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E-Companion for POM Journal Template
The additional results and proof of Section 3, Section 4 and Section 5 are respectively

provided in Appendix EC.1, EC.2 and EC.3.

EC.1. Additional Results and Proof in Section 3
We first present some additional results in Appendix EC.1.1. We provide some Auxiliary
Results used to prove the results in Section 3 in Appendix EC.1.2 and we prove the results

in Section 3 in Appendix EC.1.3.

EC.1.1. Additional Results in Section 3
ProrosiTION EC.1. (existence and uniqueness of equilibrium) For any t €
{1,...,T}, given a commission profile (r*(t),r’(t)) € RNs x RN and the total mass of agents
(s(t),b(1)) € RY: x R,
(i) a competitive equilibrium (p(t),x(t),q*(t),q%(t)) always exists;
(ii) all competitive equilibria share the same supply-demand vector (q*(t),q%(t)), and they
share the same prices p;(t) for 0 < gi(t) < s;(t) .

LEMMA EC.1. (commissions for feasible transactions) For anyt € {1,...,T}, given
any positive population vector (s(t),b(t)) and non-negative trading vector (x(t),q*(t), q°(t))
that satisfy (i) the flow conservation conditions in (2c)-(2e) and (i) q°(t) < s(t) and
q°(t) < b(t), a commission profile (r*(t),r°(t)) supports (s(t),b(t),z(t),q*(t),q"(t)) in a
competitive equilibrium if there exists a price vector p(t) € RYs that satisfies the following

system of linear inequalities:

pi(t) —7i(t) = F‘l(zg))) Vi:qi(t) > 0, (EC.1a)
pilt) —r3(t) < F—l(‘ig)) ). Viigl(t) = O, (EC.1b)
pilt) +70(t) = Fb;1(1— ng;) (i, ) 2y (t) > 0, (EC.1c)
pilt) +7(t) > F,;l(l— ng) (i, ) 24(t) = 0. (EC.1d)

Consider the following convex optimization problem:

3 LSy, RO
R(T) = max Z[ZFbj (1—bj(t))qj(t)—;Fsi <Si(t)>qi(t)] (EC.2a)

t=1 L jeB
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sit. @ (t) <si(t), VieS, te{l,..,T}, (EC.2b)

@(t) < b;(t), vjeB, te{l,.., T}, (EC.2c)

> wpt)=q(1), VieS, te{l,..,T}, (EC.2d)
jli(i,j’)GE

Q)= > mu,(t), VieB, te{l,.. T}, (EC.2¢)

i':(i',j)EE

LL‘U(t> >0, V(’L,])EE, tE{l,,T}, (ECQf)

si(t+1) <G (si(t), g} (t)), VieS, te{l,..,T—1}, (EC.2g)

bi(t+1) < GU(b;(t),q5(1)), VieB, te{l,..,T—1}. (EC.2h)

From Problem (EC.2), we can establish Proposition EC.2, which enables us to solve a
concave maximization problem to obtain the optimal solution (s,b,x,q*, q%) to Problem
(EC.2), from which we can further establish the optimal commission profile (7, r) by

solving a set of linear inequalities in (EC.1) of Lemma EC.1.

ProrosiTioN EC.2. (tightness of relaxation) For any T > 1, Problem (EC.2) is a
tight relazation of Problem (3): R*(T)=R(T) and any optimal solution (3,b,®,q°,q°) to
Problem (EC.2) is also optimal to Problem (3).

EC.1.2. Auxiliary Results for Section 3

Lemmas EC.2 - EC.4 are needed to prove Proposition EC.1. In Lemma EC.4, we establish
the connection between the equilibrium and the optimal solution to an optimization prob-
lem in (EC.4). Before that, we establish some properties for the optimization problem in
Lemma EC.2. We also establish the existence of the optimal solution to this optimization
problem in Lemma EC.3, and show that it is essentially unique. These lemmas enable us to
establish the existence and uniqueness of the competitive equilibrium in Definition 1. The
proof of Auxiliary Results follows a similar argument as the proof of Proposition EC.1 and
Proposition 9 in Birge et al. (2021). Therefore, we omit the detail of the proof of auxiliary
results for simplicity.

For simplicity of notation, we first define that

J

Wi (2(1)) = /0 q?(t)Fb;1(1— >dz—rl?(t)q§(t), (EC.3a)

b;(t)
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Wiy = - [ ()i (EC.3b)

Note that the sum of W, (¢5(t)) and W/ (¢;(t)) can be viewed as the total surplus of buyers
and sellers trading in the platform, and is the objective function in Problem (EC.4). Let
Wlf]' (¢) be the derivative of Wy (q) at ¢ = ¢(t) for any 0 < ¢%(t) < b;(t), and abusing some

notation, W,f]'(O) = l}zlﬁo Wi (¢5(t)) and W,f;(b](t)) = (1)1%1( )Wt (¢5(t)) given Assumption
2(i). Similarly, we let W (¢) be the derivative of W{ (¢ ) at ¢ = ¢ (t) for any 0 < i (t) < s4(t),
and we let W (0) = Slgﬁo W! (g;(t)) and WE (si(t)) = (l§m » Wi (¢ (t)) given Assumption
2(i). We consider the following properties of functions Wy, (¢5(t)) and W/ (¢ (t)).

LEMMA EC.2. ForanyjeB,i€S andte{l,...,T},
(i) Wy, (q) is continuously differentiable and strictly concave in q € (0,b;(t)); moreover,
both Wy (q) and Wlf; (q) are right continuous at =0 and left continuous q="b;(t).
(ii) Wi (q) is continuously differentiable and strictly concave in q € (0,s;(t)); moreover,

both W! (q) and W (q) are right continuous at ¢ =0 and left continuous q = s;(t).

For any t € {1,...,T}, we proceed to consider the following optimization problem:

WO = oo 2 (/oq?(t) B (1 “5) <t>%<’f>>
-2 ( / E, (Sjt)) dz + Tf(t)qf(t)> (EC.4a)

€S
st.gi(t)= > wp(t), VjeB,  (EC.4D)
i':(i",j)ERE
> wmpt)=q), VieS,  (EC.4c)
(i.)€E
@) <by(t), VieB,  (EC.4d)
q; (t) < si(t), VieS, (EC.4e)

From Problem (EC.4), we establish the result below. Before that, we define the notation
“a<0Lb>0"asa<0,b>0,ab=0.

LEmMA EC.3. (i) There exists an optimal solution (x(t),q°(t),q"(t)) to Problem
(EC.4).
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(ii) Given any optimal primal solution (x(t),q*(t),q"(t)), there exists a dual multiplier
vector (0°(t),0%(t),n°(t),n°(t), w(t)) associated with constraints (EC.4b)-(EC.4f) that
satisfy the KKT conditions below:

b
1 . qj (t) b _pb b _ y
F; (1 > (t)> rb(t) — 0b(t) — () = 0, Vj € B, (EC.52)
—1 Qf(t) s NS S — y
F (Si (t)) () — 05(1) + (1) =0, VieS, (EC.5b)
05 (t) — 65 (t) + mi;(t) =0, V(i,7) € E, (EC.5¢)
@2(t) — bj(t) <0 L ni(t) >0, Vj € B, (EC.5d)
q;(t) —si(t) <0 L ni(t) >0, VieS, (EC.5e)
ij(1) 20 L m;(t) =0, v(i,j) € E, (EC.5f)
HOE 1 VjeB, (EC.5g)
i':(i',j)ERE
gt)= D i), ViesS. (EC.5h)
J:(i,5)eE

In addition, these KKT conditions in (EC.5) are necessary and sufficient conditions
for the optimality of solution (z(t),q*(t),q"(t)).
(iii) All primal optimal solution (x(t),q*(t),q"(t)) share the same vector (q*(t),q"(t));
(iv) The dual solution 6 (t) forie {i':0<q) <sy} that satisfies (EC.5) is unique.

The conditions in Lemma EC.4(i)-(ii) are sufficient and necessary conditions, while those
in Lemma EC.4(iii) are only sufficient conditions for equilibrium, as the prices for type

ie{t:qi(t)=0or ¢;(t) =sy(t)} are not necessarily unique.

LEMMA EC.4. In each period t € {1,..., T}, given any commission profile (r*(t),r°(t)) €
RISIx RIBI and population vector (s(t),b(t)) € RISI x RIBI,
(i) (x(t),q°(t),q%(t)) satisfies the equilibrium conditions in Definition 1 if and only if it
is an optimal solution to Problem (EC.4);
(ii) forie{i':0<qi(t) <siy(t)}, pi(t) satisfies the equilibrium conditions in Definition 1
iof and only if

pi(t) =07 (t). (EC.6a)
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(iii) forie{i':q;(t)=0 or q;(t) =si(t)}, pi(t) satisfies the equilibrium conditions in Def-

inition 1 if
pi(t) =06:(1). (EC.6b)

Before proceeding, note that functions F; '(-) and F,;l(-) have the following properties
in an equilibrium:

(1) On the seller side, if p;(t) —r{(t) <0, then ¢f(t) =0 and

F‘1<Z Eg ) = pilt) i), (EC.7a)

if 0 <p;(t) —7ri(t) <, then 0 < g (t) < s;(t) and

(G _ .
if v, <pi(t) = ri(t), then ¢;(t) = 5(t) and
(4 (t) s
E, (Si(t)) < pit) =i (1) (EC.7c)

(2) On the buyer side, if ming. . jjep{ps(t) +75(t)} <0, then ¢}(t) = b;(t) and

b
be@‘%) = i,:gg,{gleE{m(t)H?(t)}, (EC.8a)

if 0 <ming.(y jyep{ps(t) +75(t)} <Vp,, then 0 < ¢’(t) < b;(t) and
i, 4G . b
F (1~ W> =, min_{pu() +75(0), (EC.8b)
if ming. jep{ps(t) +r2(t)} > B, then ¢¥(t) =0 and
L, G@) . b
F(1- %) <, min_{po(t) +rH(0)} (EC.8¢)
EC.1.3. Proof of Results for Section 3
Based on Lemmas EC.2 - EC.4, Proposition EC.1 is proved as below:
Proof of Proposition EC.1. We establish the following two claims of this result.
Claim (i). Lemma EC.3(i) implies that the optimal primal solution to (EC.4) always exists,
and Lemma EC.4(i) implies that the (z,q°, q") is the equilibrium if and only if it is the
optimal primal solution to (EC.4). Therefore, the equilibrium transaction vector (z, g%, q°)

exists.
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Lemma EC.3(ii) implies that the optimal dual solution to (EC.4) always exists, and

Lemma EC.4(ii) implies that p that satisfies the equality in (EC.6) is the equilibrium price
vector. Therefore, there exists a corresponding equilibrium price vector.
Claim (ii). Lemma EC.3(iii) implies that the optimal primal solution (g*,q%) to (EC.4)
is unique. Lemma EC.4(i) implies that the (g°,q°) is the equilibrium if and only if it is
the optimal primal solution to (EC.4). Therefore, the equilibrium supply-demand vector
(g°,q") is unique.

Lemma EC.3(iv) implies that the optimal dual solution 8° to Problem (EC.4) is unique
for i € {i:0< ¢) < sy}, and Lemma EC.4(ii) implies that p;(t) = 0:(t) for ¢ that satisfies
0 < @i (t) < si(t). Therefore, the equilibrium price is unique for i that satisfies 0 < ¢f(t) <
si(t). |

Proof of Lemma EC.1. We establish the sufficiency of (EC.1) in Step 1 and construct
a feasible commission profile in Step 2 to show that the feasible commission profile always
exists.

Step 1: Sufficiency. We show that for any (q°(t), q*(t), z(t)) that satisfies (2¢)-(2e), if vector
(r*(t),r°(t)) satisfies the conditions in (EC.1), then it satisfies the conditions in Definition
1.

We first verify the conditions in Definition 1, in which (2¢)-(2e) immediately follow from
our conditions.
(2a) We consider the following two cases:
When ¢2(t) >0, s;(£)F, (pi(t) —75(8)) 2 8, (¢) Fy, (F-H(ZD)) = g5(2), (a) follows from
(EC.1a).
When 2(t) =0, 0 < s,(8)F (pi(t) — 71 () © si(t) Fo (F(E9)) = g2 () =0, (b) fol-
lows from (EC.1b).This implies that the inequalities are all tight, then s;(¢) Fs, (p;(t) —

ri(t) = ¢ (@)
(2b) We consider the following two cases:

When ¢%(t) = 0, then z(t) = 0 for any i: (4,j) € E, then 0 < bj(t)<1 —

) (c) B b(t)
By, min {pe(0)} +r30))) < b,(0) (1= By, (' (1 = ) ) = d4(t) = 0, where (¢)
follows from (EC.1d).This implies that the inequalities are all tight, then b,(t) (1 -

By, min_{po(1)} +74(0))) = 45(0).
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When ¢%(t) >0, pick a i1 such that z; ;(t) >0 we have p;, (t) = F_,l( Z?E: ) —r5(t)
based on (EC.1c); if there exists any i, such that ;,;(¢ ) 0, we have pl2 (t) = F,, '1-
Z?Eg) — rb(t) based on (EC.1d); then (min {ps(t)} = (1 - q] ) rb(t) , then

'j il (3! ]

by (0) (1= By, (, min (o (0} +75(0))) = by (1) (1= o, (53,1 (1 - ‘%)) 0)(t)-

(2f) We consider two cases: When ¢%(t) =0, then z;;(t) =0 for any i : (i,j) € E. When
q5(t) > 0, we show in proof of (2b) that p;(t) > . (H/un {pe}=F (1~ ngg) —rb(t) for
x;;(t) =0.

Step 2: construct an instance. In each period, given (q°(t),q*(t),z(t)) that satisfies (2c)-

(2e), consider the following one-period problem:

R, = max [qu —|—qu}

q°.qbx

€S
s.t. qj <¢q; b(t), VjeB (EC.9a)
g < q;(t), ViesS (EC.9b)
Z :Em-/ =q;, VieS (EC.9¢)
Z Tir 5, VjieB (EC.9d)

i':(i',j)EE

Note that the feasible solution set is not empty, as g% = ¢}(t) for any j € B, ¢; = ¢;(t) for
any i € S and z;; = x;;(t) for any (i,7) € E is a feasible solution. Since the constraints

are all linear, the KKT conditions are necessary for the optimal solution in (EC.9). Let

s

(wy(t),wh(t),m;(t)) be the Lagrange multipliers corresponding to the constraint in (EC.9c)-

(EC.9e), then we can write down the KKT conditions corresponding to x:

wi(t) —wh(t) —m;(t) =0, V(i,7) € E, (EC.10a)

? J

Then we consider the commission and equilibrium price as follows:

pi(t) = wi(t), Vies, (EC.11a)

() =wi(t) - F, (qg(t)), VieS, (EC.11b)
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) =F'(1- () wi(t) Vj € B. (EC.11c)
! Y b; (1) m
then the conditions (EC.1a)-(EC.1b) immediately follow. For (EC.1c),
(1) @ g; (t) g;(t)
. D) = wi(t) + Fl (1 — 0y by Dbty + i1 — Iy ey = poi — Y,
pl(t> + Tj (t) Wi (t) + b; ( bj (t) ) w] (t) wg (t) + b; ( bj (t) ) w] (t) b; ( bj (t)

where (a) follows from (EC.10a) and (EC.10b) that m;;(t) =0 when x;;(t) > 0.
For (EC.1d),

q3(t) ®) 4
bj(t))—wé?(t)—w?(t)+7rij(t)+Fbj <1_W i(t) > Fy

where (b) follows from (EC.10a) and (c) follows from (EC.10b). In summary, (EC.1) holds

pit) +r5(t) =wi(t) + F, (1 -

for our construction in (EC.11). |

Proof of Proposition EC.2 We need to prove that the optimal solutions to (3) exist
and that they achieve an objective value of R* =R. We first show that R* <R in step
1, and construct a solution to (3) whose value equals to R in step 2, which implies that
R*="TR and the solution is optimal.

Step 1: Establish that R* <R. We show that any feasible solution to (3) is feasible in

Problem (EC.2) in Step 1.1, and we further show that it leads to a higher objective value
in Problem (EC.2) in Step 1.2.
Step 1.1: Any feasible solution in (3) is feasible in (EC.2). To prove the claim, it is suffi-

cient to verify the constraints (EC.2b)-(EC.2c), as other constraints immediately follow
from the constraints in (3).

Based on (2a) and (2b), we have ¢ (t) = s;(t) Fs, (pi(t) —ri(t)) < s;(t) as F, (pi(t) —7ri(t)) €
0.1 and g4(6) = b1~ Fy (_min (0} +r4(0)] < b,(6) a5 B, min, {ul0)} +12(0) €
[0,1]. Therefore, the constraints (EC.2b)-(EC.2¢) are satisfied.

Step 1.2: Any feasible solution in (3) results in a higher objective value in (EC.2). We

first show that the optimal solution to Problem (3) satisfies the following:

(Fsil(%)ﬁf(ﬂ < (pi(t) —rf(t))q;?(t% VieS,te{l,.., T}, (EC.12a)
(FbZl(l—%))Q?<t>Z (i,zg};gleE{m(t)}+r§(t>)q§(t), vjeB,te{l,..T}.

(EC.12b)
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For (EC.12a), when ¢f(t) =0, (EC.12a) immediately holds; when ¢{ () > 0, (EC.12a) follows
from (EC.7b) and (EC.7c) in the proof of Lemma EC.4. For (EC.12b), when ¢}(t) =0,
(EC.12b) immediately holds; when ¢%(t) >0, (EC.12b) follows from (EC.8a) and (EC.8b)
in the proof of Lemma EC.4.

Given (EC.12), the objective function in (3a) satisfies the following:

R=Y P CIHOESMAGIAC]
t=1 jeB 1€S
2

DILICIDSIEHIOED SAOND SRt

S UE T e S piTres
- Z [2; Z)E (i (8) + 7508) ) s (1) > (ORH0) P (t)
Qi[;m 01 +50) - (a0 ri0) T et
zg[é(/%]ﬂ{p@ )} 780 al() z€s< pilt) =i (0))a; (1)
gi[;F z z; o )g: (1)) =R

where (a) follows from (2c)-(2d); (b) follows from (2f) that z;; =0 for i ¢ argmin{p; + 7 };
i":(i! j)EE

(c) follows from (EC.12).

Step 2: Establish that R* =R. Given any feasible solution to (EC.2), we construct a fea-

sible solution for (3) in Step 2.1, and we further obtain an objective value that equals R
in Step 2.2.
Step 2.1: Construct a feasible solution for Problem (3).

In each period, given the solution for Problem (EC.2), we consider the construction from
(EC.11) as in the proof of Lemma EC.1. We need to verify that all the constraints in (3)
hold. Notice that we only need to verify that (2a) (2b) (2f) (3c) and (3d) hold, as other
constraints exist in (EC.2) and automatically hold.

(2a) from the construction of p;(t) and r{(t), we can establish that
SO (oit) ~12(0) =P (£ (1)) = a0

(2b) We consider the following two cases:
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(i) if ¢} >0, we pick a i’ such that (i/,j) € E, then there are two further cases:

(1) xy; > 0, then py(t) @ ws (t) © wh(t) + my(t) © w?(t), where (a) follows form the

construction of p;(t); (b) follows from (EC.10a); (c) follows from (EC.10b) for z;; >
(@)
0; (2) @y; =0, then py(t) = wi(t) = Wi(t) + () > wi(t), where (d) follows from

(EC.10b) for z;; =0. In summary, (rm? E{pi/( )} =wh(t), then
i/:(i,5)€

by ({1 =B, min_{po()}+75(0)] = by (O [1= B (W50 +r4(0)] b1~ F, “‘@Eg

where (e) follows from the construction of 74(t);
(i) if ¢} =0, we have py(t) = wi(t) = Wi(t) + my (t) > wh(t), then 0 (2) b;(t)[1 —
By (minps(t) + 72 1)] < by (01— By (w2(6) +r2(0)] L b ()1~ (1~ £O)] = gt) =

0,, where (f) follows from F (-) <1, (g) follows from the construction of r}(t). This

implies that inequality must be tight. Therefore, (2b) holds.

(2f) We have verified in the proof of (2b) that for any (i, j) € E, we have p; = w? for z;; > 0
and p; > w for x;; =0. Therefore, z;; =0 for i ¢ argminp;.

(3c) We first prove (EC.2g) holds as equality by corit:acji)iecfion. Suppose that s;(t+1) <
GP(si(t),q:(t)) in the optimal solution to (EC.2), then let si(t+1) =G?(s:(t), ¢} (t)), we
can obtain higher objective value by replacing the s;(t+ 1) in the optimal solution with
si(t+1) as (EC.2a) increases in s;(t+1); in addition, s;(t+2) < G (s;(t+1),¢ (t+1)) <
G (si(t+1),q;(t+ 1)), which implies that the constraint in (EC.2g) still hold. This
contradicts to our assumption that s;(t 4+ 1) < G#(s;(t),q(t)) is the optimal solution

o (EC.2). Therefore, s;(t+1) =G?(s:(t),q;(t)) in the optimal solution to (EC.2), and
(3c) immediately holds.
(3d) follows the same argument in (3c).

Step 2.2: Obtain a value that equals R. We can deduce that

R* = 2 ZS rE(£)g: (1) + ZB rU(£)g(t)
23| S - mED g+ 8>—w§<t>>q§<t>]
t=1 ieS jeB J

1=
Mﬂ

S r - P - R ,f >]

L jeB €S

-
Il
—
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+Z wa(t) Tijr( Zw Z xz"j(t)]

t= 1€S j':(i,5")EE JjeB (i j)EE

HOIEDS

T
i b

1 j(t)
Z ZFbj (1_Zj(t) ZF si(
(t)

~

=1 L jeB

=5 ZF—1(1—qgt ZF
0

=1 LjeB

T
T

) :Rv

~

where (a) follows from the construction of r§(t) and r5(t), (b) follows from (EC.2d) and
(EC.2e), (c) follows from (EC.10a) and (EC.10b) that when z;; >0, w; = w?, while when
=0, w;>w [ ]

EC.2. Proof of Results in Section 4
We provide and prove some auxiliary results in Appendix EC.2.1 and prove the result in

Section 4 in Appendix EC.2.2.

EC.2.1. Auxiliary Results for Section 4
Given the definitions of the value functions ﬁbj for any j € B and Ei for any i € S from

Problem (5), we have the following lemma.

LEmMmA EC.5. fbj(q,b) is continuous at (0,0) for i e S and ﬁsi(q,s) is continuous at
(0,0) for j€B.

Proof of Lemma EC.5. We need to show that ( &)11{1 )Fb (g,b) = ﬁbj(0,0) =0 and
q, 0,0

lim Fsz(q, ) = F, (0,0) = 0, which holds because

K3

(,5)4(0,0)
. ~ q _
0 < lim Fy(qgb) = lim F, <1—— < 7, x0 =0,
 (g:0)1(0,0) b,(4,) (4.6)4(0,0) " ¥ p)T ="
0 < lim Fvsi(q,s) = lim F_ ( )q < v, x0 =0,
(g,5)4(0,0) (¢,5)4(0,0) " \S

where given Assumption 2, all of the inequalities above follow from szl(a:) € [0,y,] for

z € [0,1] where 7y, < oo and F,'(z) € [0,7,,] for = € [0,1] where 7, < co. [ |

We next develop an auxiliary result about the growth of populations. To simplify the
notation, we let N':={1,...,|S|,|S|+1,...,|S| +|B|}, where the first |S| nodes represent the
types from the seller side and the last || nodes represent the types from the buyer side.

In addition, we use n;(t) and g;(t) to respectively denote the population and transaction
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quantity of type i € N at time t € {1,...,T}. We define G;(-,-) :=G:(-,-) for i € {1,...,|S|}
and G(-,-) =G} g (,-) for i € {|S|+1,...,|S|+|B|}. In addition, we define N'*:= {i €
n; > 0}.

Recall that

it
m(t) = min nT()
ieENt Ny,

(EC.13)
Given the minimum population ratio m(t) in (EC.13), we let I(t) be the agent type with
the lowest population ratio at time ¢ or “the lowest node at time ¢” for short:
i(t
[(t) := argmin nT() (EC.14)
ieNt Ty

ni(t) _

i

If there is more than one i such that m(t), we can set [(t) as any node with the
minimum population ratio. After the population evolves in period ¢, it is worth noting
that the lowest node can change. Let 75 :=0 and m(7) be a dummy agent type with the
minimum ratio in period 0 with m(7) & S U B. Moreover, we let X be the total number
of times that the lowest node changes in Algorithm 1 for some X € {1,...,T}. we let
Tei=min{t:t > 7, 1,1(t) #l(1,_1)} for t € {1,...,T}, in which 7, is the 2" time that the
lowest node changes for x € {1,..., X}. For example, for z € {0,1,..., X}, if node i has the
lowest ratio at time 7, — 1, then ny,_1)(7,) denotes the population ratio of the node i at
time 7.
Given the lowest node I(t) € SUB we let
gi(n) := Gy <n,n@> , (EC.15)
nyt)

where n > 0. Then g;(n) is the transition equation for the lowest node in period t, as by

the population transition specified in Algorithm 1 and the definition of ¢,(-), we have that

iy (t+1) = G (nl(t) (t); e (t):—) = g¢(nu)(t)). (EC.16)

We have the following observation about function g(-).

LEMMA EC.6. g4(n) is differentiable, increasing and strictly concave inn > 0. Moreover,
its derivative satisfies g;(Tuw)) <1 for allt € {1,...,T}. Moreover, g/(n) —n <0 for n>ny
and gi(n) —n >0 for 0 <n <Tygy.
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Proof of Lemma EC.6. We divide the proof arguments into the following components.

Differentiability and monotonicity. From Assumption 1, we have that function G;(n,q) is

continuously differentiable, increasing and strictly concave in n > 0, which directly implies
that g;(n) is differentiable, increasing and strictly concave in n > 0.

gi(yw) <1 forall te{1,...,T}. By Algorithm 1, we have that 74 > 0. Since g,(n) is

continuous in n € [0,7yy] and differentiable (0,7), by the mean value theorem, there

. ~ _ ~ Tye))— a) Ty — b) My —
exists a 1y € (0,7y) such that g;(7y)) = oul %237?(0) @ “ﬁ?(t)gjéo) © ﬁi&g =1, where (a)

follows from Lemma 1(ii) and (b) follows from Assumption 1(i). Since g;(n) is strictly
concave in n > 0, its derivative strictly decreases in n >0, which implies that g;(7)) <1
given that ﬁl(t) € (O,ﬁl(t)).

gi(n) —n <0 for n > myy. we define that y,(n) := g;(n) —n, and it remains to show that

y:(n) <0 for n > M. Since y;(nye)) = g;(nuey) — 1 <0 for nyuy > My and y¢ (M) = 0 based
on Lemma 1(ii), y:(mw)) <0 for nye > M-
gi(n) —n >0 for 0 <n <7y . It remains to show that y,(n) > 0 for 0 < n < myy). Note that

y(n) is concave in n. Since y,(0) = ¢:(0) —0 =0 and y(Mw)) = g¢(Muw)) — M@y = 0, we know
Y (1 —a) x ) > ay(0) + (1 — a)y (7)) =04+ 0=0 for a € (0,1), therefore y,(n) > 0 for
0<n< () |

Lastly, we formally define the myopic policy and establish its tractability as a supporting
result for our proof arguments for Section 4.

DEFINITION EC.1. (myopic policy) For ¢t € {1,...,T}, given the current population
(sM(t),bM(t)), the myopic policy solves the following optimization problem:

RM(t) = max o)) + > rit)glt) (EC.17a)

(1),p(t),2(t),q°(t),q°(t)

icS jeB
st (sM(t),bM(t),r(t),p(t), (t),q°(t), q°(t)) satisfies (2), Vt € {1,...,T}.
(EC.17b)
To solve Problem (EC.17), we consider the following optimization problem:
b
_ q;(t) 1 4 (@)
RM(t) = max F11-- b)Y FOY A )it EC.18a
Q qs(t),qb(t),w(t)jzeg b ( bé”(t)>qj( ) lGZS s (slM(t)>q (*) ( )

st () <sM(), Y mgt)=q¢t), VieSte{l,..,T},  (EC.18b)

j:(i,j)eE
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Q) <O, )= Y wpt), VjeB, te{l,..T},  (EC.18c)
(i

i J)EE

24 (t) >0, V(i,j)€E, te{l,..,T}. (EC.18d)

Recalling the observations about Problem (EC.2), we can apply exactly the same argu-
ments as in the proof of Proposition EC.2 to establish the following result about Problem

(EC.18), whose proof will be neglected for avoiding repetition:

COROLLARY EC.1. Foranyte{l,...,T}, Problem (EC.18) is a tight relazation of Prob-
lem (EC.17), i.e., RM*(t) =RM(t) and any optimal solution (q*(t),q"(t),z(t)) to Problem
(EC.18) is also optimal to Problem (EC.17).

EC.2.2. Proof of Results for TRP
Proof of Lemma 1.

Show that AVG’s optimal solution and objective value are finite. On the seller side, for

any i € S, we first show that the optimal solution (g£,s;) is finite for all 1 € S. We first
show that §; is finite. The constraint of AVG requires that s; < G?(s;,qf) < G#(sy, s;), which
requires that G(s;,s;) —s; > 0. Given that xll)rglo((gf)ll(x,x) +(G)y(x,2)) < 1 and G (z,z)
is continuously differentiable in = > 0 by Assumption 1, there exists a constant a < 1 and
8; > 0 such that (G7))(5,3:) + (G$)5(8i, 8) = a < 1. Therefore, for any s; > §;, the constraint
requires that

/7

G (siysi) — i <G (8, 8:) + (95)1(51, $i)(si—8:) +(GF)o(8i,8:)(8i — 8:) — s
=G’(8;,8) +a(si—38;)—s;

which indicates that for any s; > max{5;, W}, we have G?(s;,s;) —s; <0 and there-

fore is not feasible. Therefore, it is without loss of optimality to focus on the compact
set [0, 8;] for the optimal solution s;. Since ¢; < s;, this suggests that the optimal solution
q; €0, 8;], which is also finite. The same arguments hold for the buyer side.

Show that optimal solution (q,3,b) to AVG exists. For any u € [0,1], we have that

F; ' (u) <T,, < oo for any i € S and szl(u) <7y, < oo for all j € B. Therefore, the objec-
tive value of AVG is also finite. We have already shown that the feasible set of (q, s, b) is
closed and bounded. The constraints in (5b)-(5¢) also ensure that the feasible set of x is
closed and bounded. In summary, the feasible set characterized by constraint (5b)-(5f) is

compact. In addition, the feasible set is not empty, as solution 0 is feasible. Furthermore,
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the objective function in (5a) is continuous in this compact set based on Assumption 2(i).
By the extreme value theorem, an optimal solution (g,s, b) to AVG exists.
We proceed to prove the lemma.

(i). By the extreme value theorem, the optimal solution to (5) exists. Since the objective
function is strictly concave and the feasible region is a convex set, the optimal solution to
(5) is unique.

(ii). If there exists a i € S such that G;(5;,g;) —; > 0, then given that G;(s;, ¢;) is continuous
on s;, we can always find a € > 0 small enough such that G(5; +¢,¢}) — (5, +€) > 0. In
addition, 5;+€ >s; > ¢;. By replacing s; with 5; €, we obtain a higher objective value since
the objective function strictly increases in s;. Therefore, the assumption G7(5;,¢) —35;, >0
contradicts the optimality of (g*,q®,3,b) to Problem (5). The same proof arguments can
be applied to the buyer side. |

Proof of Proposition 1. By Proposition EC.2, R(T) = R*(T). So it suffices to show that
there exists a constant C such that |R(T) —TR| < C;. To prove the result, we establish

the following two claims.

Claim 1: R(T) — TR > —C}. We delay the proof to the proof of Theorem 1 that there

exists a constant C] and a policy 7 such that R™(T) — TR > —C/, which further implies
that R(T) — TR >R"™(T) — TR > —C, given that R(T) > R"(T).
Claim 2: R(T) — TR < C!. Before proving the claim, we first consider the following opti-

mization problem for any 7' > 0:

R = F, ( E, (¢, EC.19
s,br,fllsa,};%’w Z b qJ’ 1625 i ql ( a)
st ¢ <si Vies, (EC.19b)
¢ <bj, Vj € B, (EC.19¢)
> =g, Vies, (EC.19d)
J:(i.j)eE
= >y VjeB, (EC.19¢)
:(i,j)eE

i >0, Y(i,j) € E, (EC.19f)

i(1 ,
slégf(sz,qf)%—sé), Vie s, (EClgg)

b oy, bi(1) .
bj < Go(bj,q}) + , Vj € B. (EC.19h)

T
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Note that the only difference between Problem (EC.19) and Problem (5) is the right-hand
side of the constraints (EC.19g)-(EC.19h). Given that s;(1) >0 for all i € S and b;(1) >0
for all j € B, Problem (EC.19) could be viewed as a relaxation of Problem (5). We first
show that TR > R(T) and then show that there exists a positive constant C] such that
TR —TR <CY for any T > 0. Consequently, we can have R(T) — TR < C? for any T > 0.
Step 2.1: Show that TR > R(T). For any optimal solution (s(t),b(t),q*(t),q(t),z(t) :
t=1,...,7) to Problem (EC.2), we construct the following alternative solution vector
(3,b,4°,¢ ) for Problem (EC.19):

T

Ei:%z; si(t) and g; = Zqz VieS,

-1 &

bj:Tij( andqj qu VjeB,
e

Ty = Z% V(i,j) €E

We establish the feasibility of (3,b,q%,@% Z) for Problem (EC.19) in Step 2.1.1 and then
show that TR > R(T) in Step 2.1.2.

Step 2.1.1: Feasibility. First, from the constraints in Problem (EC.2), we can easily
show (EC.19b) - (EC.19f) hold. In particular, g = %Zthl q:(t) (%) %Zle si(t) = 5.
The same argument applies for g5 and b; on the buyer side. For (EC.19d)-(EC.19e),
g = %Zle g; (1) 2 %Zj’:(i,j’)EE Zthl zij(t) = Zj’:(i,j’)EEfij' and qg = TZt 19 ;() 9
%Zz":(i’,j)eE ZtT:1 zyj(t) = Zi’:(i’,j)eE Z;;. For (EC.19), 7;; = T Zt L Tij(t) > ( 0.

For constraints in (EC.19g)-(EC.19h), we show that

v

SR LR SURCIEO SURS SO R
®) 1 . . si(1)
< 72 |50 - g0 75
= 720 [t D =G 0] + ) =Gl D)l 1) =

<0+ (=G, (1) < 0,

where (a) follows from the construction of 5; and g} at the beginning of Step 2.1; (b) follows
the Assumption 1(ii) that G7(-) is concave. This proves that Constraint (EC.19g) holds.
Following the same argument, we can show that Constraint (EC.19h) holds.
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Step 2.1.2: TR > R(T). Given the construction of 3; and b;, we obtain that 3; >0 and

b; > 0. Given the definitions of ﬁb(qg,Bj) and F,(g¢,s;) in Problem (5), the objective value
in (5a) is given by > F}- 11— 4) O = es ot (5_) . This allows us to establish that

TR Y T[;F( g;i%z)}m ; (i%iqw 2 1]

where (a) follows from the construction of (3,b,q°, g% %) in Step 2-1; (b) follows from the
concavity of Fb;1(1 —%)a and —F '($)a by Assumption 3.
Summarizing the arguments in these two steps, we have TR > R(T).

Step 2.2: Show that TR — TR < CY for some C! >0. Let (p*, pu’) be the dual optimal

solution corresponding to the constraint s; < G7(s;,¢) and b; < G2(b;,¢}) in Problem (5),
then p; >0 for any i € S and ,u] >0 for any j € B according to duality theory. Note that
the only difference between Problem (5) and Problem (EC.19) is the right-hand side of
the constraints in (EC.19g)-(EC.19h). Therefore, based on (5.57) in Boyd et al. (2004), we
can establish that

-~ L1 , 1
R < R+D> X fsi(l)ﬁ—z;zjxfbj(l)

€S jeB

which further implies that

T(R-R) < T3 i x s+ 3w 7y (1) = 3 pisi() + 30 sy (1)

€S jeB i€S jeB

We let CY := 37, g pisi(1) + 32 e #5b;(1), and obtain the desired result.
In summary, |R(T) —TR| < Ci, where C; = max{|C}|,|CY|}. [ |

Proof of Theorem 1. We divide the proof arguments for the first claim into the following
steps: in Step 1, we show that the solution generated by the TRP is feasible to Problem
(EC.2); in Step 2, we show when w =0, there exists a constant v € (0,1) such that |m(t+
1) = 1| <7|m(t) — 1] for any ¢t € {1,...,7 —1}; in Step 3, we show that when w =0, there
exists a constant C such that TR — R7%(T) < C} for all w. Then, together with Step 2.1.2

and Step 2.2 of Proposition 1, we conclude that there exists a constant Cy := C + C7 such
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that L77(T) = R*(T) — R™(T) < TR — R™(T) = (TR — TR) + (TR — R™*(T)) < Cs.
Finally, in Step 4, we generalize the result to the case when w > 0.

The claim [m®(t) — 1| < |m°(t) — 1| directly follows from Step 4.1 and Step 4.2.1.
Step 1: Show that the solution generated by the TRP is feasible to Problem (EC.2).

(EC.2b)-(EC.2¢). ¢i(t) @ g;m(t) (%) si(t)g—z = s,(t), where (a) follows from Algorithm 1; (b) follows directly
from the definition of m(t) The same argument follows for the buyer side.
(BC.2d)-(EC.2¢). ¢¢(t) =gm(®) 2L S mmm®) 2 S 2i,(t), where (a) follows from (5b); (b)
follows from Algojrliizlﬁ;)ne i The same ]z;:lszg’ﬁ)rflint follows for the buyer side.
(EC.2f) . x;; =7; ;m(t) > 0 follows from (5d).
(EC.2g)-(EC.2h). Given s;(t+1)=G?(s;(t),q;(t)), the inequality is a relaxation, which directly follows.
A similar argument holds for the buyer side.
In summary, the solution generated by the TRP is feasible for Problem (EC.2).
Step 2: Show that when w=0, there exists a constant 7€ (0,1) such that
Im(t+1) — 1| <~y|m(t) — 1| for t € {1,...,T —1}. Recall the definition of /(¢) and g;(n) in

(EC.14) and (EC.15), respectively. We discuss three cases: (1) m(1) > 1, (2) m(1) <1 and

(3) m(1) = 1. In each case, we will first show that m(t) gets closer to 1 as ¢ increases, and
then we show that the convergence rate can be upper bounded by v < 1.

Step 2 - Case 1: m(1) > 1.

Step 2 - Case 1 - Step 2.1: Show that m(1) >m(2) >...>m(T —1) >m(T) > 1. To prove

the claim of this case, we show that for any ¢ € {1,...,7 — 1}, if m(t) > 1, then m(¢t) >
m(t+1) > 1. Let X >0 denote the number of times the agent type with the lowest ratio
changes. We consider the following two cases for any ¢t € {1,...,T}: (1) the lowest node
does not change in the next period, i.e., 7, <t < 7,41 —2 for x € {0,..., X — 1} ; (2) the
lowest node changes in next step, i.e., t =7,41 — 1 for x € {0,..., X —1}.
(1) For any 7, <t <7, — 2 with = € {0,..., X — 1}, we show that if m(¢) > 1, then
m(t) >m(t+1) > 1.
Recall that m(t) = mo® and m(t+1)= mugen (1) (@) g (41

ny(t) T(t4+1) (L)

that I(t) =1(t+1) for 7, <t <741 —2 and z € {0,...,X — 1}. Then, to show that

), where (a) holds given

m(t) >m(t+1) > 1, it is equivalent to establish that nu(t) > nyw) (t+1) > M. First,

we have

(b) (c)
n(t) (t + 1) — nl(t)(t) = gt(nl(t) (t)) — T (t) (t) < 0,
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where (b) follows from (EC.16); (c) follows directly from Lemma EC.6. Second, we
deduce that

_ d _ e) o (f)
iy (t+1) =Ty @ Ge(uy (1)) — e © ge(ruw (1)) — ge(uy) > 0,

where (d) follows from (EC.16); (e) follows from Lemma 1(ii); (f) follows from ny)(t) >
Ty given that m(t) = nl(t)( ) > 1 and that g¢+(n) increases in n > 0 from Lemma EC.6.
In summary, for 7, <t § Tet1 — 2, if m(t) > 1, then m(t) >m(t+1) > 1.
(2) Fort=m,—1with x €{1,...,X}, we want to show that if m(r, —1) > 1, then m(7, —
1) > m(7,) > 1. To prove this, we can deduce that

() @ gy (T) ®) Mg (e — 1
() = Mo @ meonl) @ meonloh _ e )

Ny(rz) Ny(rp—1) Ny(rp—1)

where (a) follows directly from the definition that I(7,) in (EC.14); (b) follows from

Ni(ry—1)(Tz) = Gro—1 (Mi(ry—1) (T2 — 1)) < Ny(r,—1) (72 — 1), where the second inequality fol-

Ny (ry—1)(Te—1)

£ > 1 and Lemma
nl("’zfl)

lows from (-, —1)(7, — 1) > Tiy(r,—1) given that m(7r, —1) =
EC.6. Therefore, m(r,) <m(r, —1).
Next, we show that m(7,) > 1. Since

— Ny(rp—1)(Ta—1)
N (12) (@ Gt (”zm)(ﬂ: B R )

T (7y) Ni(r,)
(d gl('r (my rz)(Ta:—l)ﬂZ(Tz)) () gl(m)(ﬁl(m)vql(m)) — 1

— — Y

nl(Tx) nl(Tx)

m(r,) =

where (c) follows from Algorithm 1; (d) follows from the condition that Pura=n)(Te D)

lnl("'z 1)
'rLl(‘f‘a:)(T:z )) > m(,]_x _
T (7g) -

m(7, —1) > 1 and Gy(-,)(n,q) increases in ¢ > 0; (e) follows from
1) > 1. Therefore, m(7,) > 1.
Based on the arguments above, if m(t) > 1, then m(t) > m(t + 1) > 1, which holds for
any t € {1,...,T — 1}. Thus, we can conclude that if m(1) > 1, then m(1) > m(2) > ... >
m(T —1)>m(T) > 1.

Step 2 - Case 1 - Step 2.2: Show that there exists a constant 7, € (0,1) such that

m(t+1) = 1] <y|m(t) — 1| for any t €{1,...,T}. Again, we consider the following two

cases: (1) the lowest node does not change in the next step, i.e., 7, <t < 1,41 — 2 for
any x € {0,..., X — 1}; (2) the lowest node changes in next step, i.e., t = 7,1 — 1 for any
z € {0,...,X — 1}. For both cases, we first show that |m(t+ 1) — 1| < g; () |m(t) — 1].
Then we show that there exists a v; € (0,1) independent from 7T such that for any positive
integer T,  nax_ gi(me) <m <1

.....
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(1) For 7, <t <T7,,1 —2, we observe that

_ @ () _
ey (t+1) =T = meE+1) =Tw = gl ) — g:(ug )

(c) _ _ (d) _ _
< (e () =) gy (muw) = e (t) —Tue |9 (uw),

m(t)l((t:l_) m(t+1)>1foranyte{l,...,T—1}; (b) follows from

(EC.16) and Lemma 1(ii); (c) follows from Lemma EC.6 given that g:(n) is strictly
2o 1 for any t € {1,...,T}. Therefore,

”l( )

where (a) follows from

concave in n > 0; (d) follows from m(t) =

n t+1 _ n
Mot _ 1] < gi (M) nind)

T (t) T (t)

Im(t+1)—1| =
(2) Fort=1,—1

1‘ gtnl(t ‘m —1|.

@ M) (Te) Y M) (T2)

m( Ty —l‘zm’rx —l=— — n -1
[m(r.) (72) o i)
( ) gTz_l(nl(Tz 1)( — 1)) — gTz—l(ﬁl(Tzfl)) @ <nl(7':1;71) (Tx — 1) - ﬁl(‘rzfl) >g/ (ﬁl( _1))
T (r,—1) T (ry—1) R

_ (e _
= (m(re = 1) = g, 1, ) 2 [l = 1) =19t (e, ),

where (a) follows from m(t) > 1 for any ¢t € {1,...,T}; (b) follows from M) (72)

nl("‘z)
m(1,) < nlg;_—l_)(l:’); (c) follows from ¢;(-) in (EC.15) and Lemma 1(ii); (d) follows from
the strict concavity of g;(-) in Lemma EC.6; (e) follows from m(7, —1) = %ﬁ_l)
1.
In summary, |m(t + 1) — 1| < gj(m)|m(t) — 1| for any ¢ € {1,...,T}. Define y =
9G; i
max ! (n,nﬁ—i), then
(@) 9G4 10 0G; q; (b)
Jmax g, (M) = max —- (r,ng o= SEx F (M nEhean =1 < 1,

where (a) follows from the definition of ¢;(-) in (EC.15) and (b) follows from the finite
network G(SUB, E) and discussion in Lemma EC.6. This allows us to conclude the con-
traction arguments for the case of m(1) > 1.

Step 2 - Case 2: m(1) < 1.

Step 2 - Case 2 - Step 2.1: Show that m(1) <m(2) <...<m(T —1)<m(T) < 1. Similar

to the discussions in Step 2 - Case 1, we consider the following two cases: (1) the lowest
node does not change in the next step, i.e., 7, <t < 7,41 —2 for any z € {0,..., X — 1} ; (2)

the lowest node changes in next step, i.e., t =7,,1 — 1 for any z € {0,..., X — 1}.
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(1) For 7, <t <7,y1 —2, we want to show that if m(t) <1, then m(t) <m(t+1) <1.
Recall that m(t) = nzﬁ(;_()t()t) and m(t+1) = n“g(lt)ﬁ;rl) @ nl‘%((i:rl), where (a) holds as

[(t)=1(t+1) for 7, <t < 7,41 — 2. Therefore, m(t) < 1 implies that nyu(t) < fyw.
We observe that m(t) <m(t+ 1) <1 is then equivalent to nyu (t) < nyw)(t+1) <),

which holds because

ey (t+1) = () = gl () — e (t) > 0,
where the equality follows from (EC.16) and the inequality follows from the condition
that 0 <nyq)(t) <myr and Lemma EC.6. In addition,
ey (t+ 1) = ey = ge(muey (t)) — ge (M) <0,

given that ny(t) <7y and that gi(n) increases in n > 0 based on Lemma EC.6. The
derivations above allow us to establish that n;u () <@ (t+1) <My).
(2) For t =7, — 1, we show that m(r, — 1) <m(7,) <1 if m(7, — 1) <1, then

— Ny(rp—1)(Ta—1) _ Ny (rg—1)(Ta—1) — Ny (g —1) (Ta
m(T ) @ nl(Tm)(Tx) :gl(rz)(nl(‘rz)(Tx - 1)7 Qi(7s) T(re—1) ) (;) gl(Tz)(nl(Tz) T )T w1
: T(r,) T(r,) - T(r.)

L | PR
© ~ o 91w (M) Qi) @ M=) (7 — 1) =m(7, — 1)
ﬁl(Tz) ﬁl(Tz*l) T 9

where (a) follows the definition of m(7,) in (EC.13) and I(7,) in (EC.14); (b) follows

from "z 7D > m(r,—1) = Pitra—n) (e 1) given the definition of m(7, — 1) in (EC.13);

T (rg) (7 —1)

(c) follows from

Gi(an;,aq;) = Gi(am; + (1 — a)0,aq; + (1 — a)0) > aG;(7;,q;) + (1 — a)Gi(0,0) = aG;(7;, G;),
(EC.20)

for 0 < a <1 given that G;(0,0) =0 and G;(n,,q;) is strictly concave in (n;,¢;); in
addition, (d) follows from Gi(,)(Mi(r,), Qi(r,)) = M(r,) - In summary, we have m(7,) >
m(1, —1).

To proceed, we further observe that

nl(Tz)(TZC) (d) nl(Tz—l)(TJ}) (e)

m(Tx) == — S — 17
Ni(ry) N(r,—1)
where (d) follows from nl%’g—@ =m(7,) < T”%’:’—li(f) given the definition of m(7,) in

(EC.13); (e) follows from Lemma EC.6 that ny.,—1)(72) = gr,—1(Nir,—1) (T2 — 1)) <

Ty(r,—1) for ny(r, 1y (72 — 1) <Ty(r,—1). Thus, we have that m(7,) < 1.
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In summary, m(t) <m(t+1) <1 if m(t) <1 for any ¢t € {1,...,7 — 1}. Since m(t) < 1, we
obtain that m(1) <m(2) <...<m(T —1) <m(T) < 1.
Step 2 - Case 2 - Step 2.2: Show that there exists a constant v, € (0,1) such that |m(t+

1) — 1| <~a|m(t) — 1| for any ¢t € {1,...,T}. Following a similar argument in the previous
step, we can obtain the desired results.

Step 2 - Case 3: m(1) =1. When m(1) =1, we want to show that m(t) =1 for any ¢ €
{1,...,T}. To establish the claim, we show that inductively, if m(¢) =1 then m(t+1) =1
for any ¢t € {1,...,T — 1}. We observe that

—

(a) — (b) — o) _
ey (E+1) = Gigey (e (1), @y m(t)) = Gy Mgy, Quey) = Tacey
where (a) follows from the population transition induced by Algorithm 1; (b) holds given
that m(t) = 1, which further implies that n;u)(t) = T); (c) follows from Lemma 1(ii).
Thus, WIOIAR ST addition, for i € Nt with i #[(¢t), we can deduce that

(L)
ni(t+1) = Gi(ni(t),g;m(t)) = Gi(ni,q;) = i,

where (d) follows from "ﬁ—(t) >m(t) =1 given the definition of m(t) in (EC.13) and the
condition that ¢ # [(t). The observation above implies that @ > 1 for i € N with
i #1(t). Therefore, we can establish that
1 .
o (t+1) ), min {—nl(t__l_ 1)}} = 1.
ieNt,

— m;

m(t+1) = min{
()

i#1(t)

Given that m(1) =1, by inductively establishing that m(t+1) =1 for any t € {1,....,T —
1}, we have that m(t) =1 for any ¢ € {1,...,T}. Thus, we obtain that |m(t+1) —1|=0<
v3|m(t) — 1| =0 for any 3 € (0,1).

In summary of the three cases above for m(t) < 1, m(t) > 1 and m(t) = 1, by letting
v =max{71,72,73}, We have that for some v € (0,1), |m(t+1) — 1| <~|m(t) — 1], for any
t=A{1,...T—1}.

Next, we use the superscript w to denote the value under policy with parameter w.

Step 3: Show that when w = 0. there exists a constant C} such that [TR — RT%(T)| < C}.

We prove this by the following steps. Given ¢(t) and n(t) induced by TRP, we show in
Step 3.1 that there exists a positive constant C,, such that Tlim Z;‘le lq:(t) — q;| < Cy;
—00

In Step 3.2, we show that the previous two steps induce a positive constant C'« that

n;
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satisfies hm Zt N q’(t 7l < C’ql for any i € N7; In Step 3.3, based on Steps 4.1 - 4.2,
we conclude that there eX1stS a Constant C{ such that |[TR — R™%(T)| < Cf.

Step 3.1: Show that there exists constants C,, such that lim >, | |¢;(t) — g, < C,, for any
1 —00
i € N*. Notice that

(®) d
| e _
Jim 3 Jatt) -] © Jim 1\—%&&2_1% 2
T 1 _
_Tlgﬂoql )_1} 1—7 = 15 4m) 1”

where (a) follows from ¢;(t) = g;m(t) in Algorithm 1; (b) follows from the contraction
arguments in Step 2; (c) follows from v <1 in Step 2. Let C,, = m"f(fg_ll, and then the
result follows.

Before proceeding, we provide some supporting results whose proofs will be provided

towards the end of this section:

LEMMA EC.7. For any i € N with n;(1) >n;, there exists a positive constant C,,. such
that 711_{{)10 ST |ni(t) — 7| < C,. Moreover, for any i € N* with n;(1) <, if m(1) <1,
then n;(t) <m; forte{l,...,T}.

Step  3.2: Show that there exists positive constants Ca  such that

ﬁ—l — q"—(t)| < Cu for any i € N*. To show the claim for this step, we notice

limy o0 E)‘ 1 it

that for any i € N,

— OIRC a.mi(t . mm(t)] ® q. n; n;
4 ‘< _,_qzm()‘zﬂl_”m()‘§&<‘1—L‘+L)’1—m(t)‘),

where (a) follows from the population transition induced by Algorithm 1, and (b) follows
directly from the triangle inequality. Therefore,

o [ 20 < 32 (- ] i)
- (3= 0 e
2%&%( T %‘1—71%—(?’—1—2% 1—m(t)‘>, (%)
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where (c) follow from the definition of m(¢) in (EC.13).

Notice that if m(1) = renj%/n (Z) > 1, then n(1) >n; for any ¢ € N*. Thus, it is without
loss of generality to consider the following three cases for any i € Nt to further relax the
term in the RHS of (EC.21), which we denote by “(*)”.

(1) When n;(1) >7; and m(1) > 1, we show that
(%) < lim Zl nl +Zl 2 lim = Cni+ZT: 1—m(1)|y"*
o (320 e o] ) € o 2 (S 31w
where (d) follows from the result in Step 2 - Case 1- Step 2.1 and Step 2 - Case 3
that if m(1) > 1, then m(1) >m(2) > ... >m(T') > 1; (e) follows from Lemma EC.7
that 711_r>r010 ST |na(t) — 75| < C,, given that n;(1) >, and we also have |m(t) — 1| <
ylm(t —1) — 1| for vy <1 and t € {2,...,T} by Step 2. Therefore, by letting Cu :=
f (Cnl + 1 —m(1 )|ﬁ), we obtain the desired result. Z

7

(2) When n;(1) <7; and m(1) < 1, we show that
7 (L
< lim 2% 11— _
() = Tlﬂﬁom(;m@)‘l ‘*Z ’1 ‘)
(9) {1 & g ( 2[1—m(1)]
< lim = — 1—m )< 2
: —A( gy 2 [1-mt) v )— m(mu)(l—w

where (f) follows from the observation that m(t) < "%—(t) < 1, where the first inequality

Sji-no

1
m(1) 4

follows from the definition of m(t¢) in (EC.13) and the second inequality follows from
Lemma EC.7 that if n;(1) <®; and m(1) < 1, then n;(t) <n; for t € {1,...,T}; (g)
follows from the observation that |m(t) —1| <~y|m(t—1)—1|fory<land t € {2,...,T}
by Step 2, and therefore |m(t) — 1| <~'~!|m(1) — 1]; in addition, we show in Step 2
- Case 2- Step 2.1 that when m(1) < 1, we have m(1) < m(t) for any ¢t € {1,...,T}.
Therefore, we can let C o 1= %(2\1—771(1) | ), and then obtain the desired result.

m(1)(1-7)
(3) When n;(1) >n; and m(1) < 1, we show that

(%) (2) %&%(#1)%’ +Zﬁ‘1—m(t)‘>

t

=1
(i) o 1 C. & 1 O gl 1 C 1 1
< lim 2| —_—m —‘1— Dyt 2L ‘ —1
= e T, <m(1) 7 +Z;mu) mb)y o\ m m m) T T,

t
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where (h) follows from the observation in Step 2 -Case 2- Step 2.1 that m(1) < m(2) <
.<m(T) <1 when m(1) <1 and the result in Lemma EC.7 that Th_r}rol<> ST na(t) —
n;| < C,, when n;(1) >n;; (i) follows from the results in Step 2 that |m(t+1) — 1| <
~v|m(t) —1|; (j) follows from the observation in Step 2 that v < 1. Therefore, by letting

C’:}T = E—(— L | ’m(l) 1\%), we can establish the desired result.

n; \m(1)

In summary, we have that for any i € N1, there exists a positive constant C i such that

T

ai ql(t)’ < Oa.

n;

lim
T—o0
t=1

Step 3.3: Show that there exists a constant C such that [TR — RT(T)| < C}. Note that
for j € B with b; =0, we have ﬁb.(q§7l3-) =0 based on the definition of ﬁbj before the

formulation of (5). Since g} < b; =0, we have q¢}(t) =gm(t) = 0 induced by Algorithm 1,

which further implies that Fbj (1— Zj Et; )¢}(t) = 0. Therefore,

7113302 > ( b, (T,0;) — (1—Zjég)qj<>> = 0.

t= ljeBb—

Similarly, we can establish that for any ¢ € S with 5; =0, we have that ﬁsi (¢;,3;) =0, which
further implies that ¢ (t) =gm(t) = 0. Thus, we have that

oYY ( @5 —FJ(Z{EQ)@@)) -0

t=1 1€8:5,=

Based on the two observations above, with (q*(t),q"(t),s(t),b(t) :t =1,...T) induced by
the TRP, we can deduce that

lim ’ TR — RTR(T) ’

T— o0

= qlgﬂoé ; (ﬁb_i (@,b;) — F,.' (1 - ng)tﬁ(t)) —; (ﬁ (@,5,) — F.! (zi((g)qf(t)ﬂ
= Jm Z oz (szl(l L) -n(1- ngg)q;«t)) - X (F;(Zf)q: -rrE gmt))]
< Thlﬂo; _j€§>o < F(1- Zf)q? (1 ng)q? +F(1- bgéti) E (1 fo;):;;’(t)‘)

(e ()

-1 zf —=s _ -1 q:(t) —s
i i€§>0 ( FSi (gi )qi FSi (Si(t) )qi *
® N N O T (Y N
< TIEEOZ[ 2 <7db ROIRCR O YON RG]
t=1 LjeB:b;>0 J ’
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4 q; —q; (t)D

s 11q -g(t)‘ 'HONE
el B F71(2 S g5 (t ‘
1€8:5;>0
1 T qb t t) T
< i 1 ‘
>~ Z (q] db 71_1;202 b. t + aXF t) Jim
jEB:b; >0 t=1 ~J o
T
7 () 4 (1)
+ Z < ds T—)ooZ gl t ’+maxF (sl(t))jll_l;goz
1€8:5; >0 t=1
(©) g 3 ,
= Z (q] dqub/b T C ) Z (qid?cqf/% ‘H’icq;?) = Cf.
JEB:b; >0 1€8:5;>0 *

where (a) follows from the triangle inequality; (b) follows from Assumption 2(ii) that the

derivative of F, (Fy,) is lower bounded by a positive constant d’ (d), and therefore the

F—l

Si

(

derivative of Fb;1

for any x1, x5 in the domain, otherwise

(w1,22) such that f/(z3) =
to the fact that the derivative of F, ’_1

|Fs:1(x1> _F

Hzo)| <

in Step 3.1- Step 3.2 that Thm thl lgi (t)
—00

) is upper bounded by

|F

—1
X
bj(l

J
)_

F—l
b; (z2)]

|y @) =Fy o)

|1 —z2

lz1—22]

—q;

is upper bounded by -

>_
d]

1

b

d;

- (g5), then £y “(21) — 11y~ (22)] < 5 |T1 — T2
(), then [F 7 (1) — 7 (22)| < 55| |

implies that there exists a x3 €

b?

ng

> # by mean value theorem, which contradicts
j

following the same argument,

— xg| for any x1, x5 in the domam (c) follows from the results

i (1)
ZZ_(t)’ < C% for

any 7 € NT; in addition, F_1 < Ty, and F‘1 < s,. Note that we have 7, < oo for j € B and

Vs, <oo forieS and
Step 4: Show that

<oofor]€Band
when O0<w<1.

- < oo for i € S given Assumption 2(ii).

there exists

a constant

C;

such that

TR — R"R(T)| < C,. We consider the case with m(1) > 1 and m(1) < 1 respectively in

Step 4.1 and Step 4.2.

Step 4.1. m(1) > 1. We show that in this case, Overexpansion = True from the beginning.

g@(”%( )

n;

min
ieNt

{

m(1))}

G: (mi(1),

7((1—w) mlﬂ{"’(l)} +w mm{m })

)

s { ieENt 4 }
= min —
ieN+ n;
. = ni(1)
(a) . g’L <n2(1)7 QZ Zrelrlj\l/.r_"l_{ ﬁi }> (b) . g’L (nl7 qz) X nl
>m1n{ — }>m1 {—}:mm{—
iENT n; iENT n; 1ENT
where (a) follows from 0 <g, <n; and 0 <w < 1; (b) follows from m(1) = 1&&/\1}}r {"%—(1)} > 1.
ic i

As a result, min
1S

1

M} > 1, which means that Over Expension = True from the

n;

beginning, and the update rule when w > 0 the same as that when w = 0. Therefore,

[TR — RTH(T)| < C; by

Step 4.2. 0 <m(1) < 1. We will show in Step 4.2.2 that Over Expansion occurs within a

Step 3.

finite period. After that, the policy with w > 0 becomes identical to the policy with w = 0.

2o,
n;
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Prior to this, we must show that the system converges faster under w > 0 compared to
w =0 in Step 4.2.1 to facilitate our later proof. We next use the superscript w to denote

the value under policy with parameter w.

Step 4.2.1. Show that if 0 <m(1) <1, then 0 <m°(¢t) <m®(¢) <1 for all we (0,1] and for t ={1, ...

T

We already know 0 < mo(t) <1 from Step 2-Case 2. We will respectively show that
mP(t) <mY(t) and m¥(t) <1 for t ={1,...,T}.

Step 4.2.1(i). Show that m°(t) <m¥(¢) for t={1,...,T}. Based on the definition that
m¥(t) = 11161}\1[1{%(0}, it is sufficient to show that n?(t) <n¥(t) for t € {1,...,T} and i € V.

We show it by induction.

We already know that n;(1) is the same under different w as they are exogenously given.
We then show that if n(t) <n¥(t) for any i € N, then n?(t+1) <n¥(t+1) for any i € V.
Since the update rule of TRP depends on the state of the system, we need to consider the
following two cases:

(1). If mj\lﬁ {w} <1 and OverExpension = False, then for any i € NV,
ic i

a () c
n(t+1) 2 G5 (n0(),qm°(1)) < G (n (), qam" (1)) Lt (£ + 1),

where (a) and (c) follow from the construction of two policies, (b) follows from n?(t) < n¥(t)

for any i € A" and m°(t) = min {@} < (1 —w) min {L(t)} + w min {L“)} =m"(t) as
;>0 g i:g;>0 g i:q;>0 i

7, <™.

(2). If m/\lfri {w} > 1 or and OQver Expension = True, then for any ¢ € N,
ic i

n(t+1) = 63 (nd(0),q,m* (1)) <G (nf (1), Gm™ (1)) =n¥(t+1).

where the inequality follows from n(t) < n¥(t) for any : € NV and m°(t) = Argino{n?ﬁ(vt)} <
1M > B
: n(t) — W
pmin, {5} =m0)

Step 4.2.1(ii): Show that m*(¢) <1 for t ={1,...,T}. It is equivalent to show that

m/\lfg {%(t)} <1 for any t € {1,...,T}. We show it by induction. We already know that
ic i

m(1) = mj\lﬁ {"ﬁ—(l)} < 1. Then we show that given m(t) < 1, we have m(t+1) < 1. Consider
ic i

the following two cases:
(1). If mﬁ[ﬁ{w} <1 and OwerEzpension = False, then m"(t + 1) =
i€ i

min {—”;U(ffl)} = min {—gi(n;ﬂ(t&?imw(t))} <1I;
ieN+ i ieN+ i
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(2). If mﬁfg{w} > 1 or OuverEzxzpension = True, then the update rule
ic i

when w > 0 is the same as that when w = 0. We need to show that given m(t) < 1,
1rnj\1[131r {w} < 1, which is already shown in Step 2-Case 2 of Theorem 1.
1€ *

Step 4.2.2. Show that there exists a constant ¢ such that if ¢ > ¢, we have mj\lfri {W} > 1.
i€ :

We first show that there exists a constant m such that if m"(¢) > m, we have
min {w} > 1. For all i € N'F, define s = {0 < m < 1|7; = Qi(mﬁi,qi((l -
w)m+wm {/Iélj{lf{%}) }. Since the RHS of the equation increases in m, and G;(0,0) =0 <mn;
and G; (ﬁi,qi((l —w)+ w?gﬁ{%}))} > Gi(7i,q;) } =7y, we know m; is well-defined.

If m*(t) > m := maxm;, then for all i € N'T,
iENT

g (”z‘(t)@mw(t)> (i_)gi (ni(t)’qi((l —w)m() + wﬁiﬁ{%@}))
2, (e (7,3,((1 = w)m™ (8) + wim™ (1 min{ =" h)
ieN " q,

(C) _,L-/
<G (mﬁi,qi((l — w)r; + win; min{ })) D,

,L'/

where (a) follows from the definition of m™(t); (b) follows from m®(t) < %(t) based

on its definition, and m&{%“’} > mlﬁ{g—}r%{%(”} — min{34}m"(t); () follows

from m"*(t) > m = mﬁ/i(mi; (d) follows from the definition of ;. In conclusion,
ic

min {—g"(ngl(t)j"mw (t))} > 1.

ieN+ ™

We then show that there exists a constant ¢ such that if ¢ > £, we have m™(t) > 7. Define

7 log(1—m)/(1—m(1)) -
t=——er T 1, then when ¢t > t, we have

(a) () () ;
L—m"(t) < 1=m"(t) <7~ (1 =m"(1)) <7/ (1 =m(1) £ 1=,
where (a) follows from Step 4.2.1; (b) follows from Step 2; (c) follows from t > ¢ and
0 <~ <1; (d) follows from the definition of #. Therefore, m™(t) > m for t > ¢,
In summary of the above two claims, we have mj\lfg {W} > 1 for ¢t > t, which
S v
suggests that the system is in the state of overexpansion after a finite period.

Step 4.3: Conclude the case.

lim ’Tﬁ ~ RTR(T) ’

T—o00

= i [Z (fbj (@},0;) — Fy! (1 - ngg)%’(ﬂ) -y (ﬁsi(af,gi) —F;! (Z{g;)qf(t)ﬂ

t=1 jeB
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+ Jim. )3 > (B@ b - £ (1- ngg)qﬂt)) -3 (B@s) - (Z ((f)) )i )]

t=t+1 JEB €S
S E[Zﬁ@@?,gg) - Zﬁ&(qzsagz)}
j€B i€S
i d Fo(@.Dp.)— F1 1_q?(t) big)) — F (3°.5)— F! g (t) s (¢
T A > [Z( b (@, b5) — F, ( bA(t))qf( )> Z( i (@5:) = By (s-(t))qi( ))]
t=i+1 JeB J i€S v
S E[Zﬁb3<a?75j) - Zﬁ&(qfagz)} +O/ = Céa
JjeB €S
where the last inequality follows from Step 3. [ |

Summarizing Step 1-4, we conclude the claim of this result.

Proof of Lemma EC.7. We prove the two claims of this result separately. Given that

the supporting lemma is located in Step 3 in the proof of Theorem 1, we would borrow

some observations from Step 2 in the proof of Theorem 1 in the proof arguments below.

Claim 1. For i € N, when n;(1) > 7;, we further consider the following two cases: (1)

m(1l)>1; (2) m(1) < 1.

(1) When n;(1) > n; and m(1) > 1, we first show that n;(t) > m; for any ¢t € {1,...,T}.
Given that n;(1) > 7, for any i € N'*, we assume for induction purpose that n;(t) >n;,

and then we can establish that

i+ 1) 2 Gin0) 5m(0) 2 Gi(n(0),3) 2 Gi(7) L,
where (a) follows from Algorithm 1; (b) follows from our observations in Step 2 Case 1
in the proof of Theorem 1 that if m(1) > 1, then we have m(1) >m(2) > ... >m(T) > 1,
and in Step 2 Case 3 that if m(1) =1, then we have m(1) =m(2) =...=m(T) =1,
(c) follows directly from Lemma 1(ii). By induction, with n;(1) >n; and m(1) > 1, we
obtain that n;(t) >n; for any t € {1,...,T}.

To proceed, we further notice that for any ¢t € {1,...,T},

ni(t) =7 G, (ny(t — 1),gm(t — 1)) — Gi(7:,,)

g@(m(t = 1) = 1)(Gi)a(ni(t — 1), 7;) + (Mt — 1) = 1:)(Gi)1 (Wi, @),
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where (d) follows from Algorithm 1 and Lemma 1(ii); (e) follows from the concavity
of Gi(-,-) by Assumption 1. Since n;(t) > m;, the LHS of the inequality for (e) is

nonnegative, and we can take the absolute values and obtain the following inequality:

>

ni(t) 7 q,(m(t = 1) = D(Ga(ni(t = 1),3)| + | (st = 1) = 7) (G2 (72, |
S @m0 1]+ Y| @t~ 1) - w6 77
<, Y7 () = 1|+ 3 @t = 1) = 7)(G)i ()|

=2 =2

For (f), we show that (G;)5(n;(t—1),g;) < 1. Define y(n) :=G(n,n (t 1)) by the mean
value theorem, there must exist a n € (0,n;(t — 1)) such that y'(n) = % =
W <1 for n;(t —1) > n,;. Therefore, given the concavity of y(n), y'(n;(t—1)) <
1, which suggest that (G;)(ni(t —1),q;) + (Gi)y(ni(t — 1),G) —5 (t 1y <1, which suggest

that (G;)5(n;(t—1),q;) < 1. Then

T T Y172 (m(1) —1 \ (7T ni(1) — 7,
2| =m < Zl—(g» (< iq)» )“1—gl)gt§a%?f)ql)x () = *1—(2»)3(@@)
B IOk I ORI
- 1—(Gi)1(ni, ;) 1—(G)1 (M, ;)
@-)(m(l)—l) n;(1)—7;

<

Therefore, Tlim S na(t) — . In the end, we define
—00

@), man— T 1-G;
the positive constant
; a,|(m(1) = 1)]
n; = — + )
(1= (G) (@)1 =) 1—=(G)}

which allows us to obtain the desired result.

Given that m(1) <1 and that n;(1) > n;, we consider two cases. In the first case, we
consider the scenario where there exists a t € {2,...,T} such that n;(f) > 7;. In the
second case, we consider the scenario where n;(t) >n; for all t € {1,...,T}.
In the first case, given ¢ € {2,...,T} such that n;(t) < 7;, we want to show that
ni(t) < @; for t >t. We prove the claim by induction. Given that n,(t) < 7;, for any

t > t, suppose towards an induction purpose that n;(t) < m;, and we can establish that

ni(t+1) 2 Gin(t),gm(t) € Gin(t),q) < Gima,) < m, (EC.22)
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where (a) follows from Algorithm 1; (b) follows from the condition that G;(q) strictly
increases in ¢ > 0 and from the observation in Step 2.1 from the proofs of Theorem 1
that if m(1) <1, then m(1) <m(2) <...<m(T) < 1; (c) follows directly from Lemma
1(ii). Therefore, we obtain that if there exists a t € {2,...,T} such that n,;(t) <7,
we have n,(t) < 7; for t > . We then show that ¢ is independent of T. Given the
definition of ¢ as the first time that n,(t) < 7, it is equivalent to show that the value
of n;(t) for 0 <t <t is independent of T. This is true as given n;(1) and m(1), for
te{l,.,t —1}, ni(t+1) = Gi(n(t),g;m(t)), where m(t) = ergjlﬁ{nﬁ’—io} is independent
of T for 1 <t <t—1.

The observations above allow us to deduce that in the first case,

T t—1 T
711_{{.10 n;(t) —m;| = Z n;(t) —m; —|—Th_r)r01<> ) n;(t) —m;
t= t=1 t—1
@ t—1 T () t—1 T
t=1 Iuéajt:; t=1 7u+a3t:;
Gl ~ G 1
= S i) - 7| + 7 m(t)—l‘— SN () - | + 7 m(l)—l‘—
I—~ L—~
=1 t=1
0 @) Il I e
= — nym — Ll
(1-(6:)1 (i, )1 =) 1-(G) 1—v

where (d) follows from the definition of m(t), (e) follows from Step 2, and (f) follows
from m(1) <m(2) <...<m(T)<1if m(1) <1 in Step 2.1; (g) follows from the Case

g; |(m(1)-1) ni(1)—m;

J— 1 . .
G R )=y + =G +1; ——, we obtain the desired

1—7?

(1). Thenlet Cy, = 5

result.

m(1)—1

In the second case, if n;(t) > n; for all ¢t € {1,...,T}, we can apply the same upper
bound as in Case (1) above under Claim 1.
Claim 2. To establish the second claim of this result, when n;(1) <7; and m(1) <1, by
applying the same induction arguments as in (EC.22) from the previous claim, we can
establish that n;(t) <m; for any ¢t € {1,...,T}.
Summarizing the arguments above, we complete the proofs of the two claims in this
result. |
Proof of Proposition 2. Claim (i). Let (r*(t),r%(#)) denote the commission in period t €

{1,...,T} when w = 0; in addition, given the optimal solution to AVG in (5) (z,¢°,¢",5,b),

(t) -
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we define 7;; := Fb;1(1 — ?—J) — Fs*il(g—f), which can be seen as the total commission for each
transaction at AVG in (5). We will respectively show that 7;; > 0 and 7}(t) + r3(t) > 7y
for any (i,7) with ;; >0 in Step 1.2 and Step 1.3. Before that, we need to establish an
auxiliary result in Step 1.1.

Abusing some notations, given any ¢ > 0, we use 3;(¢q) to denote the population level at
which the transition remains stable, i.e., 5;(¢q) := {s > 0|s =G?(s,q)}. Given that G(s;,q)
is increasing and strictly concave in s € [g,00] for any given ¢ > 0 and G7(0,q) > 0 (see
Assumption 1), it can be easily shown that 3;(q) is well-defined. Similarly, we define b;(q) :=
{b>0[b=G"(b,q)}

Step 1.1: show that for any i € S,j € B, if 0 < ¢; < q9, then =2~ < 2. gnd L < 2

Si(q1) — Si(g2) bj(q1) bj(g2)’
> 5—,?22), then we have

Suppose towards a contradiction that

q1
5i(q1)

31(Q1)_' (ﬂ)g( ) s
Sila) =2 Sie) @ 2 050 (e 5(@)

(ggé(gi(ql)q fi(qﬂgz( )) gs< QQagi(ql)gi(q2)>:gf<QI7§i(Q1)>7

5i(q) i) i(q2)
where (a) follows from the definition of 5;(¢2); (b) follows from the strict concavity of Gf (see

2
(EC.20)); (c) follows from Z4) — @ 52(@) 4 whep 4. > _

sila2) T @2 5y @ 5i(q1) (qz)’

in (s,q) for 0 < ¢ <s (see Assumption 1). As a result, we have 5;(¢1) < G (ql, i(q )) which

and G?(s,q) is increasing

contradicts to the definition of 5;(q;). Therefore, if 0 < ¢; < g2, then =2~ < The same

5 (q ) = Sz(q )’
argument holds for the buyer side.

Step 1.2: 7;; > 0 for (4,j) with Z;; > 0. Suppose towards a contradiction that for the opti-

mal solution to AVG in (5) @, there exists (ig,jo) with Z;);, > 0 such that 7, ;, < O0;

based on Lemma 1, we can plug in constraints (5b)(5¢)(5d)(5e) and have 7, ;, = Fy (1 -

le 'L — Z i’ 7 7,
ENpGo) oy _ L(—Lstal o) o) ) < 0. Then we construct another feasible solutlon

]O(ZZ/GNE(]O)EV]‘O) Sig SZO(Z]/ENE(zo) 103/)

& in the following way: let Z;; :=7;; for (¢,7) # (io, jo) and Z;,;, := 0. We can show that &

leads to a higher objective value of AVG:

— a i i Tyt _ Ty
R@ < Y fij(Fbju—_ZENE(” ) - EY( 2 yee(o T )

(i,5)€E bj(Zi’eNE(j)ji/j) T s J'ENE(5) 'T”

— -1 Zi’eNE(jO) fi/]‘() -1 Z] 'e€Ng(io) xlOJ
=Tigj0 (1 - — —F (—
jo(Zi’eNE(jo) 372”]'0) SiO(Z] '€NE(io) xlOJ

-y EZ/ -y i "/
LY m (R e T gy enn V)

i€NE(jo) N bjo (Zi’GNE(jo)fi’jo) ' Ei(Zg 'eNg(i )IU )

SiO
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+ > .(Fb’l(l— 2 veNs() T )— F 2 j/eNpio) Tiod’ )>
07 i T — Sin \= —
jeNm(io) bi (D irens() Tirs) 0 Sio (2 jrenp i) Tiog’)

. x’L/ ,’L’,L
by (R e gy o))

(i,)€E i#i0,j#jo bj(Zi’eNE(j) Ty;) ' Ei(Zj/eNE@ Lyjr
(<b) T (F_1<1 . ZiIGNE(jO) xi/j() ) —F_l( Zj'GNE(i) wij’ >
ijo b = — s (=
i€NE(jo) " bjO(Zi’ENE(jO) xi'jo) Si (Z] "€Ng (i) ng )

ZZ"EJ\GE(J‘) ji/j _F! ZJ"GNE(io) ji@j,
+ Z l’zo] l_) Sig (—‘ (Z ~ ))
JENE(ig) j(21 "€NE(F) T ]) Sio J'€Np (i) Lios’

-y . ,CL"/' , N
+ Z j}l] (Fb_l(l - ZZ ENE(]) ) _ stl(_ Z] ENE(’L) ~]
5i(2yrenp L)

: ) =R(&),
(4,§)€E izio,j#jo i (D irens ) Tirs)

where in (a), we plug in the constraint (5b)(5c)(5d)(5e) into the objective func-
tion, where the inequalities in (5d)(5e) hold based on Lemma 1; (b) follows from

(Fb;01(1 _ _ 2ieNgGo Tt ) — F7(= Zj/ENE(iO)Eiojl )) < 0 and furthermore, ZieNE(j)fij <

bio (X4 eN g (o) Ti' o) Sig \Sig (X251 e N (ig) Tigs’)

D ieng () Lij for any j € B and 32 n, i) Tij < D jeny ) Tij for any i € S based on the con-
struction of & and the result in Step 1. As a result, R(Z) < R(&), which contradicts to the
optimality of . Therefore, 7;; > 0 for (4, j) with z;; > 0.

Step 1.3: 75(t) +ri(t) > Ty for (i,7) with a;; >0. When w =0,

s =1 q?@) —1 qZS(t)
(a) -1 @?m(t) 1 Qfm(t) ®) -1 q? -1 ﬁf _
_Fb]- (1_ b](t) )_FjsZ ( Sl(t) )21-717J (1_i)_Fsl (51)_ iy

where (a) follows from the policy rule, (b) holds because when w =0, f(t) = m(t) < 22

for any j € B and m(t) =m(t) < si()

In summary of Step 1.2 and 1.3, r§(t) +r%(t) >7;; > 0 for (i,7) with z;; > 0.
Claim (ii). We define ¢ such that mAlfn {w} <1 for t € {1,..,f} and
—_— Ze 7

1rnj\1[1}r {M} > 1. Then for t € {t+1,..., T}, the update rule when w > 0 is the same
ic i

as that when w =0, and we have already shown that r{(t) +r%(t) > 0 for (4,j) with z;; >0
(see Step 1). We next establish the result for t € {1,...,t — 1}.

Define k;; := mm{
J gnggfcqz ’ maxqz
€

i) (R = O}. Given that Fbj (

z Si

—%_Y for (i,5) € E and define Zij 1= {z € (K/ij,‘i_OO)’Fb;l(l -

%) _ Fol(%8) = —5, < 0 when z = k;; and
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Si

Fb;1(1 — ) — F Y (%) =7, >0 when z =00, and Fb;1(1 — ) — F (%) is increasing in

z, we know z;; is well-defined. Then

b
Ly GO g ()
J() () =F, (1 — ) — F (2
Tz( )+T]( ) b; ( b](t)) S; (Sl(t))
() T t 7H t
Drt(—w- B min M8y - gL i ()
J bi(t) ien+" P st ient g
—b —
; t 2 t
<F'(1-w 9 min { nl(z —F N (w G 1hin nl(z
j b;(t) ten+ max gy si(t) ten+ max gy
g () g i)
=F(1—w—2 - )—F, ! : A )
J Ilpaqu, (1) Epaqu, si(t)
(0) i ij\ (¢
<F(1- =20 - (=) B,
J WZzij bWz

where (a) follows the definition of m(t); (b) follows from the definition of k;; and the
condition that max{s;(t),b;(t)} < wz;; mj\lfg n;(t); (c) follows from the definition of z;;. W
1€

Proof of Corollary 1. Under TRP,

b U N 1 N
YO =0+ i 950 = B0 = 0= S = i)

<

Since 71(t) are the same across types and Fy, are assumed to be homogeneous across types,
=b

the Y} (¢) only differ when W are different. Similarly, we can show that I7(t) depends

bj

,\ m\‘s\

only on )

For any te {1 ., T}, for any positive constant p, by constructing p;(t) =p and 7{(t) =

p—F;! (1—q1 )foranyzES b(t)=F, (1—%8) —p for any j € B, we obtain a feasible

commission (see Lemma EC.1). For this solutlon, we can see that r2(t) depends only on

@
-1 g5
. b . . 3.
and deceases in 75, while rf(¢) depends only on and decreases in 4. [ |
b i

; 5
bg i

EC.2.3. Proof of Results for MP

Proof of Proposition 3. We denote by (rMFP(t),pMFP(t),q*M(t), g*MT (t),zMP(t)) the
optimal solution to the optimization problem for the MP in Definition EC.1. We con-
sider the following problem instance: Consider a simple network in which there is only
one buyer type and one seller type with initial population s(1) = b(1) > 0. Given the
MP (4)

commissions r induced by the MP, we let the populations for the next period be
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(sMP(t+1),bMP(t+1)) is updated by sMF(t+1) = asMP(t)+ B(¢>MF(¢))* and bM P (t+1) =
abMP (t) + B(¢*MP(t))¢, where we assume 3 >0 and 0 < £ < 1 so that the Assumption 1
holds. In addition, we let F(-) and Fy(-) be the distribution functions over [0,1] from the
uniform distribution.

We establish two claims to complete the proof.

Claim 1: lim;_,., RMP(t) exists . We divide the proof arguments into the following steps.

In Step 1.1, we show that if a steady state induced by the MP exists, we characterize the
properties of the steady state. In Step 1.2, we show that the populations converge to the
steady state under the platform’s MP. For simplicity of notations, we let R™¥(¢) denote
the profit in period ¢ under the MP.

Step 1.1. Characterize the quantity g”* and the profit B ina steady state. We first

define a steady state as such that the populations and transaction quantities remain
unchanged after the population transition in each period. Given the definition of a

steady state, under the platform’s myopic policy, the steady-state population vector
(FMP pME Zmp
9

S ,q"") should satisfy the following three conditions:
_up q q
g’ = arg max [(1 — =P W)q} , (EC.23a)
0<q<min{sMP 5" "} 8 b
P = azMP 4+ B(@T)s, (EC.23Db)
o7 = ab™ 4 BT (EC.23¢)

Condition (EC.23a) ensures that given the population in each period (M7 ,EMP), the plat-
form’s commissions r could induce the equilibrium quantity g"* to maximize its profit
in the current period (see Corollary EC.1 for the formulation of optimization problem);
(EC.23b) and (EC.23c) ensure that the population vector (sM” ,EMP) remains unchanged
after the update in each period.

For Problem (EC.23a), from the first-order-condition a%[(l — P — EMLP)Q} =0, we
can obtain that g"* = %, which falls in the region (0, min{s"" ,EMP}). Thus, the
optimal solution to (EC.23a) is an interior point. Together with the equations in (EC.23b)-
(EC.23c), we obtain that

P <E>1i§,l—)MP _ k(E)IE‘S,EMP _ k<§>1££
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where we let k = % for simplicity of notations. This allows us to show that the profit

induced by the platform’s MP satisfies that

MP —MP

—=MP q q _MP L kNt
v = (TS - 3™

Step 1.2: For the seller side, show that there exists a v € (0,1) such that [sMF — sMP (¢ 4 1)| < |(FMF —

Next, we establish the convergence of the platform’s MP. Without loss of generality, we
prove the convergence on the seller side, and notice that the same argument would hold
for the buyer side as well.

Since we have sM”(1) =bMP(1) in the problem instance, and in each iteration we have
sMP(t+1) = asMP(t) + B(¢MF(t))s and bMF(t+1) = ab™P(t) + B(¢MF ()¢, we obtain that
sME(t) =bMP(t) for any t € {1,...,T}. Based on this observation, we can obtain that

MP q q
g’ (t) = arg max { (1 — — )q}
0<g<min{sMP (1) bM P (1)} sMP(t)  bMP(t)

= argmax){(l— 1 1 )q} = SMP(t).

0<q<sMP(t SMP(t) - $MP(t) 4

From the optimal solution ¢ (t) above, we obtain that

sMP(E 1) = as™P (1) + B¢ (1) = as™ (1) + 5<SMZ(”>?

Abusing some notations, we let g,(s) := as+3(2)¢ for any s > 0 such that g,(sM") =517
based on the condition in (EC.23b). To proceed, we consider the following two cases that
sMP(1) >sMF and sMP(1) <sMP:

(1) When s™P(1) >3sM? | we want to show that sM7(t) > M for t € {1,..,T}. By induc-
tion, if sMP(t) >sMP we have sMP(t + 1) = go(sMP(t)) > g,(sM") =sMP, where the
inequality follows from the fact that g,(-) is an increasing function. Since s™7(1) >
sMP we obtain that sMP(t) >3sMP for t € {1,..,T}.

Based on the observation above, we can establish that

gS(SMP(t))—EMP @ gs(sMP(t))—gS(EMP) (%) SMP(t)—EMP g,(EMP>7

sMP( 4 1) _EMP‘ _ ’
(EC.24)

where (a) follows from the observation that sM?(¢) > sM¥ for t € {1,.., T} in this case;

(b) follows from the condion that g, is concave given that g,(s) = as + 5(%)¢ with
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a € (0,1). Moreover, we have ¢.(sMF) < 1 given that g,(0) =0 and g,(3MF) = sMF
and so by the mean value theorem, there exists a 3 € (0,5M7) such that ¢.(5) =
%ﬁ:gs(o) = 1. Since g,(+) is concave, we have that ¢/(s"") < ¢/(5) =1 given that
sMP > 5. By letting v, := ¢.(3M7), we establish that there exists v, € (0,1) such that
|sMP — sMP(t 4 1) < | (3MF — sMP(t))] for t € {1,...,T — 1} if sMP(1) > sMP. From
the definition of g,(-) and 3™, we see that v, is independent of T.

When sMF(1) <sMP | we want to show that sMF(t) <sM¥ for t € {1,..,T}. If sMP(t) <
sMPwe have sMP(t+1) = g,(sMP(t)) < gs(8MF) =sMP | where the inequality follows
from that g,(-) is an increasing function given that s™¥(t) < M. Since s (1) <sM?,
by induction we obtain that sM?(t) <sM? for any t € {1,..,T}.

Then, we can establish that

sMP — g (sMP(t)) (0 sMP — g, (sMP(1)) (i) 1
SMP _ gMP () sMP _ gMP(q) ’

where in Step (c), we establish the following set of observations: (c-i) we first

establish that % decreases in s > 0 by showing that @(%) =

0s
(=50 (5)_g: (45T ) with the inequality following as (s) is strictly concave in s >
(ngMP)Q ) q Yy g Js y jl
0 such that sMF = g, (3MF) < g,(s) + (3MF — 5)g.(s); (c-ii) we then show that sMF(t) >

sMP(1) for t € {2,..,T}. Note that g,(0) =0 and g,(s™) =3P, Since g,(s) — s is

strictly concave in s > 0, by the Jensen’s inequality, we obtain that g,(as™’) — a3

a(gs(3M7) =)+ (1—a)(gs(0) —0) =0 for 0 < a < 1. Therefore, we have g,(as™”) >
asM? for 0 < a < 1, which further implies that sM?(t +1) = g,(sMF(t)) > sMP(t) given
that 0 < sMP(t) < sMP. Thus, we can obtain that sM7(t) < sM™F(t + 1) < sMF for

.. . . . . . EA/IPfgS(sMP(t))
t € {1,..,7 —1}. Combining the observations in (c-i) and (c-ii), since PTGy
decreases in sMP(t) and sMP(t +1) > sMP(t) > sMP(1) for t € {2,..,T — 1}, we have
that Step (c) holds. For Step (d), we have sMF(1) < sMF(2) = g,(sMF (1)) < g,(sMF) =

sMP where the first inequality follows from sMP(t + 1) = g,(s™F(t)) > sMF(t) for

MP>

0 < sMP(t) < M based on previous discussion; the second inequality follows from the
condition that s™”(1) <sM” in this case and g,(.) is a increasing function; the last

equation follows directly from the observation in (EC.23b). Therefore, we have that

§IVIP7g5(sMP(1)) 1
SMP_gMP (1) :

EIV[P—QS(SMP(l)) MP_gS(SJ\IP(t)

By lettlng Yo = W, we obtain that W < Y2, which 1rnphes that

SMP = gy (M (1) D5V = gy (M (0) S (317 = MO (1)) L[5 - M (1)
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where (e) and (f) follow from the observations that s (t) <sM¥ for t € {1,..,T}. In
summary, there exists a 7, € (0,1) such that [sMF — sMP(t 4 1)| < 4, |(8MF — sMP(1))|
for t € {1,...,T — 1} if sMP(1) <sMF. Again, from the definition of g,(-), we see that
72 is independent of T'.
In summary of the two cases above, we let v := max{~v;,72}, which allows us to obtain
the desired result.
Claim 2: For any € > 0, there exists a € (0, 1) for the population transition in this problem
instance such that R < €R. For the AVC in (5) given the problem instance before Step
1, we have that
R=mp (1)

st.0<qg<s, 0<q<b, s<as+pBq¢, b<ab+ .

In addition, based on Lemma 1(ii), the inequalities in the last two constraints are both tight
Note that s = as+ B¢¢ and b= ab+ fq¢¢ are equivalent to s = b= kq*, where k = = By
plugging s = b= kq¢ into the objective function we obtain R = MaXg<<kqé (1 — # — k—qg)q.
Since (1 — k;;g — %)q is concave in ¢ > 0 for 0 < £ < 1, from the first-order condition, we
have q = (2(2]“_ 6))%’ which satisfy 0 < G < kq®. Thus, the optimal commission 7 and the

optimal profit R for the instance of the AVG in (5) satisfies that

R = <1_kiq5_kiqf>q:;:§(2(2]ig)>u’

which further implies that 2— = (%) 7 2= PT3) E) Therefore, we can obtain that
R et 2-¢
lim — = hm( ) = 0.
51 R -1\ 2 2(1-¢)

EC.3. Proof of Results in Section 5

In this section, we develop some auxiliary results that are needed for the proofs of results
in Section 5 in EC.3.1. We then respectively prove the results from Section 5.2 in EC.3.2
and those from 5.1 in EC.3.3.



ec39

EC.3.1. Auxiliary Results for Section 5.
In this section, we first develop a simper formulation for Problem (5) in (EC.30). To do
that, we first characterize the properties of Problem (5) in Lemma EC.8 and Lemma EC.9.
Next, we reformulate it in Lemma EC.10, and will further simplify its formulation into
(EC.30) in Lemma EC.11. We then show the connection between the optimal solution to
(EC.30) w* and (S;, B;) constructed in (10) in Lemma EC.12. The proof of the auxiliary
results follows a similar argument to the proof of Lemma 1, Lemma 2 and Proposition 10
in Birge et al. (2021). Therefore, we omit the detail of the proof of auxiliary results for
simplicity.

To develop an equivalent reformulation in (q,x) for AVG, recall from Lemma 1(ii)
that the relaxed population dynamics constraints s; < afs; +Gi(qf) and b; < abb; 4+ G2(q))

with the optimal solutions to AVG are tight. Together with (7), on the seller side, we
Bs ql )t

have s; = for any i € §. We further let £} := B f ~, which allows us to obtain that
si=ki(q; )55 for any ¢ € S. Similarly, on the buyer 51de we have b; = kb(¢?)% for any j € B,

=k (¢f)® and b; = kb(¢})® into AVG, we

where kb

obtain the follovvlng reformulation of AVG:

R = max [ZFb kD) = Folar ki (4)) (EC.25a)

j €S
st g <k (g, Vies, (EC.25b)
@ <KNg)™, VjeB, (EC.25¢)
> =g, Vies, (EC.25d)

J:(i.5)EE
= ) oy, VjeB, (EC.25¢)
i:(1,7)EE

where F,(-) and Fy(-) are defined before Problem (5).

For & € (0,1) and & € (0,1), define y,(q) := F, ' (1—(g)*™*) ¢ for 0 < g < 1. Define
ys(q,u) == —F1 (S‘ﬁ;) qfor0<g<wandu>0,ys0,0):= o 1)13%0 0 ys(q,u). For simplic-
ity of notations, we let y;(q) := dyd”—y) for 0 < g <1 and (ys))(q,u) = Bysa(g’“ for 0 < g < u.
Furthermore, we let y;(0) := limyl’)(q) yp(1) == limy{,( ); for u > 0, we let (ys);(0,u) :=
i (ys)1(g,u), (ys)y (v, u) = hm(ys) (g, u); for Q>0 we let (ys)2(q, q) = lim (v, )5(g, u). We

show in the following lemma that all of the limiting values are finite.
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LEmMA EC.8. (i) yy(q) is continuously differentiable and strictly concave in q € [0,1];
(i) ys(q,u) is continuous and strictly concave in (q,u) € {(¢',u') : 0 <q¢ <u'}; moreover,
ys(q,u) is continuously differentiable in (q,u) € {(¢',u'):0<¢ <u',u' >0};
(111) for any 0 <& <1, —(1—¢&5) [F;l]/(x)x — FY(x) strictly decreases in x € [0,1].

s

Before the next auxiliary result, we define

plu) = argmax (u(q)+yslau)). for u >0, (EC.26)
0<g¢<min{1,u}

h(u) = ( (a0, ) for u > 0. EC.2

(u) pe nax ys(q) +ys(q,u) or u>0 (EC.27)

Given the definition of p(u) and h(u) above, we proceed to consider the following auxiliary
result about (p(u),h(u)) for u > 0. Notice that —(y,)}(u,u) = (1 — &)[F, ) (1) + 75 > 0,
which is a constant. To support our proof arguments below, when u > 0, if y;(0) > (1 —

EFTT (1) +05, we let := ()~ (1= &) (1) +74); i g,(0) < (1= &) [F (1) + s,

we let w:=0.

LeMMA EC.9. (i) p(u) is a well-defined and strictly increasing in u > 0; moreover,
given u > 0 defined before the lemma statement, @ =1 forue (0,u] and % strictly
decreases in u > u;

(i) h(u) is continuous, strictly increasing and strictly concave in u > 0.

We next develop an alternative optimization for Problem (EC.25). Consider the following

optimization problem:

— ) 1=¢
V = max Y |(¥)7E h(%ﬂ (EC.28a)
= ()™
st (w;)T6 = 2, jeB (EC.28b)
i:(i,j)EE
2= (k)T i€, (EC.28¢)
J:(ij)eE
2; >0, V(i,7) € E. (EC.28d)
where
h(u) = max  F, (11— (q;)%)q F_l((aj)l_&)N- for any u >0 (EC.29)
 0<gj<min{lu} ° @ G5 w6 ) v ’

and h(0) =0. We consider the following result:
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LEmMMA EC.10. We have the following equivalence properties between Problem (EC.28)
and Problem (EC.29):
(i) let (z,q°,q%) be the optimal solution to Problem (EC.25), and construct (w,z) such

b b
that w; = (Z—Z;(kf)ﬁ)l_gb for any i:x;; >0 and z; = Q;J (ks) T, q; = (kb)qﬁ; then

(w, z) is the optimal solution to Problem (EC.28) and g; is the optimal solution to
1
—&

Problem (EC.29) with u; = %;
(k) =

(ii) let (w,z) be the optimal solution to Problem (EC.28) and g; is the optimal solu-

tion to Problem (EC.29) with u; = (1g) "5 , then construct (z,q°,q") such that x;; =
G

1 1 1

2 (kY T 3 T8 & (k) T=E . 1 ,
20 nd gy = BB for iy >0, ¢ = (K) TR G, then (x,q°,q") is

(wj)l_gb wl_gb

the optimal solution to (ECj.25);
(iii) Problem (EC.25) and Problem (EC.28) share the same optimal objective value, i.e.,
R=V.

We can further simplify the formulation in (EC.28) in the following Lemma EC.11.

LEmMA EC.11. Problem (EC.28) and the following problem share the same optimal

solution vector w,

Y = max Y [(/gg)llsbh<(wﬂ')—lf")] (EC.30a)
Y e (Kb)=e
st Y (w)TE < (k3)™s, VB C B, (EC.30b)
jeB i€Ng(B)
w; >0, VjeB, (EC.30c)

and moreover, Y =V where V is the optimal objective value for Problem (EC.28).

The next lemma establishes the connection between the optimal solution w* to Prob-
lem (EC.30) and the network components G(S, U B;, E.) constructed in (10). Given the

finiteness of the network G(SU B, E), the iteration in (10) yields a maximum index 7.
1

PN e
(W3) 7% Yies (k)17

J
b\Tog
(k]

LEmMA EC.12. For any 7 €{1,...,7} and any j' € B,, we have

)1 ZjeBT(k?)ﬁ .
EC.3.2. Proof of Results in Section 5.2.
Proof of Proposition 4. Recall that we have established the connection for the opti-

mal solution and the optimal objective value of Problem (EC.25) with those of Problem
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(EC.28) and Problem (EC.30) in Lemma EC.10 and Lemma EC.11. Therefore, we focus
on characterizing the properties of optimization problems in (EC.28) and (EC.30) instead
of (EC.25) in this proof. We have already shown that (EC.28) and (EC.30) share the same
optimal solution w* in Lemma EC.11. To prove the claim, we consider the buyer side in
Step 1 and the seller side in Step 2.

Step 1: Establish the ranking of buyers’ service levels and payments. Based on Lemma

EC.10(ii), we let (w,z) be the optimal solution to Problem (EC 28) and g¢; is the opti-
(w7)

mal solution to Problem (EC.29) with the parameter u; = . We know the optimal

()T
solution to Problem (EC.25) satisfies
qé? (a) (q?)l_gb (b) 1—g, © q_g ((w;) %
b L0 = (g;) =P 1
: (k) s

where Step (a) follows from the observation that b; = k%(¢?)% in Problem (EC.25); Step
(b) follows from the solution property of g; in Problem (EC.29) by Lemma EC.10(ii); Step
(c) follows from the definition of the optimal solution p to Problelm (EC.26). Therefore,
the ranking of service levels ( b)JeB is the same as that of ( (@ )JEB.

(k015
For buyers’ payments, we know that

b N
min {pz}—kr = [ < _q_]> = Fbl(l—p<<w‘7)—1b)>.
i':(i',j)EE bj (kg)@
Therefore, the ranking of buyers’ payments ( (ml])a E{pfx} + T’?)jg[g is the opposite of
i':(i',5)€
1
(w;)ﬁ»
<p<(kb)1 & jGB

By Lemma EC. 9(i), we have that p(u) strictly increases in v > 0. From Lemma EC.12,

1 1
w) T8 2 (k) 1=8s . _
we know that ) = Z 1 ® )# for j € B, and 7 =1,...7. Furthermore, the def-
(k)15 Xjen, (k) 1%
1
e ) ) Yien ., (Br) (K18 ) ) . _
inition in (10) implies that E T strictly increases in 7 =1,...,7. Therefore,
> ‘EBT(kb) =8
we have ’ ’
¢
ﬁ:ﬁ, for ji,jo € B.,7€{1,...,T},
1 jo
¢
4 < ﬁ, for jl € Bq—l,jg € 87—2,7'1,7'2 c {1, ,?} and 71 < To.
j1 jo
and

{pi}+ ;: mln {pz,}—H“p, for ji,jo € B, 7 €{1,...,7},

Z’(lJ)EE i g2
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(mu)l E{pz }—i—r > (mln {pi }—i—rm, for j1 € B,,,jo €B,,, 71,2 €{1,...,7} and 7 < To.
(i j1)€ il (!

Step 2: Establish the ranking of sellers’ service levels and incomes. To establish the rank-

ing of sellers’ service levels, given the optimal solution w to Problem (EC.30) and the
1
(wj) '~
1
(K§) 1=

optimal solution g; to Problem (EC.29) with parameter u; = , we have that for any

i€S and j:x;; >0,

(EC.31)

S; k2

(2

@ @ @) v (;;((wj)lléb/(k;)l—lsb))l—ss

N (wj)ﬁ /(k;)ﬁ ,
where (a) follows from our discussion before Problem (EC.25) that s; = k$(¢F); (b) follows
from Lemma EC.10(ii) for j : z;; > 0.

We next show that for any 7 # 72, we have z;; =0 with i € S;, and j € B,,. Based on
Lemma EC.10(ii), it is equivalent to show the optimal solution to Problem (EC.28) satisfies
that for any 7 # 7, z;; =0 for i € S;, and j € B,,. We show it by induction. Again to
simplify the notation in Problem (EC.28), we let W, := (w,)*~ =& and Y= (k)% % for any
j € Band let 7 := (kf)ﬁ for any i € S. We first consider 7 = 1. The buyers in 3; can only
trade with the sellers in S; given that they are not connected to any other seller types. It
remains to show that the sellers in &; only trade with the buyers in B; at the platform’s
optimal commissions. Suppose towards a contradiction that there exist 7 # 1 such that

zi; > 0 for some i € S and j € B, then

DD DEEED DD DS D DI DR

i€81 ji(i,j)EE €81 j:(i,))EE,jEB €81 j:(i,))EE.j¢ B
@ () ©) >ies, Vi .
> D w2 WS ) uistig=) Ul (B3
JEB i:(i,j)€E,ieS) jEBL jeB JEBL YT jes;

where (a) follows from the assumption that z;; > 0 for some i € §; and some j € B,, with
71 # 1; (b) follows from (EC.28b); (c) follows from the observation in Lemma EC.12. In
summary, » ;s Zj:(i,j)eE Zij > D _ies, Vi, which violate Constraint (EC.28c). In summary,
we have that z;; =0 for all ¢ € S; and j € B;, if 71 # 1. Assuming that B, only trade with
S, and vice versa, we proceed to show that B, ., only trade with S, and vice versa. First,
the buyers in B, only trade with the sellers in S;,1, because they are not adjacent to
the seller types from S,/ for any 7/ > 7+ 1; and the seller types with an index lower than

7+ 1 does not trade with them based on our previous discussion. Second, S, only trade
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with B:.1, otherwise we can also obtain > ;s > nep2ij > Dics,,, ¥i following the
same argument in (EC.32), which violate Constraint (EC.28¢c) to Problem (EC.28) given
that Problem (EC.30) is a reformulation without loss of optimality. In summary, for any
T1 # T, z;j; =0 for ¢ € S;, and j € B;,. This allows us to show that for any i € S; with
7=1,...,7, we have that if j:x;; >0, then we obtain that j € B;.

Thus, regarding the sellers’ incomes, for any ¢ € S; with 7=1,...,7 and any j: z;; >0,

we have that
1

_1_
p;—r; = F! <q_’> — ! (p((w]) _gb/(kg) 1’5b) ) .

(wg) 5% () T8

1 s %
(w)T&  Dien,, 4Bk

Since “—— = : for j € B, with 7=1,...,7 in Lemma EC.12, we can
(k) 1= jen, (k)¢
1 1
next focus on the ranking of ’ ZiENEPl(BT)(kf)1755/2].667(,6?)1_£b)

. 3 for r=1,...,7. Recall from
EIiEAQET,l(BT)<kf)17§S/§3jesf(k§)1’§b
1
ZieNET_l(BT)(kf)lffs . . . _
Step 1 that T strictly increases in 7 =1,...7. Based on Lemma EC.9, for
Yien, (Ko %

some constant u > 0, we have that @ =1for0<u<wuand @ strictly decreases in u for

u > u. Define 7 := max{7|u; <u for j € B;}. We observe that (i) for any 7 <7, we have

4 _ plw) _ =1 (p(w)\ _ —1(1\ _ = : (5 ~
.= % =1 and p} —r} = F] (%) =F; (1) =w,, for i € S;; (ii) for any 7 > 7, we have
1 1
p(Zien, . (B FD 178 /v B, (K178 . . .
ET—1 " 1e% 9. strictly decreases in 7. Therefore, we can summarize that
ZiENET—l(BT)(kf)1_€S/ZjEBT(k?) =%

%G 4, o _
== 2 for iy,i € S,,7€{1,...,7},
Siy Siy
q‘? ~
= =1, forieS,,7<T,
S
%G 9, : , ~ _
— > = fori; €8,,,i2€S,,, 11,2 €{T+1,...,7} and 7 < 7.
Siy Siy
and

P = =p; =i, for iy, € S, 7€ {1,...,T},

pi —r; =7, forieS,,7<T,

P =i > Pl =T, for iy €8,,,i0€S,,, 11, €{T+1,...,7} and 7 < 7.

Summarizing the two steps above, we conclude the claims in this result. |

Proof of Corollary 2. Given the definition of (k*k’) at the beginning of Appendix
EC.3.1, for any & € (0,1) and & € (0,1), we first let ¢f = (k’f)ﬁ and ¢} = (k’é’)ﬁ for
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simplicity of notations. We consider the equivalent reformulation in Problem (EC.28) with
decision variables (w, z) by Lemma EC.10 and Problem (EC.30) with the decision variable
vector w and Lemma EC.11. We let W; = (wj)ﬁ for all j € B.

Notice that it is without loss of generality to consider a connected graph G(S U B, E)
for the proof arguments. We prove the impact of ¢* and ¥° on the service levels in Step 1,
and then the impacts on supply/demand and population in Step 2.

Proof of Claim (1): Establish the impact of 1)* and 9° on the service levels. Recall from

Step 1 in the proof arguments of Proposition 4 that for any j € B, when becomes

wb
b

larger under the optimal solution W' to Problem (EC.30), ; ﬁ becomes larger at the optimal

solution as well. As a result, we can focus on the impact of Y* and ¥’ on —i Wi for jE€B..

Step (1-i): Establish the impact of (¢0%,%") on the service levels of the buyer side. Let

(W, z) be the optimal solution to (EC.28) given parameters (1*,9°) and let {(S,,B;):

7=1,...7} be the network components obtained from (10) given this parameter set. We
define the index set 7; := {7|i € S;} and 7, := {7|j € B }. We consider an alternative vector
(Qﬁs,zﬁb) in which we pick any i€ S, and let lﬁf > 1p2; we also let qﬁf :=1? for all z;«éz and
let 1/3? = w;? for all j € B. Then we obtain that the parameter vector (1&3,1/31’) has only one
entry on the seller side that is higher than in (¢, ¥?). Let (W, 2) be the optimal solution
to (EC.28) given the parameter set (¢°,9"), and let {(S,,B,):7=1,...7} be the network
components obtained from (10) given this parameter set for some positive integer 7.

To prove the claim of this step, we want to show that W; < W for all j € B. This leads
to the observation that W” < W, given our construction that 1/)” b for all j € B. In this
way, we can claim that a ]hlgher 1 leads to weakly hlgher L for all j € B.

Suppose towards a contradiction that there exists a j; € B such that W, > le at the
optimal solution. Based on Constraint (EC.28b), we have that ;v ;) 2ij = Wj, > W, =
ZiENE(jl) Zijr, which implies that there exists a 41 € Ng(j1) such that z;,;, > 2;,;, > 0. Simi-
larly, given i1 € Ng(j1), based on Constraint (EC.28¢), we have that > ..y ) Zij =¥, <
’gbfl =5 jeNg(in) Zinj Where the inequality follows from the construction of ’gb above. This
implies that there exists jo € Np(i1) such that 0 < z;,;, < Z;,j,. Using the same argument as
above, there must exist a is € Ng(j2), 12 # i1 such that z;,;, > 2;,;, > 0 and there exists some
Js € Ng(i2) such that 0 < z;,;, < Z,,. In this iteration, given the finiteness of the graph, we
have that there exists a finite list (ji,1,,49..., jn) such that W;, > W, and W, <W;,.
We let By ={j1}, and S; = {i|i € Ng(j1), zi,js > 2i,j, > 0}. For t € {2,3...}, we further let
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B, ={jlj € Np(i),0 < z;; < 2, Vi€ S;_1}, and S, = {i|i € Ng(j), zi; > 2;; >0, Vj € By_1}.
We have that % := Uicp1,.. 0B and 7 := Ujeqr,.. 1Sy are the sets of all possible buyer types
and seller types accessed within the first 2t steps in this iteration. Since %4;_; C %; C B and
|B| is finite, there exists a finite ¢ such that %; = %;_,, i.e., the set %, stops expanding.
Under the assumption that W; > VT/jl at the optimal solution for j; € B;, we next show
that there exists j € %; such that W; < W We further suppose towards a contradiction
that W; > W, for any j € %;. Consider the set of seller types S :={ili € Ng(j), Zij > Zij >
0, Vj € %;}. We can show that SC #; by definition. Moreover, we would obtain that

DD IEED DD LD ID DI

i€S i€S Jizij>Zij i€S Jizij<Zij i€S Jizij =i
(@) . .
= E 5 Zz'j-f-g E Zij
i€S J:%ij>%i i€S Jizij=%ij
< E 5 Zij + E E Zij
i€S J:%ij>%i €S Jizij=%ij
. s
DD LDV LMD U D B
i€S J:%ij>%i i€S Jizij>%ij i€S J%ij =% i€S

where in Step (a), with SC.% = Useqa,...5yS1, in the iterative construction above, given that
By = {jlj € Ng(i),0 < 2zi5 < Zij, Vi € S;_1} and that %7 = Ucqy 7B, the subset of buyer
types {j : zi; < Z;; for some i € S} should be a subset of %;; based on the definition S =
{ili € Ng(j), zi; > 2;; > 0, Vj € %4}, we have that z;; > 2;; for any i € S and j € %;, which
further implies that {j : z;; < 2, Vi € S} =0 and that Doied Dty
observation that ) . =97 <> . =] contradicts with the fact that ), _zv7 > > . 597 by

Zi; = 0. However, the

construction of (&S,ﬁb) above. Therefore, such a contradiction implies that there exists
a j; € B, C %; for some | € N, such that W;, < W), Thus, there must exist a finite path
(41,91, J2,92..., 1) for j, € B, and i, € S; such that z;,;, >0 for t € {1,..,{} and 2;, ,; >0 for
t€{2,...,1} under the assumption that W, < W,. For any t € {1,...,1 — 1}, we let 7,
and 7, be the corresponding index for the seller subgroup for &; and the buyer subgroup
B, by the iterative construction in (10). Since z;,;, > 0, we know that 7;, = 7;,. With the
iterative construction, we have j, 1 € Np(i;), which satisfies that 7;, <7, ., given that S,
is not adjacent to B, with [ < 7;, with the iterative construction in (10). In summary,

Wiy based on Lemma EC.12. Therefore,

Tj =7, <7,=...< T]l, which implies that d)b W’

W

¢b '



ecd7

We proceed to show that the constructed solution (W, %) cannot be the optimal solution
to Problem (EC.28) given the parameter set (¢)°,¢)?). We first send a flow € along Jn —

In-1—> Jn_1—> ... — i1 —> j1 to construct a new feasible solution (W, 2): since wg" > “ and

Zis gy >0 for all t € {1,....,n — 1}, we can pick any e € (0, min{ (W}, A;?I — VVn an)/( ?1 +
?n) {zlt Jt+1}}) for ¢ € {1 - 1}’ let gitjt = 2itjt +€, gitjt-&-l = ’éitjt-‘rl — € gij =

Zij for all (Z,j) # (i4Jis1), (4,7) # (itjt). Let le = T/T/'jl + € and an = VT/jn — €, Wj/ = Vi/j/
for all j' # ji,j’ # jn. We next verify the feasibility of this new solution (W z) in Problem

,,,,,

(EC.28). Since € < {lm {zzt jes1 ), We can obtain that Z;,;,,, > 0 such that Constraint
te

(EC.28d) is satisfied. In addltlon, in our construction of the new feasible solution (W, z),
since we only send a flow € along j,, — i,—1 — jn_1 — ... = i1 — j1, Constraints (EC.28b) -
(EC.28¢) are preserved. Thus, (W, 7) is feasible in Problem (EC.28). We define the super-
gradient of h(u) as Oh(u) = {z € R|h(t) < h(u) + 2(t —u),Vt > 0}. In addition, we define
O0_h(u) := inf{Oh(u)} and O0;h(u) := sup{Oh(u)}. Given the strict concavity of h(u) for
u >0, we have that if us > wuy >0, then 0, h(us) < d_h(uy), which implies that

—~ —~ N

() ko) = () ina(B)

@b?” . @bjl ) 1bjn ) )
> 5h <ZV_§> +edh- <%> + ?h(j—;) - 68h+<mfb_ )
" 7 " Jn

A A

> dhn() + ()

n

where the first inequality follows from the concavity of h(-) in R ; for the second inequality,
. . Wi, + Wi ¥ Wi W, +e Wi, —e
since wg wgl and € < W we have 1/}*’ 1/’)}1 , and therefore, 0 h( é?n ) <

Oh_ (V‘?; Wi+ Since other terms in the objective function remain unchanged, (W, %) leads to
J1

a strictly higher objective value than (W, 2), which contradicts with the fact that (1, 2)

<>

be the optimal solution to (EC.28) given the parameter set (1%, 9?).

In conclusion, we have that w—,f § o L for all j € B. This concludes the claim about the
J

impact of ¢7. For the impact of ;/J;’, we can apply exactly the same proof-by-contradiction

arguments as above to establish that when zpé increases for any 36 B, then we have that

the optimal solution 2% decreases for any j € B.

,[pb
Step (1-ii): Establish the impact of (1%,4°) on the service levels of the seller side. For the

impact of 1® on the service levels of the seller side, we first recall the construction of
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(1*,10") based on (1*,%") in Step (1-i), which satisfies that @f > 2, P =g for all i £ 1
and 1&? = ¢? for all j € B. Without loss of generality, we suppose that a type-i seller trades
with type-j; buyer where i € S;, and j; € By, given the parameter set (°,1°); and given
the parameter set (@ES, Q/A)b), we suppose that the type-i seller trades with type-j, buyer for
some jy € B;,. The index satisfies that [, > [; given that S, is not connected with B; for
any t <[y by the iterative construction of network components in (10). Therefore, we have
that ‘;V,fl < LV,ZQ < wf, where the first inequality follows from Lemma EC.12 given that
Iy > 11, and the second inequality follows from the same arguments in Step (1-i). Since
type-i sellers have positive trades with type-j; buyers in the optimal solutions given the
parameters (°,1°), and with type-j, buyers in the optimal solutions given the parameters
(1,1)%), based on the observation that ¢§1 § 7, , we can establish that

@ @ (p(le/¢?1))l_§s 2 (Bl (;./ @Q)us © & (EC.33)
Si Wi /s N W/,

5’
where Step (a) and Step (c) follow from the optimality equation in (EC.31) from the proof
arguments in Proposition 4; Step (b) follows from the fact that £ monotonlcally decreases
in z >0 (see Lemma EC.9). In summary, when ¥ increases for any i € S, we have that Z—
becomes weakly lower for all 7 € S.
Using the same arguments above, we could establish the impact of ¥* on the seller side:

when v]ll increases for any 36 B, we have that 27 becomes weakly higher for all 7 € S.

Proof of Claim (2): Establish the impact of ws and 1* on transaction quantities and populations.

Recall from (8) that we have ¢} = z/}b( )1 % and b, = ¢b( )1 & for any j € B at the
optimal solution to Problem (5) given (7) We establish thls claim in the following two
substeps.

Step (2-i): Establish the impact of 1)® on the transaction quantities and populations. For

any j € B, recall from Step (1-i) above that if wb increases for any j 7é 7, or if Y= increases
for any b= S, then Weakly decreases at the optimal solution. Given that q] wb(qj )-8 fb
we can establish that as 1/); increases for any j 3& 7, then qj weakly decreases at the optimal
solution for any j € B. From ¢’ = T/Jb( )1 = , we have that b; = ¢%(¢})® for any j € B, which
further suggests that b; weakly decreases at the optimal solution for any j € B.

For any j € B, it remains to consider the impact of ¢)? on (¢},b;) at the optimal solution

for j € B. We first show that q? increases in 1/1? >0 for any j € B. Recall from Constraints
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(EC.25d)-(EC.25e) that Y, s @7 =D ics D jiyer Tij = 2ojen 2itig)er Tij = Djes ¢}, which
means that qé? =D ies @ — D jizjjien q?,. Since higher ng leads to weakly higher ¢f for any
i € S and weakly lower ¢, for any j' € B with j' # j, we conclude that higher ? leads to
weakly higher q;?. Similarly, higher 1] leads to weakly higher ¢;.

Step (2-ii): Establish the impact of 1* on the transaction quantities and populations. By

applying the same arguments as in Step (2-1), we can establish that (g;, s;) weakly increases
in 97 for all i € S, and ¢} and s; weakly decreases in ) for any ¢’ # ¢ and weakly increases

in ¢§) for all j € B. [ |

Proof of Proposition 5. Let (x,q*, q°) be the optimal solution to Problem (EC.25);
we let u; = (wj)ljiﬁb/(k:;’)ﬁ for any j € B where (w,z) is the optimal solution to the
reformulation into Problem (EC.28) (see Lemma EC.10). Recall that for given 7=1,...,7
from (10), type-i sellers for i € S, trade with type-j buyers for j € B,. Moreover, for any
i€ S, and j € B,,

b
s | b —1 q; ) —1( q;
b= F (1—— _F
= ) ' e

) = B (100 (w) - FS—1<0155 (uj))7

1_55
u;

where the first equation follows from the conditions in (EC.1a) and (EC.1c) where the
expressions of s; and b; are given before Problem (EC.25); the second equation follows from
the observations in Lemma EC.10(ii) and the definition of p(u) in (EC.26). In addition, at
the optimal solution, the value of u; for any j € B, increases in 7 =1,...,7 (see Lemma
EC.12 and the definition in (10)). For simplicity of notations, we let r(u) := F, *(1 —
% (u)) — Fs_l(%) for any u > 0. Recall the definition @ := (y,) "' ((1 —&)[FY) (1) +
U,) before Lemma EC.9.
We prove the two claims of this result.

Claim (1). If u; <@, we have p(u;) = u; (see Lemma EC.9(i)). This implies that F, (1 —
p o (uy)) — Fs_l(%) = F,;'(1 — u;~®) — F;1(1), which is decreasing in u; € [0,1]
given that Fy(-) is ajstrictly increasing function in [0,7°] (see Assumption 2). We let 7 :=
max{7|u; <u for j € B,}. Together with the fact that at the optimal solution, the value of
u; for j € B, increases in 7 =1,...,7, we obtain that the value r(u;) increases in 7 < 7.
Claim (2). If w; > @, we know that y;(p(u;)) + (vs)i(p(u;),u;) = 0. Define Y (gj,u;) :=
vy (q;) + (vs)1 (g5, u;) given the definitions of ys and y, before Lemma EC.8: for any &, € (0, 1)
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and gb € <O7 1)7 yb(Q) = F1b_1 (]‘ - (Q)l_gb) q for 0 < q <1

and ys(q,u) = —F; ! ((5)11::> q for

0<g<wand u>0,ys0,0):= lim ys(q,u). We have that

(¢:u)—(0,0)

Y(G5,u;) = vp(@) + ()1(G5 1))

~(@-nzoEy (-3 e (1-779) )

+ ((55 0)-Le (Y (ufgs) R (uq_g) >

Since Fy and F, are twice differentiable, we know that FS_1 and Fb’1 are continuously

differentiable, and therefore Y'(g;,u;) is continuously differentiable at (g;,u;) for 0 <g; <

min{u;,1}. By the implicit function theorem, there exists a continuously differentiable

function p(u;) such that g; = p(u;) given Y (g;,u;) =0.

with respect to u;, we obtain

By differentiating Y (p(u;),u;) =0

J

(€= 1) (6 Dl ()" (2282 ) (6= 2y (e

(& — D)p(uy) =% fi+ (& — Dus 2 plu;) 2% f,

fo:=(&—2)p(u )éb(F ) (1 —p(u )1 fb) (& — 1)p(uy)(F; 1)// (1 —p(uj)l_gb) 7
fs = (gs - 1)p(uj)u§3(Fs_1)” (pl_fg_(;f])) + (fs - 2)Ujp(uj)55 (Fs—l)/ (pl_fg_(;f])> .

U;

U

We proceed to show that f; <0 and f, <0 for later use:

for=(1—&)p(u;)® < 2 —6) (B 1) (1= p(uy) =) 4+ p =5 (g ) (B )" (1= pluy) =) )

(&—1)
(a)

17{5(

< (1=&)p(u;)® ( —2(F,N) (1= pluy) =) 4 p' =% (uy ) (B, )" (1= pluy) =) ) <0,

()

fs= (& — Duyp® (uy) <P1 55(“3) SN EY (P w6

(c)

where (a) and (c) follow from the facts that & € (0,

§§b< —2 and 5“ &2 > 2 given that (£}, ')’ >0 and (F

follow from the condltlons that —F, '(a/b)a and F,

u;) §s—2, 1y Plf&s(uj)
)*&—“FS >< >>

U

¢ 1=&s (s 1=&s (s d
2 6 g ) (' Y <”u—§)> +2(FY (”—2)) )20,

1) and &, € (0,1), which imply that
1> 0 on the domains; (b) and (d)

'(1 — a/b)a are concave in (a,b) for
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0<a<band b>0 by Assumption 3, and therefore %(F;1)” (%) +2(F,; ') (%) > 0 and

GF)(1=9)—2(F, ') (1— %) <0. In summary, we have f, <0 and f, <O0.
inally, we want to establish how r(u;) =F, (1 —p 7 (u,)) — F, % changes 1n
Finall blish h J)=Fy (1= pl 6 (uy)) — F Y (E) ch i

S .
J

u; > 0. Again, given the continuity of r(u), we define the sup-derivative
or(u)={zeR | r(t) <r(u)+2(t —u), Vt >0},
which implies that
Or(u) = (& —1)p(u;)~*p (u) (Fy 1) (1= pluy)' =)
(& = 1)us 2 pluy) ™ (ugp(ug) — pluy)) () (%) :

Plugging in the expression of p/(u;), we obtain that

or(u) = (& —1)(& = Dp(uy) (fr + fo+ f3)
((fb - 1)32 &p( )2£sfb + (55 _ 1) (uj)ngfs)a

where

15 (4.
fi= (@—1Mm<>@“uz>"a—pw»kﬁﬂﬂfy<ﬁzﬁéﬁ>’

U;
P ()

i = 56— Eplusy) ¥ (B >u—mjf€ﬂ@;W(—ﬁ7r>-

fo= (& — Dus p(uy)HH (EF (1= pluy)' =) (F7Y” (g@)

U,

Based on the observation above, we discuss the two cases of this claim:
(i) if Fy(v) and Fy(v) are convex in v € [0,9,] and v € [0,7,), we have (F, ')”(v) <0 and
(F71"(v) <0 in their domains. Given (F; ') (v) >0 and (F;') (v) >0, p(u;) <1 (see
(EC.26)) and &,,& € (0,1), we know that f; >0 and f; > 0. Since & =&, f3 =0.

y)

Therefore, the numerator of 2 is positive. Since f; <0 and f, <0, the denominator

of %jjﬂ) is positive. In summary, 8T(UJ > 0 for u; > u;

(ii) if Fy(v) and F,(v) are concave in v € [0,7,] and v € [0,7;] respectively, we have
(F;H"(v) > 0 and (F71)"(v) > 0, then f; <0 and f, < 0. Therefore, T( )<O for
u; > u.



ech2

EC.3.3. Proof of Results in Section 5.1.
Proof of Theorem 2. Recall that R(E,¢*,¢°), V(E,°,*), V(E,¥*,4) are respectively
the optimal objective value to (EC.25), (EC.28) and (EC.30). To simplify the notations,
we use R(E), V(E), Y(E) to denote R(E,*,9°), V(E,*,4°), Y(E,*,4°). From Lemma
EC.10 and EC.11, we have that R(E) = V(E) = J(E). Therefore, to prove the claim in this
result, it is equivalent to focus on Problem (EC.30) and show that Y(E) > (1 —¢)V(E).
We next consider Problem (EC.34) below with an additional constraint Fj *(1— q;_&’) —
Fs_l(%) > r for some r € R in comparison with Problem (EC.30). We then show that
even tile problem with this constraint can obtain the objective value weakly higher than
(1 — €)Y(E), from which we can conclude that Y(E) > Y"(E) > (1 — €)Y(E). Given the
edge set E of the complete graph, for any edge set E C E, we define this auxiliary problem

below

YH(E) = max Z [(ks)l_lgbh<%,r)] (EC.34a)

jeB (k{? i

st Y (w)re< Y (k)T VB C B, (EC.34b)
JjeB iENE(B)
w; >0, VjeB (EC.34c¢)
r < Uy, (EC.34d)

where for any u >0,

Nl_é's

— —1pq A&y -1(4 ~

h(u,r) = oo nax (Fb (1—q %) —F, <—u1§s>>q' (EC.34e)
RN e = B

Step 1: Show that Y(E) > Y"(F). Note that the only difference between (EC.34) and
Ats
(EC.30) is that one more constraint Fy, ' (1 — (g;)' %) — F,* (qj

S

) >r for any (i,j) € E is
added to Problem (EC.34). With r <7,, we have that the constraint for the maximization
problem in (h,r) is non-empty given that solution g =0 is feasible. Therefore, the solution
to Problem (EC.34) is also feasible in Problem (EC.30), and two problems share the same

objective functions. Thus, we have that
Y(E) = YM(E).

Step 2: Show that Y"(E) > (1 —¢)Y(E). To establish the claim, we first reformulate the
optimization problems for Y"(E) and Y(E).
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_1
Step 2.1: Reformulate the problem for Y"(E). With u; = (1wg)” fb for any j € B, we define
(KT8

Nl*é.s
4;(r,u;) := max {5 r<E7N1—(q)t %) - B (q >,0 <g< min{l,uj}}. (EC.35)

1_53
u;

Note that since F, '(1 — ¢'~%) — F (Q) strictly decreases in ¢ € [0,min{1,u;}], we

s ut
J
know §;(r,u;) is unique given (r,u;). Given that r is a lower bound of F; '(1 — (g)*~%) —
Fs_1< ((51?)11_,5;> and §;(r,u;) is suboptimal to Problem (EC.34e), the optimal objective
J

value Y"(E) from Problem (EC.34e) is weakly higher than the optimal objective value of

following optimization problem

1
1 1§,
max Z(kg)qrqj (r, W—b>

e (ks

s.t. Zwﬁ < Y k)Te, VB C B,
jeB tENg(B)
w; > 0, Vi € B,
r <7

1

For any 7 € (—o0,7%] and € € (0,1), we observe that (wj)ﬁ = (k:;’)ﬁ(l - E)M

Yienk) =%
is feasible in the optimization problem above given that w; >0 for any j € B and for any

BCB,

1
T i’ ksl 1-¢s
S w = Sk - g e tTE syt
eB

1
b\1—¢,
jeB > jren(ky) o ieNp(B)
where the inequality1 follows directly from the condition in the theorem statement. By

letting w := M, we have that

en(kh) T

1
. kS 1-&s —
M) = max (k?) 1_1517 T(jj (7’, (1 — E)ﬂ)-

(k)= =

VH(E) = max (k) Targ;(r, (1)

r<uvy

NRINg

jeB jeB
Step 2.2: Reformulate the problem for J(E). We first show that given the graph set to the

complete graph G(SUB, E), the optimal solution to Problem (EC.30) satisfies (w;‘,)ﬁ =
1

(k?,)ﬁ% for any j € B. Given the definition of (S;,5;) in (10), in a complete
Yjen(k) o0 -
graph, we have that B; = B, as for any B C B, we have that
PR 1 1 5\ —+
EZiGA%Kéﬁ(ki)l_% (@) Ejies(kf)l_& g? z:ies(kf)l_& o E:ieA@KB)(ki)lfﬁ
EEE 1= I i
E:jeé(k€)17% E:jeé(kg)lf% E:jeB(kg)lfgb E:jeB(k?)lf%
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where Step (a) follows from the fact that network G(SUB, E) is complete Step (b) follows

T—¢, ,5 ,
from the condition that B C B. By Lemma EC.12, we have w ')# = Ziesk) 5 for any
(ko)1= T iep(k)) 5

j' € B. Therefore, we can obtain that
508 - 3o Sl
jeB ZjeB(k?) %

Similar to Step 2.1, given definition of A(.) in (EC.29), we could reformulate h(.) by defining
that

~1 53
q:= argmax } <Fb—1(1 — 3 ) —Ft (;1_&;))@ (EC.36)

ge[0,min{1,w}

where we recall that we have set —Eles () 7€

ZJEB(kb)I gb
(q)1=%) — Fgl((?;—:Z), given definition of A(.) in (EC.29), we have that

=1 in Step 2.1 above. By letting 7 := F, (1 —

1
— 1 (k) TE 1
V(E) = Z(kg)lsbh(—zl@( 2)1) =) (K)~erg.
jeB ZjeB(k?)lfg” jeB
Step 2.3: Establish that Y"(E) > (1 —¢€)Y(E). To establish the claim, for any j € B, we
want to show that §;(7, (1 —e)u) > (1 —€)g.
By the definition of ¢;(r,u) in (EC.35), we have that for any j € B,

g; (7, (1 — €)u) := max {a: T<F'(1-¢ %) —F! (ﬁ) ,0<g<min {1,(1~ e)ﬂ}}-

For simplicity of notations, we use ¢; to denote §;(T, (1 — €)u). Since F, '(1 — g*=%) —

Fs_l(((lg)l%) decreases in ¢ € [0,min{1, (1 — €)u}], we have that either 7 = F, '(1 —

1 _ 1€
(d,)°%) — Fy (o) or ¢ =min{1, (1 - e)a}.
For any j € B, to show that ¢;(7, (1 —€)u) > (1 —€)g, we consider the following two cases:
(1) if ¢; =min{1, (1 —€)u}, then ¢; =min{l, (1 —€)u} > (1 —e)min{l,u} = (1 — €)g, where
the last equality follows from the constraint in Problem (EC.36);

1€
(2) if r=F; (1 - cjjl &y — F‘l(((qj—,_), then based on the definition that ¥ = F (1 —

s 1—e)u)l—¢s
gt ) — F‘l(gt;) in Step 2.2, we have that

S

_1_§S ~1 fs
_1 —1-¢ _1( 4 -1 A1—€ -1 4;
Fb (1—(] b)_Fs (ﬂlgs) _Fb (1_q] b) Fs <((1—6)ﬂ)1_§s).
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Note that F, '(1 — ¢'=%) — F‘l(fl:iz) strictly increases in u > ¢ > 0 and strictly

S

decreases in ¢ € [0,min{1,u}]. With the equation above, given that 0 < (1 —€)u <7,

e, gt

we have that g > ¢;, which further implies that gl_gs < ((172)@1_55. This allows us
to establish that ¢; > > ((1 — e)u)'~* gi:is = (@)% (1 — €)'~%. Therefore, we have

Summarizing the two cases above, we can establish that

YE) L SR TErg (- om 2 ST - 07 € (- oV(E),

jEB jeB

~

where (a) follows from Step 2.1 and 7= F; '(1 — (g)' %) — Fs_l(g%) < F,7'(1) =y (b)

follows from the observation that ¢;(7, (1 —e€)u) > (1 —¢€)g for any j € B; (c) follows directly

from the reformulation in Step 2.2. [



