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E-Companion for POM Journal Template

The additional results and proof of Section 3, Section 4 and Section 5 are respectively

provided in Appendix EC.1, EC.2 and EC.3.

EC.1. Additional Results and Proof in Section 3

We first present some additional results in Appendix EC.1.1. We provide some Auxiliary

Results used to prove the results in Section 3 in Appendix EC.1.2 and we prove the results

in Section 3 in Appendix EC.1.3.

EC.1.1. Additional Results in Section 3

Proposition EC.1. (existence and uniqueness of equilibrium) For any t ∈

{1, ..., T}, given a commission profile (rs(t),rb(t))∈RNs×RNb and the total mass of agents

(s(t),b(t))∈RNs
+ ×RNb

+ ,

(i) a competitive equilibrium (p(t),x(t),qs(t),qb(t)) always exists;

(ii) all competitive equilibria share the same supply-demand vector (qs(t),qb(t)), and they

share the same prices pi(t) for 0< qsi (t)< si(t) .

Lemma EC.1. (commissions for feasible transactions) For any t∈ {1, ..., T}, given

any positive population vector (s(t),b(t)) and non-negative trading vector (x(t),qs(t),qb(t))

that satisfy (i) the flow conservation conditions in (2c)-(2e) and (ii) qs(t) ≤ s(t) and

qb(t) ≤ b(t), a commission profile (rs(t),rb(t)) supports (s(t),b(t),x(t),qs(t),qb(t)) in a

competitive equilibrium if there exists a price vector p(t) ∈RNs that satisfies the following

system of linear inequalities:

pi(t)− rsi (t) = F−1
si

(qsi (t)
si(t)

)
, ∀i : qsi (t) > 0, (EC.1a)

pi(t)− rsi (t) ≤ F−1
si

(qsi (t)
si(t)

)
, ∀i : qsi (t) = 0, (EC.1b)

pi(t)+ rbj(t) = F−1
bj

(
1−

qbj(t)

bj(t)

)
, ∀(i, j) : xij(t) > 0, (EC.1c)

pi(t)+ rbj(t) ≥ F−1
bj

(
1−

qbj(t)

bj(t)

)
, ∀(i, j) : xij(t) = 0. (EC.1d)

Consider the following convex optimization problem:

R(T ) = max
s,b,x,qs,qb

T∑
t=1

[∑
j∈B

F−1
bj

(
1−

qbj(t)

bj(t)

)
qbj(t)−

∑
i∈S

F−1
si

(qsi (t)
si(t)

)
qsi (t)

]
(EC.2a)
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s.t. qsi (t)≤ si(t), ∀i∈ S, t∈ {1, ..., T}, (EC.2b)

qbj(t)≤ bj(t), ∀j ∈B, t∈ {1, ..., T}, (EC.2c)∑
j′:(i,j′)∈E

xi,j′(t) = qsi (t), ∀i∈ S, t∈ {1, ..., T}, (EC.2d)

qbj(t) =
∑

i′:(i′,j)∈E

xi′,j(t), ∀j ∈B, t∈ {1, ..., T}, (EC.2e)

xij(t)≥ 0, ∀(i, j)∈E, t∈ {1, ..., T}, (EC.2f)

si(t+1)≤Gsi (si(t), qsi (t)), ∀i∈ S, t∈ {1, ..., T − 1}, (EC.2g)

bj(t+1)≤Gbj (bj(t), qbj(t)), ∀j ∈B, t∈ {1, ..., T − 1}. (EC.2h)

From Problem (EC.2), we can establish Proposition EC.2, which enables us to solve a

concave maximization problem to obtain the optimal solution (s,b,x,qs,qb) to Problem

(EC.2), from which we can further establish the optimal commission profile (rs,rb) by

solving a set of linear inequalities in (EC.1) of Lemma EC.1.

Proposition EC.2. (tightness of relaxation) For any T ≥ 1, Problem (EC.2) is a

tight relaxation of Problem (3): R∗(T ) =R(T ) and any optimal solution (s,b,x,qs,qb) to

Problem (EC.2) is also optimal to Problem (3).

EC.1.2. Auxiliary Results for Section 3

Lemmas EC.2 - EC.4 are needed to prove Proposition EC.1. In Lemma EC.4, we establish

the connection between the equilibrium and the optimal solution to an optimization prob-

lem in (EC.4). Before that, we establish some properties for the optimization problem in

Lemma EC.2. We also establish the existence of the optimal solution to this optimization

problem in Lemma EC.3, and show that it is essentially unique. These lemmas enable us to

establish the existence and uniqueness of the competitive equilibrium in Definition 1. The

proof of Auxiliary Results follows a similar argument as the proof of Proposition EC.1 and

Proposition 9 in Birge et al. (2021). Therefore, we omit the detail of the proof of auxiliary

results for simplicity.

For simplicity of notation, we first define that

W t
bj
(qbj(t)) :=

∫ qbj (t)

0

F−1
bj

(
1− z

bj(t)

)
dz− rbj(t)qbj(t), (EC.3a)
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W t
si
(qsi (t)) := −

∫ qsi (t)

0

F−1
si

( z

si(t)

)
dz− rsi (t)qsi (t). (EC.3b)

Note that the sum ofW t
bj
(qbj(t)) andW

t
si
(qsi (t)) can be viewed as the total surplus of buyers

and sellers trading in the platform, and is the objective function in Problem (EC.4). Let

W t′

bj
(q) be the derivative of W t

bj
(q) at q = qbj(t) for any 0< qbj(t)< bj(t), and abusing some

notation, W t′

bj
(0) = lim

qbj (t)↓0
W t

bj
(qbj(t)) and W t′

bj
(bj(t)) = lim

qbj (t)↑bj(t)
W t

bj
(qbj(t)) given Assumption

2(i). Similarly, we letW t′
si
(q) be the derivative ofW t

si
(q) at q= qsi (t) for any 0< qsi (t)< si(t),

and we let W t′
si
(0) = lim

qsi (t)↓0
W t

si
(qsi (t)) and W

t′
si
(si(t)) = lim

qsi (t)↑si(t)
W t

si
(qsi (t)) given Assumption

2(i). We consider the following properties of functions W t
bj
(qbj(t)) and W

t
si
(qsi (t)).

Lemma EC.2. For any j ∈B, i∈ S and t∈ {1, . . . , T},

(i) W t
bj
(q) is continuously differentiable and strictly concave in q ∈ (0, bj(t)); moreover,

both W t
bj
(q) and W t′

bj
(q) are right continuous at q= 0 and left continuous q= bj(t).

(ii) W t
si
(q) is continuously differentiable and strictly concave in q ∈ (0, si(t)); moreover,

both W t
si
(q) and W t′

si
(q) are right continuous at q= 0 and left continuous q= si(t).

For any t∈ {1, ..., T}, we proceed to consider the following optimization problem:

W (t) = max
x(t),qs(t),qb(t)

∑
i∈B

(∫ qbj (t)

0

F−1
bj

(
1− z

bj(t)

)
dz− rbj(t)qbj(t)

)

−
∑
i∈S

(∫ qsi (t)

0

F−1
si

(
z

si(t)

)
dz+ rsi (t)q

s
i (t)

)
(EC.4a)

s.t. qbj(t) =
∑

i′:(i′,j)∈E

xi′,j(t), ∀j ∈B, (EC.4b)

∑
j′:(i,j′)∈E

xi,j′(t) = qsi (t), ∀i∈ S, (EC.4c)

qbj(t)≤ bj(t), ∀j ∈B, (EC.4d)

qsi (t)≤ si(t), ∀i∈ S, (EC.4e)

xij(t)≥ 0, ∀(i, j)∈E. (EC.4f)

From Problem (EC.4), we establish the result below. Before that, we define the notation

“a≤ 0⊥ b≥ 0” as a≤ 0, b≥ 0, ab= 0.

Lemma EC.3. (i) There exists an optimal solution (x(t),qs(t),qb(t)) to Problem

(EC.4).
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(ii) Given any optimal primal solution (x(t),qs(t),qb(t)), there exists a dual multiplier

vector (θb(t),θs(t),ηb(t),ηs(t),π(t)) associated with constraints (EC.4b)-(EC.4f) that

satisfy the KKT conditions below:

F−1
bj

(
1−

qbj(t)

bj(t)

)
− rbj(t)− θbj(t)− ηbj(t) = 0, ∀j ∈B, (EC.5a)

F−1
si

(qsi (t)
si(t)

)
+ rsi (t)− θsi (t)+ ηsi (t) = 0, ∀i∈ S, (EC.5b)

θbj(t)− θsi (t)+πij(t) = 0, ∀(i, j)∈E, (EC.5c)

qbj(t)− bj(t)≤ 0 ⊥ ηbj(t)≥ 0, ∀j ∈B, (EC.5d)

qsi (t)− si(t)≤ 0 ⊥ ηsi (t)≥ 0, ∀i∈ S, (EC.5e)

xij(t)≥ 0 ⊥ πij(t)≥ 0, ∀(i, j)∈E, (EC.5f)

qbj(t) =
∑

i′:(i′,j)∈E

xi′,j(t), ∀j ∈B, (EC.5g)

qsi (t) =
∑

j′:(i,j′)∈E

xi,j′(t), ∀i∈ S. (EC.5h)

In addition, these KKT conditions in (EC.5) are necessary and sufficient conditions

for the optimality of solution (x(t),qs(t),qb(t)).

(iii) All primal optimal solution (x(t),qs(t),qb(t)) share the same vector (qs(t),qb(t));

(iv) The dual solution θsi (t) for i∈ {i′ : 0< qsi′ < si′} that satisfies (EC.5) is unique.

The conditions in Lemma EC.4(i)-(ii) are sufficient and necessary conditions, while those

in Lemma EC.4(iii) are only sufficient conditions for equilibrium, as the prices for type

i∈ {i′ : qsi′(t) = 0 or qsi′(t) = si′(t)} are not necessarily unique.

Lemma EC.4. In each period t∈ {1, ..., T}, given any commission profile (rs(t),rb(t))∈

R|S|×R|B| and population vector (s(t),b(t))∈R|S|×R|B|,

(i) (x(t),qs(t),qb(t)) satisfies the equilibrium conditions in Definition 1 if and only if it

is an optimal solution to Problem (EC.4);

(ii) for i ∈ {i′ : 0< qsi′(t)< si′(t)}, pi(t) satisfies the equilibrium conditions in Definition 1

if and only if

pi(t) = θsi (t). (EC.6a)
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(iii) for i∈ {i′ : qsi′(t) = 0 or qsi′(t) = si′(t)}, pi(t) satisfies the equilibrium conditions in Def-

inition 1 if

pi(t) = θsi (t). (EC.6b)

Before proceeding, note that functions F−1
si

(·) and F−1
bj

(·) have the following properties

in an equilibrium:

(1) On the seller side, if pi(t)− rsi (t)≤ 0, then qsi (t) = 0 and

F−1
si

(qsi (t)
si(t)

)
≥ pi(t)− rsi (t), (EC.7a)

if 0< pi(t)− rsi (t)< vsi , then 0< qsi (t)< si(t) and

F−1
si

(qsi (t)
si(t)

)
= pi(t)− rsi (t), (EC.7b)

if vsi ≤ pi(t)− rsi (t), then qsi (t) = si(t) and

F−1
si

(qsi (t)
si(t)

)
≤ pi(t)− rsi (t). (EC.7c)

(2) On the buyer side, if mini′:(i′,j)∈E{pi′(t)+ rbj(t)} ≤ 0, then qbj(t) = bj(t) and

F−1
bj

(
1−

qbj(t)

bj(t)

)
≥ min

i′:(i′,j)∈E
{pi′(t)+ rbj(t)}, (EC.8a)

if 0<mini′:(i′,j)∈E{pi′(t)+ rbj(t)}< vbj , then 0< qbj(t)< bj(t) and

F−1
bj

(
1−

qbj(t)

bj(t)

)
= min

i′:(i′,j)∈E
{pi′(t)+ rbj(t)}, (EC.8b)

if mini′:(i′,j)∈E{pi′(t)+ rbj(t)} ≥ vbj , then q
b
j(t) = 0 and

F−1
bj

(
1−

qbj(t)

bj(t)

)
≤ min

i′:(i′,j)∈E
{pi′(t)+ rbj(t)}. (EC.8c)

EC.1.3. Proof of Results for Section 3

Based on Lemmas EC.2 - EC.4, Proposition EC.1 is proved as below:

Proof of Proposition EC.1. We establish the following two claims of this result.

Claim (i). Lemma EC.3(i) implies that the optimal primal solution to (EC.4) always exists,

and Lemma EC.4(i) implies that the (x,qs,qb) is the equilibrium if and only if it is the

optimal primal solution to (EC.4). Therefore, the equilibrium transaction vector (x,qs,qb)

exists.
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Lemma EC.3(ii) implies that the optimal dual solution to (EC.4) always exists, and

Lemma EC.4(ii) implies that p that satisfies the equality in (EC.6) is the equilibrium price

vector. Therefore, there exists a corresponding equilibrium price vector.

Claim (ii). Lemma EC.3(iii) implies that the optimal primal solution (qs,qb) to (EC.4)

is unique. Lemma EC.4(i) implies that the (qs,qb) is the equilibrium if and only if it is

the optimal primal solution to (EC.4). Therefore, the equilibrium supply-demand vector

(qs,qb) is unique.

Lemma EC.3(iv) implies that the optimal dual solution θs to Problem (EC.4) is unique

for i ∈ {i′ : 0< qsi′ < si′}, and Lemma EC.4(ii) implies that pi(t) = θsi (t) for i that satisfies

0< qsi (t)< si(t). Therefore, the equilibrium price is unique for i that satisfies 0< qsi (t)<

si(t). ■

Proof of Lemma EC.1. We establish the sufficiency of (EC.1) in Step 1 and construct

a feasible commission profile in Step 2 to show that the feasible commission profile always

exists.

Step 1: Sufficiency. We show that for any (qb(t),qs(t),x(t)) that satisfies (2c)-(2e), if vector

(rs(t),rb(t)) satisfies the conditions in (EC.1), then it satisfies the conditions in Definition

1.

We first verify the conditions in Definition 1, in which (2c)-(2e) immediately follow from

our conditions.

(2a) We consider the following two cases:

When qsi (t)> 0, si(t)Fsi(pi(t)− rsi (t))
(a)
= si(t)Fsi(F

−1
si

(
qsi (t)

si(t)
)) = qsi (t), (a) follows from

(EC.1a).

When qsi (t) = 0, 0≤ si(t)Fsi(pi(t)− rsi (t))
(b)

≤ si(t)Fsi(F−1
si

(
qsi (t)

si(t)
)) = qsi (t) = 0, (b) fol-

lows from (EC.1b).This implies that the inequalities are all tight, then si(t)Fsi(pi(t)−

rsi (t)) = qsi (t).

(2b) We consider the following two cases:

When qbj(t) = 0, then xij(t) = 0 for any i : (i, j) ∈ E, then 0 ≤ bj(t)
(
1 −

Fbj( min
i′:(i′,j)∈E

{pi′(t)} + rbj(t))
) (c)

≤ bj(t)
(
1 − Fbj(F−1

bj
(1 − qbj (t)

bj(t)
))
)
= qbj(t) = 0, where (c)

follows from (EC.1d).This implies that the inequalities are all tight, then bj(t)
(
1−

Fbj( min
i′:(i′,j)∈E

{pi′(t)}+ rbj(t))
)
= qbj(t).
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When qbj(t)> 0, pick a i1 such that xi1j(t)> 0 we have pi1(t) = F−1
bj

(1− qbj (t)

bj(t)
)− rbj(t)

based on (EC.1c); if there exists any i2 such that xi2j(t) = 0, we have pi2(t)≥ F−1
bj

(1−
qbj (t)

bj(t)
) − rbj(t) based on (EC.1d); then min

i′:(i′,j)∈E
{pi′(t)} = F−1

bj
(1 − qbj (t)

bj(t)
) − rbj(t) , then

bj(t)
(
1−Fbj( min

i′:(i′,j)∈E
{pi′(t)}+ rbj(t))

)
= bj(t)

(
1−Fbj(F−1

bj
(1− qbj (t)

bj(t)
))
)
= qbj(t).

(2f) We consider two cases: When qbj(t) = 0, then xij(t) = 0 for any i : (i, j) ∈ E. When

qbj(t)> 0, we show in proof of (2b) that pi(t)≥ min
i′:(i′,j)∈E

{pi′}= F−1
bj

(1− qbj (t)

bj(t)
)− rbj(t) for

xij(t) = 0.

Step 2: construct an instance. In each period, given (qb(t),qs(t),x(t)) that satisfies (2c)-

(2e), consider the following one-period problem:

R̃t = max
qs,qb,x

[∑
j∈B

qbj +
∑
i∈S

qsi

]
s.t. qbj ≤ qbj(t), ∀j ∈B (EC.9a)

qsi ≤ qsi (t), ∀i∈ S (EC.9b)∑
j′:(i,j′)∈E

xi,j′ = qsi , ∀i∈ S (EC.9c)

qbj =
∑

i′:(i′,j)∈E

xi′,j, ∀j ∈B (EC.9d)

xij ≥ 0, ∀(i, j)∈E. (EC.9e)

Note that the feasible solution set is not empty, as qbj = qbj(t) for any j ∈ B, qsi = qsi (t) for

any i ∈ S and xij = xij(t) for any (i, j) ∈ E is a feasible solution. Since the constraints

are all linear, the KKT conditions are necessary for the optimal solution in (EC.9). Let

(ωsi (t),ω
b
j(t),πij(t)) be the Lagrange multipliers corresponding to the constraint in (EC.9c)-

(EC.9e), then we can write down the KKT conditions corresponding to x:

ωsi (t)−ωbj(t)−πij(t) = 0, ∀(i, j)∈E, (EC.10a)

xij(t)≥ 0 ⊥ πij(t)≥ 0, ∀i∈ S,∀(i, j)∈E. (EC.10b)

Then we consider the commission and equilibrium price as follows:

pi(t) = ωsi (t), ∀i∈ S, (EC.11a)

rsi (t) = ωsi (t)−F−1
si

(
qsi (t)

si(t)

)
, ∀i∈ S, (EC.11b)
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rbj(t) = F−1
bj

(
1−

qbj(t)

bj(t)

)
−ωbj(t), ∀j ∈B. (EC.11c)

then the conditions (EC.1a)-(EC.1b) immediately follow. For (EC.1c),

pi(t)+ rbj(t) = ωsi (t)+F−1
bj

(1−
qbj(t)

bj(t)
)−ωbj(t)

(a)
= ωbj(t)+F−1

bj
(1−

qbj(t)

bj(t)
)−ωbj(t) = F−1

bj
(1−

qbj(t)

bj(t)
).

where (a) follows from (EC.10a) and (EC.10b) that πij(t) = 0 when xij(t)≥ 0.

For (EC.1d),

pi(t)+ rbj(t) = ωsi (t)+F−1
bj

(1−
qbj(t)

bj(t)
)−ωbj(t)

(b)
= ωbj(t)+πij(t)+F−1

bj
(1−

qbj(t)

bj(t)
)−ωbj(t)

(c)

≥ F−1
bj

(1−
qbj(t)

bj(t)
).

where (b) follows from (EC.10a) and (c) follows from (EC.10b). In summary, (EC.1) holds

for our construction in (EC.11). ■

Proof of Proposition EC.2 We need to prove that the optimal solutions to (3) exist

and that they achieve an objective value of R∗ =R. We first show that R∗ ≤R in step

1, and construct a solution to (3) whose value equals to R in step 2, which implies that

R∗ =R and the solution is optimal.

Step 1: Establish that R∗ ≤R. We show that any feasible solution to (3) is feasible in

Problem (EC.2) in Step 1.1, and we further show that it leads to a higher objective value

in Problem (EC.2) in Step 1.2.

Step 1.1: Any feasible solution in (3) is feasible in (EC.2). To prove the claim, it is suffi-

cient to verify the constraints (EC.2b)-(EC.2c), as other constraints immediately follow

from the constraints in (3).

Based on (2a) and (2b), we have qsi (t) = si(t)Fsi(pi(t)−rsi (t))≤ si(t) as Fsi(pi(t)−rsi (t))∈

[0,1] and qbj(t) = bj(t)[1−Fbj( min
i:(i,j)∈E

{pi(t)}+ rbj(t))]≤ bj(t) as Fbj( min
i:(i,j)∈E

{pi(t)}+ rbj(t)) ∈

[0,1]. Therefore, the constraints (EC.2b)-(EC.2c) are satisfied.

Step 1.2: Any feasible solution in (3) results in a higher objective value in (EC.2). We

first show that the optimal solution to Problem (3) satisfies the following:(
F−1
si

(qsi (t)
si(t)

))
qsi (t)≤

(
pi(t)− rsi (t)

)
qsi (t), ∀i∈ S, t∈ {1, ..., T}, (EC.12a)(

F−1
bj

(
1−

qbj(t)

bj(t)

))
qbj(t)≥

(
min

i′:(i′,j)∈E
{pi′(t)}+ rbj(t)

)
qbj(t), ∀j ∈B, t∈ {1, ..., T}.

(EC.12b)
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For (EC.12a), when qsi (t) = 0, (EC.12a) immediately holds; when qsi (t)> 0, (EC.12a) follows

from (EC.7b) and (EC.7c) in the proof of Lemma EC.4. For (EC.12b), when qbj(t) = 0,

(EC.12b) immediately holds; when qbj(t)> 0, (EC.12b) follows from (EC.8a) and (EC.8b)

in the proof of Lemma EC.4.

Given (EC.12), the objective function in (3a) satisfies the following:

R∗ =

T∑
t=1

[∑
j∈B

rbj(t)q
b
j(t)+

∑
i∈S

rsi (t)q
s
i (t)
]

(a)
=

T∑
t=1

[∑
j∈B

rbj(t)
∑

i′:(i′,j)∈E

xi′j(t)+
∑
i∈S

rsi (t)
∑

j′:(i,j′)∈E

xij′(t)
]

=
T∑
t=1

[∑
j∈B

∑
i′:(i′,j)∈E

(
pi′(t)+ rbj(t)

)
xi′j(t)−

∑
i∈S

(
pi(t)− rsi (t)

) ∑
j′:(i,j′)∈E

xij′(t)
]

(b)
=

T∑
t=1

[∑
j∈B

(
min

i′:(i′,j)∈E
{pi′(t)}+ rbj(t)

) ∑
i′:(i′,j)∈E

xi′j(t)−
∑
i∈S

(
pi(t)− rsi (t)

) ∑
j′:(i,j′)∈E

xij′(t)
]

=
T∑
t=1

[∑
j∈B

(
min

i′:(i′,j)∈E
{pi′(t)}+ rbj(t)

)
qbj(t)−

∑
i∈S

(
pi(t)− rsi (t)

)
qsi (t)

]
(c)

≤
T∑
t=1

[∑
j∈B

F−1
bj

(1−
qbj(t)

bj(t)
)qbj(t)−

∑
i∈S

F−1
si

(
qsi (t)

si(t)
)qsi (t)

]
=R,

where (a) follows from (2c)-(2d); (b) follows from (2f) that xij = 0 for i /∈ argmin
i′:(i′,j)∈E

{pi+ rsi };

(c) follows from (EC.12).

Step 2: Establish that R∗ =R. Given any feasible solution to (EC.2), we construct a fea-

sible solution for (3) in Step 2.1, and we further obtain an objective value that equals R

in Step 2.2.

Step 2.1: Construct a feasible solution for Problem (3).

In each period, given the solution for Problem (EC.2), we consider the construction from

(EC.11) as in the proof of Lemma EC.1. We need to verify that all the constraints in (3)

hold. Notice that we only need to verify that (2a) (2b) (2f) (3c) and (3d) hold, as other

constraints exist in (EC.2) and automatically hold.

(2a) from the construction of pi(t) and r
s
i (t), we can establish that

si(t)Fsi(pi(t)− rsi (t)) = si(t)Fsi

(
F−1
si

(qsi (t)
si(t)

))
= qsi (t).

(2b) We consider the following two cases:
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(i) if qbj > 0, we pick a i′ such that (i′, j) ∈ E, then there are two further cases:

(1) xi′j > 0, then pi′(t)
(a)
= ωsi′(t)

(b)
= ωbj(t) + πi′j(t)

(c)
= ωbj(t), where (a) follows form the

construction of pi′(t); (b) follows from (EC.10a); (c) follows from (EC.10b) for xi′j >

0; (2) xi′j = 0, then pi′(t) = ωsi′(t) = ωbj(t) + πi′j(t)
(d)

≥ ωbj(t), where (d) follows from

(EC.10b) for xi′j = 0. In summary, min
i′:(i′,j)∈E

{pi′(t)}= ωbj(t), then

bj(t)[1−Fbj( min
i′:(i′,j)∈E

{pi′(t)}+rbj(t))] = bj(t)[1−Fbj(ωbj(t)+rbj(t))]
(e)
= bj(t)[1−F−1

bj
(1−

qbj(t)

bj(t)
)] = qbj(t),

where (e) follows from the construction of rbj(t);

(ii) if qbj = 0, we have pi′(t) = ωsi′(t) = ωbj(t) + πi′j(t) ≥ ωbj(t), then 0
(f)

≤ bj(t)[1 −

Fbj(min{pi(t)+rbj(t)})]≤ bj(t)[1−Fbj(ωbj(t)+rbj(t))]
(g)
= bj(t)[1−F−1

bj
(1− qbj (t)

bj(t)
)] = qbj(t) =

0,, where (f) follows from Fbj(·)≤ 1, (g) follows from the construction of rbj(t). This

implies that inequality must be tight. Therefore, (2b) holds.

(2f) We have verified in the proof of (2b) that for any (i, j)∈E, we have pi = ωbj for xij > 0

and pi ≥ ωbj for xij = 0. Therefore, xij = 0 for i /∈ argmin
i′:(i′,j)∈E

pi′ .

(3c) We first prove (EC.2g) holds as equality by contradiction. Suppose that si(t+ 1) <

Gsi (si(t), qsi (t)) in the optimal solution to (EC.2), then let s′i(t+1) = Gsi (si(t), qsi (t)), we

can obtain higher objective value by replacing the si(t+1) in the optimal solution with

s′i(t+1) as (EC.2a) increases in si(t+1); in addition, si(t+2)≤Gsi (si(t+1), qsi (t+1))<

Gsi (s′i(t+ 1), qsi (t+ 1)), which implies that the constraint in (EC.2g) still hold. This

contradicts to our assumption that si(t+ 1)< Gsi (si(t), qsi (t)) is the optimal solution

to (EC.2). Therefore, si(t+1) = Gsi (si(t), qsi (t)) in the optimal solution to (EC.2), and

(3c) immediately holds.

(3d) follows the same argument in (3c).

Step 2.2: Obtain a value that equals R. We can deduce that

R∗ =

T∑
t=1

[∑
i∈S

rsi (t)q
s
i (t)+

∑
j∈B

rbj(t)q
b
j(t)

]
(a)
=

T∑
t=1

[∑
i∈S

(ωsi (t)−F−1
si

(
qsi (t)

si(t)
))qsi (t)+

∑
j∈B

(F−1
bj

(1−
qbj(t)

bj(t)
)−ωbj(t))qbj(t)

]
(b)
=

T∑
t=1

[∑
j∈B

F−1
bj

(1−
qbj(t)

bj(t)
)qbj(t)−

∑
i∈S

F−1
si

(
qsi (t)

si(t)
)qsi (t)

]
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+

T∑
t=1

[∑
i∈S

ωsi (t)
∑

j′:(i,j′)∈E

xij′(t)−
∑
j∈B

ωbj(t)
∑

i′:(i′,j)∈E

xi′j(t)

]

=
T∑
t=1

[∑
j∈B

F−1
bj

(1−
qbj(t)

bj(t)
)qbj(t)−

∑
i∈S

F−1
si

(
qsi (t)

si(t)
)qsi (t)

]
+

T∑
t=1

[ ∑
(i,j)∈E

(
ωsi (t)−ωbj(t)

)
xij(t)

]
(c)
=

T∑
t=1

[∑
j∈B

F−1
bj

(1−
qbj(t)

bj(t)
)qbj(t)−

∑
i∈S

F−1
si

(
qsi (t)

si(t)
)qsi (t)

]
=R,

where (a) follows from the construction of rsi (t) and rbj(t), (b) follows from (EC.2d) and

(EC.2e), (c) follows from (EC.10a) and (EC.10b) that when xij > 0, ωsi = ωbj , while when

xij = 0, ωsi ≥ ωbj . ■

EC.2. Proof of Results in Section 4

We provide and prove some auxiliary results in Appendix EC.2.1 and prove the result in

Section 4 in Appendix EC.2.2.

EC.2.1. Auxiliary Results for Section 4

Given the definitions of the value functions F̃bj for any j ∈ B and F̃si for any i ∈ S from

Problem (5), we have the following lemma.

Lemma EC.5. F̃bj(q, b) is continuous at (0,0) for i ∈ S and F̃si(q, s) is continuous at

(0,0) for j ∈B.

Proof of Lemma EC.5. We need to show that lim
(q,b)↓(0,0)

F̃bj(q, b) = F̃bj(0,0) = 0 and

lim
(q,s)↓(0,0)

F̃si(q, s) = F̃si(0,0) = 0, which holds because

0 ≤ lim
(q,b)↓(0,0)

F̃bj(q, b) = lim
(q,b)↓(0,0)

F−1
bj

(
1− q

b

)
q ≤ vbj × 0 = 0,

0 ≤ lim
(q,s)↓(0,0)

F̃si(q, s) = lim
(q,s)↓(0,0)

F−1
si

(q
s

)
q ≤ vsi × 0 = 0,

where given Assumption 2, all of the inequalities above follow from F−1
bj

(x) ∈ [0, vbj ] for

x∈ [0,1] where vbj <∞ and F−1
si

(x)∈ [0, vsi ] for x∈ [0,1] where vsi <∞. ■

We next develop an auxiliary result about the growth of populations. To simplify the

notation, we let N := {1, ..., |S|, |S|+1, ..., |S|+ |B|}, where the first |S| nodes represent the

types from the seller side and the last |B| nodes represent the types from the buyer side.

In addition, we use ni(t) and qi(t) to respectively denote the population and transaction
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quantity of type i∈N at time t∈ {1, . . . , T}. We define Gi(·, ·) := Gsi (·, ·) for i∈ {1, ..., |S|}

and Gi(·, ·) := Gbi−|S|(·, ·) for i∈ {|S|+1, ..., |S|+ |B|}. In addition, we define N+ := {i∈N :

ni > 0}.

Recall that

m(t) = min
i∈N+

ni(t)

ni
. (EC.13)

Given the minimum population ratio m(t) in (EC.13), we let l(t) be the agent type with

the lowest population ratio at time t or “the lowest node at time t” for short:

l(t) := argmin
i∈N+

ni(t)

ni
. (EC.14)

If there is more than one i such that ni(t)
ni

=m(t), we can set l(t) as any node with the

minimum population ratio. After the population evolves in period t, it is worth noting

that the lowest node can change. Let τ0 := 0 and m(τ0) be a dummy agent type with the

minimum ratio in period 0 with m(τ0) ̸∈ S ∪ B. Moreover, we let X be the total number

of times that the lowest node changes in Algorithm 1 for some X ∈ {1, . . . , T}. we let

τx := min{t : t > τx−1, l(t) ̸= l(τx−1)} for t ∈ {1, . . . , T}, in which τx is the xth time that the

lowest node changes for x∈ {1, . . . ,X}. For example, for x∈ {0,1, ...,X}, if node i has the

lowest ratio at time τx− 1, then nl(τx−1)(τx) denotes the population ratio of the node i at

time τx.

Given the lowest node l(t)∈ S ∪B we let

gt(n) := Gl(t)
(
n,n

ql(t)
nl(t)

)
, (EC.15)

where n≥ 0. Then gt(n) is the transition equation for the lowest node in period t, as by

the population transition specified in Algorithm 1 and the definition of gt(·), we have that

nl(t)(t+1) = Gl(t)
(
nl(t)(t), nl(t)(t)

ql(t)
nl(t)

)
= gt(nl(t)(t)). (EC.16)

We have the following observation about function gt(·).

Lemma EC.6. gt(n) is differentiable, increasing and strictly concave in n≥ 0. Moreover,

its derivative satisfies g′t(nl(t))< 1 for all t∈ {1, ..., T}. Moreover, gt(n)−n< 0 for n> nl(t)

and gt(n)−n> 0 for 0<n<nl(t).



ec13

Proof of Lemma EC.6. We divide the proof arguments into the following components.

Differentiability and monotonicity. From Assumption 1, we have that function Gi(n, q) is

continuously differentiable, increasing and strictly concave in n≥ 0, which directly implies

that gt(n) is differentiable, increasing and strictly concave in n≥ 0.

g′t(nl(t))< 1 for all t∈ {1, ..., T}. By Algorithm 1, we have that nl(t) > 0. Since gt(n) is

continuous in n ∈ [0, nl(t)] and differentiable (0, nl(t)), by the mean value theorem, there

exists a ñl(t) ∈ (0, nl(t)) such that g′t(ñl(t)) =
gt(nl(t))−gt(0)

nl(t)−0

(a)
=

nl(t)−gt(0)
nl(t)−0

(b)
=

nl(t)−0

nl(t)−0
= 1, where (a)

follows from Lemma 1(ii) and (b) follows from Assumption 1(i). Since gt(n) is strictly

concave in n≥ 0, its derivative strictly decreases in n≥ 0, which implies that g′t(nl(t))< 1

given that ñl(t) ∈ (0, nl(t)).

gt(n)−n< 0 for n> nl(t). we define that yt(n) := gt(n)− n, and it remains to show that

yt(n)< 0 for n> nl(t). Since y
′
t(nl(t)) = g′t(nl(t))−1< 0 for nl(t) >nl(t) and yt(nl(t)) = 0 based

on Lemma 1(ii), yt(nl(t))< 0 for nl(t) >nl(t).

gt(n)−n> 0 for 0<n<nl(t). It remains to show that yt(n)> 0 for 0<n<nl(t). Note that

yt(n) is concave in n. Since yt(0) = gt(0)−0 = 0 and yt(nl(t)) = gt(nl(t))−nl(t) = 0, we know

yt((1− a)×nl(t))> ayt(0)+ (1− a)yt(nl(t)) = 0+0= 0 for a∈ (0,1), therefore yt(n)> 0 for

0<n<nl(t). ■

Lastly, we formally define the myopic policy and establish its tractability as a supporting

result for our proof arguments for Section 4.

Definition EC.1. (myopic policy) For t ∈ {1, ..., T}, given the current population

(sM(t),bM(t)), the myopic policy solves the following optimization problem:

RM∗(t) = max
r(t),p(t),x(t),qs(t),qb(t)

∑
i∈S

rsi (t)q
s
i (t)+

∑
j∈B

rbj(t)q
b
j(t) (EC.17a)

s.t. (sM(t),bM(t),r(t),p(t),x(t),qs(t),qb(t)) satisfies (2), ∀t∈ {1, ..., T}.

(EC.17b)

To solve Problem (EC.17), we consider the following optimization problem:

RM(t) = max
qs(t),qb(t),x(t)

∑
j∈B

F−1
bj

(
1−

qbj(t)

bMj (t)

)
qbj(t)−

∑
i∈S

F−1
si

( qsi (t)
sMi (t)

)
qsi (t) (EC.18a)

s.t. qsi (t)≤ sMi (t),
∑

j′:(i,j′)∈E

xi,j′(t) = qsi (t), ∀i∈ S, t∈ {1, ..., T}, (EC.18b)
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qbj(t)≤ bMj (t), qbj(t) =
∑

i′:(i′,j)∈E

xi′,j(t), ∀j ∈B, t∈ {1, ..., T}, (EC.18c)

xij(t)≥ 0, ∀(i, j)∈E, t∈ {1, ..., T}. (EC.18d)

Recalling the observations about Problem (EC.2), we can apply exactly the same argu-

ments as in the proof of Proposition EC.2 to establish the following result about Problem

(EC.18), whose proof will be neglected for avoiding repetition:

Corollary EC.1. For any t∈ {1, ..., T}, Problem (EC.18) is a tight relaxation of Prob-

lem (EC.17), i.e., RM∗(t) =RM(t) and any optimal solution (qs(t),qb(t),x(t)) to Problem

(EC.18) is also optimal to Problem (EC.17).

EC.2.2. Proof of Results for TRP

Proof of Lemma 1.

Show that AVG’s optimal solution and objective value are finite. On the seller side, for

any i ∈ S, we first show that the optimal solution (qsi , si) is finite for all i ∈ S. We first

show that si is finite. The constraint of AVG requires that si ≤Gsi (si, qsi )≤Gsi (si, si), which
requires that Gsi (si, si)− si ≥ 0. Given that lim

x→∞
((Gsi )

′
1(x,x) + (Gsi )

′
2(x,x))< 1 and Gsi (x,x)

is continuously differentiable in x≥ 0 by Assumption 1, there exists a constant a < 1 and

ŝi > 0 such that (Gsi )
′
1(ŝi, ŝi)+(Gsi )

′
2(ŝi, ŝi) = a< 1. Therefore, for any si > ŝi, the constraint

requires that

Gsi (si, si)− si ≤Gsi (ŝi, ŝi)+ (Gsi )
′

1(ŝi, ŝi)(si− ŝi)+ (Gsi )
′

2(ŝi, ŝi)(si− ŝi)− si

=Gsi (ŝi, ŝi)+ a(si− ŝi)− si

which indicates that for any si >max{ŝi, G
s
i (ŝi,ŝi)−aŝi

1−a }, we have Gsi (si, si)− si < 0 and there-

fore is not feasible. Therefore, it is without loss of optimality to focus on the compact

set [0, ŝi] for the optimal solution si. Since qi ≤ si, this suggests that the optimal solution

qsi ∈ [0, ŝi], which is also finite. The same arguments hold for the buyer side.

Show that optimal solution (q,s,b) to AVG exists. For any u ∈ [0,1], we have that

F−1
si

(u)≤ vsi <∞ for any i ∈ S and F−1
bj

(u)≤ vbj <∞ for all j ∈ B. Therefore, the objec-

tive value of AVG is also finite. We have already shown that the feasible set of (q,s,b) is

closed and bounded. The constraints in (5b)-(5c) also ensure that the feasible set of x is

closed and bounded. In summary, the feasible set characterized by constraint (5b)-(5f) is

compact. In addition, the feasible set is not empty, as solution 0 is feasible. Furthermore,
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the objective function in (5a) is continuous in this compact set based on Assumption 2(i).

By the extreme value theorem, an optimal solution (q,s,b) to AVG exists.

We proceed to prove the lemma.

(i). By the extreme value theorem, the optimal solution to (5) exists. Since the objective

function is strictly concave and the feasible region is a convex set, the optimal solution to

(5) is unique.

(ii). If there exists a i∈ S such that Gsi (si, qsi )−si > 0, then given that Gsi (si, qsi ) is continuous
on si, we can always find a ϵ > 0 small enough such that Gsi (si + ϵ, qsi )− (si + ϵ) > 0. In

addition, si+ϵ > si ≥ qsi . By replacing si with si+ϵ, we obtain a higher objective value since

the objective function strictly increases in si. Therefore, the assumption Gsi (si, qsi )− si > 0

contradicts the optimality of (qs,qb,s,b) to Problem (5). The same proof arguments can

be applied to the buyer side. ■

Proof of Proposition 1. By Proposition EC.2, R(T ) =R∗(T ). So it suffices to show that

there exists a constant C1 such that |R(T )−TR| ≤ C1. To prove the result, we establish

the following two claims.

Claim 1: R(T )−TR≥−C ′
1. We delay the proof to the proof of Theorem 1 that there

exists a constant C ′
1 and a policy π such that Rπ(T )− TR≥−C ′

1, which further implies

that R(T )−TR≥Rπ(T )−TR≥−C ′
1 given that R(T )≥Rπ(T ).

Claim 2: R(T )−TR≤C ′′
1 . Before proving the claim, we first consider the following opti-

mization problem for any T > 0:

R̃ = max
s,b,qs,qb,x

∑
j∈B

F̃bj(q
b
j , bj)−

∑
i∈S

F̃si(q
s
i , si) (EC.19a)

s.t. qsi ≤ si, ∀i∈ S, (EC.19b)

qbj ≤ bj, ∀j ∈B, (EC.19c)∑
j:(i,j)∈E

xij = qsi , ∀i∈ S, (EC.19d)

qbj =
∑

i:(i,j)∈E

xij, ∀j ∈B, (EC.19e)

xij ≥ 0, ∀(i, j)∈E, (EC.19f)

si ≤Gsi (si, qsi )+
si(1)

T
, ∀i∈ S, (EC.19g)

bj ≤Gbj (bj, qbj)+
bj(1)

T
, ∀j ∈B. (EC.19h)
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Note that the only difference between Problem (EC.19) and Problem (5) is the right-hand

side of the constraints (EC.19g)-(EC.19h). Given that si(1)> 0 for all i ∈ S and bj(1)> 0

for all j ∈ B, Problem (EC.19) could be viewed as a relaxation of Problem (5). We first

show that T R̃ ≥ R(T ) and then show that there exists a positive constant C ′′
1 such that

T R̃−TR≤C ′′
1 for any T > 0. Consequently, we can have R(T )−TR≤C ′′

1 for any T > 0.

Step 2.1: Show that T R̃ ≥R(T ). For any optimal solution (s(t),b(t),qs(t),qb(t),x(t) :

t = 1, . . . , T ) to Problem (EC.2), we construct the following alternative solution vector

(s,b,qs,qb,x) for Problem (EC.19):

si =
1

T

T∑
t=1

si(t) and q
s
i =

1

T

T∑
t=1

qsi (t), ∀i∈ S,

bj =
1

T

T∑
t=1

bj(t) and q
b
j =

1

T

T∑
t=1

qbj(t), ∀j ∈B,

xij =
1

T

T∑
t=1

xij(t), ∀(i, j)∈E

We establish the feasibility of (s,b,qs,qb,x) for Problem (EC.19) in Step 2.1.1 and then

show that T R̃ ≥R(T ) in Step 2.1.2.

Step 2.1.1: Feasibility. First, from the constraints in Problem (EC.2), we can easily

show (EC.19b) - (EC.19f) hold. In particular, qsi = 1
T

∑T
t=1 q

s
i (t)

(a)

≤ 1
T

∑T
t=1 si(t) = si.

The same argument applies for qbj and bj on the buyer side. For (EC.19d)-(EC.19e),

qsi = 1
T

∑T
t=1 q

s
i (t)

(b)
= 1

T

∑
j′:(i,j′)∈E

∑T
t=1 xij′(t) =

∑
j′:(i,j′)∈E xij. and qbj = 1

T

∑T
t=1 q

b
j(t)

(c)
=

1
T

∑
i′:(i′,j)∈E

∑T
t=1 xi′j(t) =

∑
i′:(i′,j)∈E xij. For (EC.19f), xij =

1
T

∑T
t=1 xij(t)

(e)

≥ 0.

For constraints in (EC.19g)-(EC.19h), we show that

si−Gsi (si, qsi )−
si(1)

T

(a)
=

1

T

T∑
t=1

si(t)−Gsi
( 1
T

T∑
t=1

si(t),
1

T

T∑
t=1

qsi (t)
)
− si(1)

T

(b)

≤ 1

T

T∑
t=1

[
si(t)−Gsi (si(t), qsi (t))

]
− si(1)

T

=
1

T

T−1∑
t=1

[
si(t+1)−Gsi (si(t), qsi (t))

]
+

1

T
(si(1)−Gsi (si(T ), qsi (T )))−

si(1)

T

≤ 0+
1

T

(
−Gsi (si(T ), qsi (T ))

)
≤ 0,

where (a) follows from the construction of si and q
s
i at the beginning of Step 2.1; (b) follows

the Assumption 1(ii) that Gsi (·) is concave. This proves that Constraint (EC.19g) holds.

Following the same argument, we can show that Constraint (EC.19h) holds.
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Step 2.1.2: T R̃ ≥R(T ). Given the construction of si and bj, we obtain that si > 0 and

bj > 0. Given the definitions of F̃b(q
b
j, bj) and F̃s(q

s
i , si) in Problem (5), the objective value

in (5a) is given by
∑

j∈B F
−1
bj

(
1− qbj

bj

)
qbj −

∑
i∈S F

−1
si

( qsi
si

)
qsi . This allows us to establish that

T R̃ (a)
= T

[∑
j∈B

F−1
bj

(
1−

1
T

∑T
t=1 q

b
j(t)

1
T

∑T
t=1 bj(t)

) 1
T

T∑
t=1

qbj(t)−
∑
i∈S

F−1
si

( 1
T

∑T
t=1 q

s
i (t)

1
T

∑T
t=1 si(t)

) 1
T

T∑
t=1

qsi (t)
]

(b)

≥ T × 1

T

T∑
t=1

[∑
j∈B

F−1
bj

(
1−

qbj(t)

bj(t)

)
qbj(t)−

∑
i∈S

F−1
si

(
qsi (t)

si(t)

)
qsi (t)

]
=R(T ).

where (a) follows from the construction of (s,b,qs,qb,x) in Step 2-1; (b) follows from the

concavity of F−1
bj

(1− a
b
)a and −F−1

si
(a
b
)a by Assumption 3.

Summarizing the arguments in these two steps, we have T R̃ ≥R(T ).

Step 2.2: Show that T R̃−TR≤C ′′
1 for some C ′′

1 > 0. Let (µs,µb) be the dual optimal

solution corresponding to the constraint si ≤ Gsi (si, qsi ) and bj ≤ Gbj (bj, qbj) in Problem (5),

then µsi ≥ 0 for any i ∈ S and µbj ≥ 0 for any j ∈ B according to duality theory. Note that

the only difference between Problem (5) and Problem (EC.19) is the right-hand side of

the constraints in (EC.19g)-(EC.19h). Therefore, based on (5.57) in Boyd et al. (2004), we

can establish that

R̃ ≤ R+
∑
i∈S

µsi ×
1

T
si(1)+

∑
j∈B

µbj ×
1

T
bj(1),

which further implies that

T (R̃−R) ≤ T
(∑
i∈S

µsi ×
1

T
si(1)+

∑
j∈B

µbj ×
1

T
bj(1)

)
=
∑
i∈S

µsisi(1)+
∑
j∈B

µbjbj(1).

We let C ′′
1 :=

∑
i∈S µ

s
isi(1)+

∑
j∈B µ

b
jbj(1), and obtain the desired result.

In summary, |R(T )−TR| ≤ C1, where C1 =max{|C ′
1|, |C ′′

1 |}. ■

Proof of Theorem 1. We divide the proof arguments for the first claim into the following

steps: in Step 1, we show that the solution generated by the TRP is feasible to Problem

(EC.2); in Step 2, we show when w= 0, there exists a constant γ ∈ (0,1) such that |m(t+

1)− 1| ≤ γ|m(t)− 1| for any t ∈ {1, ..., T − 1}; in Step 3, we show that when w = 0, there

exists a constant C ′
1 such that TR−RTR(T )≤C ′

1 for all w. Then, together with Step 2.1.2

and Step 2.2 of Proposition 1, we conclude that there exists a constant C2 :=C ′
1+C

′′
1 such
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that LTR(T ) =R∗(T )−RTR(T ) ≤ T R̃ −RTR(T ) =
(
T R̃ − TR

)
+
(
TR−RTR(T )

)
≤ C2.

Finally, in Step 4, we generalize the result to the case when w> 0.

The claim |mw(t)− 1| ≤ |m0(t)− 1| directly follows from Step 4.1 and Step 4.2.1.

Step 1: Show that the solution generated by the TRP is feasible to Problem (EC.2).

(EC.2b)-(EC.2c). qsi (t)
(a)
= qsim̂(t)

(b)

≤ si(t) q
s
i

qsi
= si(t), where (a) follows from Algorithm 1; (b) follows directly

from the definition of m̂(t). The same argument follows for the buyer side.

(EC.2d)-(EC.2e). qsi (t) = qsim̂(t)
(a)
=

∑
j′:(i,j′)∈E

xi,j′m̂(t)
(b)
=

∑
j′:(i,j′)∈E

xi,j′(t), where (a) follows from (5b); (b)

follows from Algorithm 1. The same argument follows for the buyer side.

(EC.2f) . xi,j = xi,jm̂(t)≥ 0 follows from (5d).

(EC.2g)-(EC.2h). Given si(t+1) = Gsi (si(t), qsi (t)), the inequality is a relaxation, which directly follows.

A similar argument holds for the buyer side.

In summary, the solution generated by the TRP is feasible for Problem (EC.2).

Step 2: Show that when w= 0, there exists a constant γ ∈ (0,1) such that

|m(t+1)− 1| ≤ γ|m(t)− 1| for t∈ {1, ..., T − 1}. Recall the definition of l(t) and gt(n) in

(EC.14) and (EC.15), respectively. We discuss three cases: (1) m(1)> 1, (2) m(1)< 1 and

(3) m(1) = 1. In each case, we will first show that m(t) gets closer to 1 as t increases, and

then we show that the convergence rate can be upper bounded by γ < 1.

Step 2 - Case 1: m(1)> 1.

Step 2 - Case 1 - Step 2.1: Show that m(1)>m(2)> ... >m(T − 1)>m(T )> 1. To prove

the claim of this case, we show that for any t ∈ {1, . . . , T − 1}, if m(t) > 1, then m(t) >

m(t+1)> 1. Let X > 0 denote the number of times the agent type with the lowest ratio

changes. We consider the following two cases for any t ∈ {1, . . . , T}: (1) the lowest node

does not change in the next period, i.e., τx ≤ t ≤ τx+1 − 2 for x ∈ {0, ...,X − 1} ; (2) the

lowest node changes in next step, i.e., t= τx+1− 1 for x∈ {0, ...,X − 1}.

(1) For any τx ≤ t ≤ τx+1 − 2 with x ∈ {0, ...,X − 1}, we show that if m(t) > 1, then

m(t)>m(t+1)> 1.

Recall that m(t) =
nl(t)(t)

nl(t)
and m(t+1) =

nl(t+1)(t+1)

nl(t+1)

(a)
=

nl(t)(t+1)

nl(t)
, where (a) holds given

that l(t) = l(t+ 1) for τx ≤ t ≤ τx+1 − 2 and x ∈ {0, . . . ,X − 1}. Then, to show that

m(t)>m(t+1)> 1, it is equivalent to establish that nl(t)(t)>nl(t)(t+1)>nl(t). First,

we have

nl(t)(t+1)−nl(t)(t)
(b)
= gt(nl(t)(t))−nl(t)(t)

(c)
< 0,
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where (b) follows from (EC.16); (c) follows directly from Lemma EC.6. Second, we

deduce that

nl(t)(t+1)−nl(t)
(d)
= gt(nl(t)(t))−nl(t)

(e)
= gt(nl(t)(t))− gt(nl(t))

(f)
> 0,

where (d) follows from (EC.16); (e) follows from Lemma 1(ii); (f) follows from nl(t)(t)>

nl(t) given that m(t) =
nl(t)(t)

nl(t)
> 1 and that gt(n) increases in n≥ 0 from Lemma EC.6.

In summary, for τx ≤ t≤ τx+1− 2, if m(t)> 1, then m(t)>m(t+1)> 1.

(2) For t= τx−1 with x∈ {1, . . . ,X}, we want to show that if m(τx−1)> 1, then m(τx−
1)>m(τx)> 1. To prove this, we can deduce that

m(τx) =
nl(τx)(τx)

nl(τx)

(a)

≤
nl(τx−1)(τx)

nl(τx−1)

(b)
<

nl(τx−1)(τx− 1)

nl(τx−1)

= m(τx− 1),

where (a) follows directly from the definition that l(τx) in (EC.14); (b) follows from

nl(τx−1)(τx) = gτx−1(nl(τx−1)(τx− 1))< nl(τx−1)(τx− 1), where the second inequality fol-

lows from nl(τx−1)(τx−1)>nl(τx−1) given that m(τx−1) =
nl(τx−1)(τx−1)

nl(τx−1)
> 1 and Lemma

EC.6. Therefore, m(τx)<m(τx− 1).

Next, we show that m(τx)> 1. Since

m(τx) =
nl(τx)(τx)

nl(τx)

(c)
=
Gl(τx)

(
nl(τx)(τx− 1), ql(τx)

nl(τx−1)(τx−1)

nl(τx−1)

)
nl(τx)

(d)

≥
Gl(τx)(nl(τx)(τx− 1), ql(τx))

nl(τx)

(e)
>
Gl(τx)(nl(τx), ql(τx))

nl(τx)
= 1,

where (c) follows from Algorithm 1; (d) follows from the condition that
nl(τx−1)(τx−1)

nl(τx−1)
=

m(τx− 1)> 1 and Gl(τx)(n, q) increases in q ≥ 0; (e) follows from
nl(τx)(τx−1))

nl(τx)
≥m(τx−

1)> 1. Therefore, m(τx)> 1.

Based on the arguments above, if m(t) > 1, then m(t) > m(t + 1) > 1, which holds for

any t ∈ {1, ..., T − 1}. Thus, we can conclude that if m(1) > 1, then m(1) >m(2) > ... >

m(T − 1)>m(T )> 1.

Step 2 - Case 1 - Step 2.2: Show that there exists a constant γ1 ∈ (0,1) such that

|m(t+1)− 1| ≤ γ1|m(t)− 1| for any t∈ {1, . . . , T}. Again, we consider the following two

cases: (1) the lowest node does not change in the next step, i.e., τx ≤ t ≤ τx+1 − 2 for

any x ∈ {0, ...,X − 1}; (2) the lowest node changes in next step, i.e., t= τx+1 − 1 for any

x ∈ {0, ...,X − 1}. For both cases, we first show that
∣∣m(t+ 1)− 1

∣∣ ≤ g′t(nl(t))∣∣m(t)− 1
∣∣.

Then we show that there exists a γ1 ∈ (0,1) independent from T such that for any positive

integer T , max
t=1,...,T

g′t(nl(t))≤ γ1 < 1.
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(1) For τx ≤ t≤ τx+1− 2, we observe that∣∣∣nl(t)(t+1)−nl(t)
∣∣∣ (a)
= nl(t)(t+1)−nl(t)

(b)
= gt(nl(t)(t))− gt(nl(t))

(c)
< (nl(t)(t)−nl(t))g′t(nl(t))

(d)
=
∣∣∣nl(t)(t)−nl(t)∣∣∣g′t(nl(t)),

where (a) follows from
nl(t)(t+1)

nl(t)
≥m(t+1)> 1 for any t∈ {1, ..., T −1}; (b) follows from

(EC.16) and Lemma 1(ii); (c) follows from Lemma EC.6 given that gt(n) is strictly

concave in n≥ 0; (d) follows from m(t) =
nl(t)(t)

nl(t)
> 1 for any t ∈ {1, ..., T}. Therefore,∣∣m(t+1)− 1

∣∣= ∣∣nl(t)(t+1)

nl(t)
− 1
∣∣< g′t(nl(t))∣∣nl(t)(t)

nl(t)
− 1
∣∣= g′t(nl(t))

∣∣m(t)− 1
∣∣.

(2) For t= τx− 1,∣∣∣m(τx)− 1
∣∣∣ (a)
= m(τx)− 1 =

nl(τx)(τx)

nl(τx)
− 1

(b)

≤
nl(τx−1)(τx)

nl(τx−1)

− 1

(c)
=
gτx−1(nl(τx−1)(τx− 1))− gτx−1(nl(τx−1))

nl(τx−1)

(d)
<
(nl(τx−1)(τx− 1)−nl(τx−1)

nl(τx−1)

)
g′τx−1(nl(τx−1))

= (m(τx− 1)− 1)g′τx−1(nl(τx−1))
(e)
=
∣∣∣m(τx− 1)− 1

∣∣∣g′τx−1(nl(τx−1)),

where (a) follows from m(t) ≥ 1 for any t ∈ {1, ..., T}; (b) follows from
nl(τx)(τx)

nl(τx)
=

m(τx)≤
nl(τx−1)(τx)

nl(τx−1)
; (c) follows from gt(·) in (EC.15) and Lemma 1(ii); (d) follows from

the strict concavity of gt(·) in Lemma EC.6; (e) follows from m(τx−1) =
nl(τx−1)(τx−1)

nl(τx−1)
>

1.

In summary,
∣∣m(t + 1) − 1

∣∣ ≤ g′t(nl(t))
∣∣m(t) − 1

∣∣ for any t ∈ {1, . . . , T}. Define γ1 :=

max
i∈N+

∂Gi

∂n
(n,n qi

ni
), then

max
t=1,...,T

g′t(nl(t))
(a)
= max

t=1,...,T

∂Gl(t)
∂n

(n,n
ql(t)
nl(t)

)|n=nl(t)
≤max

i∈N+

∂Gi
∂n

(n,n
qi
ni
)|n=ni

= γ1
(b)
< 1,

where (a) follows from the definition of gt(·) in (EC.15) and (b) follows from the finite

network G(S ∪B,E) and discussion in Lemma EC.6. This allows us to conclude the con-

traction arguments for the case of m(1)> 1.

Step 2 - Case 2: m(1)< 1.

Step 2 - Case 2 - Step 2.1: Show that m(1)<m(2)< ... <m(T − 1)<m(T )< 1. Similar

to the discussions in Step 2 - Case 1, we consider the following two cases: (1) the lowest

node does not change in the next step, i.e., τx ≤ t≤ τx+1− 2 for any x∈ {0, ...,X− 1} ; (2)

the lowest node changes in next step, i.e., t= τx+1− 1 for any x∈ {0, ...,X − 1}.
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(1) For τx ≤ t≤ τx+1− 2, we want to show that if m(t)< 1, then m(t)<m(t+1)< 1.

Recall that m(t) =
nl(t)(t)

nl(t)
and m(t+ 1) =

nl(t+1)(t+1)

nl(t+1)

(a)
=

nl(t)(t+1)

nl(t)
, where (a) holds as

l(t) = l(t + 1) for τx ≤ t ≤ τx+1 − 2. Therefore, m(t) < 1 implies that nl(t)(t) < nl(t).

We observe that m(t)<m(t+1)< 1 is then equivalent to nl(t)(t)<nl(t)(t+1)<nl(t),

which holds because

nl(t)(t+1)−nl(t)(t) = gt(nl(t)(t))−nl(t)(t) > 0,

where the equality follows from (EC.16) and the inequality follows from the condition

that 0<nl(t)(t)<nl(t) and Lemma EC.6. In addition,

nl(t)(t+1)−nl(t) = gt(nl(t)(t))− gt(nl(t))< 0,

given that nl(t)(t)<nl(t) and that gt(n) increases in n≥ 0 based on Lemma EC.6. The

derivations above allow us to establish that nl(t)(t)<nl(t)(t+1)<nl(t).

(2) For t= τx− 1, we show that m(τx− 1)<m(τx)< 1 if m(τx− 1)< 1, then

m(τx)
(a)
=

nl(τx)(τx)

nl(τx)
=
Gl(τx)(nl(τx)(τx− 1), ql(τx)

nl(τx−1)(τx−1)

nl(τx−1)
)

nl(τx)

(b)

≥
Gl(τx)(nl(τx)

nl(τx−1)(τx−1)

nl(τx−1)
, ql(τx)

nl(τx−1)(τx−1)

nl(τx−1)
)

nl(τx)

(c)
>

nl(τx−1)(τx−1)

nl(τx−1)
Gl(τx)(nl(τx), ql(τx))
nl(τx)

(d)
=

nl(τx−1)(τx− 1)

nl(τx−1)

=m(τx− 1),

where (a) follows the definition of m(τx) in (EC.13) and l(τx) in (EC.14); (b) follows

from
nl(τx)(τx−1)

nl(τx)
≥m(τx−1) =

nl(τx−1)(τx−1)

nl(τx−1)
given the definition of m(τx−1) in (EC.13);

(c) follows from

Gi(ani, aqi) = Gi(ani+(1− a)0, aqi+(1− a)0)>aGi(ni, qi)+ (1− a)Gi(0,0) = aGi(ni, qi),

(EC.20)

for 0 < a < 1 given that Gi(0,0) = 0 and Gi(ni, qi) is strictly concave in (ni, qi); in

addition, (d) follows from Gl(τx)(nl(τx), ql(τx)) = nl(τx) . In summary, we have m(τx) >

m(τx− 1).

To proceed, we further observe that

m(τx) =
nl(τx)(τx)

nl(τx)

(d)

≤
nl(τx−1)(τx)

nl(τx−1)

(e)
< 1,

where (d) follows from
nl(τx)(τx)

nl(τx)
=m(τx) ≤

nl(τx−1)(τx)

nl(τx−1)
given the definition of m(τx) in

(EC.13); (e) follows from Lemma EC.6 that nl(τx−1)(τx) = gτx−1(nl(τx−1)(τx − 1)) <

nl(τx−1) for nl(τx−1)(τx− 1)<nl(τx−1). Thus, we have that m(τx)< 1.
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In summary, m(t)<m(t+1)< 1 if m(t)< 1 for any t ∈ {1, ..., T − 1}. Since m(t)< 1, we

obtain that m(1)<m(2)< ... <m(T − 1)<m(T )< 1.

Step 2 - Case 2 - Step 2.2: Show that there exists a constant γ2 ∈ (0,1) such that |m(t+

1)− 1| ≤ γ2|m(t)− 1| for any t ∈ {1, . . . , T}. Following a similar argument in the previous

step, we can obtain the desired results.

Step 2 - Case 3: m(1) = 1. When m(1) = 1, we want to show that m(t) = 1 for any t ∈

{1, ..., T}. To establish the claim, we show that inductively, if m(t) = 1 then m(t+1) = 1

for any t∈ {1, ..., T − 1}. We observe that

nl(t)(t+1)
(a)
= Gl(t)(nl(t)(t), ql(t)m(t))

(b)
= Gl(t)(nl(t), ql(t))

(c)
= nl(t),

where (a) follows from the population transition induced by Algorithm 1; (b) holds given

that m(t) = 1, which further implies that nl(t)(t) = nl(t); (c) follows from Lemma 1(ii).

Thus,
nl(t)(t+1)

nl(t)
= 1. In addition, for i∈N+ with i ̸= l(t), we can deduce that

ni(t+1) = Gi(ni(t), qim(t))
(d)

≥ Gi(ni, qi) = ni,

where (d) follows from ni(t)
ni
≥m(t) = 1 given the definition of m(t) in (EC.13) and the

condition that i ̸= l(t). The observation above implies that ni(t+1)
ni
≥ 1 for i ∈ N+ with

i ̸= l(t). Therefore, we can establish that

m(t+1) = min
{nl(t)(t+1)

nl(t)
, min

i∈N+,
i ̸=l(t)

{ni(t+1)

ni

}}
= 1.

Given that m(1) = 1, by inductively establishing that m(t+1) = 1 for any t∈ {1, ..., T −

1}, we have that m(t) = 1 for any t∈ {1, ..., T}. Thus, we obtain that
∣∣m(t+1)− 1

∣∣= 0≤

γ3
∣∣m(t)− 1

∣∣= 0 for any γ3 ∈ (0,1).

In summary of the three cases above for m(t) < 1, m(t) > 1 and m(t) = 1, by letting

γ =max{γ1, γ2, γ3}, We have that for some γ ∈ (0,1),
∣∣m(t+1)− 1

∣∣≤ γ∣∣m(t)− 1
∣∣, for any

t= {1, ..., T − 1}.

Next, we use the superscript w to denote the value under policy with parameter w.

Step 3: Show that when w= 0. there exists a constant C ′
1 such that |TR−RTR(T )| ≤C ′

1.

We prove this by the following steps. Given q(t) and n(t) induced by TRP, we show in

Step 3.1 that there exists a positive constant Cqi such that lim
T→∞

∑T
t=1 |qi(t) − qi| ≤ Cqi;

In Step 3.2, we show that the previous two steps induce a positive constant C qi
ni

that
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satisfies lim
T→∞

∑T
t=1 |

qi
ni
− qi(t)

ni(t)
| ≤ C qi

ni

for any i ∈N+; In Step 3.3, based on Steps 4.1 - 4.2,

we conclude that there exists a constant C ′
1 such that

∣∣TR−RTR(T )
∣∣≤C ′

1.

Step 3.1: Show that there exists constants Cqi such that lim
T→∞

∑T
t=1 |qi(t)− qi|<Cqi for any

i∈N+. Notice that

lim
T→∞

T∑
t=1

∣∣∣qi(t)− qi∣∣∣ (a)= lim
T→∞

T∑
t=1

qi

∣∣∣m(t)− 1
∣∣∣ (b)≤ lim

T→∞

T∑
t=1

qi

∣∣∣m(1)− 1
∣∣∣γt−1

= lim
T→∞

qi

∣∣∣m(1)− 1
∣∣∣1− γT
1− γ

(c)
=

1

1− γ
qi

∣∣∣m(1)− 1
∣∣∣,

where (a) follows from qi(t) = qim(t) in Algorithm 1; (b) follows from the contraction

arguments in Step 2; (c) follows from γ < 1 in Step 2. Let Cqi =
qi|m(1)−1|

1−γ , and then the

result follows.

Before proceeding, we provide some supporting results whose proofs will be provided

towards the end of this section:

Lemma EC.7. For any i∈N+ with ni(1)≥ ni, there exists a positive constant Cni
such

that lim
T→∞

∑T
t=1 |ni(t)− ni| < Cni

. Moreover, for any i ∈ N+ with ni(1) < ni, if m(1) < 1,

then ni(t)<ni for t∈ {1, ..., T}.

Step 3.2: Show that there exists positive constants C qi
ni

such that

limT→∞
∑T

t=1 |
qi
ni
− qi(t)

ni(t)
| ≤C qi

ni

for any i∈N+. To show the claim for this step, we notice

that for any i∈N+,∣∣∣ qi
ni
− qi(t)

ni(t)

∣∣∣ (a)
=
∣∣∣ qi
ni
− qim(t)

ni(t)

∣∣∣ = qi
ni

∣∣∣1− nim(t)

ni(t)

∣∣∣ (b)

≤ qi
ni

(∣∣∣1− ni
ni(t)

∣∣∣+ ni
ni(t)

∣∣∣1−m(t)
∣∣∣),

where (a) follows from the population transition induced by Algorithm 1, and (b) follows

directly from the triangle inequality. Therefore,

lim
T→∞

T∑
t=1

∣∣∣ qi
ni
− qi(t)

ni(t)

∣∣∣ ≤ lim
T→∞

T∑
t=1

qi
ni

(∣∣∣1− ni
ni(t)

∣∣∣+ ni
ni(t)

∣∣∣1−m(t)
∣∣∣)

= lim
T→∞

qi
ni

(
T∑
t=1

ni
ni(t)

∣∣∣1− ni(t)
ni

∣∣∣+ T∑
t=1

ni
ni(t)

∣∣∣1−m(t)
∣∣∣)

(c)

≤ lim
T→∞

qi
ni

(
T∑
t=1

1

m(t)

∣∣∣1− ni(t)
ni

∣∣∣+ T∑
t=1

1

m(t)

∣∣∣1−m(t)
∣∣∣), (∗)

(EC.21)
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where (c) follow from the definition of m(t) in (EC.13).

Notice that if m(1) = min
i∈N+

ni(1)
ni
≥ 1, then n(1)≥ ni for any i ∈ N+. Thus, it is without

loss of generality to consider the following three cases for any i ∈N+ to further relax the

term in the RHS of (EC.21), which we denote by “(*)”.

(1) When ni(1)≥ ni and m(1)≥ 1, we show that

(∗)
(d)

≤ lim
T→∞

qi
ni

(
T∑
t=1

∣∣∣1− ni(t)
ni

∣∣∣+ T∑
t=1

∣∣∣1−m(t)
∣∣∣) (e)

≤ lim
T→∞

qi
ni

(
Cni

ni
+

T∑
t=1

∣∣∣1−m(1)
∣∣∣γt−1

)

=
qi
ni

(
Cni

ni
+
∣∣∣1−m(1)

∣∣∣ 1

1− γ

)
,

where (d) follows from the result in Step 2 - Case 1- Step 2.1 and Step 2 - Case 3

that if m(1) > 1, then m(1) ≥m(2) ≥ ... ≥m(T ) ≥ 1; (e) follows from Lemma EC.7

that lim
T→∞

∑T
t=1 |ni(t)− ni| ≤ Cni

given that ni(1)≥ ni, and we also have |m(t)− 1| ≤

γ|m(t − 1) − 1| for γ < 1 and t ∈ {2, ..., T} by Step 2. Therefore, by letting C qi
ni

:=
qi
ni

(Cni

ni
+ |1−m(1)| 1

1−γ

)
, we obtain the desired result.

(2) When ni(1)<ni and m(1)< 1, we show that

(∗)
(f)

≤ lim
T→∞

qi
ni

(
T∑
t=1

1

m(t)

∣∣∣1−m(t)
∣∣∣+ T∑

t=1

1

m(t)

∣∣∣1−m(t)
∣∣∣)

(g)

≤ lim
T→∞

qi
ni

(
1

m(1)

T∑
t=1

∣∣∣1−m(1)
∣∣∣γt−1+

1

m(1)

T∑
t=1

∣∣∣1−m(1)
∣∣∣γt−1

)
≤ qi

ni

(
2|1−m(1)|
m(1)(1− γ)

)
,

where (f) follows from the observation that m(t)≤ ni(t)
ni

< 1, where the first inequality

follows from the definition of m(t) in (EC.13) and the second inequality follows from

Lemma EC.7 that if ni(1) < ni and m(1) < 1, then ni(t) < ni for t ∈ {1, ..., T}; (g)

follows from the observation that |m(t)−1| ≤ γ|m(t−1)−1| for γ < 1 and t∈ {2, ..., T}

by Step 2, and therefore |m(t)− 1| ≤ γt−1|m(1)− 1|; in addition, we show in Step 2

- Case 2- Step 2.1 that when m(1) < 1, we have m(1) ≤m(t) for any t ∈ {1, ..., T}.

Therefore, we can let C qi
ni

:= qi
ni

( 2|1−m(1)|
m(1)(1−γ)

)
, and then obtain the desired result.

(3) When ni(1)≥ ni and m(1)< 1, we show that

(∗)
(h)
< lim

T→∞

qi
ni

(
1

m(1)

Cni

ni
+

T∑
t=1

1

m(1)

∣∣∣1−m(t)
∣∣∣)

(i)

≤ lim
T→∞

qi
ni

(
1

m(1)

Cni

ni
+

T∑
t=1

1

m(1)

∣∣∣1−m(1)
∣∣∣γt−1

)
(j)
=

qi
ni

(
1

m(1)

Cni

ni
+
∣∣∣ 1

m(1)
− 1
∣∣∣ 1

1− γ

)
,
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where (h) follows from the observation in Step 2 -Case 2- Step 2.1 that m(1)<m(2)<

... < m(T )< 1 when m(1)< 1 and the result in Lemma EC.7 that lim
T→∞

∑T
t=1 |ni(t)−

ni| ≤Cni
when ni(1)≥ ni; (i) follows from the results in Step 2 that |m(t+1)− 1| ≤

γ|m(t)−1|; (j) follows from the observation in Step 2 that γ < 1. Therefore, by letting

C qi
ni

:= qi
ni

(
1

m(1)

Cni

ni
+ | 1

m(1)
− 1| 1

1−γ

)
, we can establish the desired result.

In summary, we have that for any i∈N+, there exists a positive constant C qi
ni

such that

lim
T→∞

T∑
t=1

∣∣∣ qi
ni
− qi(t)

ni(t)

∣∣∣ ≤ C qi
ni

.

Step 3.3: Show that there exists a constant C ′
1 such that |TR−RTR(T )| ≤C ′

1. Note that

for j ∈ B with bj = 0, we have F̃bj(q
b
j, bj) = 0 based on the definition of F̃bj before the

formulation of (5). Since qbj ≤ bj = 0, we have qbj(t) = qbjm(t) = 0 induced by Algorithm 1,

which further implies that F−1
bj

(1− qbj (t)

bj(t)
)qbj(t) = 0. Therefore,

lim
T→∞

T∑
t=1

∑
j∈B: bj=0

(
F̃bj(q

b
j, bj)−F−1

bj
(1−

qbj(t)

bj(t)
)qbj(t)

)
= 0.

Similarly, we can establish that for any i∈ S with si = 0, we have that F̃si(q
s
i , si) = 0, which

further implies that qsi (t) = qsim(t) = 0. Thus, we have that

lim
T→∞

T∑
t=1

∑
i∈S:si=0

(
F̃si(q

s
i , si)−F−1

si
(
qsi (t)

si(t)
)qsi (t)

)
= 0.

Based on the two observations above, with (qs(t),qb(t),s(t),b(t) : t= 1, . . . T ) induced by

the TRP, we can deduce that

lim
T→∞

∣∣∣TR−RTR(T )
∣∣∣

= lim
T→∞

T∑
t=1

[∑
j∈B

(
F̃bj (q

b
j , bj)−F−1

bj

(
1−

qbj(t)

bj(t)

)
qbj(t)

)
−
∑
i∈S

(
F̃si(q

s
i , si)−F−1

si

(qsi (t)
si(t)

)
qsi (t)

)]

= lim
T→∞

T∑
t=1

[ ∑
j∈B:bj>0

(
F−1

bj

(
1−

qbj

bj

)
qbj −F−1

bj

(
1−

qbj(t)

bj(t)

)
qbj(t)

)
−

∑
i∈S:si>0

(
F−1

si

(qsi
si

)
qsi −F−1

si
(
qsi (t)

si(t)
)qsi (t)

)]
(a)

≤ lim
T→∞

T∑
t=1

[ ∑
j∈B:bj>0

(∣∣∣F−1
bj

(
1−

qbj

bj

)
qbj −F−1

bj

(
1−

qbj(t)

bj(t)

)
qbj

∣∣∣+ ∣∣∣F−1
bj

(
1−

qbj(t)

bj(t)

)
qbj −F−1

bj

(
1−

qbj(t)

bj(t)

)
qbj(t)

∣∣∣)

+
∑

i∈S:si>0

(∣∣∣F−1
si

(qsi
si

)
qsi −F−1

si

(qsi (t)
si(t)

)
qsi

∣∣∣+ ∣∣∣F−1
si

(qsi (t)
si(t)

)
qsi −F−1

si

(qsi (t)
si(t)

)
qsi (t)

∣∣∣)]
(b)

≤ lim
T→∞

T∑
t=1

[ ∑
j∈B:bj>0

(
qbj

1

dbj

∣∣∣qbj
bj
−
qbj(t)

bj(t)

∣∣∣+F−1
bj

(1−
qbj(t)

bj(t)
)
∣∣∣qbj − qbj(t)∣∣∣

)
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+
∑

i∈S:si>0

(
qsi

1

dsi

∣∣∣qsi
si
− qsi (t)

si(t)

∣∣∣+F−1
si

(
qsi (t)

si(t)
)
∣∣∣qsi − qsi (t)∣∣∣

)]

≤
∑

j∈B:bj>0

(
qbj

1

dbj
lim

T→∞

T∑
t=1

∣∣∣qbj
bj
−
qbj(t)

bj(t)

∣∣∣+max
t
F−1

bj
(1−

qbj(t)

bj(t)
) lim
T→∞

T∑
t=1

∣∣∣qbj − qbj(t)∣∣∣
)

+
∑

i∈S:si>0

(
qsi

1

dsi
lim

T→∞

T∑
t=1

∣∣∣qsi
si
− qsi (t)

si(t)

∣∣∣+max
t
F−1

si
(
qsi (t)

si(t)
) lim
T→∞

T∑
t=1

∣∣∣qsi − qsi (t)∣∣∣
)

(c)

≤
∑

j∈B:bj>0

(
qbj

1

dbj
Cqb

j
/bj

+ vbjCqb
j

)
+

∑
i∈S:si>0

(
qsi

1

dsi
Cqs

i
/si + vsiCqs

i

)
:= C ′

1.

where (a) follows from the triangle inequality; (b) follows from Assumption 2(ii) that the

derivative of Fbj (Fsi) is lower bounded by a positive constant dbj (dsi ), and therefore the

derivative of F−1
bj

(F−1
si

) is upper bounded by 1
dbj

( 1
dsi
), then |F−1

bj
(x1)−F−1

bj
(x2)| ≤ 1

dbj
|x1−x2|

for any x1, x2 in the domain, otherwise
|F−1

bj
(x1)−F−1

bj
(x2)|

|x1−x2| > 1
dbj

implies that there exists a x3 ∈

(x1, x2) such that f ′(x3) =
|F−1

bj
(x1)−F−1

bj
(x2)|

|x1−x2| > 1
dbj

by mean value theorem, which contradicts

to the fact that the derivative of F−1
bj

is upper bounded by 1
dbj
; following the same argument,

|F−1
si

(x1)−F−1
si

(x2)| ≤ 1
dsi
|x1−x2| for any x1, x2 in the domain. (c) follows from the results

in Step 3.1- Step 3.2 that lim
T→∞

∑T
t=1 |qi(t)− qi| < Cqi and lim

T→∞

∑T
t=1 |

qi
ni
− qi(t)

ni(t)
| ≤ C qi

ni

for

any i∈N+; in addition, F−1
bj
≤ vbj and F−1

si
≤ vsi . Note that we have vbj <∞ for j ∈B and

vsi <∞ for i∈ S and 1
dbj
<∞ for j ∈B and 1

dsi
<∞ for i∈ S given Assumption 2(ii).

Step 4: Show that when 0<w≤ 1. there exists a constant C
′
2 such that

|TR−RTR(T )| ≤C ′
2. We consider the case with m(1) ≥ 1 and m(1) < 1 respectively in

Step 4.1 and Step 4.2.

Step 4.1. m(1)≥ 1. We show that in this case, Overexpansion= True from the beginning.

min
i∈N+

{Gi(ni(1), qim̂(1))

ni

}
= min
i∈N+

{Gi(ni(1), qi((1−w) min
i∈N+
{ni(1)

ni
}+w min

i∈N+
{ni(1)

qi
})
)

ni

}
(a)
> min

i∈N+

{Gi(ni(1), qi min
i∈N+
{ni(1)

ni
}
)

ni

} (b)

≥ min
i∈N+

{Gi(ni, qi)
ni

}
= min

i∈N+

{ni
ni

}
= 1,

where (a) follows from 0≤ qi ≤ ni and 0<w≤ 1; (b) follows from m(1) = min
i∈N+

{
ni(1)
ni

}
≥ 1.

As a result, min
i∈N+

{
Gi(ni(1),qim̂(1))

ni

}
> 1, which means that OverExpension= True from the

beginning, and the update rule when w > 0 the same as that when w = 0. Therefore,

|TR−RTR(T )| ≤C ′
2 by Step 3.

Step 4.2. 0<m(1)< 1. We will show in Step 4.2.2 that OverExpansion occurs within a

finite period. After that, the policy with w> 0 becomes identical to the policy with w= 0.
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Prior to this, we must show that the system converges faster under w > 0 compared to

w = 0 in Step 4.2.1 to facilitate our later proof. We next use the superscript w to denote

the value under policy with parameter w.

Step 4.2.1. Show that if 0<m(1)< 1, then 0≤m0(t)≤mw(t)≤ 1 for all w ∈ (0,1] and for t= {1, ..., T}.

We already know 0 ≤ m0(t) ≤ 1 from Step 2-Case 2. We will respectively show that

m0(t)≤mw(t) and mw(t)≤ 1 for t= {1, ..., T}.

Step 4.2.1(i). Show that m0(t)≤mw(t) for t= {1, ..., T}. Based on the definition that

mw(t) :=min
i∈N
{n

w
i (t)

ni
}, it is sufficient to show that n0

i (t)≤ nwi (t) for t∈ {1, ..., T} and i∈N .

We show it by induction.

We already know that ni(1) is the same under different w as they are exogenously given.

We then show that if n0
i (t)≤ nwi (t) for any i∈N , then n0

i (t+1)≤ nwi (t+1) for any i∈N .

Since the update rule of TRP depends on the state of the system, we need to consider the

following two cases:

(1). If min
i∈N+

{
Gi(ni(t),qim̂

w(t))
ni

}
≤ 1 and OverExpension= False, then for any i∈N ,

n0
i (t+1)

(a)
= Gsi

(
n0
i (t), qim

0(t)
) (b)

≤ Gsi
(
nwi (t), qim̂

w(t)
)

(c)
= nwi (t+1).

where (a) and (c) follow from the construction of two policies, (b) follows from n0
i (t)≤ nwi (t)

for any i∈N and m0(t) = min
i:ni>0

{
n0
i (t)

ni

}
≤ (1−w) min

i:qi>0

{
nw
i (t)

ni

}
+w min

i:qi>0

{
nw
i (t)

qi

}
= m̂w(t) as

qi ≤ ni.

(2). If min
i∈N+

{
Gi(ni(t),qim̂

w(t))
ni

}
> 1 or and OverExpension= True, then for any i∈N ,

n0
i (t+1) = Gsi

(
n0
i (t), qim

0(t)
)
≤Gsi

(
nwi (t), qim

w(t)
)
= nwi (t+1).

where the inequality follows from n0
i (t)≤ nwi (t) for any i ∈N and m0(t) = min

i:ni>0

{
n0
i (t)

ni

}
≤

min
i:ni>0

{
nw
i (t)

ni

}
=mw(t).

Step 4.2.1(ii): Show that mw(t)≤ 1 for t= {1, ..., T}. It is equivalent to show that

min
i∈N+

{
nw
i (t)

ni

}
< 1 for any t ∈ {1, ..., T}. We show it by induction. We already know that

m(1) = min
i∈N+

{
ni(1)
ni

}
< 1. Then we show that given m(t)< 1, we have m(t+1)< 1. Consider

the following two cases:

(1). If min
i∈N+

{
Gi(n

w
i (t),qim̂

w(t))

ni

}
≤ 1 and OverExpension = False, then mw(t + 1) =

min
i∈N+

{
nw
i (t+1)

ni

}
= min

i∈N+

{
Gi(n

w
i (t),qim̂

w(t))

ni

}
≤ 1;
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(2). If min
i∈N+

{
Gi(n

w
i (t),qim̂(t))

ni

}
> 1 or OverExpension = True, then the update rule

when w > 0 is the same as that when w = 0. We need to show that given m(t) < 1,

min
i∈N+

{
Gi(ni(t),qim(t))

ni

}
< 1, which is already shown in Step 2-Case 2 of Theorem 1.

Step 4.2.2. Show that there exists a constant t̃ such that if t > t̃, we have min
i∈N+

{
Gi(ni(t),qim̂

w(t))
ni

}
> 1.

We first show that there exists a constant m̃ such that if mw(t) > m̃, we have

min
i∈N+

{
Gi(n

w
i (t),qim̂

w(t))

ni

}
> 1. For all i ∈ N+, define m̃i = {0 < m < 1|ni = Gi

(
mni, qi((1 −

w)m+wmmin
i′∈N
{ni′
qi′
}
)
}. Since the RHS of the equation increases in m, and Gi(0,0) = 0<ni

and Gi
(
ni, qi((1−w)+wmin

i′∈N
{ni′
qi′
})
)
}> Gi(ni, qi)}= ni, we know m̃i is well-defined.

If mw(t)> m̃ := max
i∈N+

m̃i, then for all i∈N+,

Gi
(
ni(t), qim̂

w(t)
)

(a)
=Gi

(
ni(t), qi((1−w)mw(t)+wmin

i′∈N
{n

w
i′ (t)

qi′
})
)

(b)

≥Gi
(
mw(t)ni, qi((1−w)mw(t)+wmw(t)min

i′∈N
{ni

′

qi′
})
)

(c)
>Gi

(
m̃ini, qi((1−w)m̃i+wm̃imin

i′
{ni

′

qi′
})
)

(d)
= ni,

where (a) follows from the definition of m̂w(t); (b) follows from mw(t) ≤ nw
i (t)

ni
based

on its definition, and min
i′∈N
{n

w
i′ (t)

qi′
} > min

i′∈N
{ni′
qi′
}min
i′∈N
{n

w
i′ (t)

ni′
} = min

i′∈N
{ni′
qi′
}mw(t); (c) follows

from mw(t) > m̃ := max
i∈N+

m̃i; (d) follows from the definition of m̃i. In conclusion,

min
i∈N+

{
Gi(n

w
i (t),qim̂

w(t))

ni

}
> 1.

We then show that there exists a constant t̃ such that if t > t̃, we have mw(t)> m̃. Define

t̃= log (1−m̃)/(1−m(1))

logγ
+1, then when t > t̃, we have

1−mw(t)
(a)

≤ 1−m0(t)
(b)

≤ γt−1(1−m0(1))
(c)
< γ t̃−1(1−m0(1))

(d)
= 1− m̃,

where (a) follows from Step 4.2.1; (b) follows from Step 2; (c) follows from t > t̃ and

0<γ < 1; (d) follows from the definition of t̃. Therefore, mw(t)> m̃ for t > t̃.

In summary of the above two claims, we have min
i∈N+

{
Gi(ni(t),qim̂

w(t))
ni

}
> 1 for t > t̃, which

suggests that the system is in the state of overexpansion after a finite period.

Step 4.3: Conclude the case.

lim
T→∞

∣∣∣TR−RTR(T )
∣∣∣

=

t̃∑
t=1

[∑
j∈B

(
F̃bj(q

b
j, bj)−F−1

bj

(
1−

qbj(t)

bj(t)

)
qbj(t)

)
−
∑
i∈S

(
F̃si(q

s
i , si)−F−1

si

(qsi (t)
si(t)

)
qsi (t)

)]
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+ lim
T→∞

T∑
t=t̃+1

[∑
j∈B

(
F̃bj(q

b
j, bj)−F−1

bj

(
1−

qbj(t)

bj(t)

)
qbj(t)

)
−
∑
i∈S

(
F̃si(q

s
i , si)−F−1

si

(qsi (t)
si(t)

)
qsi (t)

)]
≤ t̃
[∑
j∈B

F̃bj(q
b
j, bj)−

∑
i∈S

F̃si(q
s
i , si)

]
+ lim

T→∞

T∑
t=t̃+1

[∑
j∈B

(
F̃bj(q

b
j, bj)−F−1

bj

(
1−

qbj(t)

bj(t)

)
qbj(t)

)
−
∑
i∈S

(
F̃si(q

s
i , si)−F−1

si

(qsi (t)
si(t)

)
qsi (t)

)]
≤ t̃
[∑
j∈B

F̃bj(q
b
j, bj)−

∑
i∈S

F̃si(q
s
i , si)

]
+C ′

1 :=C ′
2,

where the last inequality follows from Step 3. ■

Summarizing Step 1-4, we conclude the claim of this result.

Proof of Lemma EC.7. We prove the two claims of this result separately. Given that

the supporting lemma is located in Step 3 in the proof of Theorem 1, we would borrow

some observations from Step 2 in the proof of Theorem 1 in the proof arguments below.

Claim 1. For i ∈ N+, when ni(1) ≥ ni, we further consider the following two cases: (1)

m(1)≥ 1; (2) m(1)< 1.

(1) When ni(1) ≥ ni and m(1) ≥ 1, we first show that ni(t) ≥ ni for any t ∈ {1, ..., T}.

Given that ni(1)≥ ni for any i∈N+, we assume for induction purpose that ni(t)≥ ni,

and then we can establish that

ni(t+1)
(a)
= Gi(n(t), qim(t))

(b)

≥ Gi(n(t), qi)≥Gi(ni, qi)
(c)
= ni,

where (a) follows from Algorithm 1; (b) follows from our observations in Step 2 Case 1

in the proof of Theorem 1 that ifm(1)> 1, then we havem(1)>m(2)> ... >m(T )> 1,

and in Step 2 Case 3 that if m(1) = 1, then we have m(1) =m(2) = ... =m(T ) = 1;

(c) follows directly from Lemma 1(ii). By induction, with ni(1)≥ ni and m(1)≥ 1, we

obtain that ni(t)≥ ni for any t∈ {1, ..., T}.

To proceed, we further notice that for any t∈ {1, ..., T},

ni(t)−ni
(d)
=Gi(ni(t− 1), qim(t− 1))−Gi(ni, qi)

=Gi(ni(t− 1), qim(t− 1))−Gi(ni(t− 1), qi)+Gi(ni(t− 1), qi)−Gi(ni, qi)
(e)

≤qi(m(t− 1)− 1)(Gi)′2(ni(t− 1), qi)+ (ni(t− 1)−ni)(Gi)′1(ni, qi),
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where (d) follows from Algorithm 1 and Lemma 1(ii); (e) follows from the concavity

of Gi(·, ·) by Assumption 1. Since ni(t) ≥ ni, the LHS of the inequality for (e) is

nonnegative, and we can take the absolute values and obtain the following inequality:

T∑
t=2

∣∣∣ni(t)−ni∣∣∣ ≤ T∑
t=2

[∣∣∣qi(m(t− 1)− 1)(Gi)′2(ni(t− 1), qi)
∣∣∣+ ∣∣∣(ni(t− 1)−ni)(Gi)′1(ni, qi)

∣∣∣]
(f)

≤
T∑
t=2

∣∣∣qi(m(t− 1)− 1)
∣∣∣+ T∑

t=2

∣∣∣(ni(t− 1)−ni)(Gi)′1(ni, qi)
∣∣∣

≤ qi
T∑
t=2

γt−2
∣∣∣(m(1)− 1)

∣∣∣+ T∑
t=2

∣∣∣(ni(t− 1)−ni)(Gi)′1(ni, qi)
∣∣∣.

For (f), we show that (Gi)′2(ni(t−1), qi)< 1. Define y(n) := G(n,n qi
ni(t−1)

), by the mean

value theorem, there must exist a n̂ ∈ (0, ni(t− 1)) such that y′(n̂) = y(ni(t−1))−y(0)
ni(t−1)−0

=
G(ni(t−1),qi)
ni(t−1)

< 1 for ni(t−1)>ni. Therefore, given the concavity of y(n), y′(ni(t−1))<

1, which suggest that (Gi)′1(ni(t− 1), qi) + (Gi)′2(ni(t− 1), qi)
qi

ni(t−1)
< 1, which suggest

that (Gi)′2(ni(t− 1), qi)< 1. Then

T∑
t=1

∣∣∣ni(t)−ni∣∣∣≤ qi
∑T

t=2 γ
t−2
∣∣∣(m(1)− 1)

∣∣∣
1− (Gi)′1(ni, qi)

− (Gi)′1(ni, qi)
1− (Gi)′1(ni, qi)

×
∣∣∣ni(T )−ni∣∣∣+

∣∣∣ni(1)−ni∣∣∣
1− (Gi)′1(ni, qi)

≤
qi
∑T

t=2 γ
t−2
∣∣∣(m(1)− 1)

∣∣∣
1− (Gi)′1(ni, qi)

+

∣∣∣ni(1)−ni∣∣∣
1− (Gi)′1(ni, qi)

.

Therefore, lim
T→∞

∑T
t=1

∣∣∣ni(t)− ni∣∣∣≤ qi

∣∣∣(m(1)−1)

∣∣∣
(1−(Gi)′1(ni,qi))(1−γ)

+

∣∣∣ni(1)−ni

∣∣∣
1−(Gi)′1

. In the end, we define

the positive constant

Cni
:=

qi

∣∣∣(m(1)− 1)
∣∣∣

(1− (Gi)′1(ni, qi))(1− γ)
+

∣∣∣ni(1)−ni∣∣∣
1− (Gi)′1

,

which allows us to obtain the desired result.

(2) Given that m(1)< 1 and that ni(1)≥ ni, we consider two cases. In the first case, we

consider the scenario where there exists a t̃ ∈ {2, ..., T} such that ni(t̃) ≥ ni. In the

second case, we consider the scenario where ni(t)≥ ni for all t∈ {1, . . . , T}.
In the first case, given t̃ ∈ {2, . . . , T} such that ni(t̃) < ni, we want to show that

ni(t) < ni for t ≥ t̃. We prove the claim by induction. Given that ni(t̃) < ni, for any

t≥ t̃, suppose towards an induction purpose that ni(t)<ni, and we can establish that

ni(t+1)
(a)
= Gi(n(t), qim(t))

(b)
< Gi(n(t), qi) < Gi(ni, qi)

(c)
= ni, (EC.22)
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where (a) follows from Algorithm 1; (b) follows from the condition that Gi(q) strictly
increases in q≥ 0 and from the observation in Step 2.1 from the proofs of Theorem 1

that if m(1)< 1, then m(1)<m(2)< ... <m(T )< 1; (c) follows directly from Lemma

1(ii). Therefore, we obtain that if there exists a t̃ ∈ {2, . . . , T} such that ni(t̃) < ni,

we have ni(t) < ni for t ≥ t̃. We then show that t̃ is independent of T . Given the

definition of t̃ as the first time that ni(t)<ni, it is equivalent to show that the value

of ni(t) for 0 ≤ t ≤ t̃ is independent of T . This is true as given ni(1) and m(1), for

t ∈ {1, ..., t̃− 1}, ni(t+1) = Gi(n(t), qim(t)), where m(t) = min
i′∈N+

{ni′ (t)
ni′
} is independent

of T for 1≤ t≤ t̃− 1.

The observations above allow us to deduce that in the first case,

lim
T→∞

T∑
t=1

∣∣∣ni(t)−ni∣∣∣ = t̃−1∑
t=1

∣∣∣ni(t)−ni∣∣∣+ lim
T→∞

T∑
t=t̃

∣∣∣ni(t)−ni∣∣∣
(d)
=

t̃−1∑
t=1

∣∣∣ni(t)−ni∣∣∣+ni lim
T→∞

T∑
t=t̃

∣∣∣m(t)− 1
∣∣∣ (e)

≤
t̃−1∑
t=1

∣∣∣ni(t)−ni∣∣∣+ni lim
T→∞

T∑
t=t̃

∣∣∣m(t̃)− 1
∣∣∣γt−t̃

=
t̃−1∑
t=1

∣∣∣ni(t)−ni∣∣∣+ni

∣∣∣m(t̃)− 1
∣∣∣ 1

1− γ
(f)

≤
t̃−1∑
t=1

∣∣∣ni(t)−ni∣∣∣+ni

∣∣∣m(1)− 1
∣∣∣ 1

1− γ

(g)

≤
qi

∣∣∣(m(1)− 1)
∣∣∣

(1− (Gi)′1(ni, qi))(1− γ)
+

∣∣∣ni(1)−ni∣∣∣
1− (Gi)′1

+ni

∣∣∣m(1)− 1
∣∣∣ 1

1− γ
,

where (d) follows from the definition of m(t), (e) follows from Step 2, and (f) follows

from m(1)<m(2)< ... <m(T )< 1 if m(1)< 1 in Step 2.1; (g) follows from the Case

(1). Then let Cni
=

qi

∣∣∣(m(1)−1)

∣∣∣
(1−(Gi)′1(ni,qi))(1−γ)

+

∣∣∣ni(1)−ni

∣∣∣
1−(Gi)′1

+ni

∣∣∣m(1)−1
∣∣∣ 1
1−γ , we obtain the desired

result.

In the second case, if ni(t)≥ ni for all t ∈ {1, ..., T}, we can apply the same upper

bound as in Case (1) above under Claim 1.

Claim 2. To establish the second claim of this result, when ni(1) ≤ ni and m(1) < 1, by

applying the same induction arguments as in (EC.22) from the previous claim, we can

establish that ni(t)≤ ni for any t∈ {1, . . . , T}.
Summarizing the arguments above, we complete the proofs of the two claims in this

result. ■

Proof of Proposition 2. Claim (i). Let (rs(t),rb(t)) denote the commission in period t∈
{1, ..., T} when w= 0; in addition, given the optimal solution to AVG in (5) (x, qs, qb, s, b),
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we define rij := F−1
bj

(1− qbj
bj
)−F−1

si
(
qsi
si
), which can be seen as the total commission for each

transaction at AVG in (5). We will respectively show that rij ≥ 0 and rsi (t) + rbj(t) ≥ rij
for any (i, j) with xij > 0 in Step 1.2 and Step 1.3. Before that, we need to establish an

auxiliary result in Step 1.1.

Abusing some notations, given any q > 0, we use si(q) to denote the population level at

which the transition remains stable, i.e., si(q) := {s > 0|s= Gsi (s, q)}. Given that Gsi (si, q)

is increasing and strictly concave in s ∈ [q,∞] for any given q > 0 and Gsi (0, q) > 0 (see

Assumption 1), it can be easily shown that si(q) is well-defined. Similarly, we define bj(q) :=

{b > 0|b= Gbj (b, q)}.

Step 1.1: show that for any i∈ S, j ∈B, if 0< q1 < q2, then q1
si(q1)

≤ q2
si(q2)

and q1
bj(q1)

≤ q2
bj(q2)

.

Suppose towards a contradiction that q1
si(q1)

> q2
si(q2)

, then we have

si(q1) =
si(q1)

si(q2)
si(q2)

(a)
=
si(q1)

si(q2)
Gsi
(
q2, si(q2)

)
(b)
<Gsi

(si(q1)
si(q2)

q2,
si(q1)

si(q2)
si(q2)

) (c)
< Gsi

(q1
q2
q2,

si(q1)

si(q2)
si(q2)

)
= Gsi

(
q1, si(q1)

)
,

where (a) follows from the definition of si(q2); (b) follows from the strict concavity of Gsi (see

(EC.20)); (c) follows from si(q1)
si(q2)

= q1
q2

q2
s2(q2)

q1
s1(q1)

< q1
q2

when q1
si(q1)

> q2
si(q2)

, and Gsi (s, q) is increasing

in (s, q) for 0≤ q≤ s (see Assumption 1). As a result, we have si(q1)< Gsi
(
q1, si(q1)

)
, which

contradicts to the definition of si(q1). Therefore, if 0< q1 < q2, then
q1

si(q1)
≤ q2

si(q2)
. The same

argument holds for the buyer side.

Step 1.2: rij ≥ 0 for (i, j) with xij > 0. Suppose towards a contradiction that for the opti-

mal solution to AVG in (5) x, there exists (i0, j0) with xi0j0 > 0 such that ri0,j0 < 0;

based on Lemma 1, we can plug in constraints (5b)(5c)(5d)(5e) and have ri0,j0 = F−1
bj0

(1−∑
i′∈NE(j0)

xi′j0
bj0 (

∑
i′∈NE(j0)

xi′j0
)
)−F−1

si0
(

∑
j′∈NE(i0)

xi0j′

si0 (
∑

j′∈NE(i0)
xi0j′

)
)< 0. Then we construct another feasible solution

x̃ in the following way: let x̃ij := xij for (i, j) ̸= (i0, j0) and x̃i0j0 := 0. We can show that x̃

leads to a higher objective value of AVG:

R(x) (a)
=
∑

(i,j)∈E

xij

(
F−1
bj

(1−
∑

i′∈NE(j) xi′j

bj(
∑

i′∈NE(j) xi′j)
)−F−1

si
(

∑
j′∈NE(i) xij′

si(
∑

j′∈NE(i) xij′)
)
)

=xi0j0

(
F−1
bj0

(1−
∑

i′∈NE(j0)
xi′j0

bj0(
∑

i′∈NE(j0)
xi′j0)

)−F−1
si0

(

∑
j′∈NE(i0)

xi0j′

si0(
∑

j′∈NE(i0)
xi0j′)

)
)

+
∑

i∈NE(j0)

xij0

(
F−1
bj0

(1−
∑

i′∈NE(j0)
xi′j0

bj0(
∑

i′∈NE(j0)
xi′j0)

)−F−1
si

(

∑
j′∈NE(i) xij′

si(
∑

j′∈NE(i) xij′)
)
)
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+
∑

j∈NE(i0)

xi0j

(
F−1
bj

(1−
∑

i′∈NE(j) xi′j

bj(
∑

i′∈NE(j) xi′j)
)−F−1

si0
(

∑
j′∈NE(i0)

xi0j′

si0(
∑

j′∈NE(i0)
xi0j′)

)
)

+
∑

(i,j)∈E,i ̸=i0,j ̸=j0

xij

(
F−1
bj

(1−
∑

i′∈NE(j) xi′j

bj(
∑

i′∈NE(j) xi′j)
)−F−1

si
(

∑
j′∈NE(i) xij′

si(
∑

j′∈NE(i) xij′)
)
)

(b)
<

∑
i∈NE(j0)

x̃ij0

(
F−1
bj0

(1−
∑

i′∈NE(j0)
x̃i′j0

bj0(
∑

i′∈NE(j0)
x̃i′j0)

)−F−1
si

(

∑
j′∈NE(i) x̃ij′

si(
∑

j′∈NE(i) x̃ij′)
)
)

+
∑

j∈NE(i0)

x̃i0j

(
F−1
bj

(1−
∑

i′∈NE(j) x̃i′j

bj(
∑

i′∈NE(j) x̃i′j)
)−F−1

si0
(

∑
j′∈NE(i0)

x̃i0j′

si0(
∑

j′∈NE(i0)
x̃i0j′)

)
)

+
∑

(i,j)∈E,i ̸=i0,j ̸=j0

x̃ij

(
F−1
bj

(1−
∑

i′∈NE(j) x̃i′j

bj(
∑

i′∈NE(j) x̃i′j)
)−F−1

si
(

∑
j′∈NE(i) x̃ij′

si(
∑

j′∈NE(i) x̃ij′)
)
)
=R(x̃),

where in (a), we plug in the constraint (5b)(5c)(5d)(5e) into the objective func-

tion, where the inequalities in (5d)(5e) hold based on Lemma 1; (b) follows from(
F−1
bj0

(1−
∑

i′∈NE(j0)
xi′j0

bj0 (
∑

i′∈NE(j0)
xi′j0

)
)−F−1

si0
(

∑
j′∈NE(i0)

xi0j′

si0 (
∑

j′∈NE(i0)
xi0j′

)
)
)
< 0 and furthermore,

∑
i∈NE(j) xij ≤∑

i∈NE(j) x̃ij for any j ∈ B and
∑

j∈NE(i) xij ≤
∑

j∈NE(i) x̃ij for any i ∈ S based on the con-

struction of x̃ and the result in Step 1. As a result, R(x)<R(x̃), which contradicts to the

optimality of x. Therefore, rij ≥ 0 for (i, j) with xij > 0.

Step 1.3: rsi (t)+ rbj(t)≥ rij for (i, j) with xij > 0. When w= 0,

rsi (t)+ rbj(t) =F
−1
bj

(1−
qbj(t)

bj(t)
)−F−1

si
(
qsi (t)

si(t)
)

(a)
=F−1

bj
(1−

qbjm̂(t)

bj(t)
)−F−1

si
(
qsim̂(t)

si(t)
)
(b)

≥ F−1
bj

(1−
qbj

bj
)−F−1

si
(
qsi
si
) = rij.

where (a) follows from the policy rule, (b) holds because when w = 0, m̂(t) =m(t)≤ bj(t)

bj

for any j ∈B and m̂(t) =m(t)≤ si(t)
si

for any i∈ S by definition.

In summary of Step 1.2 and 1.3, rsi (t)+ rbj(t)≥ rij > 0 for (i, j) with xij > 0.

Claim (ii). We define t̃ such that min
i∈N+

{
Gi(ni(t),qim̂(t))

ni

}
≤ 1 for t ∈ {1, ..., t̃} and

min
i∈N+

{
Gi(ni(t̃),qim̂(t̃))

ni

}
> 1. Then for t∈ {t̃+1, ..., T}, the update rule when w> 0 is the same

as that when w= 0, and we have already shown that rsi (t)+ r
b
j(t)> 0 for (i, j) with xij > 0

(see Step 1). We next establish the result for t∈ {1, ..., t̃− 1}.

Define κij := min{ qbj
max
l∈N

ql
,

qsi
max
l∈N

ql
} for (i, j) ∈ E and define zij :=

{
z ∈ (κij,+∞)|F−1

bj
(1 −

κij
z
) − F−1

si
(
κij
z
) = 0

}
. Given that F−1

bj
(1 − κij

z
) − F−1

si
(
κij
z
) = −vsi < 0 when z = κij and
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F−1
bj

(1− κij
z
)−F−1

si
(
κij
z
) = vbj > 0 when z =∞, and F−1

bj
(1− κij

z
)−F−1

si
(
κij
z
) is increasing in

z, we know zij is well-defined. Then

rsi (t)+ rbj(t) =F
−1
bj

(1−
qbj(t)

bj(t)
)−F−1

si
(
qsi (t)

si(t)
)

(a)

≤F−1
bj

(1−w
qbj
bj(t)

min
l∈N+
{nl(t)
ql
})−F−1

si
(w

qsi
si(t)

min
l∈N+
{nl(t)
ql
})

≤F−1
bj

(1−w
qbj
bj(t)

min
l∈N+
{ nl(t)

max
l′∈N

ql′
})−F−1

si
(w

qsi
si(t)

min
l∈N+
{ nl(t)

max
l′∈N

ql′
})

=F−1
bj

(1−w
qbj

max
l′∈N

ql′

min
l∈N+

nl(t)

bj(t)
)−F−1

si
(w

qsi
max
l′∈N

ql′

min
l∈N+

nl(t)

si(t)
)

(b)
<F−1

bj
(1− wκij

wzij
)−F−1

si
(
wκij
wzij

)
(c)
= 0,

where (a) follows the definition of m̂(t); (b) follows from the definition of κij and the

condition that max{si(t), bj(t)}<wzi,j min
i∈N+

ni(t); (c) follows from the definition of zij. ■

Proof of Corollary 1. Under TRP,

Y b
j (t) := rbj(t)+ min

i∈NE(j)
psi (t) = F−1

bj
(1−

qbj(t)

bj(t)
) = F−1

bj
(1−

qbjm̂(t)

bj(t)
) = F−1

bj
(1− m̂(t)

qbj
bj

bj(t)

bj

).

Since m̂(t) are the same across types and Fbj are assumed to be homogeneous across types,

the Y b
j (t) only differ when

qbj

bj
bj(t)

bj

are different. Similarly, we can show that Isi (t) depends

only on
qi
si

si(t)

si

.

For any t ∈ {1, ..., T}, for any positive constant p, by constructing pi(t) = p and rsi (t) =

p−F−1
si

(1− qsi (t)

si(t)
) for any i∈ S ; rbj(t) = F−1

bj
(1− qbj (t)

bj(t)
)−p for any j ∈B, we obtain a feasible

commission (see Lemma EC.1). For this solution, we can see that rbj(t) depends only on

and deceases in

qbj

bj
bj(t)

bj

, while rsi (t) depends only on and decreases in
qi
si

si(t)

si

. ■

EC.2.3. Proof of Results for MP

Proof of Proposition 3. We denote by (rMP (t),pMP (t),qs,MP (t),qb,MP (t),xMP (t)) the

optimal solution to the optimization problem for the MP in Definition EC.1. We con-

sider the following problem instance: Consider a simple network in which there is only

one buyer type and one seller type with initial population s(1) = b(1) > 0. Given the

commissions rMP (t) induced by the MP, we let the populations for the next period be
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(sMP (t+1),bMP (t+1)) is updated by sMP (t+1) = αsMP (t)+β(qs,MP (t))ξ and bMP (t+1) =

αbMP (t) + β(qb,MP (t))ξ, where we assume β > 0 and 0< ξ < 1 so that the Assumption 1

holds. In addition, we let Fs(·) and Fb(·) be the distribution functions over [0,1] from the

uniform distribution.

We establish two claims to complete the proof.

Claim 1: limt→∞R
MP (t) exists . We divide the proof arguments into the following steps.

In Step 1.1, we show that if a steady state induced by the MP exists, we characterize the

properties of the steady state. In Step 1.2, we show that the populations converge to the

steady state under the platform’s MP. For simplicity of notations, we let RMP (t) denote

the profit in period t under the MP.

Step 1.1. Characterize the quantity qMP and the profit R
MP

in a steady state. We first

define a steady state as such that the populations and transaction quantities remain

unchanged after the population transition in each period. Given the definition of a

steady state, under the platform’s myopic policy, the steady-state population vector

(sMP , b
MP

, qMP ) should satisfy the following three conditions:

qMP = argmax
0≤q≤min{sMP ,b

MP }

[(
1− q

sMP
− q

b
MP

)
q
]
, (EC.23a)

sMP = αsMP +β(qMP )ξ, (EC.23b)

b
MP

= αb
MP

+β(qMP )ξ. (EC.23c)

Condition (EC.23a) ensures that given the population in each period (sMP , b
MP

), the plat-

form’s commissions r could induce the equilibrium quantity qMP to maximize its profit

in the current period (see Corollary EC.1 for the formulation of optimization problem);

(EC.23b) and (EC.23c) ensure that the population vector (sMP , b
MP

) remains unchanged

after the update in each period.

For Problem (EC.23a), from the first-order-condition ∂
∂q

[(
1 − q

sMP − q

b
MP

)
q
]
= 0, we

can obtain that qMP = sMP b
MP

2sMP+2b
MP , which falls in the region (0,min{sMP , b

MP}). Thus, the

optimal solution to (EC.23a) is an interior point. Together with the equations in (EC.23b)-

(EC.23c), we obtain that

qMP =
(k
4

) 1
1−ξ
, b
MP

= k
(k
4

) ξ
1−ξ
, sMP = k

(k
4

) ξ
1−ξ
.
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where we let k = β
1−α for simplicity of notations. This allows us to show that the profit

induced by the platform’s MP satisfies that

RMP
=
(
1− q

MP

sMP
− q

MP

b
MP

)
qMP =

1

2

(k
4

) 1
1−ξ
.

Step 1.2: For the seller side, show that there exists a γ ∈ (0,1) such that |sMP − sMP (t+1)| ≤ γ|(sMP − sMP (t))|.

Next, we establish the convergence of the platform’s MP. Without loss of generality, we

prove the convergence on the seller side, and notice that the same argument would hold

for the buyer side as well.

Since we have sMP (1) = bMP (1) in the problem instance, and in each iteration we have

sMP (t+1) = αsMP (t)+β(qMP (t))ξ and bMP (t+1) = αbMP (t)+β(qMP (t))ξ, we obtain that

sMP (t) = bMP (t) for any t∈ {1, ..., T}. Based on this observation, we can obtain that

qMP (t) = argmax
0<q<min{sMP (t),bMP (t)}

{(
1− q

sMP (t)
− q

bMP (t)

)
q
}

= argmax
0<q<sMP (t)

{(
1− q

sMP (t)
− q

sMP (t)

)
q
}

=
sMP (t)

4
.

From the optimal solution qMP (t) above, we obtain that

sMP (t+1) = αsMP (t)+β(qMP (t))ξ = αsMP (t)+β
(sMP (t)

4

)ξ
.

Abusing some notations, we let gs(s) := αs+β( s
4
)ξ for any s≥ 0 such that gs(s

MP ) = sMP

based on the condition in (EC.23b). To proceed, we consider the following two cases that

sMP (1)≥ sMP and sMP (1)< sMP :

(1) When sMP (1)≥ sMP , we want to show that sMP (t)≥ sMP for t∈ {1, .., T}. By induc-

tion, if sMP (t) ≥ sMP , we have sMP (t+ 1) = gs(s
MP (t)) ≥ gs(sMP ) = sMP , where the

inequality follows from the fact that gs(·) is an increasing function. Since sMP (1) ≥

sMP , we obtain that sMP (t)≥ sMP for t∈ {1, .., T}.

Based on the observation above, we can establish that∣∣∣sMP (t+1)− sMP
∣∣∣ = ∣∣∣gs(sMP (t))− sMP

∣∣∣ (a)
= gs(s

MP (t))− gs(sMP )
(b)

≤
∣∣∣sMP (t)− sMP

∣∣∣g′s(sMP ),

(EC.24)

where (a) follows from the observation that sMP (t)≥ sMP for t∈ {1, .., T} in this case;

(b) follows from the condion that gs is concave given that gs(s) = αs + β( s
4
)ξ with



ec37

a ∈ (0,1). Moreover, we have g′s(s
MP ) < 1 given that gs(0) = 0 and gs(s

MP ) = sMP ,

and so by the mean value theorem, there exists a s̃ ∈ (0, sMP ) such that g′s(s̃) =
gs(sMP )−gs(0)

sMP−0
= 1. Since gs(·) is concave, we have that g′s(s

MP ) < g′s(s̃) = 1 given that

sMP > s̃. By letting γ1 := g′s(s
MP ), we establish that there exists γ1 ∈ (0,1) such that

|sMP − sMP (t+ 1)| ≤ γ1|(sMP − sMP (t))| for t ∈ {1, ..., T − 1} if sMP (1) ≥ sMP . From

the definition of gs(·) and sMP , we see that γ1 is independent of T .

(2) When sMP (1)< sMP , we want to show that sMP (t)< sMP for t∈ {1, .., T}. If sMP (t)<

sMP , we have sMP (t+1) = gs(s
MP (t))< gs(s

MP ) = sMP , where the inequality follows

from that gs(·) is an increasing function given that sMP (t)< sMP . Since sMP (1)< sMP ,

by induction we obtain that sMP (t)< sMP for any t∈ {1, .., T}.
Then, we can establish that

sMP − gs(sMP (t))

sMP − sMP (t)

(c)
<

sMP − gs(sMP (1))

sMP − sMP (1)

(d)
< 1,

where in Step (c), we establish the following set of observations: (c-i) we first

establish that sMP−gs(s)
sMP−s decreases in s ≥ 0 by showing that ∂

∂s

(
sMP−gs(s)
sMP−s

)
=

(s−sMP )g′s(s)−gs(s)+sMP

(s−sMP )2
< 0, with the inequality following as gs(s) is strictly concave in s≥

0 such that sMP = gs(s
MP )< gs(s)+(sMP −s)g′s(s); (c-ii) we then show that sMP (t)>

sMP (1) for t ∈ {2, .., T}. Note that gs(0) = 0 and gs(s
MP ) = sMP . Since gs(s) − s is

strictly concave in s≥ 0, by the Jensen’s inequality, we obtain that gs(as
MP )−asMP >

a(gs(s
MP )−sMP )+(1−a)

(
gs(0)−0

)
= 0 for 0<a< 1. Therefore, we have gs(as

MP )>

asMP for 0<a< 1, which further implies that sMP (t+1) = gs(s
MP (t))> sMP (t) given

that 0 < sMP (t) < sMP . Thus, we can obtain that sMP (t) < sMP (t + 1) < sMP for

t ∈ {1, .., T − 1}. Combining the observations in (c-i) and (c-ii), since sMP−gs(sMP (t))

sMP−sMP (t)

decreases in sMP (t) and sMP (t+ 1) > sMP (t) > sMP (1) for t ∈ {2, .., T − 1}, we have

that Step (c) holds. For Step (d), we have sMP (1)< sMP (2) = gs(s
MP (1))< gs(s

MP ) =

sMP , where the first inequality follows from sMP (t + 1) = gs(s
MP (t)) > sMP (t) for

0< sMP (t)< sMP based on previous discussion; the second inequality follows from the

condition that sMP (1) < sMP in this case and gs(.) is a increasing function; the last

equation follows directly from the observation in (EC.23b). Therefore, we have that
sMP−gs(sMP (1))

sMP−sMP (1)
< 1.

By letting γ2 =
sMP−gs(sMP (1))

sMP−sMP (1)
, we obtain that sMP−gs(sMP (t))

sMP−sMP (t)
≤ γ2, which implies that∣∣∣sMP − gs(sMP (t))

∣∣∣ (e)= sMP − gs(sMP (t))≤ γ2
(
sMP − sMP (t)

)
(f)
= γ2

∣∣∣sMP − sMP (t)
∣∣∣
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where (e) and (f) follow from the observations that sMP (t)< sMP for t ∈ {1, .., T}. In

summary, there exists a γ2 ∈ (0,1) such that |sMP − sMP (t+1)| ≤ γ2|(sMP − sMP (t))|

for t ∈ {1, ..., T − 1} if sMP (1)< sMP . Again, from the definition of gs(·), we see that

γ2 is independent of T .

In summary of the two cases above, we let γ := max{γ1, γ2}, which allows us to obtain

the desired result.

Claim 2: For any ϵ > 0, there exists a∈ (0,1) for the population transition in this problem

instance such that RMP
< ϵR. For the AVG in (5) given the problem instance before Step

1, we have that

R = max
s,b,q

(
1− q

s
− q
b

)
q

s.t. 0≤ q≤ s, 0≤ q≤ b, s≤ αs+βqξ, b≤ αb+βqξ.

In addition, based on Lemma 1(ii), the inequalities in the last two constraints are both tight.

Note that s= αs+ βqξ and b= αb+ βqξ are equivalent to s= b= kqξ, where k = β
1−α . By

plugging s= b= kqξ into the objective function we obtain R=max0≤q≤kqξ(1− q
kqξ
− q

kqξ
)q.

Since (1− q
kqξ
− q

kqξ
)q is concave in q ≥ 0 for 0< ξ < 1, from the first-order condition, we

have q =
(

k
2(2−ξ)

) 1
1−ξ , which satisfy 0 < q < kqξ. Thus, the optimal commission r and the

optimal profit R for the instance of the AVG in (5) satisfies that

r = 1− q

kqξ
− q

kqξ
=

1− ξ
2− ξ

,

R =
(
1− q

kqξ
− q

kqξ

)
q=

1− ξ
2− ξ

( k

2(2− ξ)

) 1
1−ξ
,

which further implies that RMP

R = (2−ξ
2
)

1
1−ξ 2−ξ

2(1−ξ) . Therefore, we can obtain that

lim
ξ→1

RMP

R
= lim

ξ→1

(2− ξ
2

) 1
1−ξ 2− ξ

2(1− ξ)
= 0.

■

EC.3. Proof of Results in Section 5

In this section, we develop some auxiliary results that are needed for the proofs of results

in Section 5 in EC.3.1. We then respectively prove the results from Section 5.2 in EC.3.2

and those from 5.1 in EC.3.3.
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EC.3.1. Auxiliary Results for Section 5.

In this section, we first develop a simper formulation for Problem (5) in (EC.30). To do

that, we first characterize the properties of Problem (5) in Lemma EC.8 and Lemma EC.9.

Next, we reformulate it in Lemma EC.10, and will further simplify its formulation into

(EC.30) in Lemma EC.11. We then show the connection between the optimal solution to

(EC.30) w∗ and (Sτ ,Bτ ) constructed in (10) in Lemma EC.12. The proof of the auxiliary

results follows a similar argument to the proof of Lemma 1, Lemma 2 and Proposition 10

in Birge et al. (2021). Therefore, we omit the detail of the proof of auxiliary results for

simplicity.

To develop an equivalent reformulation in (q,x) for AVG, recall from Lemma 1(ii)

that the relaxed population dynamics constraints si ≤ αsisi+Gsi (qsi ) and bj ≤ αbjbj +Gbj (qbj)
with the optimal solutions to AVG are tight. Together with (7), on the seller side, we

have si =
βs
i (q

s
i )

ξs

1−αs
i

for any i ∈ S. We further let ksi :=
βs
i

1−αs
i
, which allows us to obtain that

si = ksi (q
s
i )
ξs for any i∈ S. Similarly, on the buyer side, we have bj = kbj(q

b
j)
ξb for any j ∈B,

where kbj =
βb
j

1−αb
j
. Plugging the expressions of si = ksi (q

s
i )
ξs and bj = kbj(q

b
j)
ξb into AVG, we

obtain the following reformulation of AVG:

R = max
qs,qb,x

[∑
j∈B

F̃b(q
b
j , k

b
j(q

b
j)
ξb)−

∑
i∈S

F̃s(q
s
i , k

s
i (q

s
i )
ξs)
]

(EC.25a)

s.t. qsi ≤ ksi (qsi )ξs, ∀i∈ S, (EC.25b)

qbj ≤ kbj(qbj)ξb , ∀j ∈B, (EC.25c)∑
j:(i,j)∈E

xij = qsi , ∀i∈ S, (EC.25d)

qbj =
∑

i:(i,j)∈E

xij, ∀j ∈B, (EC.25e)

xij ≥ 0, ∀(i, j)∈E. (EC.25f)

where F̃b(·) and F̃s(·) are defined before Problem (5).

For ξs ∈ (0,1) and ξb ∈ (0,1), define yb(q) := F−1
b

(
1− (q)1−ξb

)
q for 0 ≤ q ≤ 1. Define

ys(q,u) :=−F−1
s

(
(q)1−ξs

u1−ξs

)
q for 0≤ q≤ u and u> 0, ys(0,0) := lim

(q,u)→(0,0)
ys(q,u). For simplic-

ity of notations, we let y′b(q) :=
dyb(q)
dq

for 0< q < 1 and (ys)
′
1(q,u) :=

∂ys(q,u)
∂q

for 0< q < u.

Furthermore, we let y′b(0) := lim
q↓0

y′b(q), y
′
b(1) := lim

q↑1
y′b(q); for u > 0, we let (ys)

′
1(0, u) :=

lim
q→0

(ys)
′
1(q,u), (ys)

′
1(u,u) := lim

q→u
(ys)

′
1(q,u); for q > 0, we let (ys)

′
2(q, q) := lim

u→q
(ys)

′
2(q,u). We

show in the following lemma that all of the limiting values are finite.
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Lemma EC.8. (i) yb(q) is continuously differentiable and strictly concave in q ∈ [0,1];

(ii) ys(q,u) is continuous and strictly concave in (q,u) ∈ {(q′, u′) : 0≤ q′ ≤ u′}; moreover,

ys(q,u) is continuously differentiable in (q,u)∈ {(q′, u′) : 0≤ q′ ≤ u′, u′ > 0};

(iii) for any 0< ξs < 1, −(1− ξs)
[
F−1
s

]′
(x)x−F−1

s (x) strictly decreases in x∈ [0,1].

Before the next auxiliary result, we define

ρ(u) := argmax
0≤q≤min{1,u}

(
yb(q)+ ys(q,u)

)
, for u≥ 0, (EC.26)

h(u) = max
0≤q≤min{1,u}

(
yb(q)+ ys(q,u)

)
, for u≥ 0. (EC.27)

Given the definition of ρ(u) and h(u) above, we proceed to consider the following auxiliary

result about (ρ(u), h(u)) for u ≥ 0. Notice that −(ys)′1(u,u) = (1− ξs)[F−1
s ]′ (1) + vs > 0,

which is a constant. To support our proof arguments below, when u > 0, if y′b(0) > (1−

ξs)[F
−1
s ]′ (1)+ vs, we let ũ := (y′b)

−1((1− ξs)[F−1
s ]′ (1)+ vs); if y

′
b(0)≤ (1− ξs)[F−1

s ]′ (1)+ vs,

we let ũ := 0.

Lemma EC.9. (i) ρ(u) is a well-defined and strictly increasing in u ≥ 0; moreover,

given ũ≥ 0 defined before the lemma statement, ρ(u)
u

= 1 for u∈ (0, ũ] and ρ(u)
u

strictly

decreases in u≥ ũ;

(ii) h(u) is continuous, strictly increasing and strictly concave in u≥ 0.

We next develop an alternative optimization for Problem (EC.25). Consider the following

optimization problem:

V = max
w,z

∑
j∈B

[
(kbj)

1
1−ξb h

((wj) 1
1−ξb

(kbj)
1

1−ξb

)]
(EC.28a)

s.t. (wj)
1

1−ξb =
∑

i:(i,j)∈E

zij, j ∈B (EC.28b)

∑
j:(i,j)∈E

zij = (ksi )
1

1−ξs , i∈ S, (EC.28c)

zij ≥ 0, ∀(i, j)∈E. (EC.28d)

where

h(u) = max
0≤q̃j≤min{1,u}

F−1
b (1− (q̃j)

1−ξb)q̃j −F−1
s

((q̃j)1−ξs
u1−ξs

)
q̃j for any u> 0 (EC.29)

and h(0) = 0. We consider the following result:
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Lemma EC.10. We have the following equivalence properties between Problem (EC.28)

and Problem (EC.29):

(i) let (x,qs,qb) be the optimal solution to Problem (EC.25), and construct (w,z) such

that wj = (
qbj
qsi
(ksi )

1
1−ξs )1−ξb for any i : xij > 0 and zij =

xij
qsi
(ksi )

1
1−ξs , q̃j =

qbj

(kbj)
1

1−ξb

, then

(w,z) is the optimal solution to Problem (EC.28) and q̃j is the optimal solution to

Problem (EC.29) with uj =
(wj)

1
1−ξb

(kbj)
1

1−ξb

;

(ii) let (w,z) be the optimal solution to Problem (EC.28) and q̃j is the optimal solu-

tion to Problem (EC.29) with uj =
(wj)

1
1−ξb

(kbj)
1

1−ξb

, then construct (x,qs,qb) such that xij =

zij(k
b
j)

1
1−ξb q̃j

(wj)
1

1−ξb

and qsi =
(kbj)

1
1−ξb q̃j(k

s
i )

1
1−ξs

w

1
1−ξb
j

for j : zij > 0, qbj = (kbj)
1

1−ξb q̃j, then (x,qs,qb) is

the optimal solution to (EC.25);

(iii) Problem (EC.25) and Problem (EC.28) share the same optimal objective value, i.e.,

R= V.

We can further simplify the formulation in (EC.28) in the following Lemma EC.11.

Lemma EC.11. Problem (EC.28) and the following problem share the same optimal

solution vector w,

Y = max
w

∑
j∈B

[
(kbj)

1
1−ξb h

((wj) 1
1−ξb

(kbj)
1

1−ξb

)]
(EC.30a)

s.t.
∑
j∈B̃

(wj)
1

1−ξb ≤
∑

i∈NE(B̃)

(ksi )
1

1−ξs , ∀B̃ ⊆ B, (EC.30b)

wj ≥ 0, ∀j ∈B, (EC.30c)

and moreover, Y = V where V is the optimal objective value for Problem (EC.28).

The next lemma establishes the connection between the optimal solution w∗ to Prob-

lem (EC.30) and the network components G(Sτ ∪ Bτ ,Eτ ) constructed in (10). Given the

finiteness of the network G(S ∪B,E), the iteration in (10) yields a maximum index τ .

Lemma EC.12. For any τ ∈ {1, ..., τ} and any j′ ∈Bτ , we have
(w∗

j′ )
1

1−ξb

(kb
j′ )

1
1−ξb

=
∑

i∈Sτ
(ksi )

1
1−ξs∑

j∈Bτ
(kbj)

1
1−ξb

.

EC.3.2. Proof of Results in Section 5.2.

Proof of Proposition 4. Recall that we have established the connection for the opti-

mal solution and the optimal objective value of Problem (EC.25) with those of Problem
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(EC.28) and Problem (EC.30) in Lemma EC.10 and Lemma EC.11. Therefore, we focus

on characterizing the properties of optimization problems in (EC.28) and (EC.30) instead

of (EC.25) in this proof. We have already shown that (EC.28) and (EC.30) share the same

optimal solution w∗ in Lemma EC.11. To prove the claim, we consider the buyer side in

Step 1 and the seller side in Step 2.

Step 1: Establish the ranking of buyers’ service levels and payments. Based on Lemma

EC.10(ii), we let (w,z) be the optimal solution to Problem (EC.28) and q̃j is the opti-

mal solution to Problem (EC.29) with the parameter uj =
(wj)

1
1−ξb

(kbj)
1

1−ξb

. We know the optimal

solution to Problem (EC.25) satisfies

qbj
bj

(a)
=

(qbj)
1−ξb

kbj

(b)
= (q̃j)

1−ξb (c)
= ρ1−ξb

((wj) 1
1−ξb

(kbj)
1

1−ξb

)
,

where Step (a) follows from the observation that bj = kbj(q
b
j)
ξb in Problem (EC.25); Step

(b) follows from the solution property of q̃j in Problem (EC.29) by Lemma EC.10(ii); Step

(c) follows from the definition of the optimal solution ρ to Problem (EC.26). Therefore,

the ranking of service levels (
qbj
bj
)j∈B is the same as that of

(
ρ
( (wj)

1
1−ξb

(kbj)
1

1−ξb

))
j∈B

.

For buyers’ payments, we know that

min
i′:(i′,j)∈E

{psi′}+ rbj = F−1
b

(
1−

qbj
bj

)
= F−1

b

(
1− ρ

((wj) 1
1−ξb

(kbj)
1

1−ξb

))
.

Therefore, the ranking of buyers’ payments ( min
i′:(i′,j)∈E

{psi′} + rbj)j∈B is the opposite of(
ρ
(

(wj)
1

1−ξb

(kbj)
1

1−ξb

))
j∈B

.

By Lemma EC.9(i), we have that ρ(u) strictly increases in u > 0. From Lemma EC.12,

we know that
(wj)

1
1−ξb

(kbj)
1

1−ξb

=

∑
i∈N

Eτ−1 (Bτ )(k
s
i )

1
1−ξs∑

j∈Bτ
(kbj)

1
1−ξb

for j ∈Bτ and τ = 1, . . . τ . Furthermore, the def-

inition in (10) implies that

∑
i∈N

Eτ−1 (Bτ )(k
s
i )

1
1−ξs∑

j∈Bτ
(kbj)

1
1−ξb

strictly increases in τ = 1, . . . , τ . Therefore,

we have

qbj1
bj1

=
qbj2
bj2
, for j1, j2 ∈Bτ , τ ∈ {1, ..., τ},

qbj1
bj1

<
qbj2
bj2
, for j1 ∈Bτ1, j2 ∈Bτ2, τ1, τ2 ∈ {1, ..., τ} and τ1 < τ2.

and

min
i′:(i′,j1)∈E

{psi′}+ rbj1 = min
i′:(i′,j2)∈E

{psi′}+ rbj2 , for j1, j2 ∈Bτ , τ ∈ {1, ..., τ},
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min
i′:(i′,j1)∈E

{psi′}+ rbj1 > min
i′:(i′,j2)∈E

{psi′}+ rbj2 , for j1 ∈Bτ1 , j2 ∈Bτ2, τ1, τ2 ∈ {1, ..., τ} and τ1 < τ2.

Step 2: Establish the ranking of sellers’ service levels and incomes. To establish the rank-

ing of sellers’ service levels, given the optimal solution w to Problem (EC.30) and the

optimal solution q̃j to Problem (EC.29) with parameter uj =
(wj)

1
1−ξb

(kbj)
1

1−ξb

, we have that for any

i∈ S and j : xij > 0,

qsi
si

(a)
=

(qsi )
1−ξs

ksi

(b)
=

(
ρ((wj)

1
1−ξb/(kbj)

1
1−ξb )

(wj)
1

1−ξb/(kbj)
1

1−ξb

)1−ξs
, (EC.31)

where (a) follows from our discussion before Problem (EC.25) that si = ksi (q
s
i )
ξs; (b) follows

from Lemma EC.10(ii) for j : xij > 0.

We next show that for any τ1 ̸= τ2, we have xij = 0 with i ∈ Sτ1 and j ∈Bτ2 . Based on

Lemma EC.10(ii), it is equivalent to show the optimal solution to Problem (EC.28) satisfies

that for any τ1 ̸= τ2, zij = 0 for i ∈ Sτ1 and j ∈ Bτ2 . We show it by induction. Again, to

simplify the notation in Problem (EC.28), we let Wj := (wj)
1

1−ξb and ψbj := (kbj)
1

1−ξb for any

j ∈B and let ψsi := (ksi )
1

1−ξs for any i∈ S. We first consider τ = 1. The buyers in B1 can only

trade with the sellers in S1 given that they are not connected to any other seller types. It

remains to show that the sellers in S1 only trade with the buyers in B1 at the platform’s

optimal commissions. Suppose towards a contradiction that there exist τ1 ̸= 1 such that

zij > 0 for some i∈ S1 and j ∈Bτ1, then∑
i∈S1

∑
j:(i,j)∈E

zij =
∑
i∈S1

∑
j:(i,j)∈E,j∈B1

zij +
∑
i∈S1

∑
j:(i,j)∈E,j /∈B1

zij

(a)
>
∑
j∈B1

∑
i:(i,j)∈E,i∈S1

zij
(b)
=
∑
j∈B1

Wj
(c)
=
∑
j∈B1

ψbj

∑
i∈S1

ψsi∑
j∈B1

ψbj
=
∑
i∈S1

ψsi (EC.32)

where (a) follows from the assumption that zij > 0 for some i ∈ S1 and some j ∈Bτ1 with

τ1 ̸= 1; (b) follows from (EC.28b); (c) follows from the observation in Lemma EC.12. In

summary,
∑

i∈S1

∑
j:(i,j)∈E zij >

∑
i∈S1

ψsi , which violate Constraint (EC.28c). In summary,

we have that zij = 0 for all i ∈ S1 and j ∈Bτ1 if τ1 ̸= 1. Assuming that Bτ only trade with

Sτ and vice versa, we proceed to show that Bτ+1 only trade with Sτ+1 and vice versa. First,

the buyers in Bτ+1 only trade with the sellers in Sτ+1, because they are not adjacent to

the seller types from Sτ ′ for any τ ′ ≥ τ +1; and the seller types with an index lower than

τ +1 does not trade with them based on our previous discussion. Second, Sτ+1 only trade
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with Bτ+1, otherwise we can also obtain
∑

i∈Sτ+1

∑
j:(i,j)∈E zij >

∑
i∈Sτ+1

ψsi following the

same argument in (EC.32), which violate Constraint (EC.28c) to Problem (EC.28) given

that Problem (EC.30) is a reformulation without loss of optimality. In summary, for any

τ1 ̸= τ2, xij = 0 for i ∈ Sτ1 and j ∈ Bτ2 . This allows us to show that for any i ∈ Sτ with

τ = 1, . . . , τ , we have that if j : xij > 0, then we obtain that j ∈Bτ .
Thus, regarding the sellers’ incomes, for any i ∈ Sτ with τ = 1, . . . , τ and any j : xij > 0,

we have that

psi − rsi = F−1
s

(qsi
si

)
= F−1

s

(ρ((wj)
1

1−ξb/(kbj)
1

1−ξb

)
(wj)

1
1−ξb/(kbj)

1
1−ξb

)
.

Since
(wj)

1
1−ξb

(kbj)
1

1−ξb

=

∑
i∈N

Eτ−1 (Bτ )(k
s
i )

1
1−ξs∑

j∈Bτ
(kbj)

1
1−ξb

for j ∈Bτ with τ = 1, . . . , τ in Lemma EC.12, we can

next focus on the ranking of
ρ

(∑
i∈N

Eτ−1 (Bτ )(k
s
i )

1
1−ξs/

∑
j∈Bτ

(kbj)

1
1−ξb

)
∑

i∈N
Eτ−1 (Bτ )(k

s
i )

1
1−ξs/

∑
j∈Bτ

(kbj)

1
1−ξb

for τ = 1, . . . , τ . Recall from

Step 1 that

∑
i∈N

Eτ−1 (Bτ )(k
s
i )

1
1−ξs∑

j∈Bτ
(kbj)

1
1−ξb

strictly increases in τ = 1, . . . τ . Based on Lemma EC.9, for

some constant ũ≥ 0, we have that ρ(u)
u

= 1 for 0<u≤ ũ and ρ(u)
u

strictly decreases in u for

u > ũ. Define τ̃ := max{τ |uj < ũ for j ∈ Bτ}. We observe that (i) for any τ ≤ τ̃ , we have
qsi
si
= ρ(u)

u
= 1 and psi − rsi = F−1

s

(
ρ(u)
u

)
= F−1

s (1) = vsi for i ∈ Sτ ; (ii) for any τ > τ̃ , we have

ρ(
∑

i∈N
Eτ−1 (Bτ )(k

s
i )

1
1−ξs/

∑
j∈Bτ

(kbj)

1
1−ξb )

∑
i∈N

Eτ−1 (Bτ )(k
s
i )

1
1−ξs/

∑
j∈Bτ

(kbj)

1
1−ξb

strictly decreases in τ . Therefore, we can summarize that

qsi1
si1

=
qsi2
si2
, for i1, i2 ∈ Sτ , τ ∈ {1, ..., τ},

qsi
si

= 1, for i∈ Sτ , τ ≤ τ̃ ,

qsi1
si1

>
qsi2
si2
, for i1 ∈ Sτ1, i2 ∈ Sτ2, τ1, τ2 ∈ {τ̃ +1, ..., τ} and τ1 < τ2.

and

psi1 − r
s
i1
= psi1 − r

s
i1
, for i1, i2 ∈ Sτ , τ ∈ {1, ..., τ},

psi − rsi = vsi , for i∈ Sτ , τ ≤ τ̃ ,

psi1 − r
s
i1
> psi2 − r

s
i2
, for i1 ∈ Sτ1, i2 ∈ Sτ2, τ1, τ2 ∈ {τ̃ +1, ..., τ} and τ1 < τ2.

Summarizing the two steps above, we conclude the claims in this result. ■

Proof of Corollary 2. Given the definition of (ks,kb) at the beginning of Appendix

EC.3.1, for any ξs ∈ (0,1) and ξb ∈ (0,1), we first let ψsi = (ksi )
1

1−ξs and ψbj = (kbj)
1

1−ξb for



ec45

simplicity of notations. We consider the equivalent reformulation in Problem (EC.28) with

decision variables (w,z) by Lemma EC.10 and Problem (EC.30) with the decision variable

vector w and Lemma EC.11. We let Wj = (wj)
1

1−ξb for all j ∈B.

Notice that it is without loss of generality to consider a connected graph G(S ∪ B,E)

for the proof arguments. We prove the impact of ψs and ψb on the service levels in Step 1,

and then the impacts on supply/demand and population in Step 2.

Proof of Claim (1): Establish the impact of ψs and ψb on the service levels. Recall from

Step 1 in the proof arguments of Proposition 4 that for any j ∈ B, when Wj

ψb
j
becomes

larger under the optimal solutionW to Problem (EC.30),
qbj
bj

becomes larger at the optimal

solution as well. As a result, we can focus on the impact of ψs and ψb on
Wj

ψb
j
for j ∈Bτ .

Step (1-i): Establish the impact of (ψs,ψb) on the service levels of the buyer side. Let

(W ,z) be the optimal solution to (EC.28) given parameters (ψs,ψb) and let {(Sτ ,Bτ ) :

τ = 1, . . . τ} be the network components obtained from (10) given this parameter set. We

define the index set τi := {τ |i∈ Sτ} and τj := {τ |j ∈Bτ}. We consider an alternative vector

(ψ̂s, ψ̂b) in which we pick any ĩ ∈ S, and let ψ̂s
ĩ
>ψs

ĩ
; we also let ψ̂si := ψsi for all i ̸= ĩ and

let ψ̂bj := ψbj for all j ∈ B. Then we obtain that the parameter vector (ψ̂s, ψ̂b) has only one

entry on the seller side that is higher than in (ψs,ψb). Let (Ŵ , ẑ) be the optimal solution

to (EC.28) given the parameter set (ψ̂s, ψ̂b), and let {(Ŝτ , B̂τ ) : τ = 1, . . . τ̃} be the network

components obtained from (10) given this parameter set for some positive integer τ̃ .

To prove the claim of this step, we want to show that Wj ≤ Ŵj for all j ∈B. This leads

to the observation that
Wj

ψb
j
≤ Ŵj

ψ̂b
j

given our construction that ψ̂bj := ψbj for all j ∈B. In this

way, we can claim that a higher ψsi leads to weakly higher
Wj

ψb
j
for all j ∈B.

Suppose towards a contradiction that there exists a j1 ∈ B such that Wj1 > Ŵj1 at the

optimal solution. Based on Constraint (EC.28b), we have that
∑

i∈NE(j1)
zij1 =Wj1 > Ŵj1 =∑

i∈NE(j1)
ẑij1, which implies that there exists a i1 ∈NE(j1) such that zi1j1 > ẑi1j1 ≥ 0. Simi-

larly, given i1 ∈NE(j1), based on Constraint (EC.28c), we have that
∑

j∈NE(i1)
zi1j =ψsi1 ≤

ψ̂si1 =
∑

j∈NE(i1)
ẑi1j where the inequality follows from the construction of ψ̂ above. This

implies that there exists j2 ∈NE(i1) such that 0≤ zi1j2 < ẑi1j2. Using the same argument as

above, there must exist a i2 ∈NE(j2), i2 ̸= i1 such that zi2j2 > ẑi2j2 ≥ 0 and there exists some

j3 ∈NE(i2) such that 0≤ zi2j3 < ẑi2j3 . In this iteration, given the finiteness of the graph, we

have that there exists a finite list (j1, i1, j2, i2..., jn) such that Wj1 > Ŵj1 and Wjn ≤ Ŵjn.

We let B1 = {j1}, and S1 = {i|i ∈NE(j1), zi1j1 > ẑi1j1 ≥ 0}. For t ∈ {2,3 . . .}, we further let
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Bt = {j|j ∈NE(i),0≤ zij < ẑij, ∀i ∈ St−1}, and St = {i|i ∈NE(j), zij > ẑij ≥ 0, ∀j ∈ Bt−1}.
We have that Bt :=∪l∈{1,...,t}Bl and St :=∪l∈{1,...,t}Sl are the sets of all possible buyer types
and seller types accessed within the first 2t steps in this iteration. Since Bt−1 ⊂Bt ⊂B and

|B| is finite, there exists a finite t such that Bt = Bt−1, i.e., the set Bt stops expanding.

Under the assumption that Wj1 > Ŵj1 at the optimal solution for j1 ∈ B1, we next show

that there exists j ∈Bt such that Wj < Ŵj. We further suppose towards a contradiction

that Wj > Ŵj for any j ∈Bt. Consider the set of seller types S̃ := {i|i ∈NE(j), zij > ẑij ≥
0, ∀j ∈Bt}. We can show that S̃ ⊆St by definition. Moreover, we would obtain that∑

i∈S̃

ψ̂si =
∑
i∈S̃

∑
j:zij>ẑij

ẑij +
∑
i∈S̃

∑
j:zij<ẑij

ẑij +
∑
i∈S̃

∑
j:zij=ẑij

ẑij

(a)
=
∑
i∈S̃

∑
j:zij>ẑij

ẑij +
∑
i∈S̃

∑
j:zij=ẑij

ẑij

<
∑
i∈S̃

∑
j:zij>ẑij

zij +
∑
i∈S̃

∑
j:zij=ẑij

zij

≤
∑
i∈S̃

∑
j:zij>ẑij

zij +
∑
i∈S̃

∑
j:zij>ẑij

zij +
∑
i∈S̃

∑
j:zij=ẑij

zij =
∑
i∈S̃

ψsi

where in Step (a), with S̃ ⊆St =∪l∈{1,...,t}Sl, in the iterative construction above, given that

Bt = {j|j ∈NE(i),0 ≤ zij < ẑij, ∀i ∈ St−1} and that Bt = ∪l∈{1,...,t}Bl, the subset of buyer

types {j : zij < ẑij for some i ∈ S̃} should be a subset of Bt; based on the definition S̃ =

{i|i ∈NE(j), zij > ẑij ≥ 0, ∀j ∈Bt}, we have that zij > ẑij for any i ∈ S̃ and j ∈Bt, which

further implies that {j : zij < ẑij, ∀i∈ S̃}= ∅ and that
∑

i∈S̃
∑

j:zij<ẑij
ẑij = 0. However, the

observation that
∑

i∈S̃ ψ̂
s
i <

∑
i∈S̃ ψ

s
i contradicts with the fact that

∑
i∈S̃ ψ̂

s
i ≥

∑
i∈S̃ ψ

s
i by

construction of (ψ̂s, ψ̂b) above. Therefore, such a contradiction implies that there exists

a jl ∈ Bl ⊂Bt for some l ∈ N+ such that Wjl ≤ Ŵjl . Thus, there must exist a finite path

(j1, i1, j2, i2..., jl) for jt ∈ Bt and it ∈ St such that zitjt > 0 for t ∈ {1, .., l} and ẑit−1jt > 0 for

t ∈ {2, . . . , l} under the assumption that Wjl ≤ Ŵjl . For any t ∈ {1, . . . , l − 1}, we let τit

and τjt be the corresponding index for the seller subgroup for Sτ and the buyer subgroup

Bτ by the iterative construction in (10). Since zitjt > 0, we know that τit = τjt . With the

iterative construction, we have jt+1 ∈NE(it), which satisfies that τit ≤ τjt+1 given that Sit

is not adjacent to Bl with l < τit with the iterative construction in (10). In summary,

τj1 = τi1 ≤ τj2 = ...≤ τjl , which implies that
Wjn

ψb
jn

≥ Wj1

ψb
j1

based on Lemma EC.12. Therefore,

Ŵjn

ψ̂b
jn

≥ Wjn

ψb
jn

≥ Wj1

ψb
j1

>
Ŵj1

ψ̂b
j1

.
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We proceed to show that the constructed solution (Ŵ , ẑ) cannot be the optimal solution

to Problem (EC.28) given the parameter set (ψ̂s, ψ̂b). We first send a flow ϵ along jn→

in−1→ jn−1→ ...→ i1→ j1 to construct a new feasible solution (W̃ , z̃): since
Ŵjn

ψ̂b
jn

>
Ŵj1

ψ̂b
j1

and

ẑit,jt+1 > 0 for all t ∈ {1, ..., n− 1}, we can pick any ϵ ∈ (0,min{(Ŵjnψ̂
b
j1
− Ŵj1ψ̂

b
jn)/(ψ̂

b
j1
+

ψ̂bjn), min
t∈{1,...,n−1}

{ẑit,jt+1}}); for t∈ {1, ..., n− 1}, let z̃itjt := ẑitjt + ϵ, z̃itjt+1 := ẑitjt+1 − ϵ, z̃ij :=

ẑij for all (i, j) ̸= (itjt+1), (i, j) ̸= (itjt). Let W̃j1 := Ŵj1 + ϵ and W̃jn := Ŵjn − ϵ, W̃j′ := Ŵj′

for all j′ ̸= j1, j
′ ̸= jn. We next verify the feasibility of this new solution (W̃ , z̃) in Problem

(EC.28). Since ϵ≤ min
t∈{1,...,n−1}

{ẑit,jt+1}, we can obtain that z̃itjt+1 ≥ 0 such that Constraint

(EC.28d) is satisfied. In addition, in our construction of the new feasible solution (W̃ , z̃),

since we only send a flow ϵ along jn→ in−1→ jn−1→ ...→ i1→ j1, Constraints (EC.28b) -

(EC.28c) are preserved. Thus, (W̃ , z̃) is feasible in Problem (EC.28). We define the super-

gradient of h(u) as ∂h(u) = {z ∈ R|h(t) ≤ h(u) + z(t− u),∀t ≥ 0}. In addition, we define

∂−h(u) := inf{∂h(u)} and ∂+h(u) := sup{∂h(u)}. Given the strict concavity of h(u) for

u≥ 0, we have that if u2 >u1 > 0, then ∂+h(u2)<∂−h(u1), which implies that

ψ̂bj1h
(W̃j1

ψ̂bj1

)
+ ψ̂bjnh

(W̃jn

ψ̂bjn

)
= ψ̂bj1h

(Ŵj1 + ϵ

ψ̂bj1

)
+ ψ̂bjnh

(Ŵjn − ϵ
ψ̂bjn

)
> ψ̂bj1h

(Ŵj1

ψ̂bj1

)
+ ϵ∂h−

(Ŵj1 + ϵ

ψ̂bj1

)
+ ψ̂bjnh

(Ŵjn

ψ̂bjn

)
− ϵ∂h+

(Ŵjn − ϵ
ψ̂bjn

)
≥ ψ̂bj1h

(Ŵj1

ψ̂bj1

)
+ ψ̂bjnh

(Ŵjn

ψ̂bjn

)
where the first inequality follows from the concavity of h(·) in R+; for the second inequality,

since
Ŵjn

ψ̂b
jn

>
Ŵj1

ψ̂b
j1

and ϵ <
Ŵjn ψ̂j1

+Ŵj1
ψ̂jn

ψ̂j1
+ψ̂jn

, we have
Ŵjn−ϵ
ψ̂b
jn

>
Ŵj1

+ϵ

ψ̂b
j1

, and therefore, ∂+h(
Ŵjn−ϵ
ψ̂b
jn

)<

∂h−(
Ŵj1

+ϵ

ψ̂b
j1

). Since other terms in the objective function remain unchanged, (W̃ , z̃) leads to

a strictly higher objective value than (Ŵ , ẑ), which contradicts with the fact that (Ŵ , ẑ)

be the optimal solution to (EC.28) given the parameter set (ψ̂s, ψ̂b).

In conclusion, we have that
Wj

ψb
j
≤ Ŵj

ψ̂b
j

for all j ∈ B. This concludes the claim about the

impact of ψsi . For the impact of ψbj , we can apply exactly the same proof-by-contradiction

arguments as above to establish that when ψb
j̃
increases for any j̃ ∈ B, then we have that

the optimal solution
Wj

ψb
j
decreases for any j ∈B.

Step (1-ii): Establish the impact of (ψs,ψb) on the service levels of the seller side. For the

impact of ψs on the service levels of the seller side, we first recall the construction of
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(ψ̂s, ψ̂b) based on (ψs,ψb) in Step (1-i), which satisfies that ψ̂s
ĩ
>ψs

ĩ
, ψ̂si := ψsi for all i ̸= ĩ

and ψ̂bj :=ψbj for all j ∈B. Without loss of generality, we suppose that a type-i seller trades

with type-j1 buyer where i ∈ Sl1 and j1 ∈ Bl1 given the parameter set (ψs,ψb); and given

the parameter set (ψ̂s, ψ̂b), we suppose that the type-i seller trades with type-j2 buyer for

some j2 ∈ Bl2. The index satisfies that l2 ≥ l1 given that Sl1 is not connected with Bt for

any t < l1 by the iterative construction of network components in (10). Therefore, we have

that
Wj1

ψb
j1

≤ Wj2

ψb
j2

≤ Ŵj2

ψ̂b
j2

, where the first inequality follows from Lemma EC.12 given that

l2 ≥ l1, and the second inequality follows from the same arguments in Step (1-i). Since

type-i sellers have positive trades with type-j1 buyers in the optimal solutions given the

parameters (ψs,ψb), and with type-j2 buyers in the optimal solutions given the parameters

(ψ̂s, ψ̂b), based on the observation that
Wj1

ψb
j1

≤ Ŵj2

ψ̂b
j2

, we can establish that

qsi
si

(a)
=
(ρ(Wj1/ψ

b
j1
)

Wj1/ψj1

)1−ξs (b)

≥
(ρ(Ŵj2/ψ̂

b
j2
)

Ŵj2/ψ̂j2

)1−ξs
(c)
=

q̂si
ŝi
, (EC.33)

where Step (a) and Step (c) follow from the optimality equation in (EC.31) from the proof

arguments in Proposition 4; Step (b) follows from the fact that ρ(x)
x

monotonically decreases

in x≥ 0 (see Lemma EC.9). In summary, when ψs
ĩ
increases for any ĩ∈ S, we have that

qsi
si

becomes weakly lower for all i∈ S.

Using the same arguments above, we could establish the impact of ψb on the seller side:

when ψb
j̃
increases for any j̃ ∈B, we have that

qsi
si

becomes weakly higher for all i∈ S.

Proof of Claim (2): Establish the impact of ψs and ψb on transaction quantities and populations.

Recall from (8) that we have qbj = ψbj(
qbj
bj
)

1
1−ξb and bj = ψbj(

qbj
bj
)

ξb
1−ξb for any j ∈ B at the

optimal solution to Problem (5) given (7). We establish this claim in the following two

substeps.

Step (2-i): Establish the impact of ψb on the transaction quantities and populations. For

any j ∈B, recall from Step (1-i) above that if ψb
j̃
increases for any j̃ ̸= j, or if ψs

ĩ
increases

for any ĩ∈ S, then qbj
bj

weakly decreases at the optimal solution. Given that qbj =ψbj(
qbj
bj
)

1
1−ξb ,

we can establish that as ψb
j̃
increases for any j̃ ̸= j, then qbj weakly decreases at the optimal

solution for any j ∈B. From qbj =ψbj(
qbj
bj
)

1
1−ξb , we have that bj =ψbj(q

b
j)
ξb for any j ∈B, which

further suggests that bj weakly decreases at the optimal solution for any j ∈B.

For any j ∈B, it remains to consider the impact of ψbj on (qbj , bj) at the optimal solution

for j ∈ B. We first show that qbj increases in ψ
b
j ≥ 0 for any j ∈ B. Recall from Constraints
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(EC.25d)-(EC.25e) that
∑

i∈S q
s
i =
∑

i∈S
∑

j:(i,j)∈E xij =
∑

j∈B
∑

i:(i,j)∈E xij =
∑

j∈B q
b
j , which

means that qbj =
∑

i∈S q
s
i −
∑

j′ ̸=j,j′∈B q
b
j′ . Since higher ψbj leads to weakly higher qsi for any

i ∈ S and weakly lower qbj′ for any j
′ ∈ B with j′ ̸= j, we conclude that higher ψbj leads to

weakly higher qbj . Similarly, higher ψsi leads to weakly higher qsi .

Step (2-ii): Establish the impact of ψs on the transaction quantities and populations. By

applying the same arguments as in Step (2-i), we can establish that (qi, si) weakly increases

in ψsi for all i∈ S, and qsi and si weakly decreases in ψsi′ for any i
′ ̸= i and weakly increases

in ψbj for all j ∈B. ■

Proof of Proposition 5. Let (x,qs,qb) be the optimal solution to Problem (EC.25);

we let uj := (wj)
1

1−ξb /(kbj)
1

1−ξb for any j ∈ B where (w,z) is the optimal solution to the

reformulation into Problem (EC.28) (see Lemma EC.10). Recall that for given τ = 1, . . . , τ

from (10), type-i sellers for i ∈ Sτ trade with type-j buyers for j ∈ Bτ . Moreover, for any

i∈ Sτ and j ∈Bτ ,

rsi + rbj = F−1
b

(
1−

qbj
kbj(q

b
j)
ξb

)
−F−1

s

( qsi
ksi (q

s
i )
ξs

)
= F−1

b

(
1− ρ1−ξb(uj)

)
−F−1

s

(ρ1−ξs(uj)
u1−ξsj

)
,

where the first equation follows from the conditions in (EC.1a) and (EC.1c) where the

expressions of si and bj are given before Problem (EC.25); the second equation follows from

the observations in Lemma EC.10(ii) and the definition of ρ(u) in (EC.26). In addition, at

the optimal solution, the value of uj for any j ∈ Bτ increases in τ = 1, . . . , τ (see Lemma

EC.12 and the definition in (10)). For simplicity of notations, we let r(u) := F−1
b (1 −

ρ1−ξb(u))−F−1
s (ρ

1−ξs (u)
u1−ξs ) for any u> 0. Recall the definition ũ := (y′b)

−1((1− ξs)[F−1
s ]′ (1)+

vs) before Lemma EC.9.

We prove the two claims of this result.

Claim (1). If uj ≤ ũ, we have ρ(uj) = uj (see Lemma EC.9(i)). This implies that F−1
b (1−

ρ1−ξb(uj)) − F−1
s (

ρ1−ξs (uj)

u1−ξs
j

) = F−1
b (1 − u1−ξbj ) − F−1

s (1), which is decreasing in uj ∈ [0,1]

given that Fb(·) is a strictly increasing function in [0, vb] (see Assumption 2). We let τ̃ :=

max{τ |uj < ũ for j ∈Bτ}. Together with the fact that at the optimal solution, the value of

uj for j ∈Bτ increases in τ = 1, . . . , τ , we obtain that the value r(uj) increases in τ < τ̃ .

Claim (2). If uj ≥ ũ, we know that y′b(ρ(uj)) + (ys)
′
1(ρ(uj), uj) = 0. Define Y (q̃j, uj) :=

y′b(q̃j)+(ys)
′
1(q̃j, uj) given the definitions of ys and yb before Lemma EC.8: for any ξs ∈ (0,1)
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and ξb ∈ (0,1), yb(q) = F−1
b

(
1− (q)1−ξb

)
q for 0≤ q ≤ 1 and ys(q,u) =−F−1

s

(
(q)1−ξs

u1−ξs

)
q for

0≤ q≤ u and u> 0, ys(0,0) := lim
(q,u)→(0,0)

ys(q,u). We have that

Y (q̃j, uj) = y′b(q̃j)+ (ys)
′
1(q̃j, uj)

=

(
(ξb− 1)q̃1−ξbj (F−1

b )′
(
1− q̃1−ξbj

)
+F−1

b

(
1− q̃1−ξbj

))
+

(
(ξs− 1)

q̃j

u1−ξsj

(F−1
s )′

(
q̃j

u1−ξsj

)
−F−1

s

(
q̃j

u1−ξsj

))
.

Since Fs and Fb are twice differentiable, we know that F−1
s and F−1

b are continuously

differentiable, and therefore Y (q̃j, uj) is continuously differentiable at (q̃j, uj) for 0≤ q̃j ≤

min{uj,1}. By the implicit function theorem, there exists a continuously differentiable

function ρ(uj) such that q̃j = ρ(uj) given Y (q̃j, uj) = 0. By differentiating Y (ρ̃(uj), uj) = 0

with respect to uj, we obtain

ρ′(uj) =

(ξs− 1)uξs−3
j ρ(uj)

1−2ξs
(
(ξs− 1)ρ(uj)u

ξs
j (F

−1
s )′′

(
ρ1−ξs (uj)

u1−ξs
j

)
+(ξs− 2)ujρ(uj)

ξs(F−1
s )′

(
ρ1−ξs (uj)

u1−ξs
j

))
(ξb− 1)ρ(uj)−2ξbfb+(ξs− 1)uξs−2

j ρ(uj)−2ξsfs
,

where

fb : = (ξb− 2)ρ(uj)
ξb(F−1

b )′
(
1− ρ(uj)1−ξb

)
− (ξb− 1)ρ(uj)(F

−1
b )′′

(
1− ρ(uj)1−ξb

)
,

fs : = (ξs− 1)ρ(uj)u
ξs
j (F

−1
s )′′

(
ρ1−ξs(uj)

u1−ξsj

)
+(ξs− 2)ujρ(uj)

ξs(F−1
s )′

(
ρ1−ξs(uj)

u1−ξsj

)
.

We proceed to show that fs < 0 and fb < 0 for later use:

fb : = (1− ξb)ρ(uj)ξb
((2− ξb)
(ξb− 1)

(F−1
b )′

(
1− ρ(uj)1−ξb

)
+ ρ1−ξb(uj)(F

−1
b )′′

(
1− ρ(uj)1−ξb

))
(a)
< (1− ξb)ρ(uj)ξb

(
− 2(F−1

b )′
(
1− ρ(uj)1−ξb

)
+ ρ1−ξb(uj)(F

−1
b )′′

(
1− ρ(uj)1−ξb

)) (b)
< 0,

fs : = (ξs− 1)ujρ
ξs(uj)

(
ρ1−ξs(uj)u

ξs−1
j (F−1

s )′′

(
ρ1−ξs(uj)

u1−ξsj

)
+
ξs− 2

ξs− 1
(F−1

s )′

(
ρ1−ξs(uj)

u1−ξsj

))
(c)
< (ξs− 1)ujρ

ξs(uj)
(
ρ1−ξs(uj)u

ξs−1
j (F−1

s )′′

(
ρ1−ξs(uj)

u1−ξsj

)
+2(F−1

s )′

(
ρ1−ξs(uj)

u1−ξsj

)) (d)
< 0,

where (a) and (c) follow from the facts that ξs ∈ (0,1) and ξb ∈ (0,1), which imply that

2−ξb
ξb−1

<−2 and ξs−2
ξs−1

> 2 given that (F−1
b )′ > 0 and (F−1

s )′ > 0 on the domains; (b) and (d)

follow from the conditions that −F−1
s (a/b)a and F−1

b (1− a/b)a are concave in (a, b) for
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0 ≤ a ≤ b and b > 0 by Assumption 3, and therefore a
b
(F−1

s )′′
(
a
b

)
+ 2(F−1

s )′
(
a
b

)
> 0 and

a
b
(F−1

b )′′
(
1− a

b

)
− 2(F−1

b )′
(
1− a

b

)
< 0. In summary, we have fs < 0 and fb < 0.

Finally, we want to establish how r(uj) = F−1
b (1− ρ1−ξb(uj))−F−1

s (
ρ1−ξs (uj)

u1−ξs
j

) changes in

uj > 0. Again, given the continuity of r(u), we define the sup-derivative

∂r(u) = {z ∈R | r(t)≤ r(u)+ z(t−u), ∀t≥ 0},

which implies that

∂r(u) = (ξb− 1)ρ(uj)
−ξbρ′(uj)(F

−1
b )′

(
1− ρ(uj)1−ξb

)
+(ξs− 1)uξs−2

j ρ(uj)
−ξs (ujρ

′(uj)− ρ(uj)) (F−1
s )′

(
ρ1−ξs(uj)

u1−ξsj

)
.

Plugging in the expression of ρ′(uj), we obtain that

∂r(u) =
(ξb− 1)(ξs− 1)ρ(uj) (f1+ f2+ f3)

uj ((ξb− 1)s2−ξsρ(uj)2ξsfb+(ξs− 1)ρ(uj)2ξbfs)
,

where

f1 = (ξb− 1)ujρ(uj)
ξs+1(F−1

b )′′
(
1− ρ(uj)1−ξb

)
(F−1

s )′

(
ρ1−ξs(uj)

u1−ξsj

)
,

f2 = (ξs− 1)uξsj ρ(uj)
ξb+1(F−1

b )′
(
1− ρ(uj)1−ξb

)
(F−1

s )′′

(
ρ1−ξs(uj)

u1−ξsj

)
,

f3 =−uj(ξb− ξs)ρ(uj)ξb+ξs(F−1
b )′

(
1− ρ(uj)1−ξb

)
(F−1

s )′

(
ρ1−ξs(uj)

u1−ξsj

)
.

Based on the observation above, we discuss the two cases of this claim:

(i) if Fs(v) and Fb(v) are convex in v ∈ [0, vs] and v ∈ [0, vb], we have (F−1
b )′′(v)< 0 and

(F−1
s )′′(v)< 0 in their domains. Given (F−1

b )′(v)> 0 and (F−1
s )′(v)> 0, ρ(uj)< 1 (see

(EC.26)) and ξs, ξb ∈ (0,1), we know that f1 > 0 and f2 > 0. Since ξs = ξb, f3 = 0.

Therefore, the numerator of
∂r(uj)

∂uj
is positive. Since fs < 0 and fb < 0, the denominator

of
∂r(uj)

∂uj
is positive. In summary,

∂r(uj)

∂uj
> 0 for uj ≥ ũ;

(ii) if Fs(v) and Fb(v) are concave in v ∈ [0, vs] and v ∈ [0, vb] respectively, we have

(F−1
b )′′(v) > 0 and (F−1

s )′′(v) > 0, then f1 < 0 and f2 < 0. Therefore,
∂r(uj)

∂uj
< 0 for

uj ≥ ũ.

■
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EC.3.3. Proof of Results in Section 5.1.

Proof of Theorem 2. Recall that R(E,ψs,ψb),V(E,ψs,ψb),Y(E,ψs,ψb) are respectively
the optimal objective value to (EC.25), (EC.28) and (EC.30). To simplify the notations,

we use R(E), V(E), Y(E) to denote R(E,ψs,ψb), V(E,ψs,ψb), Y(E,ψs,ψb). From Lemma

EC.10 and EC.11, we have that R(E) = V(E) =Y(E). Therefore, to prove the claim in this

result, it is equivalent to focus on Problem (EC.30) and show that Y(E)≥ (1− ϵ)Y(E).

We next consider Problem (EC.34) below with an additional constraint F−1
b (1− q1−ξbj )−

F−1
s

( q1−ξs
j

u1−ξs
j

)
≥ r for some r ∈ R in comparison with Problem (EC.30). We then show that

even the problem with this constraint can obtain the objective value weakly higher than

(1− ϵ)Y(E), from which we can conclude that Y(E) ≥ Yh(E) ≥ (1− ϵ)Y(E). Given the

edge set E of the complete graph, for any edge set E ⊂E, we define this auxiliary problem

below

Yh(E) = max
w,r

∑
j∈B

[
(kbj)

1
1−ξb h

((wj) 1
1−ξb

(kbj)
1

1−ξb

, r
)]

(EC.34a)

s.t.
∑
j∈B̃

(wj)
1

1−ξb ≤
∑

i∈NE(B̃)

(ksi )
1

1−ξs , ∀B̃ ⊆ B, (EC.34b)

wj ≥ 0, ∀j ∈B (EC.34c)

r≤ vb, (EC.34d)

where for any u> 0,

h(u, r) = max
0≤q̃≤min{1,u},

F−1
b

(1−q̃1−ξb )−F−1
s

(
q̃1−ξs

u1−ξs

)
≥r

(
F−1
b (1− q̃1−ξb)−F−1

s

( q̃1−ξs
u1−ξs

))
q̃. (EC.34e)

Step 1: Show that Y(E)≥Yh(E). Note that the only difference between (EC.34) and

(EC.30) is that one more constraint F−1
b

(
1− (q̃j)

1−ξb
)
−F−1

s

( q̃1−ξs
j

u1−ξs

)
≥ r for any (i, j)∈E is

added to Problem (EC.34). With r≤ vb, we have that the constraint for the maximization

problem in (h, r) is non-empty given that solution q̃= 0 is feasible. Therefore, the solution

to Problem (EC.34) is also feasible in Problem (EC.30), and two problems share the same

objective functions. Thus, we have that

Y(E)≥Yh(E).

Step 2: Show that Yh(E)≥ (1− ϵ)Y(E). To establish the claim, we first reformulate the

optimization problems for Yh(E) and Y(E).
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Step 2.1: Reformulate the problem for Yh(E). With uj =
(wj)

1
1−ξb

(kbj)
1

1−ξb

for any j ∈B, we define

q̂j(r,uj) :=max
{
q̃ : r≤ F−1

b (1− (q̃)1−ξb)−F−1
s

( q̃1−ξs
u1−ξsj

)
,0≤ q̃≤min{1, uj}

}
. (EC.35)

Note that since F−1
b (1 − q̃1−ξb) − F−1

s

(
q̃1−ξs

u1−ξs
j

)
strictly decreases in q̃ ∈ [0,min{1, uj}], we

know q̂j(r,uj) is unique given (r,uj). Given that r is a lower bound of F−1
b (1− (q̃)1−ξb)−

F−1
s

(
(q̃)1−ξs

(uj)1−ξs

)
and q̂j(r,uj) is suboptimal to Problem (EC.34e), the optimal objective

value Yh(E) from Problem (EC.34e) is weakly higher than the optimal objective value of

following optimization problem

max
w,r

∑
j∈B

(kbj)
1

1−ξb rq̂j

(
r,
(wj)

1
1−ξb

(kbj)
1

1−ξb

)
s.t.

∑
j∈B̃

w
1

1−ξb
j ≤

∑
i∈NE(B̃)

(ksi )
1

1−ξs , ∀B̃ ⊆ B,

wj ≥ 0, ∀j ∈B,

r≤ vb.

For any r ∈ (−∞, vb] and ϵ ∈ (0,1), we observe that (wj)
1

1−ξb = (kbj)
1

1−ξb (1− ϵ)
∑

i∈S(k
s
i )

1
1−ξs∑

j∈B(k
b
j)

1
1−ξb

is feasible in the optimization problem above given that wj ≥ 0 for any j ∈ B and for any

B̃ ⊆ B, ∑
∈B̃

w
1

1−ξb
j =

∑
j∈B̃

(kbj)
1

1−ξb (1− ϵ)
∑

i′∈S(k
s
i′)

1
1−ξs∑

j′∈B(k
b
j′)

1
1−ξb

≤
∑

i∈NE(B̃)

(ksi )
1

1−ξs ,

where the inequality follows directly from the condition in the theorem statement. By

letting u :=
∑

i∈S(k
s
i )

1
1−ξs∑

j∈B(k
b
j)

1
1−ξb

, we have that

Yh(E) ≥ max
r≤vb

∑
j∈B

(kbj)
1

1−ξb rq̂j

(
r, (1− ϵ)

∑
i∈S(k

s
i )

1
1−ξs∑

j∈B(k
b
j)

1
1−ξb

)
= max

r≤vb

∑
j∈B

(kbj)
1

1−ξb rq̂j
(
r, (1− ϵ)u

)
.

Step 2.2: Reformulate the problem for Y(E). We first show that given the graph set to the

complete graph G(S ∪B,E), the optimal solution to Problem (EC.30) satisfies (w∗
j′)

1
1−ξb =

(kbj′)
1

1−ξb

∑
i∈S(k

s
i )

1
1−ξs∑

j∈B(k
b
j)

1
1−ξb

for any j′ ∈ B. Given the definition of (Sτ ,Bτ ) in (10), in a complete

graph, we have that B1 =B, as for any B̃ ⊆ B, we have that∑
i∈NE(B̃)(k

s
i )

1
1−ξs∑

j∈B̃(k
b
j)

1
1−ξb

(a)
=

∑
i∈S(k

s
i )

1
1−ξs∑

j∈B̃(k
b
j)

1
1−ξb

(b)

≥
∑

i∈S(k
s
i )

1
1−ξs∑

j∈B(k
b
j)

1
1−ξb

=

∑
i∈NE(B)(k

s
i )

1
1−ξs∑

j∈B(k
b
j)

1
1−ξb

,
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where Step (a) follows from the fact that network G(S ∪B,E) is complete; Step (b) follows

from the condition that B̃ ⊆ B. By Lemma EC.12, we have
(w∗

j′ )
1

1−ξb

(kb
j′ )

1
1−ξb

=
∑

i∈S(k
s
i )

1
1−ξs∑

j∈B(k
b
j)

1
1−ξb

for any

j′ ∈B. Therefore, we can obtain that

Y(E) =
∑
j∈B

(kbj)
1

1−ξb h

(∑
i∈S(k

s
i )

1
1−ξs∑

j∈B(k
b
j)

1
1−ξb

)
.

Similar to Step 2.1, given definition of h(.) in (EC.29), we could reformulate h(.) by defining

that

q := argmax
q̃∈[0,min{1,u}]

(
F−1
b (1− q̃1−ξb)−F−1

s

( q̃1−ξs
u1−ξs

))
q̃, (EC.36)

where we recall that we have set
∑

i∈S(k
s
i )

1
1−ξs∑

j∈B(k
b
j)

1
1−ξb

= u in Step 2.1 above. By letting r := F−1
b (1−

(q)1−ξb)−F−1
s ( (q)

1−ξs

(u)1−ξs ), given definition of h(.) in (EC.29), we have that

Y(E) =
∑
j∈B

(kbj)
1

1−ξb h

(∑
i∈S(k

s
i )

1
1−ξs∑

j∈B(k
b
j)

1
1−ξb

)
=
∑
j∈B

(kbj)
1

1−ξb rq.

Step 2.3: Establish that Yh(E)≥ (1− ϵ)Y(E). To establish the claim, for any j ∈ B, we

want to show that q̂j(r, (1− ϵ)u)≥ (1− ϵ)q.

By the definition of q̂j(r,u) in (EC.35), we have that for any j ∈B,

q̂j(r, (1− ϵ)u) :=max

{
q̃ : r≤ F−1

b (1− q̃1−ξb)−F−1
s

( q̃1−ξs

((1− ϵ)u)1−ξs
)
,0≤ q̃≤min

{
1, (1− ϵ)u

}}
.

For simplicity of notations, we use q̂j to denote q̂j(r, (1 − ϵ)u). Since F−1
b (1 − q̃1−ξb) −

F−1
s ( (q̃)1−ξs

((1−ϵ)u)1−ξs ) decreases in q̃ ∈ [0,min{1, (1 − ϵ)u}], we have that either r = F−1
b (1 −

(q̂j)
1−ξb)−F−1

s (
(q̂j)

1−ξs

((1−ϵ)u)1−ξs ) or q̂j =min{1, (1− ϵ)u}.

For any j ∈B, to show that q̂j(r, (1− ϵ)u)≥ (1− ϵ)q, we consider the following two cases:

(1) if q̂j =min{1, (1− ϵ)u}, then q̂j =min{1, (1− ϵ)u} ≥ (1− ϵ)min{1, u}= (1− ϵ)q, where

the last equality follows from the constraint in Problem (EC.36);

(2) if r= F−1
b (1− q̂1−ξbj )−F−1

s (
q̂1−ξs
j

((1−ϵ)u)1−ξs ), then based on the definition that r= F−1
b (1−

q1−ξb)−F−1
s ( q

1−ξs

u1−ξs ) in Step 2.2, we have that

F−1
b (1− q1−ξb)−F−1

s

(
q1−ξs

u1−ξs

)
= F−1

b (1− q̂1−ξbj )−F−1
s

( q̂1−ξsj

((1− ϵ)u)1−ξs
)
.
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Note that F−1
b (1 − q1−ξb) − F−1

s ( q
1−ξs

u1−ξs ) strictly increases in u ≥ q ≥ 0 and strictly

decreases in q ∈ [0,min{1, u}]. With the equation above, given that 0< (1− ϵ)u≤ u,

we have that q ≥ q̂j, which further implies that q1−ξs

u1−ξs ≤
q̂1−ξs
j

((1−ϵ)u)1−ξs . This allows us

to establish that q̂1−ξsj ≥ ((1 − ϵ)u)1−ξs q1−ξs

u1−ξs = (q)1−ξs(1 − ϵ)1−ξs. Therefore, we have

q̂j ≥ (1− ϵ)q.

Summarizing the two cases above, we can establish that

Yh(E)
(a)

≥
∑
j∈B

(kbj)
1

1−ξb rq̂j(r, (1− ϵ)u)
(b)
=
∑
j∈B

(kbj)
1

1−ξb r(1− ϵ)q (c)
= (1− ϵ)Y(E),

where (a) follows from Step 2.1 and r= F−1
b (1− (q)1−ξb)−F−1

s ( (q)
1−ξs

(u)1−ξs )≤ F−1
b (1) = vb; (b)

follows from the observation that q̂j(r, (1− ϵ)u)≥ (1− ϵ)q for any j ∈B; (c) follows directly

from the reformulation in Step 2.2. ■


