously differentiable. Inequalities (2) imply that

∂ψi(γt)

∂γi,t
> 0,

∂ψi(γt)

∂γj,t
< 0,

∂ρi(pt)

∂pi,t
< 0, and

∂ρi(pt)

∂pj,t
> 0, for all j 6= i.

For technical tractability, we assume that ψi(·) and ρi(·) satisfy the log increasing differences and

the diagonal dominance conditions, i.e., for each i and any t,

∂2 logψi(γt)

∂γ2
i,t

< 0,
∂2 logψi(γt)

∂γi,t∂γj,t
≥ 0 if j 6= i, and

∣∣∣∣∣∂2 logψi(γt)

∂γ2
i,t

∣∣∣∣∣>∑
j 6=i

∂2 logψi(γt)

∂γi,t∂γj,t
; (3)

∂2 logρi(pt)

∂p2
i,t

< 0,
∂2 logρi(pt)

∂pi,t∂pj,t
≥ 0 if j 6= i, and

∣∣∣∣∣∂2 logρi(pt)

∂p2
i,t

∣∣∣∣∣>∑
j 6=i

∂2 logρi(pt)

∂pi,t∂pj,t
. (4)

The log increasing differences and the diagonal dominance assumptions are not restrictive, and

can be satisfied by a large set of commonly used demand models in the economics and operations

management literature, such as the linear, logit, Cobb-Douglas, and CES demand functions (see,

e.g., Milgrom and Roberts 1990, Bernstein and Federgruen 2004a,b).

The key feature of our model is that current promotion, pricing, and inventory decisions impact

upon future demands via the network effect. We assume that the market size of each firm evolves

in following functional form:

Λi,t−1 = αi,t(γt,pt) = k1
iΛi,t + k2

iDi,t(γt,pt) = k1
iΛi,t + k2

iΛi,tdi(γt,pt) + k2
i ξi,t, (5)

where k1
i ∈ (0,1) captures the retention of the market size, and k2

i ∈ (0,1] captures the network

effects for retailer i. Such network effects have recently become very common in online retail-

ing. For example, consumers are likely to be attracted by the transactions in live-streaming e-

commerce and revisit the live-streaming room of the retailer again in the future, see Wongk-

itrungrueng and Assarut (2020). We denote the market dynamics vector by αt(γt,pt) :=

(α1,t(γt,pt), α2,t(γt,pt), · · · , αN,t(γt,pt)). Following (5), the future market size of each firm depends

on its current market size in a Markovian fashion. Thus, the dynamic competition model in this

paper falls into the regime of Markov games.

We introduce the following model primitives. Let δi be the discount factor of firm i for revenues

and costs in future periods, which satisfies 0< δi ≤ 1. wi, bi, and hi are per-unit wholesales price,

backlogging cost, and holding cost paid by firm i, respectively. Without loss of generality, we

assume that bi > (1− δi)wi and p̄i >wi + νi(γ̄i) hold for each i and t. The first inequality means



Jiang et al.: Dynamic Competition in Online Retailing
10

that the backlogging penalty is higher than the saving from delaying an order to the next period

for each firm in any period, so that no firm will backlog all of its demand. The second inequality

means that the margins for the backlogged demands with the highest price and promotional effort

are positive for all firms.

We define the safety stock level decision of firm i in period t as yi,t := xi,t −Λi,tdi(γt,pt), and

the normalized expected holding and backlogging cost function for firm i in period t:

Li(yi,t) :=E{hi(yi,t− ξi,t)+ + bi(yi,t− ξi,t)−}, (6)

where yi,t ∈R for all i. The state of the Markov game is given by:

It = (I1,t, I2,t, · · · , IN,t) = the vector for the starting inventories of all firms in period t,

Λt = (Λ1,t,Λ2,t, · · · ,ΛN,t) = the vector for the market sizes of all firms in period t.

We use S :=RN ×RN+ to denote the state space of (It,Λt) in the dynamic competition. We define

the action space of each firm i in each period t: Ai,t(Ii,t) := [0, γ̄i]× [p
i
, pi]× [Ii,t,+∞).

The rest of this paper focuses on the strategic implications of the network effects. We consider

the Markov perfect equilibrium (MPE) in our dynamic competition model and study the impact of

the network effects on the MPE. An MPE satisfies two conditions: (a) in each period t, each firm

i’s promotion, price, and inventory strategy depends on the history of the game only through the

current period state variables (It,Λt), and (b) in each period t, the strategy profile generates a Nash

equilibrium in the associated proper subgame. In other words, MPE is a closed-loop equilibrium

that satisfies subgame perfection in each period. Because of its simplicity and consistency with

rationality, MPE is widely used in dynamic competition models in economics (e.g., Maskin and

Tirole 1988) and operations management (e.g., Olsen and Parker 2008) literature.

4. Simultaneous Competition

In this section, we study the simultaneous competition (SC) model where each firm i simultaneously

chooses a combined promotion, price, and inventory strategy in any period t. This model applies to

the scenarios where the market expanding efforts (e.g., advertising, consumer subsidies, and live-

streaming commission fees paid to influencers on a social media, etc.) take effect instantaneously.

Hence, in essence, the promotional effort and price decisions are made simultaneously in each

period. Our analysis in this section focuses on characterizing the pure strategy MPE and providing

insights on the impact of the network effects in the SC model.
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4.1. Equilibrium Analysis

To begin our analysis, we show that the simultaneous competition model has a pure strategy MPE.

Moreover, we characterize a sufficient condition on the per-unit demand cost rate of promotional

effort, νi(·), under which the MPE is unique. Without loss of generality, we assume that, at the end

of the planning horizon (i.e., the end of period 1), each firm i salvages all the on-hand inventory

at wholesale price wi. Under an MPE, each firm i should try to maximize its expected payoff in

each subgame (i.e., in each period t) conditioned on the realized inventory levels and market sizes

in period t, (It,Λt):

E
{ t∑
τ=1

δt−τi [pi,τDi,τ (γτ ,pτ )−wi,τ (xi,τ − Ii,τ )−hi,τ (xi,τ −Di,τ (γτ ,pτ ))
+

−bi,τ (xi,τ −Di,τ (γτ ,pτ ))
−− νi,τ (γi,τ )Di,τ (γτ ,pτ )] + δtiwiIi,0

∣∣∣It,Λt

}
, (7)

s.t. Ii,τ−1 = xi,τ −Di,τ (γτ ,pτ ) for each τ , t≥ τ ≥ 1,

and Λi,τ−1 = k1
iΛi,τ + k2

iDi,τ (γτ ,pτ ) for each τ , t≥ τ ≥ 1.

A (pure) Markov strategy profile in the SC model σsc := {σsci,t(·, ·) : 1 ≤ i ≤ N,T ≥ t ≥ 1} pre-

scribes each firm i’s combined promotion, price, and inventory strategy in each period t, where

σsci,t(·, ·) := (γsci,t(·, ·), psci,t(·, ·), xsci,t(·, ·)) is a Borel measurable mapping from S to Ai,t(Ii,t). We use

σsct := {σsci,τ (·, ·) : 1≤ i≤N, t≥ τ ≥ 1} to denote the pure strategy profile in the induced subgame

in period t, which prescribes each firm i’s (pure) strategy from period t till the end.

Let Vi,t(It,Λt|σsct ) be the total expected discounted profit of firm i in periods t, t− 1, · · · ,1,0,

when starting period t with the state variable (It,Λt) and the firms play strategy σsct in periods

t, t−1, · · · ,1. Thus, by backward induction, Vi,t(·, ·|σsct ) satisfies the following recursive scheme for

each firm i in each period t:

Vi,t(It,Λt|σsct ) = Ji,t(γ
sc
t (It,Λt),p

sc
t (It,Λt),x

sc
t (It,Λt),It,Λt|σsct−1),

where γsct (·, ·) = (γsc1,t(·, ·), γsc2,t(·, ·), · · · , γscN,t(·, ·)) is the period t promotional effort vector prescribed

by σsc, psct (·, ·) = (psc1,t(·, ·), psc2,t(·, ·), · · · , pscN,t(·, ·)) is the period t sales price vector prescribed by σsc,

xsct (·, ·) = (xsc1,t(·, ·), xsc2,t(·, ·), · · · , xscN,t(·, ·)) is the period t post-delivery inventory vector prescribed

by σsc,

Ji,t(γt,pt, xi,t,It,Λt|σsct−1) = E
{
pi,tDi,t(γt,pt)−wi(xi,t− Ii,t)−hi(xi,t−Di,t(γt,pt))

+

−bi(xi,t−Di,t(γt,pt))
−− νi(γi,t)Di,t(γt,pt)

+δiVi,t−1(xt−Dt(γt,pt),αt(γt,pt)|σsct−1)|It,Λt

}
, (8)

and Vi,0(It,Λt) =wiIi,0. We now formally define the pure strategy MPE in the SC model.
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Definition 1. A (pure) Markov strategy σsc∗ = {(γsc∗i,t (·, ·),psc∗i,t (·, ·),xsc∗i,t (·, ·)) : 1 ≤ i ≤ N,T ≥

t≥ 1} is a pure strategy MPE in the SC model if and only if, for each retailer i, each period t, and

each state variable (It,Λt),

(γsc∗i,t (It,Λt), p
sc∗
i,t (It,Λt), x

sc∗
i,t (It,Λt))

= arg max
(γi,t,pi,t,xi,t)∈Ai,t(Ii,t)

{
Ji,t([γi,t,γ

sc∗
−i,t(It,Λt)], [pi,t,p

sc∗
−i,t(It,Λt)], [xi,t,x

sc∗
−i,t(It,Λt)],It,Λt

∣∣∣σsc∗t−1)
}
.

(9)

By Definition 1, a (pure) Markov strategy profile in the SC model is a pure strategy MPE if it

satisfies subgame perfection in each period t. Definition 1 does not guarantee the existence of an

MPE, σsc∗, in the SC model. In Theorem 1, below, we will show a pure strategy MPE exists in the

SC model if the initial inventory of each firm is zero. Moreover, under a mild additional assump-

tion on νi,t(·), the SC model has a unique pure strategy MPE. By Definition 1, the equilibrium

strategy for retailer i in period t, (γsc∗i,t (·, ·), psc∗i,t (·, ·), xsc∗i,t (·, ·)), may depend on the state vector of

its competitors (I−i,t,Λ−i,t). In practice, however, each retailer i’s starting inventory level Ii,t and

market size Λi,t are generally its private information that is not accessible by its competitors in the

market. We will show that the equilibrium strategy profile of each retailer i in each period t is only

contingent on its own realized state variables (Ii,t,Λi,t), but independent of its competitors’ private

information (I−i,t,Λ−i,t). The following theorem characterizes the existence and the uniqueness of

MPE in the SC model.

Theorem 1. If Ii,T = 0 for all i, then the following statements hold for the SC model:

(a) There exists a pure strategy MPE σsc∗ = {(γsc∗i,t (·, ·), psc∗i,t (·, ·), xsc∗i,t (·, ·)) : 1≤ i≤N,T ≥ t≥ 1}.

(b) For each pure strategy MPE, σsc∗, there exists two series of vectors {βsct : T ≥ t ≥ 1}

and {ηsct : T ≥ t ≥ 1}, where βsct = (βsc1,t, β
sc
2,t, · · · , βscN,t) with βsci,t > 0 for each i, and ηsct =

(ηsc1,t, η
sc
2,t, · · · , ηscN,t), such that

Vi,t(It,Λt|σsc∗t ) =wiIi,t +βsci,tΛi,t + ηsci,t, for 1≤ i≤N and 1≤ t≤ T . (10)

(c) If the following two conditions hold for each i and t:

(C1) ν ′i(·)≤ 1 for all γi,t ∈ [0, γ̄i]; and

(C2) ν ′′i (γi,t)[pi,t−wi− νi(γi,t)] + [ν ′i(γi,t)]
2 ≥ ν ′i(γi,t) for all pi,t ∈ [p

i
, p̄i] and γi,t ∈ [0, γ̄i];

then we have σsc∗ is the unique MPE in the SC model. In particular, if νi,t(γi,t) = γi,t, conditions

(C1) and (C2) are satisfied.

Theorem 1 demonstrates the existence of a pure strategy MPE in the simultaneous competition

model. Moreover, in Theorem 1(b), we show that, for the pure strategy MPE σsc∗, the correspond-

ing profit function of each retailer i in each period t is linearly separable in its starting inventory
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level Ii,t and market size Λi,t as long as the starting inventory level of all retailers is 0 (i.e., Ii,T = 0

for all i). We refer to the constant βsci,t as the SC market size coefficient of retailer i in period t. As

we will show later, the SC market size coefficients measure the intensity of the trade-off between

current profits and future demands for the retailers. The larger the βsci,t, the more intensive this

trade-off for retailer i in the previous period t+ 1. Theorem 1 also implies that the equilibrium

profit of each firm i in each period t only depends on the state variables of itself (Ii,t,Λi,t), but not

on those of its competitors (I−i,t,Λ−i,t).

The linear separability of Vi,t(·, ·|σsc∗t ) (i.e., Theorem 1(b)) enables us to give a sharper char-

acterization of the MPE in the SC model. Recall that xi,t − Λi,tdi(γt,pt) = yi,t and Di(γt,pt) =

Λi,tdi(γt,pt) + ξi,t. Plugging (10) into the objective function of retailer i in period t, we have:

Ji,t(γt,pt,xt,It,Λt|σsc∗t−1) = E
{
pi,tDi,t(γt,pt)−wi(xi,t− Ii,t)−hi(xi,t−Di,t(γt,pt))

+

−bi(xi,t−Di,t(γt,pt))
−− νi(γi,t)Di,t(γt,pt)

+δiVi,t−1(xt−Dt(γt,pt),αt(γt,pt)|σsc∗t−1)|It,Λt

}
= wiIi,t + Λi,t

(
δiβ

sc
i,t−1k

1
i + di(γi,pt)[pi,t−wi− νi(γi,t) + δiβ

sc
i,t−1k

2
i ]
)

−(1− δi)wiyi,t−Li(yi,t) + δiη
sc
i,t−1, (11)

where βsci,0 = 0, ηsci,0 = 0 for each i. For each retailer i, the subgame of period t with the starting state

(Ii,t,Λi,t) has a constraint on its decisions: xi,t = yi,t + Λi,tdi(γt,pt)≥ Ii,t. Therefore, the optimal

safety-stock level may depend on the starting inventory level Ii,t and expected demand Λi,tdi(γt,pt).

As we will show below, as long as the starting inventory of each retailer is 0, the optimal safety-

stock yi,t and the equilibrium promotion and pricing decisions (γsc∗i,t , p
sc∗
i,t ) are irrespective of the

inventory level in period t. To prove this, we first define some notations.

πsci,t(yi,t) := −(1− δi)wiyi,t−Li(yi,t),

Πsc
i,t(γt,pt) := di(γt,pt)[pi,t−wi− νi(γi,t) + δiβ

sc
i,t−1k

2
i ],

Osc
i,t(γt,pt, yi,t|Λi,t) := Λi,tΠ

sc
i,t(γt,pt) +πsci,t(yi,t).

For retailer i, given the competitors’ pricing profile p−i,t and promotion profile γ−i,t, and starting

state (Ii,t,Λi,t), we define

(ysci,t(γ−i,t,p−i,t), p
sc
i,t(γ−i,t,p−i,t), γ

sc
i,t(γ−i,t,p−i,t))

:= arg max
γi,t∈[0,γi],pi,t∈[p

i
,pi],yi,t∈R

Osc
i,t(γt,pt, yi,t|Λi,t),

= arg max
γi,t∈[0,γi],pi,t∈[p

i
,pi]

Λi,tΠ
sc
i,t(γt,pt) + arg max

yi,t∈R
πsci,t(yi,t), (12)

(ysc∗i,t (γ−i,t,p−i,t, Ii,t,Λi,t), p
sc∗
i,t (γ−i,t,p−i,t, Ii,t,Λi,t), γ

sc∗
i,t (γ−i,t,p−i,t, Ii,t,Λi,t))

:= arg max
γi,t∈[0,γi],pi,t∈[p

i
,pi],yi,t+Λi,tdi(γt,pt)≥Ii,t

Osc
i,t(γt,pt, yi,t|Λi,t). (13)
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Hence, we write the normalized demand, the demand, and the order-up-to level of retailer i under

the solution of (12) as

dsci (γ−i,t,p−i,t) := di([γ
sc
i,t(γ−i,t,p−i,t),γ−i,t], [p

sc
i,t(γ−i,t,p−i,t),p−i,t]),

Dsc
i (γ−i,t,p−i,t,Λi,t) := Λi,td

sc
i (γ−i,t,p−i,t) + ξi,t,

xsci,t(γ−i,t,p−i,t,Λi,t) := ysci,t(γ−i,t,p−i,t) + Λi,td
sc
i (γ−i,t,p−i,t).

Thus, the best response of each retailer i are presented in the following proposition.

Proposition 1. For each i, given other retailers’ pricing decisions p−i,t and promotion deci-

sions γ−i,t, the following statements hold for the subgame of period t with states (It,Λt) :

(a) ysci,t(γ−i,t,p−i,t) = F−1
i ( bi−(1−δi)wi

hi+bi
).

(b) If xsci,t(γ−i,t,p−i,t,Λi,t) ≥ Ii,t, we have that ysc∗i (γ−i,t,p−i,t, Ii,t,Λi,t) = ysci,t(γ−i,t,p−i,t),

γsc∗i (γ−i,t,p−i,t, Ii,t,Λi,t) = γsci,t(γ−i,t,p−i,t), and psc∗i (γ−i,t,p−i,t, Ii,t,Λi,t) = psci,t(γ−i,t,p−i,t).

(c) xsci,t(γ−i,t,p−i,t,Λi,t)≥ 0.

(d) If t ≥ 2, P
[
xsci,t(γ−i,t,p−i,t,Λi,t)−Dsc

i,t(γ−i,t,p−i,t,Λi,t) ≤ xsci,t(γ−i,t−1,p−i,t−1,Λi,t−1)
∣∣∣Λi,t

]
= 1

for any Λi,t, and any (γ−i,t,p−i,t) and (γ−i,t−1,p−i,t−1).

Proposition 1 characterizes the best response of retailer i in period t. In particular, given other

retailers’ pricing and promotion strategy, if the starting inventory level of firm i is below the

optimal base-stock level (i.e. Ii,t ≤ xsci,t(γ−i,t,p−i,t)), then the optimal safety-stock is given by

F−1
i ( bi−(1−δi)wi

hi+bi
), and the starting inventory level in the next period will be smaller than the corre-

sponding optimal base-stock level with probability 1. We highlight that this sample-path property is

a key technical result that serves as the stepping stone to develop the linear separability of the value

functions. This technical observation is proved by adopting a similar argument as Yang and Zhang

(2022b), which establish a similar separability result in a monopoly dynamic pricing and inventory

model in the presence of online reviews. For notational ease, we define ysc∗i,t := F−1
i ( bi−(1−δi)wi

hi+bi
) and

πsc∗i,t := πsci,t(y
sc∗
i,t ) for the rest of this paper.

Now we define a noncooperative game G̃sct in which the N retailers compete on price and pro-

motional effort in period t. That is, the payoff function of firm i in period t is Πsc
i,t(γt,pt), and the

action space is defined as

A′t := {(γi,1, · · · , γi,N , pi,1, · · · , pi,N)∈ [0, γ1]× · · ·× [0, γN ]× [p
1
, p1]× · · ·× [p

N
, pN ] :

pi,t−wi− νi(γi,t)> 0,1≤ i≤N},

i.e., the profit margin of period t should be positive for each retailer i. We characterize the Nash

equilibrium of the game G̃sct in the following proposition.
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Proposition 2. For each period t, the following statements hold:

(a) The joint promotion and price competition, G̃sct , is a log-supermodular game.

(b) If conditions (C1) and (C2) are satisfied, the following statements hold for the game G̃sct :

(i) G̃sct has a unique pure strategy Nash equilibrium (γsc∗t ,psc∗t ), which is the unique serially

undominated strategy of G̃sct .

(ii) The Nash equilibrium of G̃sct is the unique solution to the following system of equations:

For each i,
∂γi,tψi(γ

sc∗
t )

ψi(γsc∗t )
−

ν ′i(γ
sc∗
i,t )

psc∗i,t −wi− νi(γsc∗i,t ) + δiβsci,t−1k
2
i


≤ 0, if γsc∗i,t = 0,

= 0, if γsc∗i,t ∈ (0, γ̄i),

≥ 0 if γsc∗i,t = γ̄i;

and,

for each i,
∂pi,tρi(p

sc∗
t )

ρi(psc∗t )
+

1

psc∗i,t −wi− νi(γsc∗i,t ) + δiβsci,t−1k
2
i


≤ 0, if psc∗i,t = p

i
,

= 0, if psc∗i,t ∈ (p
i
, p̄i),

≥ 0 if psc∗i,t = p̄i.

(14)

(iii) Let Πsc∗
t := (Πsc∗

1,t ,Π
sc∗
2,t , · · · ,Πsc∗

N,t) be the equilibrium payoff vector of the game G̃sct , where

Πsc∗
i,t = Πsc

i,t(γ
sc∗
t ,psc∗t ). We have Πsc∗

i,t > 0 for all i. In particular, if νi,t(γi,t) = γi,t, (C1) and (C2)

are satisfied.

Proposition 2 shows that the noncooperative game G̃sct is a log-supermodular game, and has a

unique pure strategy Nash equilibrium (γsc∗t ,psc∗t ) if the conditions (C1) and (C2) are satisfied.

The unique Nash equilibrium, (γsc∗t ,psc∗t ), is determined by (i) the serial elimination of strictly

dominated strategies, or (ii) the system of first-order conditions (14). Note that the pure-strategy

Nash equilibrium (γsc∗t ,psc∗t ) satisfies γsc∗i,t = γsci,t(γ
sc∗
−i,t,p

sc∗
−i,t) and psc∗i,t = psci,t(γ

sc∗
−i,t,p

sc∗
−i,t). Therefore,

given other retailers’ promotion and pricing profile (γsc∗−i,t,p
sc∗
−i,t), retailer i chooses promotion γsc∗i,t ,

price psc∗i,t , and safety-stock level ysc∗i,t as long as its starting inventory level Ii,t is lower than

xsci (γsc∗−i,t,p
sc∗
−i,t,Λi,t). Hence, if Ii,t ≤ xsci (γsc∗−i,t,p

sc∗
−i,t,Λi,t) for all i, the unique MPE in period t is

characterized by (γsc∗t ,psc∗t ,ysc∗t ).

Theorem 2. If Ii,T = 0 for each i and the conditions (C1) and (C2) are satisfied for each i and

t, then the following statements hold for each retailer i and each period t:

(a) The policy of retailer i in period t under the pure strategy MPE σsc∗ is

(γsc∗i,t (It,Λt), p
sc∗
i,t (It,Λt), x

sc∗
i,t (It,Λt)) = (γsc∗i,t , p

sc∗
i,t , y

sc∗
i,t + Λi,tdi(γ

sc∗
t ,psc∗t )). (15)

(b) The following recursive relations hold: βsci,t = δiβ
sc
i,t−1k

1
i + Πsc∗

i,t > 0, and ηsci,t = δiη
sc
i,t−1 +πsc∗i .

(c) The following sample-path property holds:

P
[
xsci,t(γ

sc∗
−i,t,p

sc∗
−i,t,Λi,t)−Dsc

i,t(γ
sc∗
−i,t,p

sc∗
−i,t,Λi,t)≤ xsci,t(γsc∗−i,t−1,p

sc∗
−i,t−1,Λi,t−1)

∣∣∣Λi,t

]
= 1,

for any Λi,t, where (γsc∗−i,t,p
sc∗
−i,t) and (γsc∗−i,t−1,p

sc∗
−i,t−1) are the equilibrium promotion and price deci-

sions of retailer i’s competitors in periods t and t− 1, respectively.
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Theorem 2(a) demonstrates that, under the MPE σsc∗, each retailer i’s joint promotion, price,

and inventory policy in each period t only depends on its own state variables (Ii,t,Λi,t), but not

on those of its competitors (I−i,t,Λ−i,t), which are not accessible to retailer i in general. Thus, for

each retailer i in each period t, its equilibrium strategy has the desirable feature that it depends

on accessible information only. Theorem 2(b) recursively computes the SC market size coefficient

vectors {βsct : T ≥ t≥ 1}.
In some of our analysis below, we will focus on a special case of the SC model, where the market

is symmetric, i.e., all competing retailers have identical characteristics. We use the subscript “s”

to denote the case of symmetric market. In this case, for all i, j, and t, let ds(·) := di(·), ρs(·) :=

ρi(·), ψs(·) := ψi(·), νs(·) := νi(·), ξs,t := ξi,t, k
1
s := k1

i , k
2
s := k2

i , ws := wi, hs := hi, bs := bi, and

δs := δi. Thus, we define πscs,t(yi,t) := −(1− δs)wsyi,t − Ls(yi,t), and Πsc
s,t(γt,pt) := ds(γt,pt)[pi,t −

ws − νs(γi,t) + δsβ
sc
s,t−1k

2
s ]. Then, as Proposition 1 shows, ysc∗i,t = F−1

s ( bs−(1−δs)ws
hs+bs

). By Theorem 1,

there exists a unique pure strategy MPE in the symmetric SC model, which we denote as σsc∗s .

The following proposition is a corollary of Theorems 1-2.

Proposition 3. If Ii,T = 0 for all i, the following statements hold for the symmetric SC model:

(a) For each t= T,T − 1, · · · ,1, there exist constants βscs,t > 0 and ηscs,t, such that

Vi,t(It,Λt|σsc∗s,t ) =wsIi,t +βscs,tΛi,t + ηscs,t, for all i.

(b) In each period t, the game Gsct is symmetric. Moreover, Gsct has a unique pure strategy Nash

equilibrium (γsc∗ss,t,p
sc∗
ss,t) which is symmetric (i.e., γsc∗ss,t = (γsc∗s,t , γ

sc∗
s,t , · · · , γsc∗s,t ) for some γsc∗s,t and

psc∗ss,t = (psc∗s,t , p
sc∗
s,t , · · · , psc∗s,t ) for some psc∗s,t ).

(c) The policy of retailer i in period t under the unique pure strategy MPE σsc∗s is

(γsc∗i,t (It,Λt), p
sc∗
i,t (It,Λt), x

sc∗
i,t (It,Λt)) = (γsc∗s,t , p

sc∗
s,t , y

sc∗
s,t + Λi,tds(γ

sc∗
ss,t,p

sc∗
ss,t)), for each (It,Λt).

Proposition 3 characterizes the MPE, σsc∗s , and the market size coefficients, {βscs,t : T ≥ t ≥ 1},
in the symmetric SC model. Proposition 3 shows that, in the symmetric SC model, all competing

retailers set the same promotional effort, price, and safety-stock level in each period under MPE,

whereas the equilibrium market outcome may vary in different periods.

4.2. Implications of Network Effects

In this subsection, we study the operations implications of network effects in the SC model. We

focus on how network effects drive the trade-off between current profits and future demands in a

dynamic and competitive market. Therefore, following the results in Theorem 1 and Proposition

3, we assume that Ii,T = 0 and conditions (C1) and (C2) are satisfied for all i and t in this section.

To begin with, we characterize the impact of the market size coefficient vectors {βsct : T ≥ t≥ 1}
upon the equilibrium market outcome. The following theorem serves as the building block of our

subsequent analysis of the trade-off between current profits and future demands in the SC model.
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Theorem 3. For each period t, the following statements hold for the symmetric SC model:

(a) γsc∗s,t is continuously increasing in βscs,t−1 and k2
s , whereas psc∗s,t is continuously decreasing in

βscs,t−1 and k2
s .

(b) If ψs,t(·) and ρs,t(·) satisfy the following monotonicity condition

N∑
i=1

∂ψs,t(γt)

∂γi,t
> 0, for all γt, and

N∑
i=1

∂ρs,t(pt)

∂pi,t
< 0, for all pt, (16)

Πsc∗
s,t := Πsc

i,t

(
γsc∗ss,t,p

sc∗
ss,t

)
is continuously increasing in βscs,t−1 and k2

s .

(c) If the monotonicity condition (16) holds, βscs,t is continuously increasing in βscs,t−1, k1
s and k2

s .

Theorem 3 shows that, in the symmetric SC model, the market size coefficients {βscs,t : T ≥

t ≥ 1} quantify the intensity of the trade-off between current profits and future demands. More

specifically, if βscs,t−1 is larger, each retailer i faces a stronger trade-off in period t. Therefore, to

balance this enhanced trade-off, each retailer would decrease the equilibrium price and increase the

equilibrium promotional effort, as shown in Theorem 3(a). Moreover, Theorem 3(c) characterizes

the relationship between this trade-off in different periods, demonstrating that if the trade-off is

more intensive in the next period, it is also stronger in the current period under a mild condition

(16). The monotonicity condition (16) implies that a uniform increase of all N retailers’ promotional

efforts leads to an increase in the demand of each retailer, and a uniform price increase by all N

retailers gives rise to a decrease in the demand of each firm. This condition is commonly used in

the literature (see, e.g., Bernstein and Federgruen 2004b, Allon and Federgruen 2007), and often

referred to as the “dominant diagonal” condition for linear demand models.

Now we directly study the impact of network effects. We compare two symmetric SC models

where all parameters are same except for the strength of network effect, i.e., the value of k2
s . Assume

that k̂2
s ≥ k2

s . Then we have the following theorem as a corollary of Proposition 3 and Theorem 3.

Theorem 4. Consider the symmetric SC model. For each period t, the following statements

hold:

(a) γ̂sc∗s,t ≥ γsc∗s,t and, thus, γ̂sc∗i,t (It,Λt)≥ γsc∗i,t (It,Λt) for all (It,Λt) and all i.

(b) p̂sc∗s,t ≤ psc∗s,t and, thus, p̂sc∗i,t (It,Λt)≤ psc∗i,t (It,Λt) for all (It,Λt) and all i.

(c) If the monotonicity condition (16) holds, we have x̂sc∗i,t (It,Λt)≥ xsc∗i,t (It,Λt) for all (It,Λt)

and all i.

Theorem 4 highlights the impact of market size dynamics upon the equilibrium market outcome

in the symmetrical SC model. Specifically, Theorem 4(a) shows that each retailer should increase

its promotional effort in each period under a stronger network effect, in order to induce higher

future demands. Analogously, Theorem 4(b) shows that the enhanced the network effect gives rise
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to a lower equilibrium price of each retailer in each period. Under the monotonicity condition

(16), Theorem 4(a,b) imply that the equilibrium expected demand of each retailer in each period

is higher under a stronger network effect. As a consequence, to match supply with the current

demand and to induce high future demands, each retailer should increase its base stock level in

each period under the network effect, as shown in Theorem 4(c).

Theorem 4 identifies effective strategies for firms to balance the trade-off between current profits

and future demands under network effects. To balance this trade-off, the retailers can employ two

strategies to exploit network effects: (a) offering price discounts and (b) improving promotional

efforts. Offering price discounts and improving promotional efforts do not only increase the current

profits but give rise to higher current demands and, thus, induce higher future demands via network

effects. In a nutshell, the uniform idea of all these strategies is that, to balance the trade-off between

current profits and future demands under network effects, the competing retailers should induce

higher future demands at the cost of reduced current margins.

Next, we analyze the trade-off between current profits and future demands from an inter-temporal

perspective. Under network effects, how should the competing retailers adjust their promotion and

price strategies throughout the sales season to balance this trade-off? To address this question, we

characterize the evolution of the equilibrium market outcome in the symmetric SC model.

Theorem 5. Consider the symmetric SC model. If the monotonicity condition (16) holds for

each period t, the following statements hold:

(a) βscs,t ≥ βscs,t−1, γsc∗s,t ≥ γsc∗s,t−1, psc∗s,t ≤ psc∗s,t−1.

(b) γsc∗i,t (I,Λ) ≥ γsc∗i,t−1(I,Λ), psc∗i,t (I,Λ) ≤ psc∗i,t−1(I,Λ), and xsc∗i,t (I,Λ) ≥ xsc∗i,t−1(I,Λ) for each i

and each (I,Λ)∈ S.

Theorem 5 sheds light on how to balance the above trade-off from an inter-temporal perspective.

More specifically, we show that, if the market is symmetric and stationary, this trade-off is more

intensive (i.e., βscs,t is larger) at the early stage of the sales season. Moreover, the equilibrium

price is increasing, whereas the equilibrium promotional effort is decreasing, over the planning

horizon. The network effects have stronger impact upon future demands (and, hence, future profits)

when the remaining planning horizon is longer. Therefore, to adaptively balance the trade-off

throughout the sales season, all the retailers increase their prices and decrease their promotional

efforts towards the end of the sales season. In a dynamic competition, our analysis justifies the

widely used introductory price and promotion strategy with which retailers offer discounts and

launch promotional campaigns at the beginning of a sales season to attract more early purchases

(see, e.g., Cabral et al. 1999, Parker and Van Alstyne 2005, Eisenmann et al. 2006).
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To summarize, under network effects, the competing retailers have to trade off between generating

current profits and inducing future demands. To effectively balance this trade-off, the retailers

should (a) increase promotional efforts and (b) offer price discounts. Moreover, this trade-off is

more intensive (a) with stronger network effects, or (b) at the early stage of the sales season.

5. Promotion-First Competition

Promotion timing may be different for different promotion tools. For example, highly personalized

re-targeting is more effective early in a consumer’s purchase decision procedure. See, e.g., Bleier

and Eisenbeiss (2015). To capture this context, we consider the promotion-first competition (PF)

model, i.e., in each period t, each retailer i first selects its promotional effort and then, after

observing the current-period promotional efforts of all retailers, chooses a combined price and

inventory strategy. This model applies broadly to the scenario where promotion is more effective

to expand the market size at an early stage than at later stages, so it should be settled in advance

of price and inventory decision.

Employing the linear separability approach based on a sample-path argument, we will show

that, in the PF model, the retailers engage in a two-stage competition in each period, where they

compete on promotional effort in the first stage, and on price in the second. Similar to the SC

model, retailers optimize their inventory individually in the second stage competition. We will

also demonstrate that the trade-off between current profits and future demands has more involved

managerial implications in the PF model than in the SC model. In the SC model, the competing

retailers balance this trade-off inter-temporally, whereas they balance it both inter-temporally and

intra-temporally in the PF model.

For tractability, we make the following additional assumption throughout this section:

ρi(pt) = φi− θiipi,t +
∑
j 6=i

θijpj,t, for each i and t, (17)

where φi, θii > 0 and θij ≥ 0 for each i and j. Moreover, we assume that the diagonal dominance

conditions hold for each ρi(·), i.e., for each i and t, θii >
∑
j 6=i
θij and θii >

∑
j 6=i
θji. In addition, we

make the same assumption as Allon and Federgruen (2007) as follows:

Assumption 1. For each i, the minimum [maximum] allowable price p
i

[p̄i] is sufficiently low

[high] so that it will have no impact on the equilibrium market behavior.

We will give a sufficient condition for Assumption 1 in the discussion after Proposition 6.
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5.1. Equilibrium Analysis

In this subsection, we use the linear separability approach to characterize the pure strategy MPE

in the PF model. In this model, a (pure) Markov strategy profile of retailer i in period t is given by

σpfi,t = (γpfi,t (·, ·), p
pf
i,t(·, ·, ·), x

pf
i,t(·, ·, ·)), where γpfi,t (It,Λt) prescribes the promotional effort given the

state variable (It,Λt), and (ppfi,t(It,Λt,γt), x
pf
i,t(It,Λt,γt)) prescribes the price and the post-delivery

inventory level, given the state variable (It,Λt) and the current period promotional effort vector

γt. Let γpft (·, ·) := (γpf1,t(·, ·), γ
pf
2,t(·, ·), · · · , γ

pf
N,t(·, ·)), p

pf
t (·, ·, ·) := (ppf1,t(·, ·, ·), p

pf
2,t(·, ·, ·), · · · , p

pf
N,t(·, ·, ·)),

and xpft (·, ·, ·) := (xpf1,t(·, ·, ·), x
pf
2,t(·, ·, ·), · · · , x

pf
N,t(·, ·, ·)). We use σpft to denote the (pure) strategy

profile of all retailers in the subgame of period t, which prescribes their (pure) strategies from

period t to the end of the planning horizon.

Let Vi,t(It,Λt|σpft ) be the total expected discounted profit of retailer i in periods t, t−1, · · · ,1,0,

when starting period t with the state variable (It,Λt) and the retailers play strategy σpft in periods

t, t−1, · · · ,1. Thus, by backward induction, Vi,t(·, ·|σpft ) satisfies the following recursive scheme for

each retailer i and each period t:

Vi,t(It,Λt|σpft ) = Ji,t(γ
pf
t (It,Λt),p

pf
t (It,Λt,γ

pf
t (It,Λt)),x

pf
t (It,Λt,γ

pf
t (It,Λt)),It,Λt|σpft−1),

where

Ji,t(γt,pt, xi,t,It,Λt|σpft−1) = E{pi,tDi,t(γt,pt)−wi(xi,t− Ii,t)−hi(xi,t−Di,t(γt,pt))
+

−bi(xi,t−Di,t(γt,pt))
−− νi,t(γi)Di,t(γt,pt)

+δiVi,t−1(xt−Dt(γt,pt),αt(γt,pt)|σpft−1)|It,Λt},

(18)

and Vi,0(It,Λt) =wi,0Ii,0. We now define the pure strategy MPE in the PF model.

Definition 2. A (pure) Markov strategy σpf∗ = {(γpf∗i,t (·, ·), ppf∗i,t (·, ·, ·), xpf∗i,t (·, ·, ·)) : 1 ≤ i ≤

N,T ≥ t≥ 1} is a pure strategy MPE in the PF model if and only if, for each firm i, period t, and

state variable (It,Λt)∈ S,

(ppf∗i,t (It,Λt,γt), x
pf∗
i,t (It,Λt,γt))

= arg max
pi,t∈[p

i
,p̄i],xi,t≥Ii,t

Ji,t
(
γt, [pi,t,p

pf∗
−i,t(It,Λt,γt)], [xi,t,x

pf∗
−i,t(It,Λt,γt)],It,Λt|σpf∗t−1

)
, (19)

and

γpf∗i,t (It,Λt) = arg max
γi,t∈[0,γ̄i]

Ji,t ([γi,t,γ
pf∗
−i,t(It,Λt)],p

pf∗
t (It,Λt, [γi,t,γ

pf∗
−i,t(It,Λt)]),

xpf∗t (It,Λt, [γi,t,γ
pf∗
−i,t(It,Λt)]),It,Λt|σpf∗t−1). (20)
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Definition 2 suggests that a pure strategy MPE in the PF model is a (pure) Markov strategy

profile that satisfies subgame perfection in each stage of the competition in each period t. The

following theorem shows that there exists a pure strategy MPE in the PF model.

Theorem 6. If Ii,T = 0 for all i, the following statements hold for the PF model:

(a) There exists a pure strategy MPE σpf∗.

(b) For each pure strategy MPE σpf∗, there exists two series of vectors {βpft : T ≥ t ≥ 1} and

{ηpft : T ≥ t ≥ 1}, where βpft = (βpf1,t, β
pf
2,t, · · · , β

pf
N,t) with βpfi,t > 0 for each i and t, and ηpft =

(ηpf1,t, η
pf
2,t, · · · , η

pf
N,t), such that

Vi,t(Ii,t,Λi,t|σpf∗t ) =wi,tIi,t +βpfi,tΛi,t + ηpfi,t , for each i, t, and (It,Λt)∈ S. (21)

(c) If νi,t(γi,t) = γi,t for each i and t, σpf∗ is the unique MPE in the PF model.

Theorem 6 demonstrates the existence of a pure strategy MPE in the PF model. As in the SC

model, we show that, for each pure strategy MPE σpf∗, the associated profit function of each firm

i in each period t is linearly separable in its own starting inventory level Ii,t and market size Λi,t.

We refer to the constant βpfi,t as the PF market size coefficient of firm i in period t, which measures

the intensity of the trade-off between current profits and future demands in the PF model.

The linear separability of Vi,t(·, ·|σpf∗t ) enables us to have a sharper characterization of MPE in

the PF model. As in the SC model, we can rewrite the objective function of retailer i in period t

as follows.

Ji,t(γt,pt,xt,It,Λt|σpf∗t−1) = E{pi,tDi,t(γt,pt)−wi(xi,t− Ii,t)−hi(xi,t−Di,t(γt,pt))
+

−bi(xi,t−Di,t(γt,pt))
−− νi(γi,t)Di,t(γt,pt)

+δiVi,t−1(xt−Dt(γt,pt),αt(γt,pt)|σpf∗t−1)|It,Λt}

= wiIi,t + Λi,t{δiβpfi,t−1k
1
i + di,t(γt,pt)[pi,t−wi− νi(γi,t) + δiβ

pf
i,t−1k

2
i ]}

−(1− δi)wiyi,t−Li(yi,t) + δiη
pf
i,t−1, (22)

where βpfi,0 = 0 and ηpfi,0 = 0 for each i. We observe from (22) that, all retailers participate in a

two-stage competition: in the first stage, the retailers compete on promotional effort; in the second

stage, they compete on price and optimize their inventory levels individually. For each period t,

by backward induction, we start with analyzing the optimal safety-stock level and pricing strategy

in equilibrium, for a given promotion strategy γt. For a given promotion vector γt, we define the

following functions:

πpfi,t (yi,t) := −(1− δi)wiyi,t−Li(yi,t),

Πpf
i,t(pt|γt) := di(γt,pt)[pi,t−wi− νi(γi,t) + δiβ

pf
i,t−1k

2
i ],

Opf
i,t (pt, yi,t|γt,Λi,t) := Λi,tΠ

pf
i,t(pt|γt) +πpfi,t (yi,t).
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Therefore, given It, Λt, and promotion strategy γt, we define the best response of retailer i when

other retailers pick pricing decisions p−i,t as,

(ypfi,t (p−i,t,γt), p
pf
i,t(p−i,t,γt)) := arg max

pi,t∈[p
i
,pi],yi,t∈R

Opf
i,t (pt, yi,t|γt,Λi,t),

= arg max
pi,t∈[p

i
,pi]

Λi,tΠ
pf
i,t(pt|γt) + arg max

yi,t∈R
πpfi,t (yi,t), (23)

(ypf∗i,t (p−i,t,γt, Ii,t,Λi,t), p
pf∗
i,t (p−i,t,γt, Ii,t,Λi,t))

:= arg max
pi,t∈[p

i
,pi],yi,t+Λi,tdi(γt,pt)≥Ii,t

Osc
i,t(pt, yi,t|γt,Λi,t). (24)

Hence, when the inventory level constraints are not binding, the retailers can optimize their

inventory decisions individually. We can write demand functions and inventory levels associated

with the solution to (23) as:

dpfi (p−i,t,γt) := di(γt, [p
pf
i,t(p−i,t,γt),p−i,t]),

Dpf
i (p−i,t,γt,Λi,t) := Λi,td

pf
i (p−i,t,γt) + ξi,t,

xpfi,t(p−i,t,γt,Λi,t) := ypfi,t (p−i,t,γt) + Λi,td
pf
i (p−i,t,γt).

The following proposition presents a similar result of Proposition 1 for the PF model.

Proposition 4. For each i, given any promotion profile γt, the following statements hold for

the subgame of period t with states (It,Λt) when other firms set price p−i,t:

(a) ypfi,t (p−i,t,γt) = F−1
i ( bi−(1−δi)wi

hi+bi
).

(b) If xpfi,t(p−i,t,γt,Λi,t)≥ Ii,t, ypf∗i (p−i,t,γt, Ii,t,Λi,t) = ypfi,t (p−i,t,γt), p
sc∗
i (p−i,t,γt, Ii,t,Λi,t)

= psci,t(p−i,t,γt).

(c) xpfi,t(p−i,t,γt,Λi,t)≥ 0.

(d) If t≥ 2, P
[
xpfi,t(p−i,t,γt,Λi,t)−Dpf

i,t (p−i,t,γt,Λi,t)≤ xpfi,t(p−i,t−1,γt−1,Λi,t−1)
∣∣∣Λi,t

]
= 1 for any

Λi,t−1, and any (γt,p−i,t) and (γt−1,p−i,t−1).

Proposition 4 characterizes the best response of firm i in the second stage of the game. Most

importantly, part (d) shows that the critical sample-path property holds for the PF model: Under

equilibrium, the starting inventory of any retailer in any period is below the equilibrium base-stock

level of the next period. This property ensures that linear separability also holds for the PF model.

Define ypf∗i,t := F−1
i ( bi−(1−δi)wi

hi+bi
), which is the solution to the first-order condition ∂yi,tπ

pf
i,t (yi,t) = 0,

and πpf∗i,t := πpfi,t (y
pf∗
i,t ).

We now analyze the competition of each period in more detail. Consider a two-stage game

in which N retailers compete on promotion profile γt in the first stage and then on price in

the second. Given a promotion profile γt, the second-stage game Gpf,2t (γt) has a payoff function
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Opf
i,t (pt, yi,t|γt,Λi,t) for all i, and action space is the set of (pt,yt) such that pi,t ∈ [p

i
, pi] and

yi,t + Λi,tdi(γt,pt)≥ Ii,t for all i.

Similar to the SC model, we first define a noncooperative game G̃pf,2t (γt) for any γt, in which

the payoff function is Πpf
i,t(pt|γt), and the action space is [p

1
, p1] × [p

2
, p2] × · · · × [p

N
, pN ]. We

define A as an N ×N matrix with entries defined by Aii := 2θii and Aij :=−θij where i 6= j. By

Lemma 2(a) in the Appendix, A is invertible. Let f(γt) be an N−dimensional vector with fi(γt) :=

φi + θii(wi + νi(γi,t)− δiβpfi,t−1k
2
i ). We characterize the Nash equilibrium of the game G̃pf,2t (γt) in

the following proposition.

Proposition 5. For each period t and any given γt, the following statements hold:

(a) The price competition G̃pf,2t (γt) has a unique pure strategy Nash equilibrium ppf∗t (γt).

(b) ppf∗t (γt) =A−1f(γt). Moreover, ppf∗i,t (γt) is continuously increasing in γj,t for each i and j.

(c) Let Πpf∗,2
t (γt) := (Πpf∗,2

1,t (γt),Π
pf∗,2
2,t (γt), · · · ,Πpf∗,2

N,t (γt)) be the equilibrium payoff vector

of the game G̃pf,2t (γt) in period t, where Πpf∗,2
i,t (γt) = Πpf

i,t(p
pf∗
t (γt)|γt). We have Πpf∗,2

i,t (γt) =

θiiψi(γt)(p
pf∗
i,t (γt)−wi− νi(γi,t) + δiβ

pf
i,t−1k

2
i )

2 > 0 for all i.

Let ppf∗−i,t(γt) be the equilibrium pricing policy except for retailer i given γt. Given the results in

Proposition 4 and Proposition 5, we are able to characterize the equilibrium of the second-stage

price competition with inventory optimization.

Proposition 6. For a promotion decision γt, if xpfi,t(p
pf∗
−i,t(γt),γt,Λi,t)≥ Ii,t for all i, then the

second-stage game Gpf,2t (γt) in period t has a unique pure strategy Nash equilibrium (ppf∗t (γt),y
pf∗
t ).

Furthermore, the equilibrium payoff vector is (Opf∗,2
1,t (γt),O

pf∗,2
2,t (γt), · · · ,Opf∗,2

N,t (γt)), where

Opf∗,2
i,t (γt) =Opf

i,t (p
pf∗
t (γt), y

pf∗
i,t |γt,Λi,t) = πpf∗i,t + Λi,tΠ

pf∗,2
i,t (γt).

Proposition 6 shows that, for any given promotional effort vector γt, the second-stage price

competition Gpf,2t (γt) has a unique pure strategy Nash equilibrium (A−1f(γt),y
pf∗
t ) if the starting

inventory of retailers in period t is smaller than a threshold. By Proposition 5(b), we have ppf∗i,t (0)≤

ppf∗i,t (γt)≤ ppf∗i,t (γ̄t) for each i and γt, where 0 is an N -dimensional vector with each entry equal to

0 and γ̄t := (γ̄1,t, γ̄2,t, · · · , γ̄N,t). Thus, a sufficient condition for Assumption 1 is that p
i,t
≤ ppf∗i,t (0)

and p̄i,t ≥ ppf∗i,t (γ̄t) for all i and t.

Now we study the first-stage promotion competition. In each period t, we define a game

G̃pf,1t with the payoff function of retailer i as Opf,1
i,t (γt) := πpf∗i,t + Λi,tΠ

pf∗,2
i,t (γt) and an action

space [0, γ1] × [0, γ2] × · · · × [0, γN ]. Notice that, for the game G̃pf,1t , we implicitly assume that

xpfi,t(p
pf∗,2
−i,t (γt),γt,Λi,t)≥ Ii,t holds for all i, which we will verify later to close the loop.

Proposition 7. The following statements hold for the game G̃pf,1t :

(a) The first-stage promotion competition G̃pf,1t is a log-supermodular game.
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(b) If νi(γi,t) = γi,t for each i, then:

(i) There exists a unique pure strategy Nash equilibrium in the game G̃pf,1t , which is the unique

serially undominated strategy of G̃pf,1t .

(ii) The unique Nash equilibrium of G̃pf,1t , γpf∗t , is the solution to the following system of

equations:

∂γi,tψi,t(γ
pf∗
t )

ψi,t(γ
pf∗
t )

− 2(1− θii(A−1)ii)

ppf∗i,t (γpf∗t )−wi− γpf∗i,t + δiβ
pf
i,t−1k

2
i


≤ 0, if γpf∗i,t = 0,

= 0, if γpf∗i,t ∈ (0, γ̄i),

≥ 0 if γpf∗i,t = γ̄i,

for each i. (25)

As shown in Proposition 7, in the PF model, the first-stage promotion competition in period t

has a unique pure strategy Nash equilibrium. Moreover, the unique Nash equilibrium promotional

effort vector γpf∗t can be determined by (i) the serial elimination of strictly dominated strategies,

or (ii) the system of first-order conditions (25). We also denote Πpf∗,1
i,t := Πpf,1

i,t (γpf∗t ) for the rest

of this paper. Proposition 7 immediately implies that, as long as xpfi,t(p
pf∗
−i,t(γ

pf∗
t ),γpf∗t ,Λi,t) ≥ Ii,t

for all i, retailer i will play γpf∗i,t under the MPE for all i. Furthermore, the equilibrium payoff of

retailer i is given by Opf∗,1
i,t :=Opf,1

i,t (γpf∗t ) = πpf∗i,t + Λi,tΠ
pf∗,1
i,t .

The following theorem summarizes Theorem 6 and Propositions 4 - 7, and characterizes the

MPE in the PF model.

Theorem 7. If Ii,T = 0 and νi,t(γi,t) = γi,t for each i, the following statements hold for each

retailer i and each period t:

(a) The policy of retailer i in period t under the unique pure strategy MPE σpf∗ is

(γpf∗i,t (It,Λt), p
pf∗
i,t (It,Λt,γt), x

pf∗
i,t (It,Λt,γt)) = (γpf∗i,t , p

pf∗
i,t (γt), y

pf∗
i,t + Λi,tρi,t(p

pf∗
t (γt))ψi,t(γt)). (26)

In particular, for any (It,Λt), the associated (pure strategy) equilibrium price and inventory deci-

sions of retailer i are ppf∗i,t (γpf∗t ) and ypf∗i,t + Λi,tρi,t(p
pf∗
t (γpf∗t ))ψi,t(γ

pf∗
t ), respectively.

(b) The following recursive relations hold: βpfi,t = δiβ
pf
i,t−1k

1
i + Πpf∗,1

i,t > 0 and ηpfi,t = δiη
pf
i,t−1 +πpf∗i,t .

(c) The following sample-path property holds:

P
[
xpfi,t(p

pf∗
−i,t(γ

pf∗
t ),γpf∗t ,Λi,t)−Dpf

i,t (p
pf∗
−i,t(γ

pf∗
t ),γpf∗t ,Λi,t)≤ xpfi,t−1(ppf∗−i,t−1(γpf∗t−1),γpf∗t−1,Λi,t−1)

∣∣∣Λi,t

]
= 1,

for any Λi,t.

Theorem 7(a) characterizes the unique pure strategy MPE in the PF model. It also demon-

strates that, under the unique pure strategy MPE σpf∗, retailer i’s promotion, price, and inventory

decisions in each period t depend on its private information (i.e., (Ii,t,Λi,t)) only, but not on that

of its competitors (i.e., (I−i,t,Λ−i,t)). Hence, the unique pure strategy MPE in the PF model

also has the desirable feature that the strategy of each firm is contingent on its accessible infor-

mation only. Theorem 7(b) recursively determines the PF coefficient vectors, {βpft : T ≥ t ≥ 1}
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and {ηpft : T ≥ t ≥ 1}, associated with the unique pure strategy MPE σpf∗. Theorem 7(c) ver-

ifies the desired sample path that the starting inventory in the next period is small enough to

ensure the existence and uniqueness of MPE σpf∗t−1, when firms adopt the pure strategy MPE,

(γpf∗i,t (It,Λt), p
pf∗
i,t (It,Λt,γt), x

pf∗
i,t (It,Λt,γt)).

As in the SC model, we will perform some of our analysis below with the symmetric PF model,

where all retailers have identical characteristics. We use the subscript “s” to denote the case

of symmetric market in the PF model. In this case, ρs(pt) = φs − θsapi,t +
∑

j 6=i θsbpj,t for some

nonnegative constants φs, θsa, and θsb, where θsa > (N − 1)θsb. We use σpf∗s to denote the unique

pure strategy MPE in the symmetric PF model. The following proposition characterizes σpf∗s in

the PF model.

Proposition 8. If Ii,T = 0 and νi,t(γi,t) = γi,t for all i, the following statements hold for the

symmetric PF model:

(a) For each t= T,T − 1, · · · ,1, there exists two constants βpfs,t > 0 and ηpfs,t, such that

Vi,t(It,Λt|σpf∗s,t ) =wsIi,t +βpfs,tΛi,t + ηpfs,t, for all i.

(b) In each period t, the second-stage price competition Gpf,2s,t (γt) is symmetric if γi,t = γj,t for

all 1≤ i, j ≤N . In this case, Gpf,2s,t (γt) has a unique pure strategy Nash equilibrium ppf∗ss,t(γt), which

is symmetric (i.e., ppf∗ss,t(γt) = (ppf∗s,t (γt), p
pf∗
s,t (γt), · · · , ppf∗s,t (γt)) for some ppf∗s,t (γt)∈ [p

s
, p̄s]).

(c) In each period t, the first-stage promotion competition Gpf,1s,t is symmetric. Moreover, Gpf,1s,t has

a unique pure strategy Nash equilibrium γpf∗ss,t , which is symmetric (i.e., γpf∗ss,t = (γpf∗s,t , γ
pf∗
s,t , · · · , γpf∗s )

for some γpf∗s,t ∈ [0, γ̄s]).

(d) Under the unique pure strategy MPE σpf∗s , the policy of firm i in period t is

(γpf∗i,t (γt, Ii,t,Λi,t), p
pf∗
i,t (γt, Ii,t,Λi,t), x

pf∗
i,t (γt, Ii,t,Λi,t)) = (γsc∗s,t , p

pf∗
i,t (γt), y

pf∗
s,t +Λi,tρs,t(p

pf∗
t (γt))ψs,t(γt)),

for all (Ii,t,Λi,t) and γt. In particular, for each firm i and any (Ii,t,Λi,t), the equilibrium price is

ppf∗s,t (γpf∗ss,t), and the equilibrium post-delivery inventory level is ypf∗s,t + Λi,tρs,t(p
pf∗
ss,t(γ

pf∗
ss,t))ψs,t(γ

pf∗
ss,t).

Proposition 8 shows that, in the symmetric PF model, all competing retailers make the same

promotional effort, charge the same price, and maintain the same safety stock in each period. The

PF market size coefficient is also identical for all retailers in each period.

5.2. Implications of Network Effects

In this subsection, we study the operations implications of network effects in the PF model. As in

the SC model, we assume that the initial inventory level of each retailer is zero, that is, Ii,T = 0

for all i. To ensure the uniqueness of MPE, we also assume that νi(γi,t) = γi,t for all i. We first

characterize the impact of the PF market size coefficient vectors, {βpft : T ≥ t≥ 1}.
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Theorem 8. For each period t, the following statements hold:

(a) For each i, j, and γt , ppf∗i,t (γt) is continuously decreasing in βpfj,t−1 and k2
j .

(b) If the PF model is symmetric, γpf∗s,t is continuously increasing in βpfs,t−1 and k2
s .

(c) If the PF model is symmetric and the monotonicity condition (16) holds, Πpf∗,1
s,t is continu-

ously increasing in βpfs,t−1 and k2
s .

(d) If the PF model is symmetric and the monotonicity condition (16) holds, βpfs,t is continuously

increasing in k1
s , β

pf
s,t−1 and k2

s .

Theorem 8 demonstrates that the market size coefficients {βpfi,t : 1≤ i≤N,T ≥ t≥ 1} quantify

the intensity of the trade-off between current profits and future demands in the PF model. More

specifically, a larger βpfi,t−1 implies more intensive trade-off for firm i in period t.

As in the SC model, we first compare two PF models with different network effect intensities.

Assume that k̂2
s ≥ k2

s for each firm i. The following theorem characterizes the impact of network

effect intensity in the PF model.

Theorem 9. Consider the symmetric PF model. For each period t, the following statements

hold:

(a) p̂pf∗s,t (γt) ≤ ppf∗s,t (γt) for all γt, and thus, p̂pf∗i,t (It,Λt,γt) ≤ ppf∗i,t (It,Λt,γt) for all (It,Λt), γt

and all i.

(b) x̂pf∗i,t (It,Λt,γt)≥ xpf∗i,t (It,Λt,γt) for all (It,Λt), γt and all i.

(c) γ̂pf∗s,t ≥ γpf∗s,t , and thus, γ̂pf∗i,t (It,Λt)≥ γpf∗i,t (It,Λt) for all (It,Λt) and all i.

Theorem 9(a) reveals the impact of the trade-off between current profits and future demands

upon the competing firms’ price strategy in the PF model. Specifically, given any outcome of the

first-stage promotion competition γt, in the second-stage price competition, each firm should charge

a lower retail price under a more intensive network effect, so as to exploit the network effect and

induce higher future demands. Theorem 9(b) shows that, in each period t, the equilibrium post-

delivery inventory levels contingent on any realized promotional effort vector γt are also higher

in the PF model under the stronger network effect. Theorem 9(c) sheds light on how network

effects influence the equilibrium promotion strategies. In the symmetric PF model, the equilibrium

promotional effort of each firm i in each period t is higher when the network effect is stronger.

Note that, in the PF model, the equilibrium price and inventory outcomes under the network

effect k̂2
s , p̂

pf∗
s,t (γ̂pf∗ss,t) and x̂pf∗i,t (It,Λt, γ̂

pf∗
ss,t), may be either higher or lower than those under a lower

network effect k2
s , p

pf∗
ss,t(γ

pf∗
s,t ) and xpf∗i,t (It,Λt,γ

pf∗
ss,t). This phenomenon contrasts with the equilibrium

market outcomes in the SC model, where the equilibrium price (resp. post-delivery inventory level)

of each retailer in each period is lower (resp. higher) under a stronger network effect (i.e., Theorem
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4(b-c)). This discrepancy is driven by the fact that, in the PF model, each retailer observes the pro-

motion decisions of its competitors before making its pricing decision. Hence, under a stronger net-

work effect, the competing retailers may either charge lower prices to induce more future demands

or increase the prices to exploit the better market condition from the increased promotional efforts

(recall that γ̂pf∗s,t ≥ γpf∗s,t ). In general, either effect may dominate, so we do not have a general mono-

tonicity relationship between either the equilibrium price outcomes (i.e., p̂pf∗s,t (γ̂pf∗ss,t) and ppf∗ss,t(γ
pf∗
s,t ))

or the equilibrium inventory outcomes (i.e., x̂pf∗i,t (It,Λt, γ̂
pf∗
ss,t) and xpf∗i,t (It,Λt,γ

pf∗
ss,t)). Therefore, the

trade-off between current profits and future demands in the PF model is more involved than that

in the SC model. The competing retailers only need to balance this trade-off inter-temporally in

the SC model, whereas they have to balance it both inter-temporally and intra-temporally in the

PF model.

The following theorem is a counterpart of Theorem 5, and characterizes the evolution of the

equilibrium market outcome in the stationary symmetric PF model.

Theorem 10. Consider the symmetric PF model. If the monotonicity condition (16) holds for

each period t, the following statements hold:

(a) βpfs,t ≥ βpfs,t−1, ppf∗s,t (γ)≤ ppf∗s,t−1(γ) for each γ, and γpf∗s,t ≥ γpf∗s,t−1.

(b) ppf∗i,t (I,Λ,γ)≤ ppf∗i,t−1(I,Λ,γ), xpf∗i,t (I,Λ,γ)≥ xpf∗i,t−1(I,Λ,γ), and γpf∗i,t (I,Λ)≥ γpf∗i,t−1(I,Λ) for

each i, γ, (I,Λ)∈ S.

Analogous to Theorem 5, Theorem 10 justifies the widely used introductory price and promotion

strategy. More specifically, this result shows that if the market is stationary and symmetric in the

PF model, the competing retailers should decrease the promotional efforts (i.e., γpf∗s,t ), and increase

the prices contingent on any realized promotional efforts (i.e., ppf∗s,t (γt)), over the planning horizon.

Hence, Theorem 10 suggests that, in the PF model, the trade-off between current profits and future

demands is more intensive at the early stage of the sales season than at later stages.

To conclude this section, we remark that, because of the aforementioned intra-temporal trade-off

under the promotion-first competition, Theorems 9 - 10 cannot give the monotone relationships on

the equilibrium outcomes of each retailer i’s price (i.e., ppf∗i,t (It,Λt,γ
pf∗
ss,t)) and post-deliver inventory

level (i.e., xpf∗i,t (It,Λt,γ
pf∗
ss,t)).

6. Comparison of the Two Competition Models

As demonstrated above, the trade-off between current profits and future demands is more involved

in the PF model than that in the SC model. In this section, we compare the unique MPE in the SC

model and that in the PF model, and discuss how this trade-off influences the equilibrium market

outcomes under different competitions.
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Theorem 11. Consider the symmetric SC and PF models. Assume that, for each retailer i

and each period t, (i) Ii,T = 0, (ii) the demand function ρi,t(·) is linear and given by (17), (iii)

νi,t(γi,t) = γi,t, (iv) the monotonicity condition (16) holds, and (v) Assumption 1 holds. The fol-

lowing statements hold:

(a) If βpfs,t−1 ≥ βscs,t−1, γpf∗s,t ≥ γsc∗s,t .

(b) There exists an ε∈ [0, 1
N−1

], such that, if θsb ≤ εθsa, we have

(i) βpfs,t ≥ βscs,t and, thus, Vi,t(It,Λt|σpf∗t )≥ Vi,t(It,Λt|σsc∗t ) for each firm i and all (It,Λt)∈ S;

(ii) γpf∗s,t ≥ γsc∗s,t .

Theorem 11 shows that, if the product differentiation is sufficiently high (as captured by the

condition that θsb ≤ εθsa), the PF competition leads to stronger trade-off between current profits

and future demands (i.e., βpfs,t ≥ βscs,t). As a consequence, the competing retailers should set higher

promotional efforts in the PF model. Compared with the simultaneous competition, the promotion-

first competition enables the retailer to responsively adjust their sales prices in accordance to

the market condition and their competitors’ promotion strategies. If the product differentiation

is sufficiently high, such pricing flexibility gives rise to higher expected profits of all retailers and

more intensive trade-off in the PF model.

Theorem 11 also reveals the “fat-cat” effect in our dynamic competition model: When the price

decisions are made after observing the promotional efforts in each period, the firms tend to “over-

invest” in promotional efforts. As shown in the literature (e.g., Fudenberg and Tirole 1984, Allon

and Federgruen 2007), one driving force for this phenomenon is that, under the PF competition,

the firms can charge higher prices in the subsequent price competition with increased promotional

efforts in each period. Theorem 11 identifies a new driving force for the “fat-cat” effect: The firms

under the PF competition make more promotional efforts to balance the more intensive trade-off

between current profits and future demands. Therefore, our analysis delivers a new insight to the

literature that network effects may give rise to the “fat-cat” effect in dynamic competition.

7. Conclusion

This paper studies the dynamic joint promotion, price, and inventory competition between online

retailers. A salient feature of our model is the social interactions between consumers, which drive

network effects rendering the current decisions of retailers to influence their future demands. Our

model highlights an important trade-off in a dynamic and competitive market: the one between

generating current profits and inducing future demands. We characterize the impact of this trade-

off upon the equilibrium market outcome under network effects, and identify the effective strategies

to balance this trade-off in dynamic competition.



Jiang et al.: Dynamic Competition in Online Retailing
29

We employ the linear separability approach based on a sample-path property of inventory dynam-

ics to characterize the pure strategy MPE both in the SC model and in the PF model. An important

feature of the MPE in both models is that the equilibrium strategy of each retailer in each period

only depends on the private inventory and market size information of itself, but not on that of its

competitors. Moreover, the trade-off between current profits and future demands is more intensive

if the network effect are stronger, and its intensity decreases over the planning horizon. The trade-

off is more involved in the PF model than in the SC model. This is because the competing retailers

need to balance this trade-off both inter-temporally and intra-temporally in the PF model, whereas

they only need to balance it inter-temporally in the SC model. More specifically, in the SC model,

to effectively balance the trade-off, the firms should (a) increase promotional efforts, and (b) offer

price discounts. In the PF model, the firms should increase promotional efforts under stronger

network effects. Given the same promotional effort in the first-stage competition, the firms need

to decrease their sales prices under stronger network effects. However, with an increased promo-

tional effort in the first-stage competition, the equilibrium prices in the second-stage competition

may either decrease or increase. Analogously, the equilibrium post-delivery inventory levels may

either decrease or increase in the PF model under stronger network effects. Finally, we identify

the “fat-cat” effect in our dynamic competition model: If the product differentiation is sufficiently

high, under the MPE, the retailers make more promotional efforts in the PF model than in the SC

model. The driving force of this phenomenon is that the trade-off between current profits and future

demands is more intensive under the promotion-first competition than under the simultaneous

competition.
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Online Appendices to “Dynamic Competition in Online
Retailing: The Implications of Network Effects”

We use ∂ to denote the derivative operator of a single variable function, and ∂x to denote the partial deriva-

tive operator of a multi-variable function with respect to variable x. For any multivariate continuously differ-

entiable function f(x1, x2, · · · , xn) and x̃ := (x̃1, x̃2, · · · , x̃n) in f(·)’s domain, ∀i, we use ∂xif(x̃1, x̃2, · · · , x̃n) to

denote ∂xif(x1, x2, · · · , xn)|x=x̃. The following lemma is indebted from Lemma 4 of Yang and Zhang (2022a)

and is used throughout our analysis. For completeness, we also give its proof.

Lemma 1. Let Gi(z,Z) be a continuously differentiable function in (z,Z), where z ∈ [z, z̄] (z and z̄ might

be infinite) and Z ∈ Rni for i = 1,2. For i = 1,2, let (zi,Zi) := arg max(z,Z)Gi(z,Z) be the optimizers of

Gi(·, ·). If z1 < z2, we have: ∂zG1(z1,Z1)≤ ∂zG2(z2,Z2).

Proof: z1 < z2, so z ≤ z1 < z2 ≤ z̄. Hence, ∂zG1(z1,Z1)

{
= 0 if z1 > z,

≤ 0 if z1 = z;
and

∂zG2(z2,Z2)

{
= 0 if z2 < z̄,

≥ 0 if z2 = z̄,
i.e., ∂zG1(z1,Z1)≤ 0≤ ∂zG2(z2,Z2). Q.E.D.

Proof of Theorems 1-2 and Propositions 1-2: We show Theorem 1, Proposition 1, Proposi-

tion 2, and Theorem 2 together by strong backward induction. More specifically, we show that, if

Vi,τ (Ii,τ ,Λi,τ |σsc∗τ ) = wiIi,τ + βsci,τΛi,τ + ηsci,τ for all i and τ ≤ t− 1, (1) Proposition 1(a-c) hold for period t,

Proposition 1(d) holds for period t if t≥ 2, (2) Proposition 2 holds for period t, (3) there exists a Markov

strategy profile {(γsc∗i,t (·, ·), psc∗i,t (·, ·), xsc∗i,t (·, ·)) : 1 ≤ i ≤ N} which forms a Nash equilibrium in the subgame

of period t, (4) under conditions (C1) and (C2) in Theorem 1(c), the Nash equilibrium in the subgame

of period t, {(γsc∗i,t (·, ·), psc∗i,t (·, ·), xsc∗i,t (·, ·)) : 1 ≤ i ≤N}, is unique, (5) there exists a positive vector βsct and

a vector ηsct , such that Vi,t(It,Λt|σsc∗t ) = wiIi,t + βsci,tΛi,t + ηsci,t for all i, and (6) starting inventory in the

next period, Ii,t−1, is smaller than the optimal base-stock level xsc∗i,t−1(·, ·) with probability one. Because

Vi,0(I0,Λ0) =wiIi,0 for all i, the initial condition is satisfied.

Since Vi,t−1(It−1,Λt−1|σsc∗t−1) = wiIi,t−1 + βsci,t−1Λi,t−1 + ηsci,t−1 for all i, the problem defined in (12) can

be decomposed into two problems which solve max
yi,t

πsci,t(yi,t) and max
(γi,t,pi,t)

Πsc
i,t(γt,pt), respectively. Because

πsci,t(yi,t) is concave and continuously differentiable, its optimizer satisfies the first order condition, that is,

−(hi+ bi)F (ysc∗i,t ) + bi− (1− δi)wi = 0. Hence, Proposition 1(a) holds for period t. To prove Proposition 1(b),

we need to prove that Osc
i,t(γt,pt, yi,t|Λi,t) is jointly log-concave in (γi,t, pi,t, yi,t) given γ−i,t, p−i,t and Λi,t.

Since pi −wi − νi(γi)> 0, we can restrict the feasible action set of (γi,t, pi,t) to A′i,t := {(γi,t, pi,t) ∈ [0, γi]×

[p
i
, pi] : pi,t−wi−νi(γi,t)> 0}, which is a nonempty and complete sublattice of R2. Thus, Πsc

i,t(γt,pt)> 0 and

log Πsc
i,t(γt,pt) = logψi(γt) + logρi(pt) + log[pi,t−wi−νi(γi,t) + δiβ

sc
i,t−1k

2
i ] is well defined on A′i,t. By (3) and

(4), logψi(γt) and logρi(pt) are strictly concave in γi,t and pi,t respectively given γ−i,t and p−i,t. Because

ν(γi,t) is convexly increasing, pi,t −wi − νi(γi,t) + δiβ
sc
i,t−1k

2
i is concave in (γi,t, pi,t). Since log(·) is concave

and increasing, then log[pi,t −wi − νi(γi,t) + δiβ
sc
i,t−1k

2
i ] is jointly concave in (γi,t, pi,t), so is log Πsc

i,t(γt,pt).

Therefore, (12) and (13) are both well defined. If xsci,t(γ−i,t,p−i,t,Λi,t)≥ Ii,t, the inventory constraint is not

binding. Thus, Proposition 1(b) holds for period t.
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Next, we prove Proposition 1(c) for period t. Given policy profile γ−i,t and p−i,t, for any γi,t ∈ [0, γ̄i],

pi,t ∈ [p
i
, pi], x−i,t, and Ii,t ≥ 0, Λi,t ≥ 0,

∂xi,tJi,t(γt,pt, [0, x−i,t], Ii,t,Λi,t|σsct−1) = bi− (1− δi)wi− (hi + bi)Fi (−Λi,tdi(γt,pt)) = bi− (1− δi)wi > 0,

where the second equality holds because Fi (−Λi,tdi(γt,pt)) = P(ξi,t + Λi,tdi(γt,pt) ≤ 0) = 0 for any γi,t ∈
[0, γ̄i], pi,t ∈ [p

i
, pi], Ii,t ≥ 0 Λi,t ≥ 0, and the last equality holds because Di,t(γt,pt,Λi,t)≥ 0 with probability 1.

If t≥ 2, because Vi,t−2(Ii,t−2,Λi,t−2|σsc∗t−2) =wiIi,t−2 +βsci,t−2Λi,t−2 +ηsci,t−2 for all i, all argument above remains

valid for period t− 1. Thus, by Proposition 1(a), ysci,t(γ−i,t−1,p−i,t−1) = ysci,t(γ−i,t,p−i,t) = F−1
i ( bi−(1−δi)wi

hi+bi
)

for any policy (γ−i,t−1, p−i,t−1) in period t− 1. We have

xsci,t(γ−i,t,p−i,t,Λi,t)−Dsc
i,t(γ−i,t,p−i,t,Λi,t)≤ xsci,t(γ−i,t−1,p−i,t−1,Λi,t−1)

⇐⇒ ysci (γ−i,t,p−i,t)− ξi,t ≤ ysci (γ−i,t−1,p−i,t−1) + Λi,t−1d
sc
i (γ−i,t−1,p−i,t−1)

⇐⇒ 0≤Λi,t−1d
sc
i (γ−i,t−1,p−i,t−1) + ξi,t

which occurs with probability 1 for any policy (γ−i,t−1,p−i,t−1) and any state Λi,t−1. Therefore, Proposition

1(d) holds for period t.

We now show that Proposition 2 holds for period t. First, the action space A′t is nonempty and complete

sublattice of R2n. Because ρi,t(·) and ψi,t(·) satisfy (3) and (4), for each i and j 6= i, we have

∂2 log(Πsc
i,t(γt,pt))

∂γi,t∂pi,t
=
∂2 log(pi,t−wi− νi,t(γi,t) + δiβ

sc
i,t−1k

2
i )

∂γi,t∂pi,t
=

ν′i,t(γi,t)

(pi,t−wi− νi,t(γi,t) + δiβsci,t−1k
2
i )2
≥ 0,

∂2 log(Πsc
i,t(γt,pt))

∂γi,t∂pj,t
= 0,

∂2 log(Πsc
i,t(γt,pt))

∂γi,t∂γj,t
=
∂2 log(ψi,t(γt))

∂γi,t∂γj,t
≥ 0,

∂2 log(Πsc
i,t(γt,pt))

∂pi,t∂γj,t
= 0, and

∂2 log(Πsc
i,t(γt,pt))

∂pi,t∂pj,t
=
∂2 log(ρi,t(pt))

∂pi,t∂pj,t
≥ 0.

Hence, G̃sct is a log-supermodular game and, thus, has pure strategy Nash equilibria which are the smallest

and largest undominated strategies (see Theorem 5 in Milgrom and Roberts 1990). Proposition 2(a) follows.

Next, we show that if conditions (C1) and (C2) in Theorem 1(c) hold, the Nash equilibrium of Gsc,1t is

unique. First, we show that under conditions (C1) and (C2) in Theorem 1(c),

∂2 log Πsc
i,t(γt,pt)

∂p2
i,t

< 0,
∣∣∣∂2 log Πsc

i,t(γt,pt)

∂p2
i,t

∣∣∣>∑
j 6=i

∂2 log(Πsc
i,t(γt,pt))

∂pi,t∂pj,t
+

N∑
j=1

∂2 log(Πsc
i,t(γt,pt))

∂pi,t∂γj,t
, (27)

∂2 log Πsc
i,t(γt,pt)

∂γ2
i,t

< 0, and
∣∣∣∂2 log Πsc

i,t(γt,pt)

∂γ2
i,t

∣∣∣>∑
j 6=i

∂2 log(Πsc
i,t(γt,pt))

∂γi,t∂γj,t
+

N∑
j=1

∂2 log(Πsc
i,t(γt,pt))

∂γi,t∂pj,t
. (28)

Note that, by (4),
∂2 log Πsc

i,t(γt,pt)

∂p2
i,t

=
∂2 log ρi,t(pt)

∂p2
i,t

− 1
(pi,t−wi−νi,t(γi,t)+δiβsc

i,t−1
k2
i
)2
< 0, and | ∂

2 log Πsc
i,t(γt,pt)

∂p2
i,t

| =

| ∂
2 log ρi,t(pt)

∂p2
i,t

| + 1
(pi,t−wi−νi,t(γi,t)+δiβsc

i,t−1
k2
i
)2
. Since

∂2 log(Πsc
i,t(γt,pt))

∂pi,t∂γj,t
= 0 for j 6= i, and

∂2 log(Πsc
i,t(γt,pt))

∂pi,t∂γi,t
=

ν′i,t(γi,t)

(pi,t−wi−νi,t(γi,t)+δiβsc
i,t−1

k2
i
)2
, we have∣∣∣∂2 log Πsc

i,t(γt,pt)

∂p2
i,t

∣∣∣ =
∣∣∣∂2 logρi,t(pt)

∂p2
i,t

∣∣∣+ 1

(pi,t−wi− νi,t(γi,t) + δiβsci,t−1k
2
i )2

>
∑
j 6=i

∂2 log(Πsc
i,t(γt,pt))

∂pi,t∂pj,t
+

ν′i,t(γi,t)

(pi,t−wi− νi,t(γi,t) + δiβsci,t−1k
2
i )2

=
∑
j 6=i

∂2 log(Πsc
i,t(γt,pt))

∂pi,t∂pj,t
+

N∑
j=1

∂2 log(Πsc
i,t(γt,pt))

∂pi,t∂γj,t
,



Jiang et al.: Dynamic Competition in Online Retailing
35

where the inequality follows from (4) and condition (C1). Hence, (27) holds for all i and all (γt,pt).

Since ν′′i,t(·)≥ 0 and (3), we have

∂2 log Πsc
i,t(γt,pt)

∂γ2
i,t

=
∂2 logψi,t(γt)

∂γ2
i,t

−
ν′′i,t(γt)(pi,t−wi− νi,t(γi,t) + δiβ

sc
i,t−1k

2
i ) + (ν′i,t(γt))

2

(pi,t−wi− νi,t(γi,t) + δiβsci,t−1k
2
i )2

< 0,

and ∣∣∣∂2 log Πsc
i,t(γt,pt)

∂γ2
i,t

∣∣∣= ∣∣∣∂2 logψi,t(γt)

∂γ2
i,t

∣∣∣+ ν′′i,t(γt)(pi,t−wi− νi,t(γi,t) + δiβ
sc
i,t−1k

2
i ) + (ν′i,t(γt))

2

(pi,t−wi− νi,t(γi,t) + δiβsci,t−1k
2
i )2

.

Since
∂2 log(Πsc

i,t(γt,pt))

∂γi,t∂pj,t
= 0 for j 6= i, and

∂2 log(Πsc
i,t(γt,pt))

∂γi,t∂pi,t
=

ν′i,t(γi,t)

(pi,t−wi−νi,t(γi,t)+δiβsc
i,t−1

k2
i
)2
, we have

∣∣∣∂2 log Πsc
i,t(γt,pt)

∂γ2
i,t

∣∣∣ =
∣∣∣∂2 logψi,t(γt)

∂γ2
i,t

∣∣∣+ ν′′i,t(γt)(pi,t−wi− νi,t(γi,t) + δiβ
sc
i,t−1k

2
i ) + (ν′i,t(γi,t))

2

(pi,t−wi− νi,t(γi,t) + δiβsci,t−1k
2
i )2

>
∑
j 6=i

∂2 log(Πsc
i,t(γt,pt))

∂γi,t∂γj,t
+

ν′i,t(γi,t)

(pi,t−wi− νi,t(γi,t) + δiβsci,t−1k
2
i )2

=
∑
j 6=i

∂2 log(Πsc
i,t(γt,pt))

∂γi,t∂γj,t
+

N∑
j=1

∂2 log(Πsc
i,t(γt,pt))

∂γi,t∂pj,t
,

where the inequality follows from (4), δiβ
sc
i,t−1k

2
i > 0, and condition (C2). Hence, (28) holds for all i and all

(γt,pt).

We now show that if (27) and (28) hold, G̃sct has a unique Nash equilibrium. Recall that the set of Nash

equilibria in G̃sct forms a complete lattice (see Theorem 2 in Zhou 1994). If, to the contrary, there exist two

distinct equilibria (γ∗t ,p
∗
t ) and (γ̂∗t , p̂

∗
t ), where p̂∗i,t ≥ p∗i,t for all i and γ̂∗j,t ≥ γ∗j,t for all j, with the inequality

being strict for some i or j. If, for some i, p̂∗i,t > p∗i,t, p̂
∗
i,t− p∗i,t ≥ p̂∗l,t− p∗l,t for all l, and p̂∗i,t− p∗i,t ≥ γ̂∗l,t− γ∗l,t

for all l, without loss of generality, we assume that i= 1. Lemma 1 suggests that

∂p1,t log(Πsc
1,t(γ̂

∗
t , p̂

∗
t ))≥ ∂p1,t log(Πsc

1,t(γ
∗
t ,p

∗
t )). (29)

On the other hand, by Newton-Leibniz formula, we have

∂p1,t log(Πsc
1,t(γ̂

∗
t , p̂

∗
t ))− ∂p1,t log(Πsc

1,t(γ
∗
t ,p

∗
t ))

=

∫ 1

s=0

[ N∑
j=1

(p̂∗j,t− p∗j,t)
∂2 log(Πsc

1,t((1− s)γ∗t + sγ̂∗t , (1− s)p∗t + sp̂∗t ))

∂p1,t∂pj,t

+

N∑
j=1

(γ̂∗j,t− γ∗j,t)
∂2 log(Πsc

1,t((1− s)γ∗t + sγ̂∗t , (1− s)p∗t + sp̂∗t ))

∂p1,t∂γj,t

]
ds

≤
∫ 1

s=0

[ N∑
j=1

(p̂∗1,t− p∗1,t)
∂2 log(Πsc

1,t((1− s)γ∗t + sγ̂∗t , (1− s)p∗t + sp̂∗t ))

∂p1,t∂pj,t

+

N∑
j=1

(p̂∗1,t− p∗1,t)
∂2 log(Πsc

1,t((1− s)γ∗t + sγ̂∗t , (1− s)p∗t + sp̂∗t ))

∂p1,t∂γj,t

]
ds < 0,

where the first inequality follows from p̂∗1,t− p∗1,t ≥ p̂∗l,t− p∗l,t for all l and p̂∗1,t− p∗1,t ≥ γ̂∗l,t− γ∗l,t for all l, and

the second from p̂∗1,t− p∗1,t > 0 and (27). This contradicts (29).

If, for some j, γ̂∗j,t > γ∗j,t, γ̂
∗
j,t − γ∗j,t ≥ p̂∗l,t − p∗l,t for all l, and γ̂∗j,t − γ∗j,t ≥ γ̂∗l,t − γ∗l,t for all l, without loss

of generality, we assume that j = 1. Following a similar argument as above, we can derive a contradiction
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regarding ∂γ1,t log(Πsc
1,t(γ̂

∗
t , p̂

∗
t )) and ∂γ1,t log(Πsc

1,t(γ
∗
t ,p

∗
t )). Therefore, if conditions (C1) and (C2) in Theorem

1(c) hold, there exists a unique Nash equilibrium in G̃sct . If νi,t(γi,t) = γi,t, we have ν′i,t(γi,t) = 1 and ν′′i,t(γi,t) =

0 for all γi,t. So νi,t(γi,t) = γi,t implies conditions (C1) and (C2) in Theorem 1(c).

Note that we have already shown log(Πsc
i,t(γt,pt)) is jointly concave in (γi,t, pi,t) for any given (γ−i,t,p−i,t).

Therefore, the first-order conditions with respect to γi,t and pi,t are necessary and sufficient for (γsc∗t ,psc∗t )

to be the unique Nash equilibrium in Gt. Thus, the Nash equilibrium of G̃sct is a solution to the system of

equations (14). Since G̃sct has a unique equilibrium, (14) has a unique solution, which coincides with the

unique pure strategy Nash equilibrium of G̃sct . As shown above, for all i, Πsc
i,t(γ

sc∗
t ,psc∗t )>di(γ

sc∗
t ,psc∗t )(pi,t−

wi − νi,t(γi,t))≥ 0, where the first inequality holds because δiβ
sc
i,t−1k

2
i > 0. Hence, Πsc∗

i,t = Πsc
i,t(γ

sc∗
t ,psc∗t )> 0

for all i. Hence, Proposition 2 holds for period t.

Next, we show that {(γsc∗i,t , psc∗i,t , ysc∗i,t + Λi,tdi(γ
sc∗
t ,psc∗t ) : 1≤ i≤N} is the unique equilibrium in the sub-

game of period t if Ii,t ≤ xsci,t(γsc∗−i,t,psc∗−i,t,Λi,t) for all i. We have shown that (ysc∗t ,γsc∗t ,psc∗t ) is the unique

solution to the system of first order conditions, ∂yi,tπ
sc
i,t(yi,t) = 0,1 ≤ i ≤ N , and Equation (14). Because

Πsc
i,t(γt,pt)> 0, ∂γi,t log(Πsc

i,t(γt,pt)) and ∂pi,t log(Πsc
i,t(γt,pt)) have the same sign of ∂γi,tO

sc
i,t(yi,t,γt,pt,Λi,t)

and ∂pi,tO
sc
i,t(yi,t,γt,pt,Λi,t). Then (ysc∗t ,γsc∗t ,psc∗t ) is also the unique solution to the system: for each i,

∂yi,tO
sc
i,t(yi,t,γt,pt,Λi,t) = 0,

∂γi,tO
sc
i,t(yi,t,γt,pt,Λi,t)


≤ 0, if γsc∗i,t = 0,

= 0, if γsc∗i,t ∈ (0, γ̄i),

≥ 0 if γsc∗i,t = γ̄i;

and,

∂pi,tO
sc
i,t(yi,t,γt,pt,Λi,t)


≤ 0, if psc∗i,t = p

i
,

= 0, if psc∗i,t ∈ (p
i
, p̄i),

≥ 0 if psc∗i,t = p̄i.

(30)

which also satisfies the constraint ysc∗i,t +Λi,tdi(γ
sc∗
t ,psc∗t )≥ Ii,t for all i by the inductive assumption. Because

Equation (30) uniquely defines the Nash Equilibrium in G̃sct , (ysc∗t ,γsc∗t ,psc∗t ) characterizes the pure strategy

unique Nash equilibrium in the subgame of period t. That is, given that Vi,t−1(It,Λt|σsc∗t−1) is linearly sepa-

rable, there is a unique pure strategy subgame perfect equilibrium policy (γsc∗i,t , p
sc∗
i,t , y

sc∗
i,t + Λi,tdi(γ

sc∗
t ,psc∗t )).

This proves point (4) of the induction step.

Next, we show that there exists a vector ηsct = (ηsc1,t, η
sc
2,t, · · · , ηscN,t), and a positive vector βsct =

(βsc1,t, β
sc
2,t, · · · , βscN,t) such that Vi,t(It,Λt|σsc∗t ) = wiIi,t + βsci,tΛi,t + ηsci,t. By (11), if Ii,t ≤ xi,t(γsc∗−i,t,psc∗−i,t,Λi,t),

we have that

Vi,t(It,Λt|σsc∗t ) = Ji,t(γ
sc∗
i,t , p

sc∗
i,t , y

sc∗
i,t + Λi,tdi(γ

sc∗
t ,psc∗t ),It,Λt|σsc∗t−1)

= wiIi,t + (δiβ
sc
i,t−1k

1
i + Πsc∗

i,t )Λi,t− (1− δi)wiysc∗i,t −Li(ysc∗i,t ) + δiη
sc
i,t−1

Since βsci,t−1 ≥ 0, Πsc∗
i,t > 0, and πsc∗i,t = −(1 − δi)wiysc∗i,t − Li(ysc∗i,t ), βsci,t = δiβ

sc
i,t−1µi,t + Πsc∗

i,t > 0 and ηsci,t =

δiη
sc
i,t−1 +πsc∗i,t . This proves point (5) of the induction step.

Finally, by Proposition 1(d), if Ii,t ≤ xsc∗i,t (It,Λt), the probability that the starting inventory level in the

next period is smaller than the optimal base-stock level is 1. This completes the induction and, thus, the

proof of Theorem 1, Proposition 1, Proposition 2, and Theorem 2. Q.E.D.
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Proof of Proposition 3: By Theorems 1-2, and Propositions 1-2, it suffices to show that, if there

exist constants βscs,t−1 ≥ 0 and ηscs,t−1, such that Vi,t−1(It−1,Λt−1|σsc∗t−1) = ws,tIi,t−1 + βscs,t−1Λi,t−1 + ηsci,t−1

for all i, we have: (a) ysc∗i,t = ysc∗j,t for all i 6= j; (b) the unique Nash equilibrium in Gt is symmetric,

i.e., (γsc∗i,t , p
sc∗
i,t ) = (γsc∗j,t , p

sc∗
j,t ) for all i 6= j, and (c) there exist constants βscs,t > 0 and ηscs,t, such that

Vi,t(It,Λt|σsc∗s,t ) =ws,tIi,t +βscs,tΛi,t + ηscs,t for all i. Since Vi,0(It,Λt) =ws,0Ii,0 for all i, the initial condition is

satisfied with βscs,0 = 0.

Since Vi,t−1(It−1,Λt−1|σsc∗t−1) = ws,tIi,t−1 + βscs,tΛi,t−1 + ηscs,t−1 for all i, by (11), we have πsci,t(yt) = −(1−
δs)wsyi,t−Ls(yi,t). Then ysc∗i,t = F−1( bs−(1−δs)ws

hs+bs
) for all i since ysc∗i,t satisfies the first-order condition. Thus

πsc∗i,t = πsci,t(y
sc∗
s,t ) = πscj,t(y

sc∗
s,t ) = πsc∗j,t for all i 6= j. We denote ysc∗s,t = ysc∗i,t for each i, and πsc∗s,t = πsc∗i,t for each i.

Observe that, the objective functions of Gt, {Πsc
i,t(γt,pt) = ρs(pt)ψs(γt)[pi,t−ws− νs(γi,t) + δsβ

sc
s,t−1k

2
s ] : 1≤

i≤N} are symmetric. Thus, by the uniqueness of the Nash equilibrium in Gt, it is symmetric.

Hence, Πsc∗
i,t = Πsc

i,t(γ
sc∗
ss,t,p

sc∗
ss,t) = Πsc

j,t(γ
sc∗
ss,t,p

sc∗
ss,t) = Πsc∗

j,t > 0. Thus, we denote the payoff of each firm i

as Πsc∗
s,t . By Theorem 2(a-b), for any i 6= j, βsci,t = δsβ

sc
s,t−1k

1
s + Πsc∗

i,t = δsβ
sc
s,t−1µs,t + Πsc∗

j,t = βscj,t > 0, and

ηsci,t = δsη
sc
i,t−1 + πsc∗i = δsη

sc
i,t−1 + πsc∗j = ηscj,t. Thus, we denote the SC market size coefficient of each firm i as

βscs,t. This completes the induction and, thus, the proof of Proposition 3. Q.E.D.

Proof of Theorem 3: Part (a). Let ζsci,t−1 = δsβ
sc
s,t−1k

2
s . Then the objective function of each firm i

in Gs,t is denoted as Πsc
i,t(γt,pt|ζscs,t−1) = ds(γt,pt)[pi,t − ws − vs(γi,t) + ζscs,t−1] to capture the dependence

of the objective functions on ζscs,t−1. The unique symmetric Nash equilibrium in Gs,t is denoted as

(γsc∗ss,t(ζ
sc
s,t−1),psc∗ss,t(ζ

sc
s,t−1)), where γsc∗ss,t(ζ

sc
s,t−1) = (γsc∗s,t (ζscs,t−1), γsc∗s,t (ζscs,t−1), · · · , γsc∗s,t (ζscs,t−1)) and psc∗ss,t(ζ

sc
s,t−1) =

(psc∗s,t (ζscs,t−1), psc∗s,t (ζscs,t−1), · · · , psc∗s,t (ζscs,t−1)). Because βscs,t−1 > 0, δs > 0 and k2
s > 0, it suffices to show that, if

ζ̄scs,t−1 > ζ
sc
s,t−1, γsc∗s,t (ζ̄scs,t−1)≥ γsc∗s,t (ζscs,t−1), and psc∗s,t (ζ̄scs,t−1)≤ psc∗s,t (ζscs,t−1).

We first show that psc∗s,t (ζ̄scs,t−1) ≤ psc∗s,t (ζscs,t−1) for all ζ̄scs,t−1 > ζscs,t−1. Assume, to the contrary,

that psc∗s,t (ζ̄scs,t−1) > psc∗s,t (ζscs,t−1). Lemma 1 implies that ∂p1,t log(Πsc
1,t(γ

sc∗
ss,t(ζ̄

sc
s,t−1),psc∗ss,t(ζ̄

sc
s,t−1)|ζ̄scs,t−1)) ≥

∂p1,t log(Πsc
1,t(γ

sc∗
ss,t(ζ

sc
s,t−1),psc∗ss,t(ζ

sc
s,t−1)|ζscs,t−1)). By (4) and Newton-Leibniz formula, we have

∂p1,t logρs,t(p
sc∗
ss,t(ζ̄

sc
s,t−1))− ∂p1,t logρs,t(p

sc∗
ss,t(ζ

sc
s,t−1))

=

∫ 1

s=0

[ N∑
j=1

(psc∗s,t (ζ̄scs,t−1)− psc∗s,t (ζscs,t−1))
∂2 logρs,t((1− s)psc∗ss,t(ζscs,t−1) + spsc∗ss,t(ζ̄

sc
s,t−1))

∂p1,t∂pj,t

]
ds < 0.

Hence, the above two arguments suggest that

psc∗s,t (ζ̄scs,t−1)−ws− νs(γsc∗s,t (ζ̄scs,t−1)) + ζ̄scs,t−1 < p
sc∗
s,t (ζscs,t−1)−ws− νs(γsc∗s,t (ζscs,t−1)) + ζscs,t−1. (31)

Since psc∗s,t (ζ̄scs,t−1) > psc∗s,t (ζscs,t−1), ζ̄scs,t−1 > ζscs,t−1, and νs(γ
sc∗
s,t (ζ̄scs,t−1)) > νs(γ

sc∗
s,t (ζscs,t−1)). Thus,

γsc∗s,t (ζ̄scs,t−1) > γsc∗s,t (ζscs,t−1). Lemma 1 yields that ∂γ1,t log(Πsc
1,t(γ

sc∗
ss,t(ζ̄

sc
s,t−1),psc∗ss,t(ζ̄

sc
s,t−1)|ζ̄scs,t−1)) ≥

∂γ1,t log(Πsc
1,t(γ

sc∗
ss,t(ζ

sc
s,t−1),psc∗ss,t(ζ

sc
s,t−1)|ζscs,t−1)), i.e.,

∂γ1,t logψs,t(γ
sc∗
ss,t(ζ̄

sc
s,t−1))−

ν′s(γ
sc∗
s,t (ζ̄scs,t−1))

psc∗s,t (ζ̄scs,t−1)−ws− νs(γsc∗s,t (ζ̄scs,t−1)) + ζ̄scs,t−1

≥∂γ1,t logψs,t(γ
sc∗
ss,t(ζ

sc
s,t−1))−

ν′s(γ
sc∗
s,t (ζscs,t−1))

psc∗s,t (ζscs,t−1)−ws− νs(γsc∗s,t (ζscs,t−1)) + ζscs,t−1

(32)
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Since νs(·) is convexly increasing, ν′s(γ
sc∗
s,t (ζ̄scs,t−1)≥ ν′s(γsc∗s,t (ζscs,t−1)), inequality (31) implies that

−
ν′s(γ

sc∗
s,t (ζ̄scs,t−1))

psc∗s,t (ζ̄scs,t−1)−ws− νs(γsc∗s,t (ζ̄scs,t−1)) + ζ̄scs,t−1

<−
ν′s(γ

sc∗
s,t (ζscs,t−1))

psc∗s,t (ζscs,t−1)−ws− νs(γsc∗s,t (ζscs,t−1)) + ζscs,t−1

.

Hence, (32) suggests that ∂γ1,t logψs,t(γ
sc∗
ss,t(ζ̄

sc
s,t−1))>∂γ1,t logψs,t(p

sc∗
ss,t(ζ

sc
s,t−1)). However, by (3) and Newton-

Leibniz formula, we have

∂γ1,t logψs,t(γ
sc∗
ss,t(ζ̄

sc
s,t−1))− ∂γ1,t logψs,t(p

sc∗
ss,t(ζ

sc
s,t−1))

=

∫ 1

s=0

[ N∑
j=1

(γsc∗s,t (ζ̄scs,t−1)− γsc∗s,t (ζscs,t−1))
∂2 logψs,t((1− s)γsc∗ss,t(ζscs,t−1) + sγsc∗ss,t(ζ̄

sc
s,t−1))

∂γ1,t∂γj,t

]
ds < 0,

which leads to a contradiction. Therefore, for all ζ̄scs,t−1 > ζ
sc
s,t−1, we have psc∗s,t (ζ̄scs,t−1)≤ psc∗s,t (ζscs,t−1).

We now show that γsc∗s,t (ζ̄scs,t−1)≥ γsc∗s,t (ζscs,t−1) for all ζ̄scs,t−1 > ζ
sc
s,t−1. The proof follows symmetric arguments

of proving psc∗s,t (ζ̄scs,t−1)≤ psc∗s,t (ζscs,t−1) for all ζ̄scs,t−1 > ζ
sc
s,t−1. We omit the proof here to avoid repeated arguments.

The continuity of γsc∗s,t (ζscs,t−1) and psc∗s,t (ζscs,t−1) in ζscs,t−1 follows directly from that Πsc
i,t(γt,pt|ζscs,t−1) is twice

continuously differentiable and the implicit function theorem. This completes the proof of part (a).

Part (b). Because δs > 0, βscs,t−1 > 0, and k2
s > 0, it suffices to show that Πsc∗

s,t (ζscs,t−1) is continuously

increasing in ζscs,t−1, where Πsc∗
s,t (ζscs,t−1) := Πsc

i,t(γ
sc∗
ss,t(ζ

sc
s,t−1),psc∗ss,t(ζ

sc
s,t−1)).

Assume that ζ̄scs,t−1 > ζscs,t−1. Since part (c) implies that psc∗s,t (ζ̄scs,t−1) ≤ psc∗s,t (ζscs,t−1) and γsc∗s,t (ζ̄scs,t−1) ≥

γsc∗s,t (ζscs,t−1), the monotonicity condition (16) implies that ρs,t(p
sc∗
ss,t(ζ̄

sc
s,t−1)) ≥ ρs,t(p

sc∗
ss,t(ζ

sc
s,t−1)) and

ψs,t(γ
sc∗
ss,t(ζ̄

sc
s,t−1)) ≥ ψs,t(γ

sc∗
ss,t(ζ

sc
s,t−1)). We will prove that Πsc∗

s,t (ζ̄scs,t−1) > Πsc∗
s,t (ζscs,t−1) in three cases. First,

if psc∗s,t (ζ̄scs,t−1) = psc∗s,t (ζsc) and γsc∗s,t (ζ̄scs,t−1) = γsc∗s,t (ζscs,t−1), by ζ̄scs,t−1 > ζscs,t−1, we have psc∗s,t (ζ̄scs,t−1) − ws −

νs(γ
sc∗
s,t (ζ̄scs,t−1)) + ζ̄scs,t−1 > p

sc∗
s,t (ζscs,t−1)−ws− νs(γsc∗s,t (ζscs,t−1)) + ζscs,t−1. Thus,

Πsc∗
s,t (ζ̄scs,t−1) = Πsc

i,t(γ
sc∗
ss,t(ζ̄

sc
s,t−1),psc∗ss,t(ζ̄

sc
s,t−1)|ζ̄scs,t−1)

= (psc∗s,t (ζ̄scs,t−1)− δsws,t−1− νs(γsc∗s,t (ζ̄scs,t−1)) + ζ̄scs,t−1)ρs,t(p
sc∗
ss,t(ζ̄

sc
s,t−1))ψs,t(γ

sc∗
ss,t(ζ̄

sc
s,t−1))

> (psc∗s,t (ζscs,t−1)− δsws,t−1− νs(γsc∗s,t (ζscs,t−1)) + ζscs,t−1)ρs,t(p
sc∗
ss,t(ζ

sc
s,t−1))ψs,t(γ

sc∗
ss,t(ζ

sc
s,t−1))

= Πsc
i,t(γ

sc∗
ss,t(ζ

sc
s,t−1),psc∗ss,t(ζ

sc
s,t−1)|ζscs,t−1) = Πsc∗

s,t (ζscs,t−1).

Second, if psc∗s,t (ζ̄scs,t−1)< psc∗s,t (ζscs,t−1) and γsc∗s,t (ζ̄scs,t−1) = γsc∗s,t (ζscs,t−1), Lemma 1 yields that

∂p1,t log(Πsc
1,t(p

sc∗
ss,t(ζ̄

sc
s,t−1),γsc∗ss,t(ζ̄

sc
s,t−1)|ζ̄scs,t−1))≤ ∂p1,t log(Πsc

1,t(p
sc∗
ss,t(ζ

sc
s,t−1),γsc∗ss,t(ζ

sc
s,t−1)|ζscs,t−1)).

By (4) and Newton-Leibniz formula, we have

∂p1,t logρs,t(p
sc∗
ss,t(ζ

sc
s,t−1))− ∂p1,t logρs,t(p

sc∗
ss,t(ζ̄

sc
s,t−1))

=

∫ 1

s=0

[
N∑
j=1

(psc∗s,t (ζscs,t−1)− psc∗s,t (ζ̄scs,t−1))
∂2 logρs,t((1− s)psc∗ss,t(ζ̄scs,t−1) + spsc∗ss,t(ζ

sc
s,t−1))

∂p1,t∂pj,t

]
ds < 0.

Hence, the above two arguments imply that

psc∗s,t (ζ̄scs,t−1)− δsws,t−1− νs(γsc∗s,t (ζ̄scs,t−1)) + ζ̄scs,t−1 > p
sc∗
s,t (ζscs,t−1)− δsws,t−1− νs(γsc∗s,t (ζscs,t−1)) + ζscs,t−1.
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Therefore,

Πsc∗
s,t (ζ̄scs,t−1) = Πsc

i,t(γ
sc∗
ss,t(ζ̄

sc
s,t−1),psc∗ss,t(ζ̄

sc
s,t−1)|ζ̄scs,t−1)

= (psc∗s,t (ζ̄scs,t−1)− δsws,t−1− νs(γsc∗s,t (ζ̄scs,t−1)) + ζ̄scs,t−1)ρs,t(p
sc∗
ss,t(ζ̄

sc
s,t−1))ψs,t(γ

sc∗
ss,t(ζ̄

sc
s,t−1))

> (psc∗s,t (ζscs,t−1)− δsws,t−1− νs(γsc∗s,t (ζscs,t−1)) + ζscs,t−1)ρs,t(p
sc∗
ss,t(ζ

sc
s,t−1))ψs,t(γ

sc∗
ss,t(ζ

sc
s,t−1))

= Πsc
i,t(γ

sc∗
ss,t(ζ

sc
s,t−1),psc∗ss,t(ζ

sc
s,t−1)|ζscs,t−1) = Πsc∗

s,t (ζscs,t−1).

The last case is that psc∗s,t (ζ̄scs,t−1) = psc∗s,t (ζscs,t−1) and γsc∗s,t (ζ̄scs,t−1)> γsc∗s,t (ζscs,t−1). The proof of Πsc∗
s,t (ζ̄scs,t−1)>

Πsc∗
s,t (ζscs,t−1) follows symmetric arguments in the second case. Hence, by Theorem 2(a), the continuity of Πsc∗

s,t

in ζscs,t−1 follows directly from the continuous differentiability of Πsc
i,t(γt,pt|ζscs,t−1) in (γt,pt, ζ

sc
s,t−1) and the

continuity of (γsc∗ss,t,p
sc∗
ss,t) in ζscs,t−1. This completes the proof of part (b).

Part (c). By Theorem 2, βscs,t = δsβ
sc
s,t−1k

1
s + Πsc∗

s,t , then βscs,t is continuously increasing in k1
s . By part (b),

Πsc∗
s,t is continuously increasing in βscs,t−1 and k2

s , then βscs,t is also continuously increasing in βscs,t−1 and k2
s .

Q.E.D.

Proof of Theorem 4: Part (a), (b). By Theorem 3(a), γ̂sc∗s,t ≥ γsc∗s,t and p̂sc∗s,t ≤ psc∗s,t for all t because k̂2
s ≥ k2

s .

Thus, by Theorem 2(b), γ̂sc∗i,t (It,Λt) = γ̂sc∗s,t ≥ γsc∗s,t = γsc∗i,t (It,Λt), and p̂sc∗i,t (It,Λt) = p̂sc∗s,t ≤ psc∗s,t = psc∗i,t (It,Λt)

for all t and (It,Λt)∈ S. This proves part (a) and (b).

Part (c). By Proposition 3(d), x̂sc∗i,t (It,Λt) = ŷsc∗s,t + Λi,tρs,t(p̂
sc∗
ss,t)ψs,t(γ̂

sc∗
ss,t) and xsc∗i,t (It,Λt) = ysc∗s,t +

Λi,tρs,t(p
sc∗
ss,t)ψs,t(γ

sc∗
ss,t). Proposition 1 implies that ŷsc∗s,t = F−1( bs−(1−δs)ws

hs+bs
) = ysc∗s,t . By parts (a) and (b),

p̂sc∗s,t ≤ psc∗s,t and γ̂sc∗s,t ≥ γsc∗s,t , the monotonicity condition (16) yields that ρs,t(p̂
sc∗
ss,t)≥ ρs,t(psc∗ss,t), and ψs,t(γ̂

sc∗
ss,t)≥

ψs,t(γ
sc∗
ss,t). Therefore, for each (It,Λt)∈ S,

x̂sc∗i,t (It,Λt) = ŷsc∗s,t + Λi,tρs,t(p
sc∗
ss,t)ψs,t(γ

sc∗
ss,t)≥ ysc∗s,t + Λi,tρs,t(p

sc∗
ss,t)ψs,t(γ

sc∗
ss,t) = xsc∗i,t (It,Λt).

This completes the proof of part (c). Q.E.D.

Proof of Theorem 5: We show parts (a)-(b) together by backward induction. More specifically, we

show that if βscs,t−1 ≥ βscs,t−2, (1) γsc∗s,t ≥ γsc∗s,t−1, (2) γsc∗i,t (I,Λ) ≥ γsc∗i,t−1(I,Λ) for each i and (I,Λ) ∈ S, (3)

psc∗s,t ≤ psc∗s,t−1, (4) psc∗i,t (I,Λ) ≤ psc∗i,t−1(I,Λ) for each i and (I,Λ) ∈ S, (5) xsc∗i,t (I,Λ) ≥ xsc∗i,t−1(I,Λ) for each i

and (I,Λ) ∈ S, and (6) βscs,t ≥ βscs,t−1. Since, by Proposition 3(a), βscs,1 ≥ βscs,0 = 0. Thus, the initial condition

is satisfied.

Since the model is stationary, by Theorem 3(a), βscs,t−1 ≥ βscs,t−2 suggests that γsc∗s,t ≥ γsc∗s,t−1 and psc∗s,t ≤

psc∗s,t−1. Hence, γsc∗i,t (I,Λ) = γsc∗s,t ≥ γsc∗s,t−1 = γsc∗i,t−1(I,Λ) and psc∗i,t (I,Λ) = psc∗s,t ≤ psc∗s,t−1 = psc∗i,t−1(I,Λ) for each

i and (I,Λ) ∈ S. Because the monotonicity condition (16) holds, we have ρs,t(p
sc∗
ss,t) ≥ ρs,t−1(psc∗ss,t−1), and

ψs,t(γ
sc∗
ss,t)≥ψs,t−1(γsc∗ss,t−1). Therefore, for each i and (I,Λ)∈ S,

xsc∗i,t (I,Λ) = ysc∗s,t + ρs,t(p
sc∗
ss,t)ψs,t(γ

sc∗
ss,t)Λi ≥ ysc∗s,t−1 + ρs,t−1(psc∗ss,t−1)ψs,t−1(γsc∗ss,t−1)Λi = xsc∗i,t−1(I,Λ).

Finally, βscs,t ≥ βscs,t−1 follows immediately from Theorem 3(f) and βscs,t−1 ≥ βscs,t−2. This completes the

induction and, thus, the proof of Theorem 5. Q.E.D.
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Before presenting the proofs of the results in the PF model, we give the following lemma that is used

throughout the rest of our proofs.

Lemma 2. Let A be an N ×N matrix with entries defined by Aii = 2θii and Aij =−θij where i 6= j. The

following statements hold:

(a) A is invertible. Moreover, (A−1)ij ≥ 0 for all 1≤ i, j ≤N .

(b) 1
2
≤ θii(A−1)ii < 1.

(c) 1
2
≤

N∑
j=1

θjj(A
−1)ij < 1.

Proof: Part (a) follows from Lemma 2(a) in Bernstein and Federgruen (2004c) and Part (b) follows from

Lemma 2(c) in Bernstein and Federgruen (2004c).

Part (c). Let I be the N ×N identity matrix. Let B be the N ×N matrix with (B)ij = 0, if i= j, and

(B)ij =
θij

θii
if i 6= j. Let C be the N ×N diagonal matrix with (C)ij = 2θii if i= j, and (C)ij = 0 if i 6= j.

Because θii >
∑
j 6=i

θij , B is a substochastic matrix.

Observe that, A = C(I − 1
2
B) and, hence, A−1 = (I − 1

2
B)−1C−1. Let θ be the N ×N−dimensional

diagonal matrix with diagonal entries (θ11, θ22 · · · , θNN). Thus,
N∑
j=1

θjj(A
−1)ij = (A−1θ)ii. Moreover,

A−1θ=

(
I − 1

2
B

)−1

C−1θ=

(
I − 1

2
B

)−1

(C−1θ) =
1

2

(
I − 1

2
B

)−1

,

where the last equality follows from C−1θ= 1
2
I. Therefore,

N∑
j=1

θjj(A
−1)ij =

1

2

N∑
j=1

[(
I − 1

2
B

)−1
]
ij

=
1

2

N∑
j=1

[
I +

+∞∑
l=1

(
1

2

)l
(B)l

]
ij

,

where the second equality follows from the fact that I − 1
2
B is a diagonal dominant matrix. Thus, for all i,∑N

j=1 θjj(A
−1)ij ≥ 1

2

∑N

j=1 Iij = 1
2
. On the other hand, for all i,

1

2

N∑
j=1

[
I +

+∞∑
l=1

(
1

2

)l
(B)l

]
ij

=
1

2

N∑
j=1

[
+∞∑
l=0

(
1

2

)l
(B)l

]
ij

=
1

2

+∞∑
l=0

[(
1

2

)l N∑
j=1

(B)lij

]
<

1

2

+∞∑
l=0

(
1

2

)l
= 1,

where the inequality follows from that B is a sub-stochastic matrix. This completes the proof of part (c).

Q.E.D.

Proof of Theorems 6-7 and Propositions 4-7: We show Theorem 6, Propositions 4-7, and Theo-

rem 7 together by strong backward induction. More specifically, we show that, if Vi,τ (Ii,τ ,Λi,τ |σpf∗τ ) =

wi,τIi,τ +βpfi,τΛi,τ + ηpfi,τ for all i and 1≤ τ ≤ t− 1, (1) Proposition 4(a-c) holds for period t, and Proposition

4(d) holds for period t if t≥ 2, (2) Proposition 5 holds for period t, (3) Proposition 6 holds for period t, (4)

Proposition 7 holds for period t, (5) there exists a Markov strategy profile {(γpf∗i,t (·, ·), ppf∗i,t (·, ·, ·), xpf∗i,t (·, ·, ·)) :

1≤ i≤N}, which forms an equilibrium in the subgame of period t, (6) if νi,t(γi,t) = γi,t for all i and γi,t,

the equilibrium in the subgame of period t, {(γpf∗i,t (·, ·), ppf∗i,t (·, ·, ·), xpf∗i,t (·, ·, ·)) : 1 ≤ i ≤ N}, is unique, (7)

there exists a positive vector βpft = (βpf1,t, β
pf
2,t, · · · , β

pf
N,t) and a vector ηpft = (ηpf1,t, η

pf
2,t, · · · , η

pf
N,t), such that

Vi,t(Ii,t,Λi,t|σpf∗t ) = wi,tIi,t + βpfi,tΛi,t + ηpfi,t for all i, and (8) the starting inventory level in the next period,
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t−1, is smaller xpf∗i,t−1(·, ·, ·) with probability 1 for t≥ 2, and the initial inventory level is always smaller than

xpf∗i,T (·, ·, ·). Because Vi,0(I0,Λ0) =wi,0Ii,0 for all i, the initial condition is satisfied.

First, we start with proving Proposition 4. The proof follows a same logic in proof of Proposition 1.

Since Vi,t−1(It−1,Λt−1|σpf∗t−1) = wiIi,t−1 + βpfi,t−1Λi,t−1 + ηpfi,t−1 for all i, the problem defined in (23) can be

decomposed into two problems which optimize over maxyi,t π
pf
i,t (yi,t) and maxpi,t Πpf

i,t(pt|γt) respectively.

Thus, Proposition 4(a) follows the fact that πpfi,t (yi,t) is concave and continuously differentiable. To prove

Proposition 4(b), we need to prove that Opf
i,t(pt, yi,t|γt,Λi,t) is jointly concave in (pi,t, yi,t) given γt, p−i,t

and Λi,t. By the form of ρi(pt) defined in (17), ∂2
pi,t

Πpf
i,t(pt|γt) =−2θiiψi(γt)< 0, Πpf

i,t(·,p−i,t|γt) is strictly

concave in pi,t for any given p−i,t. Thus, we derive the jointly concavity of Opf
i,t(pt, yi,t|γt,Λi,t). Therefore,

Proposition 4(b) follows the concavity of function Opf
i,t(pt, yi,t|γt,Λi,t) in (yi,t, pi,t). Proposition 4 parts (c-d)

follow from the same arguments as the proof of Proposition 1. We conclude the proof of Proposition 4 for

period t.

We now show Proposition 5 holds in period t. By Theorem 1.2 in Fudenberg and Tirole (1991), G̃pf,2t (γt)

has a pure strategy Nash equilibrium ppf∗t (γt) because the payoff function of firm i is concave in pi,t. Since, for

each i and t, p
i,t

is sufficiently low whereas p̄i,t is sufficiently high so that they will not affect the equilibrium

behaviors of all firms, ppf∗t (γt) can be characterized by first-order conditions ∂pi,tΠ
pf
i,t(p

pf∗
t (γt)|γt) = 0 for

each i, i.e.,

− θii[ppf∗i,t (γt)−wi− νi,t(γi,t) + δiβ
pf
i,t−1k

2
i ]ψi(γt) + ρi,t(p

pf∗
t (γt))ψi(γt) = 0

⇐⇒ − 2θiip
pf∗
i,t (γt) +

∑
j 6=i

θijp
pf∗
j,t (γt) + fi,t(γt) = 0, for all i.

(33)

In terms of the matrix language, we have Appf∗t (γt) = f(γt). By Lemma 2(a), A is invertible and, thus,

ppf∗t (γt) is uniquely determined by ppf∗t (γt) =A−1f(γt). To show that ppf∗i,t (γt) =
∑

j
(A−1)ijfj(γt) is con-

tinuously increasing in γj,t, we observe that
∂p

pf∗
i,t

(γt)

∂γj,t
= (A−1)ijθjjν

′
j(γj,t). Since, by Lemma 2(a), (A−1)ij ≥ 0

for all i and j, we have ∂γj,tp
pf∗
i,t (γt)≥ 0 and, thus, ppf∗i,t (γt) is continuously increasing in γj,t for each j.

Now, we compute Πpf∗,2
i,t (γt).

Πpf∗,2
i,t (γt) = ψi(γt)ρi(p

pf∗
t (γt))

[
ppf∗i,t (γt)−wi− νi(γi,t) + δiβ

pf
i,t−1k

2
i

]
= ψi(γt)[φi− θiippf∗i,t (γt) +

∑
j 6=i

θijp
pf∗
j,t (γt)]

[
ppf∗i,t (γt)−wi− νi(γi,t) + δiβ

pf
i,t−1k

2
i

]
= ψi(γt)

[
θiip

pf∗
i,t (γt)− fi(γt) +φi

] [
ppf∗i,t (γt)−wi− νi(γi,t) + δiβ

pf
i,t−1k

2
i

]
= ψi(γt)θii

[
ppf∗i,t (γt)−wi− νi(γi,t) + δiβ

pf
i,t−1k

2
i

]2
,

where the third equality follows from (33) and the last from fi(γt) = φi + θii(wi + νi(γi,t)− δiβpfi,t−1k
2
i ). The

above computation also implies that ρi(p
pf∗
t (γt)) = θii(p

pf∗
i,t (γt)− wi − νi(γi,t) + δiβ

pf
i,t−1k

2
i ). We now show

that Πpf∗,2
i,t (γt)> 0. Note that Πpf∗,2

i,t (γt) = ψi(γt)

θii
[ρi,t(p

pf∗
t (γt))]

2 > 0, where the inequality follows from the

assumption that ρi,t(·)> 0 and ψi(·)> 0 for all pt and γt respectively. This completes the proof of Proposition

5 for period t.

Next, we show Proposition 6 for period t. By Proposition 4(a) and Proposition 5, (ypf∗t , ppf∗t (γt)) is the

unique solution to the system

For each i,

{
∂yi,tO

pf
i,t(pt, yi,t|γt,Λi,t) = ∂yi,tπ

pf
i,t (yi,t) = 0,

∂pi,tO
sc
i,t(pt, yi,t|γt,Λi,t) = Λi,t∂pi,tΠ

pf
i,t(pt|γt) = 0.
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By the assumption of Proposition 6, (ypf∗t , ppf∗t (γt)) is also feasible, which proves Proposition 6 for period t.

Next, we show Proposition 7 for period t. Because the payoff function of firm i in game G̃pf,1t is πpf∗i,t +

Λi,tΠ
pf,1
i,t (γt), it is equivalent for firm i to optimize the second term Πpf,1

i,t (γt). Thus, in the proof of Proposition

7, we will use Πpf,1
i,t (γt) as the payoff function of firm i for all i. Since Πpf,1

i,t (γt)> 0 for all γt, log(Πpf,1
i,t (·))

is well defined. Therefore, log(Πpf,1
i,t (γt)) = log(θii) + 2 log(ppf∗i,t (γt)−wi − νi(γi,t) + δiβ

pf
i,t−1k

2
i ) + log(ψi(γt)).

Since ppf∗j,t (γt) =
∑N

l=1(A−1)jlfl(γt) =
∑N

l=1[(A−1)jl(φl + θll(wl + νl(γl,t) − δiβpfi,t−1k
2
i ))] for all j, by direct

computation,

∂2 log(Πpf,1
i,t (γt))

∂γi,t∂γj,t
=

2(1− θii(A−1)ii)θjj(A
−1)ijν

′
i(γi,t)ν

′
j(γj,t)

(ppf∗i,t (γt)−wi− νi,t(γi,t) + δiβ
pf
i,t−1k

2
i )2

+
∂2 log(ψi(γt))

∂γi,t∂γj,t
, for all j 6= i. (34)

By Lemma 2(a,b), 1− θii(A−1)ii > 0 and (A−1)ij ≥ 0. Thus, the first term of (34) is non-negative. Because

ψi,t(·) satisfies (3),
∂2 log(Πpf,1

i,t (γt))

∂γi,t∂γj,t
≥ ∂2 log(ψi(γt))

∂γi,t∂γj,t
≥ 0, for all j 6= i.

and, thus, G̃pf,1t is a log-supermodular game. The feasible action set of player i, [0, γ̄i,t], is a compact subset

of R. Therefore, by Theorem 2 in Zhou (1994), the pure strategy Nash equilibria of G̃pf,1t is a nonempty

complete sublattice of RN

We now show that if νi,t(γi,t) = γi,t, the Nash equilibrium of G̃pf,1t is unique. We first show that

∂2 log(Πpf,1
i,t (γt))

∂γ2
i,t

< 0, and
∣∣∣∂2 log(Πpf,1

i,t (γt))

∂γ2
i,t

∣∣∣>∑
j 6=i

∂2 log(Πpf,1
i,t (γt))

∂γi,t∂γj,t
, for all i and γt. (35)

Since νl,t(γl,t) = γl,t for all l (i.e., ν′l,t(·)≡ 1 for all l), direct computation yields that

∂2 log(Πpf,1
i,t (γt))

∂γ2
i,t

=
∂2 log(ψi(γt))

∂γ2
i,t

− 2(1− θii(A−1)ii)
2

(ppf∗i,t (γt)−wi− γi,t + δiβ
pf
i,t−1k

2
i )2

.

Inequality (3) implies that ∂2
γi,t

log(ψi(γt))< 0 and, thus, ∂2
γi,t

log(Πpf,1
i,t (γt))< 0. Moreover,∣∣∣∂2 log(Πpf,1

i,t (γt))

∂γ2
i,t

∣∣∣= ∣∣∣∂2 log(ψi,t(γt))

∂γ2
i,t

∣∣∣+ 2(1− θii(A−1)ii)
2

(ppf∗i,t (γt)−wi− γi,t + δiβ
pf
i,t−1k

2
i )2

and ∑
j 6=i

∂2 log(Πpf,1
i,t (γt))

∂γi,t∂γj,t
=
∑
j 6=i

∂2 log(ψi,t(γt))

∂γi,t∂γj,t
+
∑
j 6=i

2(1− θii(A−1)ii)θjj(A
−1)ij

(ppf∗i,t (γt)−wi− γi,t + δiβ
pf
i,t−1k

2
i )2

.

Inequality (3) implies that
∣∣∣ ∂2 log(ψi,t(γt))

∂γ2
i,t

∣∣∣>∑j 6=i
∂2 log(ψi,t(γt))

∂γi,t∂γj,t
. Lemma 2(b) implies that 1− θii(A−1)ii > 0.

Moreover, Lemma 2(c) suggests that 1− (A−1)iiθii >
∑

j 6=i(A
−1)ijθjj and, hence,

2(1− θii(A−1)ii)
2

(ppf∗i,t (γt)−wi− γi,t + δiβ
pf
i,t−1k

2
i )2

>
∑
j 6=i

2(1− θii(A−1)ii)θjj(A
−1)ij

(ppf∗i,t (γt)−wi− γi,t + δiβ
pf
i,t−1k

2
i )2

.

Therefore, inequality (35) holds for all γt.

Because G̃pf,1t is a log-supermodular game, by Theorem 5 in Milgrom and Roberts (1990), if there are two

distinct pure strategy Nash equilibria γ̂pf∗t 6= γpf∗t , we must have γ̂pf∗i,t ≥ γpf∗i,t for each i, with the inequality

being strict for some i. Without loss of generality, we assume that γ̂pf∗1,t >γ
pf∗
1,t and γ̂pf∗1,t − γ

pf∗
1,t ≥ γ̂

pf∗
i,t − γpf∗i,t

for each i. Lemma 1 yields that

∂ log(Πpf,1
1,t (γ̂pf∗t ))

∂γ1,t

≥
∂ log(Πpf,1

1,t (γpf∗t ))

∂γ1,t

(36)
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Since ∂γ1,t∂γi,t log(Πpf,1
1,t (γt)) is Lebesgue integrable for all i 6= 1 and γt, Newton-Leibniz formula implies that

∂ log(Πpf,1
1,t (γ̂pf∗t ))

∂γ1,t

−
∂ log(Πpf,1

1,t (γpf∗t ))

∂γ1,t

=

∫ 1

s=0

N∑
j=1

(γ̂pf∗j,t − γpf∗j,t )
∂2 log(Πpf,1

1,t ((1− s)γpf∗t + sγ̂pf∗t ))

∂γ1,t∂γj,t
ds

≤
∫ 1

s=0

N∑
j=1

(γ̂pf∗1,t − γ
pf∗
1,t )

∂2 log(Πpf,1
1,t ((1− s)γpf∗t + sγ̂pf∗t ))

∂γ1,t∂γj,t
ds < 0,

where the first inequality follows from γ̂pf∗1,t − γ
pf∗
1,t ≥ γ̂

pf∗
i,t − γpf∗i,t for all i, and the second from (35), and

γ̂pf∗1,t − γ
pf∗
1,t > 0. This contradicts (36). Thus, Gpf,1t has a unique pure strategy Nash equilibrium γpf∗t .

We now show that the unique pure strategy Nash equilibrium γpf∗t can be characterized by the sys-

tem of first-order conditions (25). First, (35) implies that log(Πpf,1
i,t (·,γ−i,t)) is strictly concave in γi,t for

any i and any fixed γ−i,t. Hence, γpf∗t must satisfy the system of first-order conditions, i.e., for each i,

∂γi,t log(Πpf,1
i,t (γpf∗t ))≤ 0 if γpf∗i,t = 0; ∂γi,t log(Πpf,1

i,t (γpf∗t )) = 0 if γpf∗i,t ∈ (0, γ̄i,t); and ∂γi,t log(Πpf,1
i,t (γpf∗t ))≥ 0

if γpf∗i,t = γ̄i,t. Differentiate ∂γi,t log(Πpf,1
i,t (γt)), and we have

∂γi,t log(Πpf,1
i,t (γt)) =

∂γi,tψi,t(γt)

ψi,t(γt)
− 2(1− θii(A−1)ii)

ppf∗i,t (γt)−wi− γi,t + δiβ
pf
i,t−1k

2
i

.

So γpf∗t satisfies the system of first-order conditions (25). This completes the proof of Proposition 7 for period

t.

By the concavity of the payoff function Πpf,1
i,t (γt), the Nash equilibrium is characterized by the system of

first-order conditions, (25), which has a unique solution γpf∗t if νi(γi,t) = γi,t for all i. Because Πpf,1
i,t (γt)> 0

is positive for any γt, ∂γi,t log(Πpf,1
i,t (γt)) has the same sign of ∂γi,tΠ

pf,1
i,t (γt). Thus, γpf∗t is also the unique

solution to the system:

∂γi,tO
pf,1
i,t (γt)


≤ 0, if γpf∗i,t = 0,

= 0, if γpf∗i,t ∈ (0, γ̄i),

≥ 0 if γpf∗i,t = γ̄i,

for each i. (37)

The solution to (37) uniquely captures the Nash equilibrium in the first-stage game in period t. Because

xpfi,t(p
pf∗
−i,t(γ

pf∗
t ),γpf∗t ,Λi,t) ≥ Ii,t for all i, γpf∗t is a feasible decision. Therefore, {(γpf∗i,t , p

pf∗
i,t (γt), y

pf∗
i,t +

Λi,tρi,t(p
pf∗
t (γt))ψi,t(γt)) : 1≤ i≤N} is the unique equilibrium in the subgame of period t.

Next, we show that there exists a positive vector βpft = (βpf1,t, β
pf
2,t, · · · , β

pf
N,t) and ηpft = (ηpf1,t, η

pf
2,t, · · · , η

pf
N,t),

such that Vi,t(It,Λt|σpf∗t ) =wiIi,t +βpfi,tΛi,t + ηpfi,t . By (22), we have that

Vi,t(It,Λt|σpf∗t ) =Ji,t(γ
pf∗
i,t , p

pf∗
i,t (γpf∗t ),Λi,ty

pf∗
i,t ρi,t(p

pf∗
t (γpf∗t ))ψi,t(γ

pf∗
t ),It,Λt|σpf∗t−1)

=wi,tIi,t + (δiβ
pf
i,t−1k

1
i + Πpf∗,1

i,t )Λi,t +πpf∗i,t + δiη
pf
i,t−1.

Since βpfi,t−1 > 0, βpfi,t = δiβ
pf
i,t−1k

1
i + Πpf∗,1

i,t > 0, and ηpfi,t = πpf∗i,t + δiη
pf
i,t−1.

Last, for t≥ 2, we can find ppf∗t−1(γpf∗t−1), γpf∗t−1 and ypf∗t−1 by inductive hypothesis. By Proposition 4(d)

P
[
xpfi,t(p

pf∗
−i,t(γ

pf∗
t ),γpf∗t ,Λi,t)−Dpf

i,t(p
pf∗
−i,t(γ

pf∗
t ),γpf∗t ,Λi,t)≤ xpfi,t−1(ppf∗−i,t−1(γpf∗t−1),γpf∗t−1,Λi,t−1)|Λi,t

]
= 1.

This completes the induction and, thus, the proof of Theorem 6, Proposition 4, Proposition 5, Proposition

6, Proposition 7, and Theorem 7. Q.E.D.

Proof of Proposition 8: By Theorems 6-7, and Propositions 4-??, it suffices to show that, if there exists
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constants βpfs,t−1 ≥ 0 and ηpfs,t−1, such that Vi,t−1(It−1,Λt−1|σpf∗t−1) =wsIi,t−1 +βpfs,t−1Λi,t−1 +ηpfs,t−1 for all i, we

have: (1) the optimal safety stock level is symmetric, i.e., ypf∗i,t = ypf∗j,t for all i, j; (2) the unique Nash equilib-

rium in Gpf,2t (γt) is symmetric if γi,t = γj,t for all i and j, (c), the unique Nash equilibrium in Gpf,1t , γpf∗t is

symmetric, and (d) there exists constants βpfs,t > 0 and ηpfs,t, such that Vi,t(It,Λt|σpf∗s,t ) =ws,tIi,t+βpfs,tΛi,t+ηpfs,t

for all i. Since Vi,0(It,Λt) =wiIi,0 for all i, the initial condition is satisfied with βpfs,0 = 0.

First, we observe that ypf∗i,t = ypf∗j,t and πpf∗i,t = πpf∗j,t for all i and j follow directly from Proposition 4.

Thus, we denote ypf∗s,t := ypf∗i,t and πpf∗s,t := πpf∗i,t for each firm i. Next, we show that if γi,t = γj,t for all

i and j, ppf∗i,t (γt) = ppf∗j,t (γt). Direct computation yields that, for the symmetric PF model,
∑N

j=1(A−1)ij

is independent of i. Thus, if the value of γj,t is independent of j,then ppf∗i,t (γt) =
∑N

j=1(A−1)ijfj(γt) =∑N

j=1[(A−1)ij(φs,t + θsa(ws + γj,t − δsβpfs,t−1k
2
s ))] = (φs,t + θsa(ws + γj,t − δsβpfs,t−1k

2
s ))
∑N

j=1(A−1)ij , which is

independent of firm i, which we denote as ppf∗s,t (γt).

The objective functions of Gpf,1t , {Πpf,1
i,t (γt) = θsa(p

pf∗
i,t (γt) − ws − γi,t + δsβ

pf
s,t−1k

2
s )ψs,t(γt) : 1 ≤ i ≤ N},

are symmetric. Thus, the unique Nash equilibrium in Gpf,1t is symmetric, which we denote as γpf∗ss,t =

(γpf∗s,t , γ
pf∗
s,t , · · · , γpf∗s,t ). Hence, Πpf∗,1

i,t = Πpf,1
i,t (γpf∗ss,t) = Πpf,1

j,t (γpf∗ss,t) = Πpf∗,1
j,t > 0. Thus, we denote Πpf∗,1

i,t of each

firm i as Πpf∗,1
s,t . By Theorem 7(b) and (c), βpfi,t = δsβ

pf
s,t−1µs,t + Πpf∗,1

i,t = δsβ
pf
s,t−1µs,t + Πpf∗,1

j,t = βpfj,t > 0, and

ηpfi,t = δiη
pf
i,t−1 +πpf∗i,t = δiη

pf
i,t−1 +πpf∗j,t = ηpfj,t . Thus, we denote the PF market size coefficient of each firm i as

βpfs,t. This completes the induction and, thus, the proof of Proposition 8. Q.E.D.

Proof of Theorem 8: Part (a). Let ζpfj,t = δjβ
pf
j,t−1k

2
j . Since δj > 0, βpfj,t−1 > 0 and k2

j > 0, it is suf-

ficient to show that ppf∗i,t (γt) is continuously decreasing in ζpfj,t . Because ppf∗i,t (γt) =
∑N

j=1(A−1)ijfj(γt) =∑N

j=1[(A−1)ij(φj + θjj(wj + γj,t − ζpfj,t ))], we have ∂
ζ
pf
j,t
ppf∗i,t (γt) = −θjj(A−1)ij ≤ 0, where the inequality

follows from Lemma 2(a). Thus, ppf∗i,t (γt) is continuously decreasing in ζpfj,t for each j. Thus, part (a) follows.

Part (b). We denote the objective function of each firm i in Gpf,1s,t as Πpf,1
i,t (·|ζpf∗s,t ) to capture its dependence

on ζpf∗s,t . The unique symmetric pure strategy Nash equilibrium in Gpf,1s,t is denoted as γpf∗ss,t(ζ
pf∗
s,t ) to capture

the dependence of the equilibrium on ζpf∗s,t , where γpf∗ss,t(ζ
pf∗
s,t ) = (γpf∗s,t (ζpf∗s,t ), γpf∗s,t (ζpf∗s,t ), · · · , γpf∗s,t (ζpf∗s,t )). We

first show that, if ζ̄pf∗s,t > ζpf∗s,t , γpf∗s,t (ζ̄pf∗s,t ) ≥ γpf∗s,t (ζpf∗s,t ). To the contrary, γpf∗s,t (ζ̄pf∗s,t ) < γpf∗s,t (ζpf∗s,t ), Lemma 1

yields that ∂γ1,t log(Πpf,1
1,t (γpf∗s,t (ζ̄pf∗s,t )|ζ̄pf∗s,t ))≤ ∂γ1,t log(Πpf,1

1,t (γpf∗s,t (ζpf∗s,t )|ζpf∗s,t )), i.e.,

∂γ1,t log(ψs,t(γ
pf∗
s,t (ζ̄pf∗s,t ))− 2(1− θsa(A−1)ii)

ppf∗s,t (γpf∗ss,t(ζ̄
pf∗
s,t ))−ws− γpf∗s,t (ζ̄pf∗s,t ) + ζ̄pf∗s,t

≤ ∂γ1,t log(ψs,t(γ
pf∗
s,t (ζpf∗s,t ))− 2(1− θsa(A−1)ii)

ppf∗s,t (γpf∗ss,t(ζ
pf∗
s,t ))−ws− γpf∗s,t (ζpf∗s,t ) + ζpf∗s,t

.

Note that

[ppf∗s,t (γpf∗ss,t(ζ̄
pf∗
s,t ))−ws− γpf∗s,t (ζ̄pf∗s,t ) + ζ̄pf∗s,t ]− [ppf∗s,t (γpf∗ss,t(ζ

pf∗
s,t ))−ws− γpf∗s,t (ζpf∗s,t ) + ζpf∗s,t ]

=

(
1−

N∑
j=1

(A−1)1jθsa

)
(γpf∗s,t (ζpf∗s,t )− γpf∗s,t (ζ̄pf∗s,t )) +

(
1−

N∑
j=1

(A−1)1jθsa

)
(ζ̄pf∗s,t − ζpf∗s,t )> 0

(38)

where the inequality follows from Lemma 2(c). Thus, ppf∗s,t (γpf∗ss,t(ζ̄
pf∗
s,t )) − ws − γpf∗s,t (ζ̄pf∗s,t ) + ζ̄pf∗s,t >

ppf∗s,t (γpf∗ss,t(ζ
pf∗
s,t ))− ws− γpf∗s,t (ζpf∗s,t ) + ζpf∗s,t > 0. Lemma 2(b) implies that 1− θsa(A−1)ii > 0. Hence,

− 2(1− θsa(A−1)ii))

ppf∗s,t (γpf∗ss,t(ζ̄
pf∗
s,t ))−ws− γpf∗s,t (ζ̄pf∗s,t ) + ζ̄pf∗s,t

≥− 2(1− θsa(A−1)ii)

ppf∗s,t (γpf∗ss,t(ζ
pf∗
s,t ))−ws− γpf∗s,t (ζpf∗s,t ) + ζpf∗s,t

.
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Thus, we have ∂γ1,t log(ψs,t(γ
pf∗
s,t (ζ̄pf∗s,t ))≤ ∂γ1,t log(ψs,t(γ

pf∗
s,t (ζpf∗s,t )). By (3) and Newton-Leibniz formula,

∂γ1,t log(ψ1(γpf∗s,t (ζpf∗s,t )))− ∂γ1,t log(ψ1(γpf∗s,t (ζ̄pf∗s,t )))

=

∫ 1

s=0

N∑
j=1

(γpf∗s,t (ζpf∗s,t )− γpf∗s,t (ζ̄pf∗s,t ))[
∂2 log(ψs(sγ

pf∗
s,t (ζpf∗s,t ) + (1− s)γpf∗s,t (ζ̄pf∗s,t )))

∂γ1,t∂γj,t
] ds < 0,

which leads to a contradiction. Therefore, γpf∗s,t (ζpf∗s,t ) is increasing in ζpf∗s,t . The continuity of γpf∗s,t (ζpf∗s,t ) in

ζpf∗s,t follows directly from that Πpf,1
i,t (γt|ζpf∗s,t ) is twice continuously differentiable in (γt, ζ

pf∗
s,t ) and the implicit

function theorem.

Part(c). Next we show that if (16) holds, Πpf∗,1
s,t (ζpf∗s,t ) := Πpf∗,1

s,t (γpf∗ss,t(ζ
pf∗
s,t )|ζpf∗s,t ) is increasing in βpfs,t−1

and k2
s . Since δs > 0, βpfs,t−1 > 0 and k2

s > 0, it suffices to show that Πpf∗,1
s,t (ζpf∗s,t ) is increasing in ζpf∗s,t . Assume

that ζ̄pf∗s,t > ζpf∗s,t . Since we have just shown γpf∗s,t (ζ̄pf∗s,t ) ≥ γpf∗s,t (ζpf∗s,t ), (16) implies that ψs,t(γ
pf∗
ss,t(ζ̄

pf∗
s,t )) ≥

ψs,t(γ
pf∗
ss,t(ζ

pf∗
s,t ))> 0. We discuss two cases to prove that Πpf∗,1

s,t (ζ̄pf∗s,t )>Πpf∗,1
s,t (ζpf∗s,t ).

First, if γpf∗s,t (ζ̄pf∗s,t ) = γpf∗s,t (ζpf∗s,t ), ppf∗s,t (γpf∗ss,t(ζ̄
pf∗
s,t )) − ws − γpf∗s,t (ζ̄pf∗s,t ) + ζ̄pf∗s,t > ppf∗s,t (γpf∗ss,t(ζ

pf∗
s,t )) − ws −

γpf∗s,t (ζpf∗s,t ) + ζpf∗s,t , and, hence,

Πpf∗,1
s,t (ζ̄pf∗s,t ) = θsa(p

pf∗
s,t (γpf∗ss,t(ζ̄

pf∗
s,t ))−ws− γpf∗s,t (ζ̄pf∗s,t ) + ζ̄pf∗s,t )2ψs(γ

pf∗
ss,t(ζ̄

pf∗
s,t ))

> θsa(p
pf∗
s,t (γpf∗ss,t(ζ

pf∗
s,t ))−ws− γpf∗s,t (ζpf∗s,t ) + ζpf∗s,t )2ψs(γ

pf∗
ss,t(ζ

pf∗
s,t )) = Πpf∗,1

s,t (ζpf∗s,t ).

Second, if γpf∗ss,t(ζ̄
pf∗
s,t ) > γpf∗ss,t(ζ

pf∗
s,t ), Lemma 1 implies that ∂γ1,t log(Πpf,1

1,t (γpf∗s,t (ζ̄pf∗s,t )|ζ̄pf∗s,t )) ≥

∂γ1,t log(Πpf,1
1,t (γpf∗s,t (ζpf∗s,t )|ζpf∗s,t )), i.e.,

∂γ1,t log(ψs,t(γ
pf∗
s,t (ζ̄pf∗s,t ))− 2(1− θsa(A−1)ii))

ppf∗s,t (γpf∗ss,t(ζ̄
pf∗
s,t ))−ws− γpf∗s,t (ζ̄pf∗s,t ) + ζ̄pf∗s,t

≥ ∂γ1,t log(ψs,t(γ
pf∗
s,t (ζpf∗s,t ))− 2(1− θsa(A−1)ii))

ppf∗s,t (γpf∗ss,t(ζ
pf∗
s,t ))−ws− γpf∗s,t (ζpf∗s,t ) + ζpf∗s,t

.

By (3) and Newton-Leibniz formula,

∂γ1,t log(ψ1(γpf∗s,t (ζ̄pf∗s,t )))− ∂γ1,t log(ψ1(γpf∗s,t (ζpf∗s,t )))

=

∫ 1

s=0

N∑
j=1

(γpf∗s,t (ζ̄pf∗s,t )− γpf∗s,t (ζpf∗s,t ))

[
∂2 log(ψs((1− s)γpf∗s,t (ζpf∗s,t ) + sγpf∗s,t (ζ̄pf∗s,t )))

∂γ1,t∂γj,t

]
ds < 0,

Hence,

− 2(1− θsa(A−1)ii))

ppf∗s,t (γpf∗ss,t(ζ̄
pf∗
s,t ))−ws− γpf∗s,t (ζ̄pf∗s,t ) + ζ̄pf∗s,t

>− 2(1− θsa(A−1)ii))

ppf∗s,t (γpf∗ss,t(ζ
pf∗
s,t ))−ws− γpf∗s,t (ζpf∗s,t ) + ζpf∗s,t

.

Because, by Lemma 2(b), and 1 − θsa(A
−1)ii > 0, we have ppf∗s,t (γpf∗ss,t(ζ̄

pf∗
s,t )) − ws − γpf∗s,t (ζ̄pf∗s,t ) + ζ̄pf∗s,t >

ppf∗s,t (γpf∗ss,t(ζ
pf∗
s,t ))−ws− γpf∗s,t (ζpf∗s,t ) + ζpf∗s,t . Therefore,

Πpf∗,1
s,t (ζ̄pf∗s,t ) = θsa(p

pf∗
s,t (γpf∗ss,t(ζ̄

pf∗
s,t ))−ws− γpf∗s,t (ζ̄pf∗s,t ) + ζ̄pf∗s,t )2ψs(γ

pf∗
ss,t(ζ̄

pf∗
s,t ))

> θsa(p
pf∗
s,t (γpf∗ss,t(ζ

pf∗
s,t ))−ws− γpf∗s,t (ζpf∗s,t ) + ζpf∗s,t )2ψs(γ

pf∗
ss,t(ζ

pf∗
s,t )) = Πpf∗,1

s,t (ζpf∗s,t ).

We have, thus, shown that Πpf∗,1
s,t (ζpf∗s,t ) is increasing in ζpf∗s,t . The continuity of Πpf∗,1

s,t (ζpf∗s,t ) in ζpf∗s,t follows

directly from that of γpf∗s,t (ζpf∗s,t ) and that Πpf,1
i,t (γt|ζpf∗s,t ) is continuous in (γt, ζ

pf∗
s,t ). This concludes the proof

of part (d).
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Part (d). By part (c), we have that Πpf∗,1
s,t is continuously increasing in βpfs,t−1 and k2

s . By Theorem 7(b),

thus, we have that βpfs,t is continuously increasing in βpfs,t−1, k1
s and k2

s since k1
s > 0. Q.E.D.

Proof of Theorem 9: Part (a). For each γt, p̂
pf∗
s,t (γt) ≤ ppf∗s,t (γt) directly follows from Theorem 8(a) if

k̂2
s ≥ k2

s . By Proposition 8(d), p̂pf∗i,t (It,Λt,γt) = p̂pf∗s,t (γt) ≤ ppf∗s,t (γt) = ppf∗i,t (It,Λt,γt). This completes the

proof of part (a).

Part (b). By part (a), p̂pf∗i,t (γt) ≤ ppf∗i,t (γt) for each firm i and each γt. When the PF model is

symmetric,
∑N

j=1 θjj(A
−1)ij is independent of i. Direct computation yields that ppf∗i,t (γt) − p̂pf∗i,t (γt) =

(
∑N

j=1 θjj(A
−1)ij)δs(β̂

pf
s,t−1k̂

2
s − β

pf
s,t−1k

2
s )≥ 0, for all γt, which is independent of i. Thus, (16) and Newton-

Leibniz formula imply that

ρs(p
pf∗
t (γt))− ρs(p̂pf∗t (γt)) =

∫ 1

s=0

N∑
i=1

(ppf∗i,t (γt)− p̂pf∗i,t (γt))
∂ρs((1− s)p̂pf∗t (γt) + sppf∗t (γt))

∂pi,t
ds≤ 0.

Hence, ρs(p̂
pf∗
t (γt))≥ ρs(ppf∗t (γt)). For any (It,Λt)∈ S and γt ∈ [0, γ̄s,t]

N ,

x̂pf∗i,t (It,Λt,γt) = ŷpf∗s,t + Λs,tρs(p̂
pf∗
t (γt))ψs(γt)≥ ypf∗s,t + Λs,tρs(p

pf∗
t (γt))ψs(γt) = xpf∗i,t (It,Λt,γt).

This completes the proof of part (b).

Part (c). We prove part (c) first then . Because k̂2
s ≥ k2

s , Theorem 8(b) yields that γ̂pf∗s,t ≥ γpf∗s,t and,

hence, γpf∗i,t (It,Λt) = γpf∗s,t ≥ γ̃pf∗s,t = γ̃pf∗s,t (It,Λt) for each i and (It,Λt) ∈ S. This completes the proof of part

(c). Q.E.D.

Proof of Theorem 10: We show parts (a)-(b) together by backward induction. More specifically, we

show that if βpfs,t−1 ≥ β
pf
s,t−2, (1) ppf∗i,t (γ)≤ ppf∗i,t−1(γ) for all γ ∈ [0, γ̄s,t]

N , (2) ppf∗i,t (I,Λ,γ)≤ ppf∗i,t−1(I,Λ,γ) for

each i, (I,Λ)∈ S, and γ ∈ [0, γ̄s,t]
N , (3) γpf∗s,t ≥ γpf∗s,t−1, (4) γpf∗i,t (I,Λ)≥ γpf∗i,t−1(I,Λ) for each i and (I,Λ)∈ S,

(5) xpf∗i,t (I,Λ,γ) ≥ xpf∗i,t−1(I,Λ,γ) for each i, (I,Λ) ∈ S, and γ ∈ [0, γ̄s,t]
N , and (6) βpfs,t ≥ βpfs,t−1. Since, by

Theorem 7(a), βpfs,1 ≥ β
pf
s,0 = 0. Thus, the initial condition is satisfied.

Since the model is stationary, by Theorem 8(a), βpfs,t−1 ≥ β
pf
s,t−2 suggests that ppf∗s,t (γ)≤ ppf∗s,t−1(γ) for all γ ∈

[0, γ̄s,t]
N . Theorem 8(b) implies that γpf∗s,t ≥ γpf∗s,t−1. Hence, ppf∗i,t (I,Λ,γ) = ppf∗i,t (γ)≤ ppf∗i,t−1(γ) = ppf∗i,t−1(I,Λ,γ)

for each i, (I,Λ)∈ S, and γ ∈ [0, γ̄s,t]
N , and γpf∗i,t (I,Λ) = γpf∗s,t ≥ γpf∗s,t−1 = γpf∗i,t−1(I,Λ) for each i and (I,Λ)∈ S.

We now show that xpf∗i,t (I,Λ,γ)≥ xpf∗i,t−1(I,Λ,γ) for each i, (I,Λ) ∈ S, and γ ∈ [0, γ̄]N . Because the PF

model is symmetric,
∑N

j=1 θjj(A
−1)ij is independent of i. Direct computation yields that ppf∗i,t−1(γ)−ppf∗i,t (γ) =

(
∑N

j=1 θjj(A
−1)ij)δsk

2
s (βpfs,t − βpfs,t−1) ≥ 0, for all γ, which is independent of i. Thus, (16) and the Newton-

Leibniz formula implies that

ρs(p
pf∗
t−1(γ))− ρs(ppf∗t (γ)) =

∫ 1

s=0

N∑
i=1

(ppf∗i,t−1(γ)− ppf∗i,t (γ))
∂ρs((1− s)ppf∗t (γ) + sppf∗t−1(γ))

∂pi
ds≤ 0.

Hence, ρs(p
pf∗
t (γ))≥ ρs(ppf∗t−1(γ)) for all γ. Since ypf∗s,t = ypf∗s,t−1, Theorem 7(b) implies that, for any (I,Λ)∈ S

and γ ∈ [0, γ̄s,t]
N ,

xpf∗i,t (I,Λ,γ) = ypf∗s,t + Λs,tρs(p
pf∗
t (γ))ψs(γ)≥ ypf∗s,t−1 + Λs,tρs(p

pf∗
t−1(γ))ψs(γ) = xpf∗i,t−1(I,Λ,γ).
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Finally, βpfs,t ≥ βpfs,t−1 follows from Theorem 8(d). This completes the induction and, thus, the proof of

Theorem 10. Q.E.D.

Proof of Theorem 11: Part (a). We now show that, if βpfs,t−1 ≥ βscs,t−1, γpf∗s,t ≥ γsc∗s,t . Proposition 5 implies

that ppf∗t (γpf∗ss,t) = A−1f(γpf∗ss,t). By Proposition 1, psc∗ss,t = A−1f(γsc∗ss,t). We assume, to the contrary, that

γpf∗s,t <γ
sc∗
s,t . Lemma 1 implies that ∂γ1,t log(Πpf,1

1,t (γpf∗ss,t))≤ ∂γ1,t log(Πsc
1,t(γ

sc∗
ss,t,p

sc∗
ss,t)), i.e.,

− 2(1− θsa(A−1)11)∑N

j=1(A−1)1j [φsa + θsa(ws + γpf∗s,t − δsβpfs,t−1k
2
s )]−ws− γpf∗s,t + δsβ

pf
s,t−1k

2
s

+ ∂γ1,t log(ψs(γ
pf∗
ss,t))

≤− 1∑N

j=1(A−1)1j [φsa + θsa(ws + γsc∗s,t − δsβscs,t−1k
2
s )]−ws− γsc∗s,t + δsβscs,t−1k

2
s

+ ∂γ1,t log(ψs(γ
sc∗
ss,t)).

(39)

Inequality (3) and the Newton-Leibniz formula imply that

∂γ1,t log(ψs(γ
sc∗
ss,t))− ∂γ1,t log(ψs(γ

pf∗
ss,t)) =

∫ 1

s=0

N∑
j=1

(γsc∗s,t − γpf∗s,t )

[
∂2 log(ψs((1− s)γpf∗s,t + sγsc∗s,t ))

∂γ1,t∂γj,t

]
ds < 0.

By (39),

− 2(1− θsa(A−1)11)∑N

j=1(A−1)1j [φsa + θsa(ws + γpf∗s,t − δsβpfs,t−1k
2
s )]−ws− γpf∗s,t + δsβ

pf
s,t−1k

2
s

<− 1∑N

j=1(A−1)1j [φsa + θsa(ws + γsc∗s,t − δsβscs,t−1k
2
s )]−ws− γsc∗s,t + δsβscs,t−1k

2
s

.

Lemma 2(b) suggests that 0≤ 2(1− θsa(A−1)11)≤ 1. Hence,

N∑
j=1

(A−1)1j [φsa + θsa(ws + γpf∗s,t − δsβ
pf
s,t−1k

2
s )]−ws− γpf∗s,t + δsβ

pf
s,t−1k

2
s

<

N∑
j=1

(A−1)1j [φsa + θsa(ws + γsc∗s,t − δsβscs,t−1k
2
s )]−ws− γsc∗s,t + δsβ

sc
s,t−1k

2
s .

(40)

Since βpfs,t−1 ≥ βscs,t−1 and γpf∗s,t < γsc∗s,t , δsβ
pf
s,t−1k

2
s − γ

pf∗
s,t > δsβ

sc
s,tk

2
s − γsc∗s,t . Lemma 2(c) implies that 1 −∑N

j=1(A−1)1jθsa > 0. Therefore,

N∑
j=1

(A−1)1j [φsa + θsa(ws + γpf∗s,t − δsβ
pf
s,t−1k

2
s )]−ws− γpf∗s,t + δsβ

pf
s,t−1k

2
s

>

N∑
j=1

(A−1)1j [φsa + θsa(ws + γsc∗s,t − δsβscs,t−1k
2
s )]−ws− γsc∗s,t + δsβ

sc
s,t−1k

2
s ,

which contradicts the inequality (40). Therefore, γpf∗s,t ≥ γsc∗s,t . This completes the proof of part (a).

Part (b). We first show, by backward induction, that, if θsb = 0 for each t, βpfs,t ≥ βscs,t for each t. Since

βpfs,0 = βscs,0 = 0, the initial condition is satisfied. Now we prove that if βpfs,t−1 ≥ βscs,t−1 and θsb = 0, we have

βpfs,t ≥ βscs,t.

First, we observe that if θsb = 0, (A−1)11θsa = 1
2

and, thus, 2(1− θsa(A−1)11) = 1. Part (a) shows that

γpf∗s,t ≥ γsc∗s,t . If γpf∗s,t = γsc∗s,t ,

Πpf∗,1
s,t = θsa((A

−1f(γpf∗ss,t))i−ws− γpf∗s,t + δsβ
pf
s,t−1k

2
s )2ψs,t(γ

pf∗
ss,t)

≥ θsa((A
−1f(γsc∗ss,t))i−ws− γsc∗s,t + δsβ

sc
s,t−1k

2
s )2ψs,t(γ

sc∗
ss,t) = Πsc∗

s,t ,
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where the inequality follows from βpfs,t−1 ≥ β
pf
s,t−1.

If γpf∗s,t >γ
sc∗
s,t , Lemma 1 implies that ∂γ1,t log(Πpf,1

1,t (γpf∗ss,t))≥ ∂γ1,t log(Πsc
1,t(γ

sc∗
ss,t,p

sc∗
ss,t)), i.e.,

− 2(1− θsa(A−1)11)

(A−1f(γpf∗ss,t))1−ws− γpf∗s,t + δsβ
pf
s,t−1k

2
s

+ ∂γ1,t log(ψs(γ
pf∗
ss,t))

≥− 1

(A−1f(γsc∗ss,t))1−ws− γsc∗s,t + δsβscs,t−1k
2
s

+ ∂γ1,t log(ψs(γ
sc∗
ss,t)).

(41)

Inequality (3) and the Newton-Leibniz formula imply that

∂γ1,t log(ψs(γ
pf∗
ss,t))− ∂γ1,t log(ψs(γ

sc∗
ss,t)) =

∫ 1

s=0

N∑
j=1

(γpf∗s,t − γsc∗s,t )

[
∂2 log(ψs((1− s)γsc∗s,t + sγpf∗s,t ))

∂γ1,t∂γj,t

]
ds < 0.

By (41), we have

− 2(1− θsa(A−1)11)

(A−1f(γpf∗ss,t))1−ws− γpf∗s,t + δsβ
pf
s,t−1k

2
s

>− 1

(A−1f(γsc∗ss,t))1−ws− γsc∗s,t + δsβscs,t−1k
2
s

.

Because 2(1− θsa(A−1)11) = 1, we have (A−1f(γpf∗ss,t))1 − ws − γpf∗s,t + δsβ
pf
s,t−1k

2
s > ((A−1f(γsc∗ss,t))1 − ws −

γsc∗s,t + δsβ
sc
s,t−1k

2
s > 0. By inequality (16), γpf∗s,t >γ

sc∗
s,t implies that ψs,t(γ

pf∗
ss,t)>ψs,t(γ

sc∗
ss,t). Thus, we have

Πpf∗,1
s,t = θsa((A

−1f(γpf∗ss,t))1−ws− γpf∗s,t + δsβ
pf
s,t−1k

2
s )2ψs,t(γ

pf∗
ss,t)

> θsa((A
−1f(γsc∗ss,t))1−ws− γsc∗s,t + δsβ

sc
s,t−1k

2
s )2ψs,t(γ

sc∗
ss,t) = Πsc∗

s,t .

We have thus shown that if βpfs,t−1 ≥ βscs,t−1, Πpf∗,1
s,t ≥ Πsc∗

s,t . By Theorem 2(b) and Theorem 7(b), βpfs,t =

δsβ
pf
s,t−1k

1
s +Πpf∗,1

s,t ≥ δsβscs,t−1k
1
s +Πsc∗

s,t = βscs,t. This completes the induction and, by part (a), the proof of part

(b) for the case θsb = 0.

For any fixed θsa, both βpfs,t and βscs,t are continuous in θsb. Thus, for each period t, there exists a εt ≥ 0,

such that, if θsb ≤ εθsa, βpfs,t ≥ βscs,t. It remains to show that ε≤ 1
N−1

. This inequality follows from the diagonal

dominance condition that θsa > (N − 1)θsb. This completes the proof of part (b). Q.E.D.
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