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e examine the critical role of advance supply signals—such as suppliers’ financial health and production viability—in

dynamic supply risk management. The firm operates an inventory system with multiple demand classes and multi-
ple suppliers. The sales are discretionary and the suppliers are susceptible to both systematic and operational risks. We
develop a hierarchical Markov model that captures the essential features of advance supply signals, and integrate it with
procurement and selling decisions. We characterize the optimal procurement and selling policy, and the strategic relation-
ship between signal-based forecast, multi-sourcing, and discretionary selling. We show that higher demand heterogeneity
may reduce the value of discretionary selling, and that the mean value-based forecast may outperform the stationary distri-
bution-based forecast. This work advances our understanding on when and how to use advance supply signals in dynamic
risk management. Future supply risk erodes profitability but enhances the marginal value of current inventory. A signal
of future supply shortage raises both base stock and demand rationing levels, thereby boosting the current production
and tightening the current sales. Signal-based dynamic forecast effectively guides the firm’s procurement and selling deci-
sions. Its value critically depends on supply volatility and scarcity. Ignoring advance supply signals can result in mislead-
ing recommendations and severe losses. Signal-based dynamic supply forecast should be used when: (a) supply
uncertainty is substantial, (b) supply-demand ratio is moderate, (c) forecast precision is high, and (d) supplier heterogene-

ity is high.
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1. Introduction

To better manage supply risks, many companies clo-
sely monitor the status of their suppliers, including
production schedules (Bresnahan and Ramey 1994),
production progressions (Higle and Kempf 2011),
preorder commitments (Aviv 2007), financial health
(Babich 2010), and severe weather (Cachon et al.
2012), etc. These advance supply signals, though noisy
and volatile, contain rich information on suppliers’
likelihood of operational disruptions, bankruptcy,
and, thus, their availability. If properly maintained
and utilized, advance supply signals can greatly
improve companies’ capabilities in supply forecast
and risk mitigation.

Several risk mitigation strategies are widely used,
such as multi-sourcing, inter-temporal substitution,

and discretionary selling. Multi-sourcing reduces
capacity limitation by splitting orders across multiple
suppliers. Inter-temporal substitution over orders and
holds inventory in anticipation of future supply scar-
city. Discretionary selling exploits customer hetero-
geneity over time by committing on-hand inventory
to future high-value demand and rejecting current
low-value orders.

Toyota, for example, takes an integrated approach
of these strategies. It has long adopted the multi-
sourcing strategy, purchasing all components from at
least two suppliers (Federgruen and Yang 2011,
Treece and Rechtin 1997). For example, it buys engine
drive belts from suppliers such as Gates, ContiTech
AG, AC Delco, and mass airflow sensors from Hitachi
Automotive Systems and Denso Corporation (Matsuo
2015). In addition, Toyota uses elaborate systems to
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monitor its suppliers at all times (Liker and Choi
2004). For example, in response to the 2011 Japan
earthquake, Toyota established a company-wide
emergency task force to monitor its suppliers’ status
in real time (Jones 2012). To mitigate part shortage
caused by this earthquake, Toyota leveraged multi-
sourcing and ramped up production of unaffected
plants. Meanwhile, it also invoked the discretionary
selling strategy: Out of over 300,000 active part num-
bers, it restricted the allocation of 233 part numbers,
including drive belts and mass airflow sensors, to ful-
fil only emergency repair orders; see, for example,
Capps (2011), Ramsey and Moffett (2011). Such an
integrated approach helped Toyota to navigate
through the difficult times.

This study has three objectives: (1) to develop a
general model for advance supply signals and sig-
nal-based supply forecast; (2) to identify the optimal
procurement and selling policies under signal-based
supply forecast, and (3) to characterize the value of
advance supply signals. Specifically, we consider a
joint procurement and selling problem under
dynamic signal-based capacity forecast. The firm
sources a single product from multiple suppliers
and sells to multiple classes of customers. The sup-
pliers differ in cost, capacity limit and reliability,
and the customer classes in revenue. The firm tracks
advance supply signals in each period, updates the
capacity forecast, and makes procurement and sell-
ing decisions. The firm may deliberately overorder
inventory or ration low-value demands in anticipa-
tion of future supply shortages. The firm’s objective
is to maximize the total expected profit over the
planning horizon.

We make three contributions in this study. First, we
develop a hierarchical Markov model for the signal-
based dynamic supply forecast. The firm forecasts the
future capacity of each supplier based on its corre-
sponding advance supply signal. Moreover, the
advance supply signal for each supplier is driven by
an exogenous Markov chain. This model captures
both the systematic risk and the operational risk of
supply uncertainty, and is compatible with the com-
mon estimation methods in the literature.

Second, we characterize the optimal policy. The
optimal procurement and selling policy has a nested
threshold structure, which is specified by a sequence
of supplier- and demand class-dependent monotone
thresholds. The optimal procurement is driven by
multi-sourcing and inter-temporal substitution; and
the optimal selling is driven by customer segmenta-
tion and inter-temporal rationing. The procurement
and selling decisions should be synchronized with
dynamic supply forecast for adaptive and resilient
risk mitigation. We also study the strategic relation-
ships between the three risk-mitigation instruments.

We find that the base stock levels with discretionary
selling are lower than those without. Hence, discre-
tionary selling and multi-sourcing are strategic substi-
tutes. The strategic relationship between signal-based
supply forecast and multi-sourcing, however, may be
either complementary, substitutive, or independent,
depending on the supply-demand ratio. Our analysis
also reveals several counterintuitive insights on
dynamic supply risk management: For example, the
value of discretionary selling may be decreasing in
demand heterogeneity; and the inventory system
with mean capacity-based forecast may outper-
form that with stationary-capacity-distribution-based
forecast.

Third, we characterize the effects of signal-based
supply forecast in dynamic supply risk management.
Signal-based dynamic supply forecast influences both
procurement and selling strategies. The mechanism
works as follows. Supply shortage erodes total
expected profit but increases the marginal value of
inventory. Hence, a signal of future capacity shortage
increases the marginal value of current inventory,
which in turn raises the base stock and demand
rationing levels, thereby boosting production and
tightening sales at the same time. Signal-based supply
forecast thus plays a central role in guiding the strate-
gic planning and coordinating the procurement and
selling executions in response to evolving forecasts.
The effect on profitability is immediate: Signal-based
dynamic forecast enables the firm to responsively
adjust its procurement and selling policies so as to
better mitigate supply risks. Managerially, we show
that signal-based dynamic forecast should be used
when: (a) supply uncertainty is substantial, (b) sup-
ply-demand ratio is moderate, (c) forecast precision is
high, and (d) supplier heterogeneity is high. We
demonstrate that the conventional mean capacity-
based forecast and stationary-capacity-distribution-
based forecast are inadequate for handling volatile
supply. Moreover, ignoring the volatility of supply
signal evolution may generate misleading policies
(i.e., the “average” versions of the optimal policy) and
inflict severe losses.

In short, our work highlights the importance of
tracking advance supply signals and explicitly model-
ing supply volatility for the dynamic joint procure-
ment and selling problems with substantial supply
risks. To our best knowledge, this is one of the first
few attempts to understand the critical role of
advance supply signals and discretionary selling in
the supply risk management literature.

2. Literature Review

Our work contributes to the literature on dynamic
forecast and supply risk management. Dynamic
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forecast is modeled in two ways in the existing litera-
ture. The first uses time series to capture the forecast
evolution (e.g., Altug and Muharremoglu 2011, Chen
and Lee 2009, Graves et al. 1998, Milner and Kouvelis
2005, Ozer and Wei 2004, Toktay and Wein 2001); the
second approach employs Markov modulated
demand models (e.g., Chen and Song 2001, Gao et al.
2012, Li and Gao 2008, Song and Zipkin 1993). This lit-
erature mainly focuses on how to use simple forecast
models to improve replenishment. In contrast, we build
a hierarchical Markov model to capture both the
volatility and variability of advance supply signals,
and use it to coordinate both replenishment and selling
decisions for supply risk mitigation.

We also contribute to the dynamic supply risk
management literature (see, e.g., Babich 2010, Feder-
gruen, and Yang 2011, 2014, Gao 2015). By directly
capturing the dynamic features of progressive infor-
mation revelation and sequential decision making,
our model allows for inter-temporal substitution and
rationing, two commonly used strategies in dynamic
supply risk management. In the supply risk manage-
ment literature, the underlying supply risk is usually
modeled as (a) random yield (e.g., Federgruen and
Yang 2009, Henig and Gerchak 1990), (b) uncertain
capacity (e.g., Chao et al. 2008, Li et al. 2013), or (c)
all-or-nothing supply disruption (e.g., Glimiis et al.
2012, Tomlin 2006, Yang et al. 2009). When supply
risk takes the form of procurement cost volatility,
Xiao et al. (2015) study how a firm adjusts its pricing
and sourcing strategies to mitigate the procurement
cost fluctuation risk. See Kouvelis et al. (2011) for a
comprehensive review of the supply risk manage-
ment literature. In particular, uncertain capacity can
realize either before (e.g., Chao et al. 2008) or after
procurement decisions (e.g., Li et al. 2013). We take
the first approach for technical tractability. This
approach is also common in the supply disruption
literature, where the supplier status (up or down) is
observed at the beginning of each period. We make
two contributions to this literature: (a) We incorpo-
rate advance supply signals to enhance operational
instruments for better risk mitigation; (b) We analyze
the interplay of forecasting, procurement, and sell-
ing, and identify the coordination role of signal-
based forecast in supply risk management.

3. Signal-Based Dynamic Supply
Forecast Model

In this section, we develop a hierarchical Markov
model for signal-based dynamic supply forecast. Con-
sider a firm that replenishes from a set of m suppliers
M, over a T-period planning horizon 7. Time is
labeled backwards. The capacity of supplier i in per-
iod ¢, K7 >0, is ex ante stochastic. Let ICZ be the

random variable that represents the ex ante distribu-
tion of Ki. Hence, ex ante, {K}},, is the underlying sup-
ply process. Without additional information, it is the
best forecast for the firm. At the beginning of each
period t, the firm observes the realized capacity vector
K = (K}, -+, KM).

The firm can obtain advance supply signals to
improve its forecast. Let 0, be the advance supply
signal from supplier i in period t. Upon observing
signal 0;, the firm can update the forecast of K| ,
from its ex ante distribution K, ; to the ex post sig-
nal-based one Ki  (01) = [K!_,|0]. Here, Ki ,(0})
is a non-negative random variable, and the forecast
function Ki_ 1(*) is stochastically increasing in 05
that is, P{K;_ (0 > Cy > P{K_,(0}) > C} for all
C and 0. > 0.. The signal 0, is a sufﬁcient statistics
for Ki_;: Condltloned on 0, Ki_, is independent of
9’ for all j#i. Moreover, the signals {0}, evolve
accordmg to an exogenous Markov process,
0,1 = ©;_,(0;), where ©, ,(-) is a non-negative
random varlable and stochastically increasing in 0;.
We assume that 0! is a sufficient statistic for 0! ;.
Taken together, {K ()} and {0i(- -)};; define a sig-
nal-base fqrecast. In our model, the randomness in
capacity K;_; is resolved sequentially: In period t, the
firm observes the signal 0, and updates its forecast
from K}, to Ki_,(0}); in period t—1, as the firm
observes the reahzation of Ki_,, its remaining ran-
domness is completely resolved.

To characterize the (relative) forecast precision of
the signal-based forecast {K;(-)}, we use the concept
of convex order (Shaked and Shanthikumar 2007). For
two random variables € and ¢, we say ¢ is less than € in
convex order (denoted as € <, €), if Ef(e) < Ef(€) for all
convex functions f(-). This implies Ee = E¢, and
vare <var E, that is, € is less variable than €. Let
0r = (0}, ---,0") be the signal vector. For two
signal processes {0;}, and {0;}, and their associ-
ated forecast functions {K(-)}, and {K(- )}, we
say forecast {K:(-)}, is more precise than {K:(-)};,
if Ki (0 <. Ki ,(0), Vi, t, and 0. For example,
if the signal 0; is collected after 0,, then 0y is likely to be
more informative than 0;, and hence produces more
precise forecast K;_1(0;) of K;_1. Although {0;}, and
{6:}, may produce capacity forecasts with different
precisions, they both forecast {K;}, accurately. This is
because, ex ante, the forecasted capacity processes
{K:(0:)}, and {K;(0)},—Dbased on the signal processes
{0}, and {0:},, respectively—both follow the same
original distribution of {K;},. In section 5.3, we will
analyze the impact of forecast precision under signal-
based forecast.

We now illustrate our signal-based supply fore-
cast model with a simple example. Assume that
the capacity process {K;}, is stationary and nor-
mally distributed, with K} ~ N (u, 62), where p is
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significantly larger than ¢ to ensure that the prob-
ability of K! being negative is negligible. Moreover,
the components of K; are independent of each
other. Assume that K| , = 0! + &, where the
white noise & is 1ndependent of srgnal 0! and

E[£] = 0. The advance supply signal of suppher i
0;, follows an autoregressive process of order 1
(1'e the  AR(1) process) with  dynamics:
0p = (1—p)u + p9;+1 +v1- p26;+1, where {e},
follow i.id. normal distribution N (0, n¢?) indepen-
dent of {0}, 0., ~N(u no?), pel0,1], and
n € (0, 1). Hence, the signals {6.}, are stationary
and follow the stationary distribution N (u, na?).
Moreover, given the advance supply signal in per-
iod t, 0, the signal-based forecast of K , is
K (0) = [Ki |07 ~ N(65, (1 = n)d?). Therefore,
observing the advance supply signal 0% in period t
improves the forecast of K, ; by reducmg its vari-
ance from ¢ to (1 — r])02 € (07 6?), which will be
reduced to O at the beginning of period t — 1, as
the firm observes the realization K. ;. Moreover, if
n increases, Ki | (0!) becomes smaller in the convex
order and the forecast variance in period ft,
(1 — n)a?, decreases. Thus, the forecast precision
improves with a higher » value in this example.

Our model captures two types of supply risks: (1)
the systematic risk of supply volatility, driven by sig-
nificant, inter-temporal shifts of the suppliers’ status
(e.g., bankruptcy and natural disaster), and (2) the
operational risk of production variability, driven by
inconsequential, within-period operational variations
(e.g., defects and machine breakdowns). In our model,
the Markov chain @} (0!) captures the volatility of
signal evolution — the systematic risk; and the vari-
ance of random capacity K;_,(6;) captures the residual
variability (after observmg the signal 0}) — the opera-
tional risk.

There is extensive empirical literature on signal-
based forecast. For example, Cachon et al. (2012)
establish the effects of severe weather on production;
Bresnahan and Ramey (1994) calibrate the effects of
production scheduling (e.g., plant shutdown, model
changeover, and overtime). The estimation of specific
signals is also well documented. For example, to esti-
mate production yield, small pilot runs (Grosfeld-Nir
and Gerchak 2004), inspection and on-site auditing
(Applelnsider.com), and the failure mode and effect
analysis (Chao et al. 2009) are widely used. Empirical
estimations of Markov matrix for the evolution of
advance supply signals include Bresnahan and
Ramey (1994) on 8-state production scheduling in
auto assembly plants, Higle and Kempf (2011) on
multi-stage production throughput in semiconductor
manufacturing at Intel, and Graddy and Hall (2011)
on two-state weather forecast for fish supply in the
Fulton Fish Market.

4. Integrated Procurement and Selling
Model with Advance Supply Signals

In this section, we first formulate the decision prob-
lem as a dynamic program (section 4.1), and then
decompose the optimization problem in each period
into a two-stage stochastic program (section 4.2). The
extensions of this base model are discussed in section

8. For vectors x,y€R' let [x]):= Y
x| := >0 x. We say x<y if x <y for all
i=1, ... n Let 14 be the indicator function of event

A. Following the convention of the dynamic program-
ming literature (Bertsekas 1995), we use the same let-
ter (e.g., K) for a random variable and its realization.
We summarize the notations in Appendix S1 (Table 2).

4.1. Formulation

Consider a single-product, periodic-review inventory
system where the firm sources from a set of m suppliers,
M, to serve a set of n classes of customers, \. In period
t, each supplier i € M is characterized by its unit pur-
chasing cost c}, realized CapaC1ty K!, and advance sup-
ply signal 0} . Let ¢, := (c!, -- ) Each demand class
jENis characterlzed by its unit price 7, and unit rejec-
tion cost b} for the loss of goodwill. We will discuss the
convex rejection cost case in section 8. Let 7} = 7, + b,
be the effective marginal revenue. The class j demand
D) is continuously distributed with finite mean. Let
re == (rf, -+, r") and Dy := (D}, ---, D). {D;}, are
i.id. random vectors, but the components of D; can be
correlated. In period t, we rank the suppliers by their
unit purchasing cost such that ¢} < --- < ¢c/", and the
demand classes by their effective marginal revenue
such thatr] > .-+ > /. We assume that both rankings
are time invariant, but all of our results still hold when
the rankings change over time, as long as we re-rank
the suppliers and demand classes in each period so as
to keep the suppliers’ unit purchasing costs in ascend-
ing order and the demand classes’ effective marginal
revenues in descending order. A unit demand requires
one unit on-hand inventory to fill. The initial state in
period ¢t is described by (I}, K¢, 6;), which represents
the inventory level before replenishment I;, the realized
supply capacity K;, and the advance supply signal 0;.
The firm’s objective is to maximize its expected total
profit over the planning horizon.

The sequence of events is as follows. At the beginning
of period t, after observing state (I;, K;, 0;), the firm
makes the procurement decision x; = (x}, -+, ") and
incurs a purchasing cost ¢ -x; = > i, cixi, where
xi < K is the order quantity from supplier i. The suppli-
ers deliver x; to bring the firm’s post-delivery inventory
level up to J; = I; + |x|, where |x| = 1", xi. The
random demands D; then realize. After that, the
firm makes the selling decision y; = (v}, -, y),
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where y} < D} is the acceptance from class j, rejects
the rest of the demand D; — y; at the linear cost
Z] 1 b’ D’ ff and collects sales revenue

= Z] 7 y]t The accepted orders y; are filled
as many as possible by the on-hand inventory; all
accepted but unfilled orders are fully backlogged.
Any on-hand inventory or backlog is carried over to
the next period with convex inventory holding and
backlogging cost h;(-), with h(0) = 0. For exposi-
tional ease, we assume /(-) is continuously differen-
tiable and Oh(-) is uniformly bounded. At the end
of period t, the firm updates the signal-based fore-
cast by 0,1 = ©;1(0;) and K, = K;_1(0;). For
tractability, we focus on the supplier- and demand
class-independent inventory cost; we will discuss
the case with supplier- and demand class-dependent
inventory cost in section 8.

We formulate the planning problem as a dynamic
program with discount factor 7 € (0, 1). Let
Vi(ly, Ky, 0;) be the maximum expected total dis-
counted profit in periods t, t — 1, ---, 1, under state
(I, Ky, 0). It satisfies

Vi(I;, Ky, 0;) = max{ Zc X +Ep,

<x; <K

[, (T SR
0<y:<D:

VteT,
(1)

where I;_1 =I; + |x¢| — |y4], and the terminal condi-
tion is Vo (-, -, -) = 0. In this formulation, V;(-, -, -) is
the maximal profit the firm can achieve under the
signal-based forecast {K;_1(6)},. Without advance
signals {6,},, the firm can only forecast with the ex
ante distributions {/;}, and his profit may suffer.
We compare these two scenarios analytically in sec-
tion 5.1, and numerically in section 7.2.

4.2. Two-Stage Stochastic Programming Procedure
To facilitate our analysis, we first rewrite the original
optimization problem in each period t as a two-stage
stochastic program:

Vilt, K, 0r) = max{H;(It, x¢, 0¢) : 0 <x; <Ki}, 2)
Inventory Procurement Problem

Hi(Iy, x,0;) = —c¢ - x¢ + Ep, { Wi(It + |x¢|,Ds, 0:) }, (3)

Wt(]t; Dy, Ht) = maX{Gt(]tayta Ht) —b; - Dy
:OSytSDt}a (4)

Discretionary Selling Problem

Gt(]t;yh@t) =T-Yr — ( - |yt|) ‘H’[E Ki1,0i1)

(5)
(Vic1(Jr = |yel, K1, 01-1)[04].

— (I )}}
+YEk, 10, ) [Vie1(Tr-1,Ki—1,0:-1)[04], ’

We now summarize the concavity and differentiabil-
ity properties of the above functions.

THEOREM 1.

(i) For any t and 0y, Gi(J;, yi, 0;) is jointly concave
and  continuously  differentiable in  (Jy, y4),
Wi(Jt, Dy, 04) is jointly concave and continuously
differentiable in (J;, Dy), and Hy(I;, x¢, 0;) is jointly
concave and continuously differentiable in (I, x;).

(ii) For any t, Vi(I;, Ky, 0;) is jointly concave and
continuously differentiable in (I;, K;) for any 0y,
and increasing in Ki for any (I;, 0;) and i € M.

Let x;(I;, K¢, 0¢) and y;(Ji, Dy, 0;) be the optimal
procurement and selling decisions. Although the
objective functions H(:, -, 0;) and G(, -, 0;) are
jointly concave, the multi-dimensionality of decision
variables, (I;, x;) € R™™' and (J;, y;) € R™"!, still
makes the conventional brute-force convex optimiza-
tion procedure intractable for both analysis and com-
putation. To overcome the dimensionality challenge,
we use the problem structure to decompose the pro-
curement problem (2) into m convex optimizations of
single dimension, and the selling problem (4) in the
same way. This decomposition offers a clean characteri-
zation of the optimal procurement and selling policy,
reduces the computational complexity, and helps deliver
insights on how the firm should coordinate the procure-
ment and selling decisions with signal-based supply
forecast. We illustrate this approach in section 4.3.

4.3. Structure of the Optimal Policy

We first characterize the structure of the optimal pro-
curement and selling policy. Since W,(J;, Dy, 6;) and,
hence, W;(J;, 0;) := Ep,[W:(J, Dy, 0;)] are concave and
continuously differentiable in J;, we define the follow-
ing threshold for each supplier i:

O(é(gt) = min{]t cR: C:; Zajiwt(]t, Gt)}, i€ M, (6)

where o (0;) == —o0if {J; € R: ¢} < O, Wi(Ji, 1)} = 0.
Intuitively, «;(0;) is the inventory level at which the
marginal value of inventory equals the marginal
purchasing cost ¢} for supplier i. Hence, oi(6;) is the
base stock level if the firm orders from supplier i
alone under ;. We now characterize the optimal
procurement policy in period t.

THEOREM 2.

(i) For each period t, there exists a sequence of base stock
levels, {0i(0;)}icvq, that is independent of the starting
inventory level I; and capacity Ky, and is decreasing
inie M: a}(@t) > af(@t) > - > O(;”(Gt) ,V@t.

(ii) For each initial state (I;, Ky, 6;), there exists a
supplier i, € M, such that it is optimal to procure
from suppliers {1, ---, i;}, where
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Iy:=m- 1{’{+‘Kt‘§'x;”(9t)} + mln{l eM: I+ [Kt]ll

>4 (0)} - Lk > 2 (0)} -

(iii) The optimal procurement decision is

X;'*(It,Kt, Ot) = K; . 1{7:<if} + mln{oc;(Of) — It
M — [KJT K Ly, (7)
1€ .

Theorem 2 shows that the optimal procurement
policy is determined by the advance supply signal
0;, the realized capacity K;, and the starting inven-
tory level I;, through the optimal base stock levels
{a(0¢)};cpq- 1t is optimal to buy from the i; cheapest
suppliers only. Moreover, the firm should order
from suppliers i < i; to their full capacities K}, and
order min{o! (0;) — [Ki]:™" — I, K"} from supplier i.
The optimal base stock levels summarize the impact
of 0;-based forecast on the procurement policy; each
i (0;) solves a one-dimensional convex program
and, hence, is computationally efficient to obtain (see
Equation (6)).

The driving forces of the optimal procurement pol-
icy are: (a) current period capacity limit, which calls
for multi-sourcing; and (b) inter-temporal substitu-
tion, which pools supply capacity in different decision
periods in anticipation of future supply shortage.
Inter-temporal substitution is implemented under the
guidance of the signal-based supply forecast
{K;-1(0})},- Moreover, the 0;-dependent base stock
levels, {o(0;)};, reveal the critical role of advance sup-
ply signals in deploying inter-temporal substitution
for dynamic risk management.

We now characterize the optimal selling policy.
Since Vi_1(I;—1, Ki—1, 0;-1) and, hence, V;_1(I;_1|0;) :
= Ex, 1.0, [Vic1(Ii-1, Ki—1, 0;-1)|0] are concave and
continuously differentiable in I;_; for any 0;, we define
the following threshold for each demand class j:

BL(6;) := min{l,_; € R
1> =0 h(lia) + 90, Vie (|00}, € N,
(8)
where B(0;) == —oco if {1 €R:¥, < — 0, (1)
+90;, ,Vi-1(I—1]0;)} = (. Intuitively, £;(0;) is the opti-
mal demand rationing level for demand class j, that is,
the desirable inventory level after satisfying demand

from class j under 0;, at which the marginal value of
inventory equals the effective marginal revenue of class j.

THEOREM 3.

(i) There exists a sequence of rationing levels, {ﬁ];(é)t)}je N
that is independent of the post-delivery inventory

level J; and realized demand Dy, and is increasing in
JEN:BHO) < BF(0) < < B0, VO

(ii) For each post-delivery state (J;, Dy, 0), there exists
a demand class jy € N, such that it is optimal to
satisfy the demand classes {1, 2, - --, j;}, where

Je =1Ly p > o) +min{j € N
o = [Dh < B00} - 1y, py < g0

(iii) The optimal selling decision is

v (11, D1, 0p) = D} - 1y + min{J, — D]}
= Bi(0:), Di} - 1y, ©)
jeN.

Theorem 3 shows that the optimal selling policy
is determined by the advance supply signal 0;, the
realized demand D;, and the post-delivery inventory
Ji, through the optimal rationing levels {/ﬂ(@t)}j6 e
The firm should sell to the most profitable j; classes
only, accept all orders from classes j < j;, and fulfil
only min{J; — D" — B(6,),D!'} from class ji.
{,Bjt(()t)}jE v Characterize the impact of signal-based
supply forecast on the optimal selling policy; each
Bi(0;) solves a one-dimensional convex program
and, hence, is computationally efficient to obtain.
The nested structure of the optimal selling policy
relies critically on the linear rejection cost assump-
tion. If this assumption is relaxed to a convexly
increasing rejection cost, the optimal selling policy
will become more involved and will not inherit the
nested structure characterized in Theorem 3 (see
section 8).

The optimal selling policy is driven by customer
segmentation and inter-temporal rationing. Within
each period, the firm should sell to the most lucra-
tive orders through customer segmentation; across
periods, it exercises inter-temporal rationing to
reduce future supply-demand mismatches by
reserving current inventory for future high-value
demand. Thus, discretionary selling enables the firm
to avoid excessive delay penalties by denying
unprofitable orders upfront and, in the meantime,
improve future premium customers’ service (and
thus profitability) through stock reservation. Next,
we characterize how inventory level impacts the
optimal policy.

THEOREM 4.

(i) The optimal procurement quantity from supplier
ie M, xi"(It, Ky, 04), is decreasing in the starting
inventory level I;. Moreover, for any i € M and
0>0,
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xi*(It,Kt, ()t) Z xf;* (It + 6,Kt, ()t) in*(Ith; Of) — 5,
(10)

ot (It K, 00)| =[x (It + 0, Ky, 00)| = | (I, K, 0)| — 9.
(11)

(it) The optimal selling quantity in class je N,
vi (J1, Dy, 0y), is increasing in the post-delivery
inventory level Ji. Moreover, for any je€ N and
0>0,

Y, (1, D, 0r) <y (Ji + 6, D1, 0,) <y}"(Js, Dy, ;) + 6,
(12)

[yt Ui, Dr, 00)| < [y; (Ji + 6, Dy, 04)| < [y; (Ji, Dy, 04)] + 0.
(13)

Theorem 4 formalizes the effects of inventory on
optimal procurement and selling decisions at both
the individual supplier/demand class level and the
aggregate level. Additional inventory reduces the
need for inventory replenishment, multi-sourcing,
and discretionary selling. More specifically, the aggre-
gate procurement [sales] quantity |x}(I;, K, 6;)]
llyi (I, Dy, 6¢)|] decreases [increases] at most at the
same rate as the starting [post-delivery] inventory
level increases.

5. Impact of Advance Supply Signals

In this section, we first demonstrate the profit improve-
ment and policy adjustment of adopting signal-based
supply forecast. Then we characterize how the firm
should respond to advance supply signal volatility by
dynamically adjusting the procurement and selling
policies. Finally, we characterize the impact of the mag-
nitude and precision of the forecasted capacity.

5.1. Value and Impact of Signal-Based Supply
Forecast
In some scenarios, the firm could not track the
advance supply signals in each period. Instead, it
forecasts future supply capacities based on their
ex ante distribution {/C;},. In this subsection, for expo-
sitional ease, we assume that {K,}, follows a station-
ary distribution throughout the planning horizon.
The supply forecast based on {K}}, for each supplier i
is referred to as the stationary forecast of {Ki},. The
results can be adapted easily for non-stationary capac-
ity processes. '

The stationary distribution K} can be approximated
by the empirical distribution of the realized capacities
before the start of the planning horizon, {Ki}, _ ;. We

assume that the Markov chain {0;}, is ergodic, so it
has a stationary distribution and the empirical distri-
bution of {6;}, . ; converges to the stationary distribu-
tion of {6;},. Hence, {K;}, also has a stationary
distribution to which the empirical distribution of
{K:};. 1 converges. Let {K;}, be the i.i.d. random vec-
tors with the stationary distribution of {K;},. There-
fore, without signal-based forecast, the firm forecasts
the next period capacities K;_; with ;.

We now investigate the policy implications of using
the stationary forecast, when the underlying capacity
evolves as {K;},. We use the notation “"" to denote
the inventory system under the stationary forecast
{K:};. The planning problem under {£,;}, can be for-
mulated as

m
‘A/t(It,Kt) = max { — Zcixi + [EDf
i=1

0<x <K;

[ ( S Ay = X (D)~ v)) )H
max N )
0= =P\ —hy(I1) + Ex,, Vi1 (-1, Ki 1))
teT,
(14)
where [, 1 = I + [x| — [y, Vi(-, -) is the value func-

tion, and V() = 0. Vi(,, ) is the maximum
expected profit from period f till the end of the plan-
ning horizon, when the firm only knows (and thus
forecasts with) the ex ante distribution {,},. As in sec-
tion 4.3, the optimal procurement policy for Equation
(14) has the nested threshold structure specified by
base stock levels {4}, and the selling policy by ration-
ing levels {f,},. See Theorem 9 in Appendix S3 for
details. Clearly, in each period ¢, the control parame-
ters {&;};c, and {B}}c, under the stationary forecast
are independent of the signals 0;, which contain more
precise information on the future supply condition
than the stationary capacity distribution {Ky, },, ;-

The optimal policy under stationary-distribution-
based forecast (x;(I;, K;),y; (Jt, Dt)) does not take into
account the volatility of the system captured by the
advance supply signals {6;},. Thus, signal-based
dynamic supply forecast improves the firm’s profit by
facilitating the firm to track the capacity status of the
suppliers and to respond to the capacity volatility in
real time. In section 7.2, we will numerically quantify
the value of advance supply signals, and further
demonstrate under what conditions signal-based sup-
ply forecast is most beneficial.

We now study the policy implications of signal-
based supply forecast. The next lemma establishes the
relationship between the marginal value of the on-
hand inventory under the signal-based forecast and
that under the stationary forecast, which is useful for
policy comparison.
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LemMA 1. Assume that, for each i € M, {0t} is ergodic
and has a stationary distribution. For each period t, there
exist two threshold wvectors 0; = (0} ---, 0") and

0, = (0! ---, 0", such that
7 [EKffl:Hifl [Vf—l (I» K1, 0t—1)|0t]
<O, [Via (LK), if 0> 0y, )
Ok, 1.0, Vie1(I, K1, 01-1)[04]
Z afﬂ;}cpl [thl (17 thl)L 1f Ht S Qt-

Based on Lemma 1, we now compare the optimal
policies under signal-based dynamic forecast and
those under the stationary forecast without advance
supply signals.

THEOREM 5. Assume that, for each i € M, {0.} is ergo-
dic and has a stationary distribution. For each period t,
forany Iy, J;, Ky, and Dy, i € M, j € N,

if 0y > 0y, then o (0;) <&, x;" (I, Ki, 0;) < &1 (I, Ky ),

Bi(0:) < B}, and y]" (Ji, D1, 0) = 9} (J1. Dy);
(16)

if 0, < Qﬁ then 0‘;(90 > Qi7xi*(1taKt7 0) lchi*(h,K,;),
B]t(et) 2 ﬁ]t7 andy]t*(]th? Ht) S%*(Ih Dt)

Theorem 5 shows that the optimal policy under
the stationary forecast is an “average" version of that
under the signal-based forecast: For each supplier
and demand class, the optimal base stock and
rationing levels under the stationary forecast are
between those under the signal-based forecast when
the firm receives sufficiently high and low signals
(captured by 0; and 0;, respectlvely) That is, for any
0; < 0, and 0; > 0;, we have o € [oct(Ot) % (0;)] and
B e [ﬁ](et) pi(0;)] for i€ M and j € N.

This reveals how advance supply signals improve
the deployment of procurement and selling. Rela-
tive to the optimal policy without advance supply
signals, {x},, and {ylt*}jj, a high supply signal
prompts the firm to reduce the number of active
suppliers and to turn away fewer customers (see
Equation (16)), whereas a low supply signal implies
a larger number of active suppliers and rejecting
more customers (see Equation (17)). Employing sig-
nal-based supply forecast results in more adaptive
buying and selling decisions, better deployment of
capacity and inventory, and, thereby, better supply-
demand match. In contrast, the stationary forecast
ignores the volatility of advance supply signals and
aggregates real fluctuations of the environment.
Consequently, it produces potentially misleading
policies {%/};, and {y;};, that are not adaptive to

(17)

evolving supply conditions {0;},. As we will illus-
trate in section 7.2, the cost of ignoring advance
supply signals {6;}, and, thus, the systematic risk
can be staggering.

5.2. Optimal Policy in Response to Advance
Supply Signals

As shown in section 5.1, the firm benefits from signal-
based supply forecast because it enables adaptive
response to the evolution of advance supply signals.
We now specify how the firm should carry out such
an adaptive response.

THEOREM 6.

(l) If Ht < Ht, then Vt—l(It—1|0t) < Vt—l(It—l|0t) and
Vi(ly, Ky, 0r) < Vi(Iy, Ky, 0r). .

@) If 0y < 0, then O,Wi(Js, 0r) > O, Wi(Jt, 01), O, ,
Vie1(Ii110:) > 01, Via(Ii-1|0:), and 0, Vi(ly, K,
0) > o Vi(ls, Ke, 00).

@iii) If 0; < Oy, then, for any i€ M and j € N ol (0y)
> o(0), X (I, Ky, 0) > xi* (I, Ky, Oy), Bi(0) >
ﬂ](et and y" (J;, Dy, 0;) < y’t (Ji, Dy, 0y).

Part (i) shows that higher advance supply signals
imply higher future capacities and, thus, higher
expected profit. Part (ii) reveals that a lower advance
supply signal raises the marginal value of both starting
and post-delivery inventories in each period t. Part (iif)
implies that, in anticipation of future scarcity (i.e., a
low 0y), the firm should take the coordinated response
of ordering more and selling less to reserve inventory
for future high-value demand. Theorem 6 implies that
future supply information could influence the current
procurement and selling decisions. One finding in the
existing disruption literature is that procurement
should adapt to the future disruption probability (Li
et al. 2004). We advance this finding by showing that
selling should adapt to the supply information as well,
and that both procurement and selling should be coor-
dinated by advance supply signals.

5.3. Impact of Capacity Forecast under
Signal-Based Supply Forecast

In this subsection, we demonstrate the impact of
forecast precision and future capacity availability
under the signal-based supply forecast. As dis-
cussed in section 3, the convex order well captures
the forecast precision of signal-based forecasts: If
Ki [(0) <o K (0)),Vi t, and 0!, then the system
under {Ki(-)}, predicts supply more precisely than
the system under {K;(-)}, does. Let <, denotes the
first order stochastic dominance. The following theo-
rem demonstrates how the forecast precision and
future capacity availability influence the system
performance.
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THEOREM 7.

(i) If two systems are equivalent except that Ki | (0;)
< Ki (0), ¥Vt and ieM, we have
Vt(It, Kt, Ht) > ‘N/t(It, Kt, Ht) fOT’ any t.

(ii) For each 0, Vi(Iy, Ky, 04) is submodular in (I, K;)
for all t and i € M. If two systems are equivalent
except that, for every t and i€ M, Ki_,(0;)
<sd. Ki_1(0r), then O, Wi(Jt, 0) > 9, Wi(Ji, 01),
O Viea(li-1|0¢) = 0, \Vio1(Ii-1]0r), and 0y, Vi(Iy,
Kt7 Of) 2 8]1Vt(1t7 Kt, Of)

(iii) If two systems are equivalent except that
Ki_(0;) <sa. Ki_((0) for every t and ie M, we
have, for all i€ M and je N, oi(0;) > a(6,),
X (I, Ky, 0r) > X (I, Ky, 01), By(0:) > Bi(0;), and
Yi Ui, Di, 00) < ¥ (Ji, Dy, 0y).

Theorem 7(i) characterizes the impact of supply
forecast precision and reveals that more precise sup-
ply forecast enhances the firm’s profitability, thus
highlighting the importance of improving forecast
precision in risk management. Moreover, parts (ii)
and (iii) reveal how the availability of future capaci-
ties influences the current procurement and selling
decisions: A lower capacity forecast increases the
marginal value of current stock, which in turn
increases base stock and rationing levels, and, hence,
expands procurement and tightens sales in the cur-
rent period.

Together, Theorems 6 and 7 pin down the impact of
both systematic and operational risks in dynamic sup-
ply risk management. As shown by Theorem 6, the
systematic risk, captured by the volatility of advance
supply signals {6;},, has significant impact on the
profit and policy. The firm should track the advance
supply signal 0; in real time and synchronize procure-
ment and selling decisions in response to the stochas-
tically evolving 0;. Theorem 7 shows that the
operational risk, captured by the wvariability of
the capacity distributions {Ki ,(0;)},, also influences
the profit and the optimal policy. The firm should
fine-tune its policy execution to the magnitude and
precision of the forecasted capacity.

6. Impact of Discretionary Selling

Though absent from the supply risk literature, discre-
tionary selling is widely used for the risk mitigation
purpose in business practice. The effectiveness of dis-
cretionary selling lies in its ability to discriminate
against lower-margin demands, reserving scarce
stock for future high-margin ones. As discretionary
selling allows for responsive control of sales after
demand realization, the demand-supply mismatch
cost can be substantially reduced. Without discre-
tionary selling, the planning problem reduces to the

multi-sourcing inventory problem with full backlog-
ging. We use " to denote the inventory system with-
out discretionary selling. Hence, the planning
problem for the firm without discretionary selling can
be formulated as the following dynamic program.

Vf(lthtv et) = max { B Zicixi + [E(Dthy—lﬁf—l)

0<x <K;
[Z]?]fD]f — (I 1) + Vi (i1, Ki 1, Htl)‘et] },t €T,
(18)

where ;1 = I} + |x¢| — |Dy, Vt(~, -, ) is the value
function, and Vy(, -, -) = 0. The optimal procure-
ment decision x(I;, K;, 0;) is again specified by base
stock levels {&(0;)};; see Theorem 10 in
Appendix S3 for details. We now characterize the
impact of discretionary selling on the procurement

policy.
THEOREM 8.

(i) For each t, 0;, and i€ M, oi(0;) < &(0;), and
x;*(]t, Kt, 61}) < JVC;*(LI, Kt, Gt) )
(i) For each t, 0;, ie M and je N, &(0;) and
X (I, Ky, 0r) do not depend on 7., for any s € 7.
(iii) For each t, 0, i€ M and je€N, oi(0;) and
x¥(Iy, Ky, 0) are increasing in 1%, for any s < t.

Theorem 8(i) shows that the optimal base stock
levels without discretionary selling are upper bounds
of their counterparts with discretionary selling. Com-
pared with the firm that cannot discretionarily sell its
product, the firm with discretionary selling may
intentionally ration its demand and have lower actual
demand. Hence, the firm with discretionary selling
should set lower base stock levels. Another impact of
discretionary selling is that it drives the firm to set
base stock levels increasing in the effective marginal
revenues, as shown in Theorem 8(iii). With higher
effective marginal revenues, the firm with the discre-
tionary selling strategy is motivated to increase its
order quantities to extract higher revenues.

Intuitively, the value of discretionary selling is
mainly driven by the potential to intentionally limit
the demand from low-value demand classes so as to
reserve inventory for future high-value demand
classes. Hence, one may conjecture that the value of
discretionary selling is enhanced by higher demand
class heterogeneity (characterized by the ratios
between the effective marginal revenues of different
demand classes). However, Theorem 8(iii) demon-
strates that if the effective marginal revenue for the
high-value demand class increases (thus, the demand
class heterogeneity also increases), the firm will
increase its base stock levels and, hence, hold more
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inventory. With ample supply of on-hand inventory,
the firm is less likely to ration its demand and, hence,
the value of discretionary selling decreases. There-
fore, to our surprise, the value of discretionary selling
may increase or decrease with the demand class
heterogeneity. In section 7.5, we present our numeri-
cal results on the value of discretionary selling that
confirm this counterintuitive insight.

7. Numerical Studies

This section quantifies the impact of future supply
uncertainty (section 7.1), the value of advance supply
signals (section 7.2), the difference between forecast-
ing with stationary capacity distribution and that with
capacity mean (section 7.3), the strategic relationship
between signal-based forecast and multi-sourcing
(section 7.4), and the value of discretionary selling
(section 7.5).

We consider three forecasting schemes {DF, SF, MF}:
the Dynamic Forecast (DF), based on advance supply
signals; the Stationary Forecast (sF), based on the sta-
tionary distribution of capacity; the Mean Forecast
(MF), based on the mean of the stationary distribution.
Clearly, the stationary forecast ignores the volatility
(the inter-temporal dependence of the signal evolu-
tion), whereas the mean forecast disregards both the
volatility and the variability of the uncertain future
supply. Only dynamic forecast embraces both the
volatility and wvariability information carried by the
advance supply signals 0;. We evaluate the optimal
profit under each forecasting scheme and compare
the optimal profits across different schemes. The opti-
mal profit under forecasting scheme F is denoted as
Vi In evaluating V¥, we take I; = 0 as the reference
inventory level.

We specify the model parameters as follows.
The base scenario considers a Markov system
with T =5, two suppliers with c; <c¢; = 30, two
demand classes with (11, r) = (50, 48), (b1, b2)
= (0,0), and i.i.d. demand streams with D,
D, ~ N(6, 12). Linear unit holding and backorder
costs are h =1, b =10. The advance supply sig-
nals {0/}, and {0?}, of two suppliers are
independent; so are their capacity processes.
For supplier i, its advance supply signals
0, € {1, 2} evolve as a Markov chain with transi-
Po 1- pgl
—Po po
ties K, €{Kj,, K;}. The supply
forecast of supplier i in period t, Ki_,(0%), follows
the conditional probability distributions

i gy~ | Px 1Pk
P00 = |, T
putation yields that the stationary distribution of

tion matrix [ },po > 0.5; its capaci-

signal-based

], px > 0.5. Direct com-

K! is (0.5, 0.5). Hence, px measures the forecast
precision with signal-based supply forecast: the
higher the px, the more precise and informative
the advance supply signals.

We generate testing scenarios by systematically
varying the key parameters from the base scenario.
All of our results are robust and hold for a large vari-
ety of parameter specifications. For brevity, we only
report the results of the typical examples.

7.1. Impact of Future Supply Uncertainty
Future supply uncertainty arises from the opera-
tional risk (i.e., the variability of the capacity distribu-
tion) and the systematic risk (i.e., the volatility of the
capacity evolution). We quantify by M(okx) =
(VEE — VME)/VSE the loss of ignoring variability
information under stationary i.i.d. capacities (Fig-
ure 1), and by A\(0;) = (VPF — VMF)/VDF the loss of
ignoring both variability and volatility information
under Markov capacities (Figure 2). The test setup is
(Ki, Ky) € {(12,12), (11, 13), ..., (0, 24)}, [EK; = 12,
Po = 0.5, Pk = 1, (7‘1, 1’2) = (507 48), c € {5, 10, 20}
Our numerical results show that the cost of ignor-
ing supply uncertainty is significant (up to 18%) and
increasing in supply variability (captured by the coef-
ficient of variation of the stationary supply process of
each supplier). Intuitively, higher supply variability
reduces the forecast precision of MF and compromises
the control precision, resulting in more demand-sup-
ply mismatches and, hence, lower profits. In Figure 1,
the profit loss is mainly driven by ignoring the opera-
tional risk, while in Figure 2 it is driven by ignoring
both the systematic and operational risks. In our
extensive tests, we find that the profit loss is substan-
tial even when the capacity process is stationary, and
will increase when the capacity distributions are time-

Figure 1
20

Impact of Capacity Variability: The i.i.d. Capacity Case

Performance Gap %
N
=

0.2 0.4 0.6 0.8 1
Capacity Variability: Coefficient of Variation
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Figure 2 Impact of Capacity Variability: The Markov Capacity Case Figure 3 Impact of Mean Capacity on )\,
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varying. These results suggest that firms must explic-
itly account for supply variability and volatility: Con-
ventional deterministic approximation is inadequate
for turbulent environments.

7.2. Value of Advance Supply Signals

By providing early warnings of the systematic risk,
advance supply signals help improve system respon-
siveness, resilience, and, hence, profitability. We quan-
tify the value of advance supply signals by \x =
(VPF — V) /VSF. This value depends heavily on sup-
ply-demand ratio (Figure 3) and the forecast precision px
(Figure 4). We design tests as (Kj, Kj,) € {(0, 4), (2, 6),
.., (22,46)} with [EK,€{2,4,...,34}, py =05,
Pk = 1, (1’17 7’2) = (35, 33)

Figure 3 shows that the benefit of signal-based fore-
cast is most significant when the supply-demand ratio
is moderate. Note that the value of advance supply
signals in forecasting is primarily driven by the inter-
temporal substitution and inter-temporal rationing.
When the supply-demand ratio is very low, the sup-
ply scarcity is likely to occur in every period. In this
case, the firm should fully utilize the capacity of all
suppliers no matter what advance supply signal it
receives; hence the value of signal-based supply fore-
cast is limited. On the other hand, when the supply-
demand ratio is very high, the supply scarcity is
unlikely to occur. Hence, regardless of the advance
supply signal, it is not optimal to use the inter-tem-
poral substitution by over-ordering or inter-temporal
rationing by rejecting low-value orders. Therefore, it
is only when the supply-demand ratio is moderate
that the value of signal-based supply forecast is signif-
icant. In this case, advance supply signals enable the
firm to employ the inter-temporal substitution and
inter-temporal rationing most effectively.

Performance Gap %

Mean Capacity: EK;

By varying px on the range [0.5, 1], Figure 4 shows
that the value of advance supply signal increases in
forecast precision pk. The higher the px, the more pre-
cise the signal-based forecast, and the more valuable
the advance supply signals. Therefore, to make the
best use of advance supply signals, the firm should
improve the signal quality.

Our results shed light on the limitation of the sta-
tionary supply forecast approach, which ignores the
volatility of supply capacity evolution. As our numeri-
cal results demonstrate, although the stationary fore-
cast performs well when the supply-demand ratio is
consistently low or high, the resulting profit deterio-
rates sharply for the case with moderate supply-
demand ratio, which is prevalent in practice. Indeed,
this is the case that careful management and precise

Figure 4 Impact of Forecast Precision px on )4
5
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forecast matter most. This new insight underscores
the importance of leveraging advance supply signals
and explicitly modeling supply volatility: Stationary
supply forecast cannot satisfactorily cope with vola-
tile supply in general.

7.3. Stationary Forecast Vs. Mean Forecast

When advance supply signals are not available, the
stationary forecast and the mean forecast are com-
monly used. We now quantify how capacity variabil-
ity (Figure 5) and signal evolution volatility (Figure 6)
affect their relative performance by the performance
gap e = (VSF — VMF)/VME The test setup is
(Ki, Kn) = {(0, 24), (2, 22), ..., (10, 14)} with EK; =
12, Po = 0.75, Pk = 1, (1’1, 1’2) = (50, 48)

Figure 5 shows that, in general, the stationary fore-
cast outperforms the mean forecast and the perfor-
mance gap M. increases in capacity variability.
Intuitively, though the stationary forecast dismisses
signal evolution (systematic risk), it still captures sup-
ply variability (operational risk). Mean forecast, how-
ever, ignores both risks, and, hence, loses more profit
in general.

Figure 6 examines the impact of the volatility of sig-
nal evolution on M. In this numerical example,
po € [0.5, 1], (K;, Ky,) = (0, 24). Here, the higher the
transition probability py, the less volatile the signal
evolution. Stationary forecast outperforms the mean
forecast when evolution volatility is moderate to high
(po < 0.95). This is intuitive, as the stationary forecast
captures the operational risk (by the stationary distri-
bution of the capacity), which is ignored by the mean
forecast. Surprisingly, the mean forecast may outper-
form the stationary forecast (A\{fz < 0), when evolu-
tion volatility is low (pyp T 1). In this case, the system

Figure 5 Impact of Capacity Variability on 3%
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will be trapped in the same state for an extended
period of time with high probability. This behavior is
better predicted by the mean forecast, rather than the
i.i.d. dynamics projected by the stationary forecast.

7.4. Strategic Relationship between Signal-Based
Forecast and Multi-Sourcing

In supply risk management, signal-based dynamic
forecast derives its value from the ability to calibrate
decisions to actual risk levels, whereas multi-sourcing
obtains its value from increasing sourcing flexibility
and from reducing purchasing cost by supplier sub-
stitution.

We now quantify the relationship between these
two strategies. Table 1 reports the cross difference
of their profits, \g = (VPF — V5F) — (VDPF — V5F),
where VPF and V5F are the optimal profits with mul-
ti-sourcing under the dynamic and stationary fore-
casts, and VPF and ViF are the counterparts with
single-sourcing from supplier 2. Thus, the two
strategies are complementary if Az > 0, indepen-
dent if A\g = 0, and substitutive if A\g < 0. We test
the scenarios of (K, K;) € {(0, 12), (2, 14), , (18, 30)}
with EK; € {6,8,,24}, py = 075, px =1, (r1, 12)
= (50, 45), ¢; € {20, 25, 30, 35}.

We find that the relationship between multi-sour-
cing and signal-based supply forecast depends on the
supply-demand ratio and the cost structure: (a) When
the supply-demand ratio is low, capacity is scarce and
the two strategies are complements (Ag > 0), because
dynamic forecast can leverage the value of additional
resource from multi-sourcing in combating shortage.
(b) When the supply-demand ratio is moderate,
capacity is ample and the two strategies are
substitutes. With ample supply capacity from a single
supplier, the potential benefit from the greater
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Table 1 Strategic Relationship between Dynamic Forecast and Multi-Sourcing: \g

EK; 6 8 10 12 14 16 18 20 22 24

¢ =20 21.970 31.173 16.706 —5.992 —3.546 —0.614 —0.750 —0.001 0.000 0.000
¢ =25 13.573 25.906 14.590 —9.593 —9.802 —5.402 —1.061 —0.002 0.000 0.000
¢ =30 5.523 18.010 9.640 —-18.377 —17.395 —8.601 —1.750 —0.002 0.000 0.000
¢ =35 6.355 16.546 —0.882 —8.894 —9.525 —5.047 -1.140 —0.002 0.000 0.000
inter-temporal substitution and inter-temporal ration- Figure 7 Impact of Capacity Variability on Xsr + r = 110,

ing power of signal-based forecast can be extracted to
a large extent via single-sourcing. In this case, the firm
benefits little from adding another supplier with
signal-based supply forecast. (c) When the supply-
demand ratio is high, capacity is no longer constrain-
ing and the two strategies are independent, because
signal-based supply forecast confers no value in this
case (see section 7.2), and the only value of multi-
sourcing is the cost saving effect from cheaper suppli-
ers, which is independent of the forecasting method.
(d) The capacity threshold at which the relationship
switches from complementary to substitutive is
decreasing in the marginal cost of the new supplier
(c1). This is because, the costlier the new supplier, the
less valuable its capacity, and the lower the value of
signal-based forecast with this new supplier.

7.5. Value of Discretionary Selling

We measure the value of discretionary selling by
As = (VPF — VPF)/UPF where VPF is the optimal
profit with full backlog (see section 6). We conduct
two sets of experiments, focusing on three factors:
demand heterogeneity (r1/r2), capacity coefficient of
variation (CV of K;), and capacity availability (EK}).
Wesetpy = 0.75and px = 1.

The first experiment varies the demand hetero-
geneity  ry/r, € {1.0, 1.44, 2.14}  while keeping
r1 + rp = 110. The results in Figures 7 and 8 show
that, when the total effective marginal revenue is
fixed, the value of discretionary selling As is (a)
increasing in demand heterogeneity, (b) increasing
in capacity variability, and (c) decreasing in capacity
availability. When the total effective marginal rev-
enue is fixed, the value of discretionary selling is
driven by its ability to ration customers and choose
lucrative orders: The higher the demand heterogene-
ity, the higher the value of discretionary selling.
Even when the market is homogeneous, discre-
tionary selling still has positive value: As > 0 for
(r1, r2) = (55, 55). This value comes from the capa-
bility of discretionary selling to decrease backlog
costs, by rejecting excess orders that would other-
wise overwhelm the system upfront.

The second test varies demand heterogeneity
r1/ry € {1.14, 143, 1.71} while keeping r, = 35. In
this case, Figures 9 and 10 show that, surprisingly, the
value of discretionary selling decreases in demand

(K/, Kh) = {(0 12)7 (17 11)7 ] (6 6)}

12
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Figure 8 Impact of Capacity Mean on )g:
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heterogeneity. The rationale for this counterintuitive
result is that, when the effective marginal revenue
from the high-value demand class increases (r; T and,
hence, the heterogeneity r/r, 1), it also drives up
bask stock levels (see Theorem 8(iii)), reducing the
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Figure 9 Impact of Capacity Variability on )g:
(Ki. Kyn) = {(0,12), (1,11), ..., (6, 6)}
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likelihood of shortage, and, hence, the value of discre-
tionary selling.

8. Extensions

This section extends our base model to the case with
supplier and demand class dependent inventory costs
in section 8.1, the case with convex rejection cost in
section 8.2, and other cases in section 8.3.

8.1. Supplier and Demand Class Dependent
Inventory Costs

For tractability, we assume in our base model that
inventory cost h(-) is supplier and demand class
independent. This independence assumption applies

when inventory cost is much lower than sales rev-
enue, or supplier and demand heterogeneities are low
to moderate. When the independence assumption no
longer holds, we use ki(-) to denote the holding cost
of excess inventory from supplier i € M in period t,
and pj}(-) for backlogging cost of demand class j € .
We assume that all inventory cost functions are con-
tinuously differentiable, hi(I) is convexly increasing
for I >0, pj(I) is convexly decreasing for I <0, and
hi(0) = p,(0) = Oforalliandj.

This model needs an (m + n)-dimension vector to
record backlogs and stocks. Let Ei > 0 be the starting
on-hand inventory from supplier i, and B} < 0 the
starting backlogging level of demand class j in period
t. Let E; := (E}, E2, ---, EI") be the excess inventory,
and B; := (B},B?,---,B) be the backlogged
demand. Hence, the problem has state variable
(Et, By, Ki, 6;) and can be formulated as

Vt(Et; Bthh Qt) = maX{Hf(Efa Bt7xt; et) :0 g Xt S Kt}a
(19)

Hy(E;, By, xt, 0p) = —c; - x4 + Ep, [Wi(E; + x4, By, Dy, 04)],
(20)

Wt(]hBtaDta 9t) = maX{Gt(IhBt»]/taztawta Ht)
—b-Dy:0<y; <D;,0<z <J;, (21)
w; >0, [wy| = |z},

Gt(]t,Bt7yt,Zt,wt79t)
=re-yi— Y Wi —z) = > P~ Bl -y +w))
ieEM jeEN
+9Ek, 00 Vi1 — 26, —(Br =y +wr)
Ki-1,0:-1)[04],
(22)

where J; := E; + x; is the post-delivery on-hand
inventory vector, z; := (z},z?, .-+, z") <]; is the
inventory used for current fulfillment, and
wy == (w}, w?, -+, w}) >0 is the current allocation
scheme to fulfil demand. The constraint |w;| = |z
follows from the mass conservation law. We can

ShOW that Vf('» Yy Kt; 01‘)/ Ht('a R 9[)/ Wt('a B Dt7 0[)/

ously differentiable for any D;, K; and 0;. However,
we cannot characterize the optimal procurement
and selling policy due to the curse of dimensional-
ity, which is the major obstacle for our analysis of
the model with supplier and demand class depen-
dent inventory costs. Such obstacle also restricts our
model in real applications due to the computational
complexity (see, also, Gupta and Wang 2007).

In the literature, several approximation schemes
are used to resolve the curse of dimensionality with
class-dependent costs (Subramanian et al. 1999). The
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common idea (which we refer to as the expected frac-
tion heuristic) is to estimate the individual excess
inventory E! from supplier i [backlog B} from demand
class jl based on its fraction in the total excess inven-
tory |E;| [total backlogged demand |B;|]. More specifi-
cally, let u' [0/] be the expected fraction of excess
inventory from supplier i [backlogged demand from
demand class jl, where >, ' =1 [0 = 11,
Assume that it incurs linear supplier-dependent hold-
ing [demand-class-dependent backlogging] cost with
unit cost I)t [pt] we have

> H(E)+ Y pi(B) thmzpt _B))
i i

*Zb u'[Ey) +Zpt —v/|By|)
- Zubtﬁ Zv’pt O

where I; € R is the total inventory level, and {u'},_,,
and {v'};c\ are determined by historical data. This
scheme provides a good approximation, as long as
{u'}icpy and {U'};.\ can be accurately estimated
from historical data.

8.2. Convex Rejection Cost

When the firm rejects more orders from the same
class, the loss of goodwill may become increasingly
severe. To model this phenomenon, we generalize our
base model to the one with convex rejection cost. In
this case, the firm pays bj(D; — y,) for rejecting
(D} — y,) from class j, where bj(-) is a convexly
increasing and continuously differentiable function.
The formulation of this problem is the same as that of
the base model, except for Equations (4) and (5),
which are modified to:

Wi(Jt, Dy, 0:) = max{G¢(J;,yt, Dy, 0;) : 0 <y¢ < Dy},

(23)
Gi(Jo,y1, Dy, 0)) =7y — Zb]D] — )~ T (Je — lyel)
jeN
F9Ek, .00 [Vic1 (e = [yl Ki—1,0:-1) 0]
(24)
We can show that V(- K 0¢), Hi(-, -, 0),

Wi(, Dy, 0;), and Gy(-, -, Dy, 0;) are jointly concave
and continuously differentiable for any D;, K; and
0;. The optimal selling policy, however, cannot be
determined by the demand and inventory indepen-
dent demand rationing levels, because the convex
rejection cost makes the demand inseparable from
the objective function (24). All other results and
insights of this study, such as the structure of
the optimal procurement policy, the impact of

discretionary selling upon the base stock levels, the
value of signal-based dynamic supply forecast, and
the strategic relationship between signal-based fore-
cast and supply diversification, remain valid in the
model with convex rejection cost.

8.3. Other Extensions

Our model extends to the Markov modulated
demand case. Specifically, let n, = (n}, #?, -+, n}") be
the advance demand signal in period t. The class j
demand Dj(i}) now stochastically depends on 1},
where Dj(}) is stochastically increasing in #}. For this
model with signal-based forecast in both demand and
supply, all our results in this study remain valid.

Our base model assumes that, in each period, the
procurement decision is made after capacity realiza-
tion. This assumption applies when the production
leadtime is short. It is consistent with part of the ran-
dom capacity literature (Chao et al. 2008) and the ran-
dom supply disruption literature (Aydin et al. 2011), in
which the firm knows the supply state before making
decisions in each period. If this assumption is relaxed,
the resulting non-concave objective functions (see, e.g.,
Ciarallo et al. 1994) make the problem prohibitively
difficult to analyze; in particular, the nested threshold
structure of the optimal procurement policy breaks
down. This is a challenging avenue for future research.

Random yield risk arises when the unreliable sup-
pliers can fulfil only a fraction of the orders. Specifi-
cally, given procurement decision x; and signal 0;, the
actual delivery by supplier i is xiel(6}), where € (0) is
the random yield factor of supzpher i with support on
[0, 11. Tf &(0r) := (el (0}), €2(07), ---, €"(0)) realizes
before the procurement decision in period t, the prob-
lem reduces to the base model with modified procure-
ment costs, and all the results of our base model
continue to hold. If ¢(0;) realizes after the procure-
ment decision in period ¢, the structure of the optimal
selling policy still holds, but the optimal procurement
policy no longer has the nested threshold structure.

Our base model assumes that customers pay the
sales prices upon order acceptance. This assumption
is common in inventory management models (e.g.,
Federgruen and Heching 1999, Zipkin 2000). In this
case, the underage penalty is summarized by the
backlogging cost. Now consider the case where cus-
tomers pay upon order delivery. If customers pay the
discount-adjusted price, that is, class j customers pay
unit price 7,/y'* for the orders accepted in period t
and delivered in period s (s < t), the problem is equiv-
alent to the base model. If those customers pay the
price 7 in period s, the problem becomes more
involved, because we have to record backlogged
demand by both demand class and order time. In this
case, the optimal policy no longer has the nested
threshold structure.
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9. Concluding Remarks

In this paper, we study a dynamic supply risk man-
agement problem with signal-based supply forecast,
multi-sourcing, and discretionary selling. We develop
a hierarchical Markov model to capture the stochas-
tic attributes of the ever-changing real-time supply
information, and integrate it with procurement and
selling decisions for dynamic risk management.
Despite the problem complexity, we pin down the
optimal policy by two sequences of signal-dependent
monotone thresholds. The optimal procurement is
driven by multi-sourcing and inter-temporal substi-
tution; the optimal selling is driven by customer seg-
mentation and inter-temporal rationing; and they are
synchronized by dynamic forecast for adaptive and
resilient risk mitigation. We demonstrate that the tra-
ditional stationary forecast for uncertain supply
capacity, which ignores the volatility of supply
capacity evolution, may generate misleading recom-
mendations, especially for the case with moderate
supply-demand ratio. As this situation is prevalent
in business practice, our result calls for caution on
ignoring supply volatility: It can inflict severe losses.
Our analysis also helps rationalize several counterin-
tuitive insights. Numerically, we show that demand
heterogeneity may reduce the value of discretionary
selling, that multi-sourcing and dynamic forecast can
be either strategic complements or substitutes, and
that the mean forecast may outperform the stationary
forecast.

We demonstrate the critical role of signal-based
dynamic forecast in supply risk management. We
show how signal-based dynamic supply forecast
influences the procurement and selling policies:
Advance supply signals contain rich information on
future supply risks and, in turn, guide the current base
stock and demand rationing levels. Moreover, we
demonstrate that signal-based forecast is most valu-
able when: (a) Capacity uncertainty is high so that the
supply risk is substantial, (b) supply-demand ratio is
moderate so that meticulous management matters a
great deal, (c) forecast precision is high so that
advance supply signals confer great value, and (d) the
firm has diverse suppliers so that the operational
levers are effective.
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