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We consider the dynamics of a two-sided platform, where the agent population on both sides experiences

growth over time with heterogeneous retention and new adoption. The compatibility between buyers and

sellers is captured by a bipartite network. The platform strategically sets commissions to optimize its total

profit over a horizon of T periods, considering the trade-off between short-term profit and growth as well

as the spatial imbalances in supply and demand. We design an asymptotically optimal commission policy

with the profit loss upper-bounded by a constant independent of T , in contrast with a myopic policy that

is shown to be arbitrarily bad even if the platform is a monopoly intermediary in the market. To obtain

this policy, we first develop a single-period benchmark problem that captures the optimal steady state of

the platform, then delicately control the growth of the agent types with the lowest relative population level

compared with the single-period benchmark in each period over time. We further examine the impact of the

growth potential and the market network structure on agents’ payment/income, and the platform’s optimal

commissions and optimal profit. To achieve that, we introduce innovative metrics to quantify the long-run

growth potential of each agent type. Using these metrics, we first show that for each agent type, higher ratios

of their compatible counterparts’ long-term growth potential to their own cause lower payments (higher

income) at the optimal steady state. In addition, the impact of the relative long-run growth potential on the

platform’s optimal commissions in a submarket depends on the convexity/concavity of the value distribution

function of agents. Finally, we show that a “balanced” network, where the relative long-run growth potential

between sellers and buyers for all submarkets is the same as that for the entire market, allows the platform

to achieve maximum profitability. The extent of network imbalance determines the lower bound for the

achievable long-run average profit.

Key words : two-sided market, platform growth, market structure.

1. Introduction

In recent years, the rapid growth of consumer-to-consumer (C2C) platforms such as Airbnb,

eBay, and Upwork has transformed buyer-seller interactions. Their success relies on effi-

ciently growing the agent base on both sides, which drives transaction volume and ulti-

mately enhances platform profitability. Existing literature suggests that a pivotal strategy
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of the platform involves initially subsidizing agents to stimulate their growth and subse-

quently implementing charges to ensure long-term profitability (Lian and Van Ryzin 2021).

Throughout this process, it is crucial to strike a balance between long-term growth and

short-term profitability via a tailored commission structure. However, determining which

agent type to subsidize or charge higher fees becomes challenging, particularly when con-

sidering the heterogeneity in their growth potentials and compatibility with other platform

participants.

In general, the growth of an active agent base hinges on two primary factors: retaining

previous agents and encouraging adoptions by new agents, the latter of which often relies

on word-of-mouth communication between potential adopters and previous agents through

online reviews or comments. Different agent types exhibit varying retention rates and

word-of-mouth effects. For example, on Airbnb, tourists seeking vacation homes may have

lower retention rates compared to regular business travelers due to infrequent revisits

(Hamilton et al. 2017). However, they rely more on transaction histories and online reviews

from previous guests when selecting properties in unfamiliar destinations (Arndt 1967,

Sundaram and Webster 1999). Studies also indicate that the retention rates of drivers on

Uber are heterogeneous, influenced by factors such as gender and age (Kooti et al. 2017).

To deal with such heterogeneity, Meituan, a Chinese on-demand services app, charges its

free users lower delivery fees than its paid members, who exhibit higher retention rates

on the platform (Lee 2020). In summary, when encouraging the growth of the supply

and demand base, platforms may need to tailor their commission structures based on the

distinct retention rates and growth potentials across different agent segments.

Furthermore, based on previous works on the cross-side network effect of a two-sided

market (Rochet and Tirole 2003, Eisenmann et al. 2006, Chu and Manchanda 2016), growth

on one side of the market has a positive impact on the growth of the other side. However,

the value contributed to the opposite side of the network differs across various agent

types, as buyers and sellers are horizontally differentiated in terms of their “popularity”

and preferences for agents on the other side of the market. This compatibility difference

arises from varying tastes, geographical constraints, or skill mismatches (Birge et al. 2021).

For instance, on Airbnb, listings located in popular tourist destinations tend to be more

popular; on Upwork, freelancers who offer skills that match market demands and have

flexible schedules tend to attract more companies. During the platform’s phase of growth,
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the sluggish increase in the number of “marquee users”, typically prominent buyers or

high-profile suppliers, can impede the growth of their compatible counterparts, who face

limited transaction opportunities and therefore lack the motivation to join the platform.

With the intricate interplay of inter-temporal factors marked by heterogeneous growth

potentials and spatial factors characterized by the compatibility between agents, it becomes

challenging for the platform to find an optimal commission policy to grow the agent base

that maximizes its long-term profits. Furthermore, gaining insight into how both the inter-

temporal and spatial factors affect the optimal policy and resulting agent-base sizes is of

utmost importance. These are the two primary focal points of our study.

Results and Contributions.We consider a two-sided platform that charges commissions

to sellers and buyers for facilitating their transactions. The compatibility between the

buyers and sellers is captured by a bipartite graph, and the transaction quantities and

prices between the agents are determined endogenously in a general equilibrium setting.

In each period, the population of each agent type consists of two components: retained

agents from the previous period and new adoptions, the number of which depends on the

transaction quantity in the previous period. The platform determines the commissions in

each period to maximize the total profit in T periods, taking into account the trade-off

between immediate revenue and the potential for future expansion. Our main findings are

summarized as follows.

First, we formulate the platform’s problem as a multi-period pricing optimization model

with endogenous transactions between sellers and buyers, which, however, is challenging

to solve due to its high-dimensional state space (determined by the sizes of different agent

types and planning time interval). To overcome this challenge, we introduce a single-period

problem, the solution of which captures the optimal steady state of the system. We show

that the gap between T times the optimal objective value of it and that of the original

problem is upper bounded by a constant (see Proposition 2), and therefore we see it as a

benchmark. We then develop an efficient policy that is shown to be asymptotic optimal (see

Theorem 1). The policy focuses only on the scarcest agent base relative to the benchmark

problem in each period, and controls its payment/income at the benchmark level to boost

its growth. The demand/supply quantities of other types are matched correspondingly to

guarantee feasibility. Our result provides managerial insights for platform growth: the key

is not to boost the growth of the agent type with the lowest mass in each period. Instead,
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the platform should first identify the targeted level at which it can maintain and maximize

its long-run average profit, and then guarantee the service level (e.g., by offering subsidies

or lowering commissions) for the agent types that lag behind this targeted level in each

period. In addition, it is perhaps worth pointing that even if the platform serves as a

monopoly intermediary in the market, a myopic policy without considering the growth

dynamics in the marketplace could be arbitrarily bad (see Proposition 3). This highlights

the significance of growth dynamics in the platform’s profit optimization problem.

Second, we focus on the platform’s optimal steady state characterized by the single-

period benchmark problem. We analyze how the growth potential of agent types (inter-

temporal factor) and network structure (spacial factor) influence (1) the agents’ pay-

ments/incomes, (2) the optimal commission, and (3) the platform’s profit. We first develop

a novel metric to capture the long-run growth potential of each agent type. Regarding (1),

we show that the buyer (seller) type with a higher ratio of compatible sellers’ (buyers’)

long-term growth potential to their own long-term growth potential experiences lower pay-

ments (higher income) at the optimal steady state (see Proposition 4). Based on this result,

we conduct a sensitivity analysis to illustrate the impact of each agent type’s long-term

growth potential on its or others’ income/payment (see Corollary 1). For (2), we show that

the optimal commission charged from the submarket first decreases in the relative growth

potential between sellers and buyers, and then increases (decreases) in it when the value

distribution functions of both sides are convex (concave)(see Proposition 5). Regarding

(3), we show that a “balanced” network, where the relative long-run growth potential of

sellers and buyers for all submarkets are the same as that for the entire market, leads to

maximum platform profitability (see Theorem 2). In contrast, the extent of the “imbal-

ance” of the network in terms of the relative long-run growth potential between the two

sides determines the lower bound of the optimal profit the platform can achieve. It is worth

noting that the metric of “balances” developed in the previous literature under static set-

tings fails to offer a profit guarantee in our dynamic setting. Our results suggest that the

platform should strategically focus its marketing campaigns or loyalty programs on agents

who exhibit relatively lower long-term growth potential compared with their compatible

agents from the other side of the network.

Organization of the Paper. The rest of the paper is organized as follows. After reviewing

the relevant literature in Section 2, we introduce the model and computational challenges
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in Section 3. In section 4, we design a heuristic algorithm with provably good performance.

In section 5, we examine the impact of both the structure and intertemporal property on

the agents’ payments/incomes, the platform’s optimal commissions and long-run average

profit at the optimal steady state. The concluding remarks are drawn in Section 6.

Throughout the paper, we use “increasing” (and “decreasing”) in a weak sense, i.e.,

meaning “weakly increasing” (and “weakly decreasing”) unless otherwise specified. In addi-

tion, we use R+ to denote the non-negative real number set.

2. Literature Review

Pricing in two-sided platforms has been extensively studied in the field of Economics

and Operations Management. Based on the seminal work by Caillaud and Jullien (2003),

Rochet and Tirole (2003, 2006), Armstrong (2006), a growing literature has explored the

pricing and matching problems in the context of online platforms (e.g., Hagiu 2009, Cachon

et al. 2017, Taylor 2018, Bai et al. 2019, Benjaafar et al. 2019, Hu and Zhou 2020, Benjaafar

et al. 2022, Cohen and Zhang 2022). Our work features network effects in a potentially

incomplete two-sided market that evolves dynamically. Agents on one side of the market can

only trade with a subset of agents on the other, and moreover, the platform’s commissions

influence the growth of the agent base in the market. Therefore, our work is closely related

to the following two streams of literature: (i) the growth of a marketplace and (ii) pricing

in a networked market.

Past literature about the growth of a marketplace mainly focused on product diffusion,

which provides a model to forecast the growth of the customer base for a new product,

see e.g., Bass (1969), Kalish (1985), Norton and Bass (1987). Based on these papers, more

recent literature studies how to leverage discounts or investment incentives to influence the

growth of new products (e.g., Shen et al. 2014, Ajorlou et al. 2018) and that of two-sided

platforms (e.g., Kabra et al. 2016, Lian and Van Ryzin 2021, He and Goh 2022). Specifically,

Lian and Van Ryzin (2021) considered a two-sided market in which the platform can

subsidize one or both sides to boost their growth. They show that the optimal policy is

to employ a subsidy shock to rapidly steer the market towards its optimal long-term size.

He and Goh (2022) studied the dynamics of a hybrid workforce comprising on-demand

freelancers and traditional employees, both capable of fulfilling customer demands. They

investigated how demand should be allocated between employees and freelancers, and under

what conditions the system is sustainable in the long run. Our study differs from this
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stream of work in that agents have heterogeneous compatibility and growth potentials, and

the transaction quantities and prices are both formed endogenously in a general equilibrium

in each period. This requires us to come up with a customized commission structure for

different user types.

Our study is also closely related to the literature on networked markets (e.g., Kranton

and Minehart 2001, Bimpikis et al. 2019, Baron et al. 2022, Zheng et al. 2023). In this

line of work, the edges of the network capture the trading opportunities between agents,

and the impacts of network effects on the market outcomes are analyzed. For example,

Chen and Chen (2021) explored duopoly competition within a market involving network-

connected buyers, and they show that the symmetry of market shares for two identical

sellers in a Nash equilibrium depends on the intensity of network effects and the quality

of the product. More closely, some recent studies explore how to improve operational

efficiency in a two-sided networked market using central price controls (e.g., Banerjee

et al. 2015, Ma et al. 2022, Varma et al. 2023) or non-pricing controls (e.g., Kanoria and

Saban 2021). For example, Hu and Zhou (2022) consider a platform that strategically

matches buyers and sellers, who are categorized into distinct groups based on varying

arrival rates and matching values. They provide sufficient conditions under which the

optimal matching policy follows a priority hierarchy among matching pairs, determined

by factors such as quality and distance. Our work adopts the framework proposed by

Birge et al. (2021), in which a platform determines commission structure to maximize the

total profit in a networked market, and the trades and prices are formed endogenously

in a competitive equilibrium given the commissions. Differently, we delve into a dynamic

setting and demonstrate that utilizing metrics for network connectivity from static settings

in prior literature to quantify the impact of network structure is inadequate. We introduce

a novel metric that incorporates the intertemporal factor (i.e., the growth potentials of

agents).

Some recent literature also explored the expansion of the platform’s agent base in a

network (e.g., Li et al. 2021, Alizamir et al. 2022). These studies typically assume a uniform

retention and growth rate across agents from the same side or all agents in the network,

with each agent’s payoff determined by an exogenously specified function of the number of

participants in the network. In contrast, we account for the heterogeneity of retention and

growth rates among various agent types and introduce a novel metric that incorporates
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both spatial and intertemporal factors to assess the influence of the network structure on

the platform’s profitability.

3. Model

Consider a two-sided market in which a platform charges commissions to buyers and sellers

for facilitating transactions. The compatibility between buyers and sellers is captured by

a bipartite graph (B∪S,E), where B= {1,2, ...,Nb} and S = {1,2, ...,Ns}. Here we denote

the set of buyer types by B with |B|=Nb and that of seller types by S with |S|=Ns, and

let E be the set of edges that captures the potential trading opportunities between them.

Specifically, for i ∈ S and j ∈ B, (i, j) ∈ E if and only if the service or product of type-i

sellers can satisfy the demand of type-j buyers. This compatibility difference arises from

varying tastes, geographical constraints, or skill mismatch. In each period t ∈ {1, ..., T},

the total masses of type-i sellers and type-j buyers are respectively si(t) for i∈ S and bj(t)

for j ∈ B. Specifically, the initial population of each type is finite, i.e., si(1)<∞ for i ∈ S

and bj(1)<∞ for j ∈B.

The buyers/sellers are infinitesimal, and each one of them supplies/demands at most

one unit of product/service in one period if they make transactions in the market. For

t∈ {1, ..., T}, we use qsi (t) and qbj(t) respectively to denote the aggregate supply quantities of

type-i sellers and the aggregate demand quantities of type-j buyers, where qsi (t)∈ [0, si(t)]

for i ∈ S and qbj(t) ∈ [0, bj(t)] for j ∈ B. Note that given the commission charged by the

platform (rb(t),rs(t)), the supply/demand vector (qs(t),qb(t)) is endogenously determined

in equilibrium, with mechanism details discussed later.

Population Transition. A key feature of our model is that the total mass for each agent

type evolves dynamically. For any t ∈ {1, ..., T − 1}, we consider the following population

transition equations:

si(t+1) = αsisi(t)+Gsi (qsi (t)), ∀i∈ S (1a)

bj(t+1) = αbjbj(t)+Gbj (qbj(t)), ∀j ∈B. (1b)

In the first term, αsi ∈ (0,1) and αbj ∈ (0,1) respectively denote the retention rate of type-i

sellers and type-j buyers, which are mainly determined by the agents’ habits, their loyalty

to the platform, etc. The assumption that the retention rate is exogenous and independent

of the commission is commonly seen in the related literature, e.g., Lian and Van Ryzin
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(2021), Alizamir et al. (2022), He and Goh (2022). Such population dynamics could coincide

with a setting in which infinitesimal sellers and buyers stay in the system for a limited time

and then exit with a certain probability. It can be commonly seen in practical examples

such as Upwork and TaskRabbit, where the values of freelancers’ outside options follow a

specific value distribution.

In the second term, Gsi (qsi (t)) and Gbj (qbj(t)) capture the adoption of new agents, which

depends on the supply/demand quantities in the last period. Our model is in line with the

word-of-mouth effect or the imitation effect (see Bass 1969, Mahajan and Peterson 1985):

current agents who transact and obtain a positive surplus can communicate the positive

information about the platform to potential new adoptions, who are more likely to imitate

their behaviors and be attracted to the platform. For the rest of the paper, Gsi (·) and Gbj (·)

will be referred to as the growth functions. Our results can be generalized to the case where

new adoptions depend on both supply/demand quantities and population in the previous

period (i.e., Gsi (qsi (t), si(t)) and Gbj (qbj(t), bj(t))) under some mild assumptions.

Some previous studies about the growth of two-sided platforms assume that the new

adoption rates are homogeneous for agents from one side and depend on the transaction

quantity/price/surplus in the last period (see Lian and Van Ryzin 2021, He and Goh

2022). Different from them, we assume that agent types from both sides are heterogeneous

in terms of their retention rate and word-of-mouth effect. For example, tourists seeking

vacation homes exhibit a lower retention rate but a higher word-of-mouth effect than

regular business travelers, as discussed in Section 1. Another difference is that we do not

assume a specific expression for the growth functions Gsi (·) and Gbj (·) for now, but impose

the following regularity assumptions.

Assumption 1. For any i∈ S and any j ∈B, Gsi (·) and Gbj (·) satisfy the following con-

ditions:

(i) Gsi (0) = 0 and Gbj (0) = 0;

(ii) Gsi (q) and Gbj (q) are continuously differentiable, increasing and strictly concave in q ∈

R+, and moreover, lim
q→∞

(Gsi )′(q) = 0 and lim
q→∞

(Gbj )′(q) = 0.

Assumption 1(i) implies that if no transaction occurred in the previous period, then there

is no word-of-mouth effect. Assumption 1(ii) requires that the number of new adoptions

increases in the transaction quantity, but the marginal effect decreases as the transaction
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quantity increases. It also requires that the growth rate diminishes to zero as the quantity

converges to infinity, which holds because the total amount of potential agents in a market

is finite.

We next discuss how the equilibrium supply/demand (qs(t),qb(t)) formed in a networked

market given the commission charged by the platform in each period t∈ {1, ..., T}.

Competitive Equilibrium. In period t ∈ {1, ..., T}, the platform charges commission

rsi (t) to type-i sellers and r
b
j(t) to type-j buyers if they participate in transactions. The com-

missions are homogeneous within the same agent type but may vary across different types.

When rsi (t)< 0 or rbj(t)< 0, the platform subsidizes the sellers or buyers. Given the com-

missions, type-i sellers offer their products/service at price pi(t) and receive pi(t)− rsi (t);

type-j buyers pay pi(t)+ r
b
j(t) if they trade with the type-i sellers. The market prices p(t)

are endogenously formed in equilibrium, given the commission charged by the platform (see

Definition 1 later). This is widely observed across various online platforms. For instance,

on Airbnb, hosts must compete on their rental offers, and on Upwork, freelancers compete

on their hourly rates. We assume that sellers cannot charge different prices to different

buyers, aligning with the standard practice of many online platforms, such as Airbnb and

Upwork, where seller prices are openly displayed on the webpage. In addition, we assume

for a type-j buyer, all compatible sellers (i.e., i : (i, j)∈E) provide perfectly substitutable

products/services, and the type-j buyer does not have preference over the compatible sell-

ers’ products if their prices are the same. Similarly, it is indifferent for a seller to trade with

any compatible buyers given that the market price is formed on the seller side. Note that

vertical differentiation of sellers can be modeled by adding a quality term for each type of

seller in the payoff function of buyers (see Birge et al. 2021). This does not fundamentally

change our insights.

We use Fbj : [0, vbj ]→ [0,1] and Fsi : [0, vsi ]→ [0,1] to denote the cumulative distribution

function of the (reservation) values respectively for type-j buyers and type-i sellers, in

which vbj and vsi are finite for any j ∈ B and i ∈ S. For simplicity, we refer to a seller

by “he” and a buyer by “she”. Then a type-i seller only engages in trades when the

amount he receives from the transaction is weakly higher than his reservation value v, i.e.,

pi(t)− rsi (t)≥ v; similarly, a type-j buyer trades when the total payment is weakly lower

than her value, i.e., pi(t)+ r
b
j(t)≤ v. To simplify our analysis later, we extend the domains

of the value distributions to R: let Fbj(v) = 1 for v ≥ vbj and Fbj(v) = 0 for v ≤ 0 for any
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j ∈B; similarly, for the seller side, we let Fsi(v) = 1 for v≥ vsi and Fsi(v) = 0 for v≤ 0 for

any i ∈ S. In addition, define fbj(v) and fsi(v) respectively as the derivative of Fbj(v) for

v ∈ [0, vbj ] and Fsi(v) for v ∈ [0, vsi ] (or the density function of the valuations). We impose

the following assumption regarding the value distributions throughout the paper.

Assumption 2. (value distribution) For any j ∈B and i∈ S,

(i) Fbj(v) and Fsi(v) are strictly increasing in v ∈ [0, vbj ] and v ∈ [0, vsi ], where vbj <∞

and vsi <∞;

(ii) Fbj(v) and Fsi(v) are continuously differentiable respectively in v ∈ [0, vbj ] and v ∈

[0, vsi ], and the density functions are lower bounded by a positive constant.

Under Assumption 2(i), Fbj is invertible for v ∈ [0, vbj ] and Fsi is invertible for v ∈ [0, vsi].

We define the inverse function F−1
bj

: [0,1]→ [0, vbj ] and F−1
si

: [0,1]→ [0, vsi ] such that

F−1
bj

(Fbj(v)) = v for v ∈ [0, vbj ] and F
−1
si

(Fsi(v)) = v for v ∈ [0, vsi]. Moreover, Assumption

2(ii) ensures that any change in the (reservation) value induces a bounded change in

the fraction of the population. Notice that under Assumption 2, F−1
bj

(x) and F−1
si

(x) are

continuous and differentiable in x ∈ [0,1], and their density functions are also bounded.

We further impose the following Assumption on F−1
bj

(x) and F−1
si

(x).

Assumption 3. (concavity) F−1
bj

(1− a/b)a and −F−1
si

(a/b)a are both strictly concave

in (a, b) for 0≤ a≤ b.

Assumptions 2 and 3 hold for many commonly used distributions such as uniform distri-

bution, truncated exponential distribution, and truncated generalized Pareto distribution.

Define xij(t) as the amount type-j buyers purchase from type-i sellers. Then given the

commission vector (rsi (t) : i ∈ S, rbj(t) : j ∈ B) by the platform and the population vector

(s(t),b(t)), a competitive equilibrium consists of a price vector p(t), a supply/demand

vector (qs(t),qb(t)) and a flow vector x(t) that satisfy the following equilibrium conditions.

Definition 1. (competitive equilibrium) In period t ∈ {1, . . . , T}, given the plat-

form’s commission profile (rs(t),rb(t)) ∈ RNs × RNb and the population vector of sellers

and buyers (s(t),b(t)) ∈RNs
+ ×RNb

+ , a competitive equilibrium is defined as the price-flow

vector (p(t),x(t),qs(t),qb(t)) that satisfies the following conditions:

qsi (t) = si(t)Fsi(pi(t)− rsi (t)), ∀i∈ S, (2a)

qbj(t) = bj(t)
(
1−Fbj( min

i′:(i′,j)∈E
{pi′(t)}+ rbj(t))

)
, ∀j ∈B, (2b)



11

qsi (t) =
∑

j′:(i,j′)∈E

xi,j′(t), ∀i∈ S, (2c)

qbj(t) =
∑

i′:(i′,j)∈E

xi′,j(t), ∀j ∈B, (2d)

xij(t)≥ 0, ∀(i, j)∈E, (2e)

xij(t) = 0, ∀i /∈ arg min
i′:(i′,j)∈E

{pi′}, j ∈B. (2f)

In Definition 1, Conditions (2a) and (2b) ensure that the total supply/demand quantities

of type-i sellers and type-j buyers equal the mass of agents who can obtain positive utilities

from the transaction. Specifically, Condition (2b) assumes that type-j buyers only trade

with compatible sellers with the lowest market price to maximize their utilities. Condi-

tions (2c) and (2d) characterize the flow conservation conditions in the networked market.

Finally, Condition (2e) requires that the transaction flow is non-negative, and Condition

(2f) requires that the buyers only trade with compatible sellers with the lowest prices.

Notice that equilibrium concepts similar to Definition 1 have also been adopted in the

two-sided market literature by, e.g., Weyl (2010) and Birge et al. (2021). In our setting,

the buyers and sellers are myopic, i.e., the demand/supply quantities only depend on the

prices and commissions in the current period. This assumption is commonly seen in the

literature about dynamic pricing in the monopoly or duopoly competition setting, e.g.,

Chen and Gallego (2019), Birge et al. (2023).

With Definition 1, the following result characterizes the existence of a competitive equi-

librium in each period given any commission profile and the total mass of agents. Moreover,

the result shows that the equilibrium is essentially unique.

Proposition 1. (existence and uniqueness of equilibrium) For any t∈ {1, ..., T},

given a commission profile (rs(t),rb(t)) ∈ RNs × RNb and the total mass of agents

(s(t),b(t))∈RNs
+ ×RNb

+ ,

(i) a competitive equilibrium (p(t),x(t),qs(t),qb(t)) always exists;

(ii) all competitive equilibria share the same supply-demand vector (qs(t),qb(t)), and they

share the same prices pi(t) for 0< qsi (t)< si(t) .

Proposition 1(ii) implies that the supply-demand vector (qs(t),qb(t)) is always unique in

an equilibrium. Moreover, given the platform’s commissions and the total mass of agents

in period t, the equilibrium prices are not necessarily unique for type-i seller with qsi (t) = 0,
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as any price lower than rsi (t) leads to a non-positive income of pi(t)− rsi (t), and therefore

no type-i sellers would engage in transactions; similarly, the equilibrium prices are not

necessarily unique for type-i sellers with qsi (t) = si(t), as any equilibrium price higher than

vsi (t)+r
s
i (t) results in income higher than the maximum reservation value vsi , and therefore

all type-i sellers are willing to supply their service/goods. Other than these cases, the

equilibrium prices are essentially unique in general.

Platform’s Profit Optimization Problem. Given the mass of agents with dif-

ferent types in the first period (i.e., (s(1),b(1))), the platform aims at maximiz-

ing its total T-period profit by determining the commission for each type in a

period. For simplicity of notation, we let (s,b) := (s(t),b(t))Tt=2, and (r,p,x,qs,qb) :=

(r(t),p(t),x(t),qs(t),qb(t))Tt=1. The platform’s T-period profit maximization problem can

be expressed as:

R∗(T ) = max
s,b,r,p,x,qs,qb

T∑
t=1

[∑
i∈S

rsi (t)q
s
i (t)+

∑
j∈B

rbj(t)q
b
j(t)

]
(3a)

s.t. (s(t),b(t),r(t),p(t),x(t),qs(t),qb(t)) satisfies (2), ∀t∈ {1, ..., T}, (3b)

si(t+1) = αsisi(t)+Gsi (qsi (t)), ∀i∈ S, t∈ {1, ..., T − 1}, (3c)

bj(t+1) = αbjbj(t)+Gbj (qbj(t)), ∀j ∈B, t∈ {1, ..., T − 1}. (3d)

The platform’s profit consists of commissions from the sellers and buyers who trade in the

market during the T periods. Constraint (3b) ensures that given the population vector

(s(t),b(t)) and commission profile (rs(t),rb(t)) in period t, vector (p(t),x(t),qs(t),qb(t))

constitutes a competitive equilibrium; Constraints (3c)-(3d) indicate that the dynamics

of populations follow the transition equations given in (1). Based on Proposition 1(ii),

the equilibrium transaction quantities (qs(t),qb(t))Tt=1 are unique given any commission

(rs(t),rb(t))Tt=1. Therefore, the maximization problem in (3) is well-defined. In the rest of

the paper, we refer to Problem (3) as OPT. Since OPT is non-convex (in (r,q)), we will

first reformulate it into a convex optimization problem and then discuss the challenges in

solving it.

Reformulation and Challenges. Given positive population vector (s(t),b(t)) and any

feasible trading vector (x(t),qs(t),qb(t)) in period t, we first characterize a feasible commis-

sion profile (rs(t),rb(t)) that can induce this equilibrium trades in the following Lemma.
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Lemma 1. (commissions for feasible transactions) For any t∈ {1, ..., T}, given any

positive population vector (s(t),b(t)) and non-negative trading vector (x(t),qs(t),qb(t))

that satisfy (i) the flow conservation conditions in (2c)-(2e) and (ii) qs(t) ≤ s(t) and

qb(t) ≤ b(t), a commission profile (rs(t),rb(t)) supports (s(t),b(t),x(t),qs(t),qb(t)) in a

competitive equilibrium if there exists a price vector p(t) ∈RNs that satisfies the following

system of linear inequalities:

pi(t)− rsi (t) = F−1
si

(qsi (t)
si(t)

)
, ∀i : qsi (t) > 0, (4a)

pi(t)− rsi (t) ≤ F−1
si

(qsi (t)
si(t)

)
, ∀i : qsi (t) = 0, (4b)

pi(t)+ rbj(t) = F−1
bj

(
1−

qbj(t)

bj(t)

)
, ∀(i, j) : xij(t) > 0, (4c)

pi(t)+ rbj(t) ≥ F−1
bj

(
1−

qbj(t)

bj(t)

)
, ∀(i, j) : xij(t) = 0. (4d)

Note that the lowest value of a type-j buyer that participates in trading can be expressed

as F−1
bj

(
1− qbj (t)

bj(t)

)
; the highest reservation value of a type-i seller that participates in trading

can be expressed as F−1
si

( qsi (t)
si(t)

)
. We refer to these values as the marginal value of the

corresponding agent type. The conditions in (4a)-(4b) characterize the relationship between

the sellers’ income and the marginal value, and the conditions in (4c)-(4d) characterize

the relationship between the buyers’ payment and the marginal value. In specific, (4a) and

(4c) show that the buyers’ payments and sellers’ incomes per unit equal the marginal value

for types with positive transactions. Moreover, we construct a class of commissions that

satisfy (4) in the proof of Lemma 1 to demonstrate that the conditions in (4) are non-

empty. The commissions that can induce the equilibrium are not necessarily unique, but

the buyers’ payments and sellers’ incomes with positive trades are uniquely determined in

any equilibrium.

The relationship between the commissions and the transaction quantities in Lemma 1

shows that the total payment from type-j buyers is upper bounded by F−1
bj

(1− qbj (t)

bj(t)
)qbj(t)

and the total income for type-i sellers is lower bounded by F−1
si

(
qsi (t)

si(t)
)qsi (t). As a result,

the objective value of OPT is upper bounded by the difference between these two terms,

i.e.,
∑T

t=1

[∑
j∈B F

−1
bj

(
1− qbj (t)

bj(t)

)
qbj(t)−

∑
i∈S F

−1
si

(
qsi (t)

si(t)

)
qsi (t)

]
, which is concave in (q,s,b)

under Assumption 3. By further relaxing some constraints of OPT, we can obtain a convex

optimization problem where the decision variables only consist of population vector (s,b),
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supply/demand profile (qs,qb), and flow vector x but not commission (rs,rb). We present

the formulation in Problem (22) in Appendix A. In addition, we show that the relaxation

is tight in Proposition 6 in Appendix A.

Even though the non-convexity challenge of OPT can be circumvented by the reformu-

lation, it is still computationally intractable when T is large due to its high-dimensional

state space (i.e., larger than T × (2Ns+2Nb+ |E|)). Moreover, it would be hard to derive

structural properties of the optimal policies in this deterministic dynamic program given

the cross-side complementarity and same-side substitution. In Section 4 below, we pro-

pose a single-period convex problem, which returns the long-run average value of OPT;

based on the optimal solution of this benchmark, we design a simple policy with provable

performance guarantees.

4. Asymptotically Optimal Policy for the Platform

We define an admissible policy as a sequence of functions π =: {πt :Ft→RNs+Nb}Tt=1 that

outputs the commission profile (rs(t),rb(t)) in each period, where Ft is the history of

population vectors (s(t′),b(t′) : t′ = 1, . . . , t) and transaction vectors (x(t′),qs(t′),qb(t′) :

t′ = 1, . . . , t − 1) up to the current period. Once the commission profile (rs(t),rb(t)) is

implemented in each period, the price-transaction vector (p(t),x(t),qs(t),qb(t)) is formed

in the market equilibrium (Proposition 1) and the population profiles (s(t),b(t)) will be

uniquely updated according to (1). We let Π be the set of admissible policies.

For any policy π ∈Π, we define Rπ(T ) as the platform’s total profit in T periods, and

we evaluate the policy’s performance by quantifying its profit loss relative to the optimal

objective value R∗(T ) in OPT, which can be formally defined as

Lπ(T ) = R∗(T )−Rπ(T ). (5)

We focus on Lπ(T ) in the asymptotic setting as T →∞, and devise an admissible policy

with a constant upper bound for Lπ(T ).

Flynn (1978) studies heuristic policies for solving infinite-horizon deterministic dynamic

programming problems. He provides the necessary and sufficient conditions for the exis-

tence and asymptotic optimality of “steady-state policy”, which involves solving a static

problem to identify the optimal steady state, moving the system to this state, and main-

taining it there. Our algorithm will share a similar spirit. Moreover, Flynn (1975, 1981)
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also provide examples of constructing feasible rules that move the system from the ini-

tial state to the target steady state, mostly by implementing the action at the optimal

steady state from the beginning or making straightforward modifications on it. However,

we will see that these methods cannot be applied to our setting due to the flow conser-

vation constraints of the competitive equilibrium in the networked market (i.e., Definition

1). To resolve this challenge, we propose a novel method called the Target-Ratio Policy

(TRP) that only steers the growth of the scarcest agents in the networked market towards

optimality in each period. Interestingly, we establish that such a policy can indeed achieve

asymptotic optimality. On the other hand, we will show that the widely-adopted myopic

policy, under which the platform completely neglects population growth, could perform

arbitrarily badly in general.

Long-run Average Value Problem (AVG). Based on the reformulation of OPT, we

first develop a corresponding steady-state problem, which serves as a key benchmark for

our algorithm. Based on Definition 1, we relax the equilibrium conditions in Constraint

(2) as below:

qsi ≤ si,
∑

j:(i,j)∈E

xij = qsi , ∀i∈ S, (6a)

qbj ≤ bj,
∑

j:(i,j)∈E

xij = qsi , ∀j ∈B, (6b)

xij ≥ 0, ∀(i, j)∈E. (6c)

Furthermore, we relax the population transition equations in Constraint (1) to inequalities:

si ≤ αsisi+Gsi (qsi ), ∀i∈ S, (7a)

bj ≤ αbjbj +Gbj (qbj), ∀j ∈B. (7b)

Define F̃bj(q
b
j , bj) := F−1

bj

(
1− qbj

bj

)
qbj for bj > 0 and 0≤ qbj ≤ bj and F̃bj(qbj , bj) := 0 for qbj = bj =

0. Similarly, define F̃si(q
s
i , si) := F−1

si

( qsi
si

)
qsi for si > 0 and 0≤ qsi ≤ si and F̃si(qsi , si) := 0 for

qsi = si = 0. We show that F̃bj(q, b) and F̃si(q, s) are both continuous at (0,0) (see Lemma

6 in Appendix B). Then we consider the following optimization problem which we refer to

as AVG:

R = max
s,b,qs,qb,x

∑
j∈B

F̃bj(q
b
j , bj)−

∑
i∈S

F̃si(q
s
i , si), (8a)
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s.t. (6)− (7). (8b)

It is worth noting that the feasible region for Problem (8) is a convex set, and thanks to

Assumption 1, the objective function is concave. Before presenting our policy, we charac-

terize the properties of the optimal solution to AVG:

Lemma 2. (optimal solution to AVG) The optimal solution to Problem (8) exists,

and moreover,

(i) the optimal population (s,b) and the optimal supply-demand vector (qs,qb) are unique;

(ii) constraints si ≤ αsisi+Gsi (qsi ) and bj ≤ αbjbj +Gbj (qbj) are tight at optimality.

Lemma 2(i) suggests that for any optimal solution to AVG, the sub-component (s,b,qs,qb)

is always unique. We call (s,b,qs,qb) the optimal steady state in the rest of the paper (see

Flynn 1975, 1992). Lemma 2(ii) implies that it is feasible to preserve the mass of agents at

(s,b) by controlling the supply-demand vector at the level of (qs,qb). This property further

suggests that the platform could achieve the long-run average optimal profit in AVG.

We establish the following proposition to show that the gap between T times of the

optimal objective value R of AVG from (8) and that of OPT from (3) is bounded from

above by a constant for any positive integer T .

Proposition 2. (alternative benchmark for OPT) There exists a positive constant

C1 such that for any T = 1,2, ...,

|R∗(T )−TR| ≤ C1.

Proposition 2 shows that the difference between 1
T
R∗(T ) and R converges to zero as T

approaches infinity. In addition, in contrast to the high-dimensional problem OPT, AVG

is a much more tractable static convex optimization problem. Therefore, we will consider

TR, instead of R∗(T ), as the benchmark for our algorithm design.

Next, we propose the Target Ratio Policy (TRP) that admits fast convergence to the

steady-state solutions to AVG and formally establish its asymptotic optimality.

Target Ratio Policy (TRP). For simplicity of illustration, we refer to si(t)
si

for i∈ S and
bj(t)

bj
for j ∈ B as the population ratio of seller type i and buyer type j, respectively. In

addition, we notice
qbj (t)

bj(t)
(
qsi (t)

si(t)
) is the fraction of type-j buyers (type-i sellers) who trade on

the platform in period t. We refer to this fraction as the service level of the corresponding

agent type. Recall that the service level also determines the payment/income of agents.
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Motivated by Proposition 2, we design our approximation algorithm to steer the mass of

each agent type towards the optimal steady-state (s,b) in the network. A straightforward

method is to control the service level of each type at the optimal service levels of AVG, i.e.,
qsi (t)

si(t)
≈ qsi

si
for any i∈ S and

qbj (t)

bj(t)
≈ qbj

bj
for any j ∈ B for t∈ {1, ..., T}. This is also equivalent

to controlling the income/payment of each agent type at the value in the optimal steady

state given by AVG. However, the main challenge is that such a policy is not necessarily

feasible for every period in a networked market given the heterogeneous population ratios

among different seller and buyer types. For example, consider a simple scenario of one

buyer type and one seller type with a positive initial mass vector (s(1), b(1)). Given the flow

conservation constraint qs(t) = qb(t) for all t∈ {1, ..., T}, if we control the supply quantity

qs(1) such that the service level of the supply side is the same as that from AVG (i.e.,
qs(1)
s(1)

= qs

s
), the service level for buyers in the first period may be significantly different from

the optimal service level of AVG in general (i.e., the gap between qb(1)
b(1)

and qb

b
may be large).

In particular, the type with a lower population ratio will limit the transaction quantity

of the other type with a higher ratio, which further restricts its growth. To circumvent

this challenge, we focus on the type with the lowest population ratio and seek to boost

their growth in each period, while guaranteeing the feasibility of the policy in the entire

networked market. Towards this direction, we formally define the Target Ratio Policy in

Algorithm 1.

One key advantage of TRP is its computational efficiency: it only requires solving the

single-period optimization AVG once. In Algorithm 1, TRP first identifies the agent types

with strictly positive populations in AVG (for all j such that bj > 0 and i such that si >

0). The types with zero population at the optimal steady state either have low growth

potential, or are located at less important positions in the network such that the platform

should de-prioritize their growth from the very beginning. Among the agent types with

positive population masses in AVG, TRP finds the one with the lowest population ratio

m(t) in each period t where m(t) = min
{
min
i:si>0

si(t)
si
, min
j:bj>0

bj(t)

bj

}
, and matches its service

level to the optimal one from AVG (i.e.,
qsi (t)

si(t)
=

qsi
si

or
qbj (t)

bj(t)
=

qbj
bj
). For other types with

higher population ratios, their demand/supply quantities are matched correspondingly

to guarantee feasibility in the networked market. By Lemma 1, we can always find the

commissions to induce our desired transaction quantities in each period by solving a system

of linear inequalities.
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Algorithm 1: Target Ratio Policy

1 Input: Optimal solution to AVG (s,b,qs,qb,x) and initial mass of agents (s(1),b(1)).
2 for t= 1 to T do

3 m(t)←min
{
min
i:si>0

si(t)

si
, min
j:bj>0

bj(t)

bj

}
;

4 for i= 1 to Ns do
5 qsi (t)← qsim(t) ;
6 end
7 for j = 1 to Nb do
8 qbj(t)← qbjm(t);
9 end

10 for (i, j)∈E do
11 xij(t)← xijm(t);
12 end
13 Solve (4) to obtain (rs(t),rb(t));
14 if there are multiple feasible solution sets for (4), select one arbitrarily;
15 population profile (s(t+1),b(t+1)) is returned by the system dynamics in (1).
16 end
17 Output: (rs,rb).

Note that for those agent types with higher initial population ratios, the service level will

be lower than that of AVG (i.e.,
qsi (t)

si(t)
<

qsi
si

or
qbj (t)

bj(t)
<

qbj
bj
). Their populations may grow slowly,

or even decline at the beginning. As a result, the agent type with the lowest population

ratio may change over time in the network. Therefore, the platform may focus on boosting

the growth of different types across the planning horizon. A key insight of our study is

that perhaps surprisingly, by guaranteeing the growth of the agent types with the lowest

population ratio in the network in each period, the entire network could eventually converge

to the optimal state of AVG. As the main result of this section, we prove a theoretical

performance guarantee for TRP.

Theorem 1. (performance of TRP) There exists a positive constant C2 such that

LTR(T ) ≤ C2,

for any T = 1,2 . . . .

Theorem 1 shows that the profit loss of TRP relative to the optimal policy is uniformly

bounded (with respect to T ) by a constant, which further suggests that boosting the growth

of the agent type with the lowest population ratio in each period is not only feasible but

also asymptotically optimal in the networked market. The proof of Theorem 1 is relegated

to Appendix B. In this proof, we show that under TRP, even though the type with the
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lowest ratio may change over time, the lowest ratio m(t) monotonically converges to one at

an exponential rate, i.e., |m(t+1)−1| ≤ γ|m(t)−1| for some γ ∈ (0,1). Therefore, for each

type, the transaction quantities qsi (t) = qsim(t) and qbj(t) = qbjm(t) converge to the optimal

levels qsi and q
b
j for any i∈ S and j ∈B, which ensures that the population profile (s(t),b(t))

also converges to the optimal solution (s,b) to AVG. By establishing the fast convergence

rate, we observe that there exists a constant C ′
1 such that |TR−RTR(T )| ≤C ′

1. Together

with the result in Proposition 2 that |R∗(T )− TR| ≤ C1, we conclude that there exists

a constant C2 := C1 +C ′
1 such that |R∗(T )−RTR(T )| ≤ C2. Note that our result can be

generalized into the case where the mass of new adoptions for the seller side is given by

Gsi (qsi (t), si(t)) for i∈ S where Gsi (qsi (t), si(t)) is concave in (qsi (t), si(t)) and the similar form

holds for the buyer side.
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Figure 1 TRP. Consider the following parameters: s(1)
s

= 0.2 and b(1)

b
= 0.1 and s(t+1) = 0.5s(t)+ 0.5

√
qs(t)

and b(t+1) = 0.5b(t)+ 0.7
√
qb(t).

Figure 1 illustrates the evolution of agent populations, buyers’ payment, sellers’ income,

and platform’s commissions in a one-seller-one-buyer network (and so we can drop the

subscripts) when the platform applies TRP. The seller side is assumed to have a higher

initial population ratio (i.e., s(1)
s
> b(1)

b
), but a lower growth rate than the buyer side (i.e.,

Gs′(·) ≤ Gb′(·)). Figure 1(a) shows that the population ratios of the seller and the buyer

converge to 1. Note that the buyer’s population ratio is initially lower but surpasses the

seller’s afterward. Consequently, in Figure 1(b), under TRP, the platform keeps the buyers’

payments at the steady-state level to stimulate their growth in the first few periods and

increases their payments above the steady-state level once the buyers’ population ratio
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becomes higher. Conversely, the sellers’ incomes start lower than the steady-state value

and gradually increase as the seller population ratio decreases. Recall that the equilibrium

prices can be any value between the payment of buyers and the incomes of sellers, which is

not necessarily unique (see Lemma 1). Without loss of optimality, we set the equilibrium

prices at the average of buyer payment and seller income in each period, and observe

in Figure 1(c) that the commission charged from the seller side is higher initially, while

that charged from the buyer side becomes higher at the later stages. If we consider an

alternative scenario with a lower initial population ratio and a higher growth coefficient

on the seller side (i.e., Gs′(·) is large), we can observe an opposite trend under TRP, as

detailed in Appendix B.

Myopic Policy (MP). When facing a high-dimensional dynamic program, MP is often

used as a heuristic due to its simplicity. Moreover, as a monopoly intermediary, one may

wonder if it is without loss of optimality for the platform to implement the myopic policy

in the market. Note that Robinson and Lakhani (1975) and Bass and Bultez (1982) both

examine the performance of the myopic pricing policy in a product diffusion process, but

they draw different results under different diffusion functions. Specifically, Robinson and

Lakhani (1975) show that myopic policy results in significant profit loss relative to the

optimal policy when the current price could stimulate future demand. In contrast, Bass

and Bultez (1982) consider the case that the diffusion process is exogenous, and does not

interact with price. They show by a numerical study that there is only a small difference

in the discounted profits between the myopic policy and the optimal policy. Here we will

examine how MP performs in our model.

Under MP, in each period t, the platform determines the commissions (rb(t),rs(t)) to

maximize its profit in the current period (i.e.,
∑

i∈S r
s
i (t)q

s
i (t)+

∑
j∈B r

b
j(t)q

b
j(t)) subject to

the equilibrium constraints in (2), without considering the population dynamics in (1) and

its impact on future profit. The formal definition of the myopic policy is given by Definition

2 in Appendix B.

To investigate the performance of MP in our setting, we let RM(t) denote the platform’s

profit under MP in period t. Recall that R is the optimal objective value to AVG, which

could be achieved under TRP. The following result shows that the performance of MP

could be arbitrarily bad.
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Proposition 3. (performance of MP) Under MP, for any ϵ > 0, there exists a prob-

lem instance such that lim
t→∞
RM(t) := RM

<∞ and RM
< ϵR, and, hence, there exists

C3 > 0 such that

LMP (T ) ≥ C3T.

Proposition 3 suggests that ignoring the commissions’ impact on population growth could

lead to significant profit loss for the platform even if the platform serves as a monopoly

intermediary. This result also implies that the profit loss LMP (T ) = Ω(T ). In the proof of

Proposition 3, we show that the commissions by the platform under MP at the optimal

steady state are higher than those under TRP. Therefore, the platform must sacrifice some

short-term margin to achieve long-term profitability.

Since we mentioned that in each period, the service level of the agent type (or equiv-

alently, their payment/income) that lags behind should be controlled at its service level

in the optimal static state, we will next focus on the optimal steady state and investigate

how service level in the optimal static state is determined by both the network structure

G(S ∪B,E) and population dynamics from (1).

5. Impact of Population Dynamics and Network Structure

In this section, we investigate how the population dynamics and network structure influence

the optimal commission and incomes/payments of agents (see Section 5.1) as well as the

platform’s profit (see Section 5.2) in the optimal steady state. Investigating the impacts of

these spatial-temporal factors can provide insights into the platform’s revenue management

strategy.

Past literature has shown that in a static setting, a network with higher connectivity

enables the platform to more efficiently match supply with demand, and the agent types

connected to a larger population on the other side would gain higher surplus (see Schrijver

et al. 2003, Chou et al. 2011, Birge et al. 2021). However, in our dynamic setting, the

steady-state population size of each type is determined endogenously, relying on factors

such as the growth potential of agents, the network structure, and the commissions set by

the platform. In addition, we will later show in an example in Figure 3 that the metric

used in Birge et al. (2021) to quantify the connectivity of the network in the static setting

fails to quantify the profitability of the platform in the dynamic setting. Therefore, in
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this section, we first develop a novel metric to measure both the growth potential and

connectivity of the agent types. We then use this metric to characterize the impact of the

temporal-spatial factors on the platform profit and agent surplus of different agent types.

To isolate the impact of network structure and better quantify the growth potential of

agent types, we make the following additional assumption.

Assumption 4. (i) The value distributions satisfy that Fsi(v) = Fs(v) for any i ∈ S
and Fbj(v) = Fb(v) for any j ∈B.

(ii) The transition equation is given by si(t+ 1) = αsisi(t) + βsi (q
s
i (t))

ξs for all i ∈ S and

bj(t+1) = αbjbj(t)+β
b
j(q

b
j(t))

ξb for all j ∈B with t∈ {1, ..., T − 1} where ξs ∈ (0,1) and
ξb ∈ (0,1).

Assumption 4(i) requires that different types of sellers/buyers are homogeneous in their

valuations. Assumption 4(ii) specifies the functional form of the growth functions G(q)
in (1), in which the retention rate and growth coefficient are type-specific. In particu-

lar, βsi and βbj measure the effect of transaction quantities on growth; the exponents ξs

(ξb) are homogeneous across different types of sellers (buyers) and capture the elastic-

ity of the new adoptions with respect to the transaction quantities (i.e., ∂si(t+1)/si(t+1)
∂qsi (t)/q

s
i (t)

or
∂bj(t+1)/bj(t+1)

∂qbj (t)/q
b
j (t)

). For the main results of this section, we can generalize the population

dynamics in Assumption 4(ii) to si(t + 1) = αsisi(t) + βsi gs(si(t), q
s
i (t)) for all i ∈ S and

bj(t+ 1) = αbjbj(t) + βbjgb(bj(t), q
b
j(t)) for all j ∈ B, where the growth functions gs(·, ·) and

gb(·, ·) are homogeneous of degree ξs ∈ (0,1) and ξb ∈ (0,1) (a function g(·, ·) is homoge-

neous of degree α means g(ns,nq) = nag(s, q) for any s≥ q≥ 0, n> 0). This more general

form can capture the average surplus of the agent (i.e.,
∫ qsi (t)

si(t)

0 (F−1
s )′(y)ydy), which may

contribute to the growth of new adoptions, as modeled by Lian and Van Ryzin (2021).

Long-run Growth Potential ψ of Agents. Based on Assumption 4, we develop a metric

to measure the growth potential of each agent type. Given type-i sellers’ service level
qsi
si

induced by the platform’s optimal commissions (rs,rb) at the optimal steady state, by

Lemma 2, the population of type-i seller (type-j buyer) converges to si (bj) that satisfies

si = αsisi+βsi (q
s
i )
ξs (bj = αbjbj +βbj(q

b
j)
ξb). Algebraic manipulations suggest that

si =
( βsi
1−αsi

) 1
1−ξs
(qsi
si

) ξs
1−ξs

, qsi =
( βsi
1−αsi

) 1
1−ξs
(qsi
si

) 1
1−ξs

where i∈ S, (9a)

bj =
( βbj
1−αbj

) 1
1−ξb
(qbj
bj

) ξb
1−ξb , qbj =

( βbj
1−αbj

) 1
1−ξb
(qbj
bj

) 1
1−ξb where j ∈B. (9b)
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Eqn. (9) reveals that given the service level
qsi
si

for type-i sellers and
qbj
bj

for type-j buyers,

the population of an agent type and the transaction quantities at the optimal steady state

are proportional to the coefficients
( βsi
1−αsi

) 1
1−ξs for type-i sellers and

( βbj
1−αbj

) 1
1−ξb for type-j

buyers. Based on this, we formally define the long-run growth potential as follows:

ψsi :=
( βsi
1−αsi

) 1
1−ξs

, i∈ S, ψbj :=
( βbj
1−αbj

) 1
1−ξb , j ∈B. (10)

We next provide some intuitive explanations for (ψs,ψb). For simplicity, we omit the

superscripts (s, b) and subscripts (i, j) in the population transition parameters. Given the

population dynamics in Assumption 4(ii), a fraction α < 1 of agents stays in the system

after each period, and the impact of the growth coefficient β captures the impact of trans-

action quantities on the population growth. As α and β increase, the corresponding value

of ψ also increases, and therefore we refer to ψsi for i ∈ S and ψbj for j ∈ B in (10) as the

long-run growth potential that each agent type can achieve.

Rankings of Relative Growth Potential in the Network. Based on the long-run

growth potential, we introduce a ranking of different types of buyers (sellers). Let NE(X)

denote the set of all neighbors of agent types X ⊆ B ∪ S in the graph G(S ∪B,E) such

that NE(X) = {i /∈X : (i, j)∈E for j ∈X}. Given a network G(S ∪B,E) and the long-run

growth potential vector (ψs,ψb), we first let B0 =B, S0 = S and E0 =E. For τ = 0,1, ...,

we define Bτ and Sτ iteratively as follows:

Bτ+1 = argmin
B̃⊆Bτ

∑
i∈NEτ (B̃)ψ

s
i∑

j∈B̃ ψ
b
j

, (11a)

Sτ+1 =NEτ (Bτ+1). (11b)

where Bτ+1 =Bτ\Bτ+1, Sτ+1 = Sτ\Sτ+1, E
τ = {(i, j)∈E : i∈ Sτ and j ∈Bτ} andNEτ (B) =

{i∈ Sτ : j ∈B and (i, j)∈Eτ}1.

In (11a), for each subset of buyer types B̃ of Bτ ,
∑
i∈NEτ (B̃)

ψsi∑
j∈B̃ ψ

b
j

is the ratio between the

total long-term growth potential of its (remaining) compatible sellers and its own. We refer

to the ratio as the relative growth potential between NEτ (B̃) and B̃. This metric, similar

to those used for comparing two economies in, e.g., Krugman (1989), captures the relative

growth potential of sellers and buyers. In (11), we can iteratively identify a subgraph

1 If multiple sets achieve the minimum, the argmin operator returns the largest one.
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such that the relative growth potential of sellers is the lowest. Subsequently, we label it

and remove this subgraph from the network, and then the Bτ and Sτ are the remaining

agent types and Eτ is the remaining graph after τ iterations. We repeat the procedure

until the remaining subgraph is empty. As a result, the subnetwork with a higher index

τ has a higher relative growth potential of sellers against buyers in the graph. In general,

the ranking incorporates both inter-temporal factors captured by the long-term growth

potential ψ and spatial factors captured by the graph structure G(B∪S,E).

We use the example in Figure 2 below to illustrate the rankings of relative growth poten-

tial. This example illustrates the compatibility between freelance coders and clients in need

of IT services in terms of their skills and schedule on Upwork. Specifically, clients needing

AI Services can only be served by coders with AI skills, and clients requiring immediate

delivery of work can only choose coders with flexible working hours. By enumeration, we

can obtain the index of each type, and the solid (dotted) line represents the lines between

sets with the same (different) index. For a large-scale network, we can obtain the ranking

by solving a convex optimization problem. 2 We will next show that the index implies the

sellers’ incomes and buyers’ payments under the platform’s optimal commissions.

Coder
1

Coder
2

Coder
3

Client
1

Client
2

Client
3

need AI Services

relaxed deadline for the delivery of work

need AI Services

require immediate delivery of work

need General IT Services

relaxed deadline for the delivery of work

with AI Skills

flexible working hours

without AI Skills

limited working hours.

without AI Skills

flexible working hours

Figure 2 Compatibility between Freelance Coders and Clients in need of IT Services on Upwork. Suppose that

ψsi =ψbj = 1 for i= {1,2,3} and j = {1,2,3}. Then by enumeration, we know {1,2}= argmin
B̃⊆B

∑
i∈NE(B̃)

ψs
i∑

j∈B̃ ψ
b
j

, which

means B1 = {1,2} and S1 = {1}. After eliminating B1 and S1 from the network E, we have

B1 = {3},S1 = {2,3},E1 = {(2,3), (3,3)}. Since there is only one buyer type left, we know B2 = {3} and

S2 = {2,3}. Finally, all agent types are labeled with an index.

2 Notice that AVG in (8) is equivalent to maximizing
∑
j∈B

[
ψbjh

(
Wj

ψb
j

)]
over a polymatroid {W :

∑
j∈B̃Wj ≤∑

i∈NE(B̃)ψ
s
i ,∀B̃ ⊆ B, Wj ≥ 0,∀j ∈ B}, where h : [0,∞)→ [0,∞) is an increasing and concave function (see Lemma

12 in Appendix C.1). Therefore, by solving a convex optimization problem, we can obtain the ranking given in (11).
This procedure borrows the algorithmic idea to characterize the lexicographically optimal bases of polymatroids from
Fujishige (1980) (see Lemma 9 - Lemma 13 in Appendix C.1 for the connection).
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5.1. Agent Payments/Incomes and Platform Commissions

In this subsection, we analyze the impact of agents’ growth potential within a network

on the platform’s commission decisions, which could provide guidance for the platform’s

revenue management strategies. Recall that the optimal commission (rs,rb) at the optimal

steady state is not necessarily unique, but any optimal commission profile induces the

same (net) payments and incomes for agent types engaged in transactions (see Proposition

1 and Lemma 1). Furthermore, the total commission generated from a transaction (i.e.,

rsi +r
b
j for (i, j)∈E), which represents the difference between buyers’ payments and sellers’

incomes, is inherently unique. Therefore, in this subsection, we will first study the impact

of network structure and growth potentials on (net) payments and incomes for agent types

and then analyze its impact on the total optimal commission derived from transactions.

Buyers’ Payments and Sellers’ Incomes. In the following proposition, we establish

that the ranking of the relative growth potentials of sellers to buyers in the network given in

(11) determines the ranking of buyers’ payments and sellers’ incomes at the optimal steady

state given the platform’s optimal policy. For simplicity of notation, in any equilibrium

from Definition 1 under a platform’s optimal commission profile (rs,rb), we denote by

Mj = min
i′:(i′,j)∈E

{
pi′ + rbj

}
the payment of any type-j buyers, and denote by Ii = pi− rsi the

income of any type-i sellers.

Proposition 4. (ranking of buyers’ payments and sellers’ incomes) In the net-

work G(S ∪B,E), under any platform’s optimal commission profile (rs,rb) at the steady

state,

(1) on the buyer side, for any j1 ∈Bτ1 and j2 ∈Bτ2 with τ1 ≤ τ2,

(i) the buyers’ payments satisfy Mj1 ≥Mj2;

(ii) the buyers’ service levels satisfy
qbj1
bj1
≤ qbj2

bj2
;

(2) on the seller side, for any i1 ∈ Sτ1 and i2 ∈ Sτ2 with τ1 ≤ τ2,

(i) the sellers’ incomes satisfy Ii1 ≥ Ii2;

(ii) the sellers’ service levels satisfy
qbi1
bi1
≥ qbi2

bi2
.

Proposition 4 suggests that under the platform’s optimal commissions at the steady

state, when the relative long-run growth potential of sellers to buyers increases (i.e., the

ratio
∑
i∈Sτ ψ

s
i∑

j∈Bτ ψ
b
j
in (11) increases as network component index τ increases), the buyers make

less payment, and the sellers receive lower income in equilibrium. By using the example in
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Figure 2 to illustrate, the payments on the buyer (i.e., client) side satisfy M1 =M2 >M3

given that B1 = {1,2} and B2 = {3}; the incomes on the seller (i.e., coder) side satisfy that

I1 > I2 = I3 given that S1 = {1} and S2 = {2,3}.

The managerial implication from Proposition 4 is that while determining the commission,

the platform needs to consider not only the retention rate and growth potentials of the focal

agent types but also their trading partners on the other side of the market. Specifically, the

platform should incentivize the growth of agents with lower relative growth potential by

offering higher commissions to them and extract a higher surplus from those with higher

relative growth potential.

From Proposition 4, we see that each agent type’s optimal service level depends on

their relative growth potentials and their trading partners on the other side of the market.

Therefore, any change in the values of (ψs,ψb) induces changes in the service level of each

agent type, ultimately affecting the equilibrium demand, supply, and population at the

optimal steady state. Lastly, we examine the influence of the long-run growth potential

(ψs,ψb) to offer guidance for the platform’s commission decisions in response to changes

in agent types’ growth potential in the network.

Corollary 1. (impact of the long-term growth potential) Given any ξs ∈ (0,1)

and ξb ∈ (0,1), at the optimal steady state,

(1) for the service levels,

(i) given j ∈B, qbj
bj

is decreasing in ψbj′ ≥ 0 for any j′ ∈B and increasing in ψsi′ ≥ 0 for

any i′ ∈ S;

(ii) given i∈ S, qsi
si

is decreasing in ψsi′ ≥ 0 for any i′ ∈ S and increasing in ψbj′ ≥ 0 for

any j′ ∈B;

(2) for the transaction quantities and populations,

(i) given j ∈ B, (qbj, bj) is increasing in ψbj ≥ 0, decreasing in ψbj′ ≥ 0 for any j′ ∈ B

with j′ ̸= j, and increasing in ψsi′ ≥ 0 for any i′ ∈ S;

(ii) given i∈ S, (qsi , si) is increasing in ψsi ≥ 0, decreasing in ψsi′ ≥ 0 for any i′ ∈ S with

i′ ̸= i and increasing in ψbj′ ≥ 0 for any j′ ∈B.

Note that for any ξs ∈ (0,1) and ξb ∈ (0,1), the vectors (ψs,ψb) are determined by the

retention rates (αs,αb) and the growth coefficients (βs,βb). Corollary 1(1) suggests that

the service level of any agent decreases with the growth potential of all types from the same
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side but increases with those on the other side of the market. Corollary 1(2) implies that

the transaction quantity and population of each type are increasing in their own growth

potential and those on the other side of the network, but decreasing in those of other types

on the same side.

We discuss the intuition using the buyer side as an example. Both a high long-term

growth potential and a high service level contribute to an increase in the population of a

buyer type at an optimal steady state. Consequently, when the long-term growth potential

of a buyer type is high, the platform can maintain a high population by inducing a relatively

lower service level. However, if other buyer types have higher long-term growth potential,

their equilibrium demand will rise, resulting in increased prices for the sellers and a reduced

service level for our focal buyer type. Conversely, if the corresponding sellers have higher

long-term growth potential, their supply will increase, leading to lower prices and benefiting

all buyers.

Platform’s Commissions. We now focus on the total commission charged by the plat-

form from one transaction, viz., the difference between the buyers’ payments and the sellers’

incomes. Note that under the optimal commission, type-i sellers with i∈ Sτ only trade with

type-j buyers with j ∈ Bτ . Therefore, we will examine how the total commission charged

from one transaction between sellers in Sτ and buyers in Bτ depend on the ranking of the

relative growth potential of sellers to buyers τ given in (11). Here, we assume ξs = ξb to

isolate the impact of value distribution.

Proposition 5. (ranking the platform’s commissions) Suppose further that Fs

and Fb are twice differentiable in their domains and ξs = ξb, there exists a τ̃ such that

(1) rsi + rbj for i∈ Sτ , j ∈Bτ is decreasing in τ for τ < τ̃ ;

(2) rsi + rbj for i∈ Sτ , j ∈Bτ is decreasing in τ for τ ≥ τ̃ if Fs(v) and Fb(v) are concave in

v ∈ [0, vs] and v ∈ [0, vb]; whereas it is increasing in τ for τ ≥ τ̃ if Fs(v) and Fb(v) are

convex in v ∈ [0, vs] and v ∈ [0, vb].

In Proposition 5(1), when the relative growth potential of sellers to buyers falls below a

threshold, the total commission charged from the transaction decreases with the relative

growth potential between sellers and buyers. In Proposition 5(2), the concavity of Fs(v) and

Fb(v) implies a higher density of agents with lower (reservation) value. In this case, when

the relative growth potential of sellers to buyers is higher, the optimal total commission
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charged by the platform from transactions should be lower. Similarly, the convexity of

Fs(v) and Fb(v) implies that the number of agents with higher (reservation) value is higher.

In this scenario, the platform charges lower (higher) total commissions for transactions

involving agents with moderate (high or low) relative growth potentials of sellers to buyers.

Intuitively, when the relative growth potential between sellers and buyers is below a

threshold, the number of sellers is significantly smaller than that of buyers. In such cases,

the platform uses its commission to keep the sellers’ income at a sufficiently high level to

ensure the participation of all sellers in transactions. On the other hand, as the relative

growth potential increases, the number of sellers rises, prompting the platform to gradually

reduce buyer payments to stimulate demand. As a result, the total commission charged

from the transaction, which is the difference between buyer payments and seller incomes,

decreases with the relative growth potential between sellers and buyers.

When the relative growth potential between sellers and buyers exceeds the threshold, the

number of sellers is sufficient in the market, and the platform no longer needs to provide

high subsidies to ensure their full participation. In this case, an increase in the relative

growth potential between sellers and buyers suggests that the platform should reduce

the service level for sellers and increase the service level for buyers, aimed at achieving

a balance between supply and demand. When most agents have a low valuation of the

product or service, the platform needs to offer buyers a large price cut to increase their

demand, but a slight decrease in sellers’ earnings can dampen the supply. As a result, the

total commission charged from the transaction decreases with the relative growth potential.

Conversely, when most agents highly value the product or service, providing buyers with

a modest price reduction is sufficient to encourage their participation, and the platform

can substantially reduce sellers’ earnings without significantly impacting their supply. As

a result, the total commission charged from the transaction increases with the relative

growth potential between sellers and buyers.

5.2. Optimal Network for the Platform’s Profit

The prior studies show that a network that better matches supply with demand achieves

a better performance from the system designer’s perspective (see Schrijver et al. 2003,

Chou et al. 2011, Birge et al. 2021). For example, in a static setting, Chou et al. (2011)

show that a graph expander, in which every subset of nodes is linked to a sufficiently large

number of neighboring nodes, is optimal for the system. Similarly, Birge et al. (2021) show
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𝑠1 𝑏1

𝑠2 𝑏2

Figure 3 Bias of Measuring Network Imbalance using Equilibrium Population Ratio: suppose that buyers’ and

sellers’ (reservation) values are uniformly distributed between [0,1] with parameters ξs = ξb = 0.9, ψs1 =ψb2 = 1,

ψb1 =ψs2 = 3. The equilibrium population ratio in AVG satisfies

∑
i∈NE(B̃)

si∑
j∈B̃ bj

≥ 0.9×
∑

i∈S si∑
j∈B bj

for any B̃ ⊆ B, but the

platform’s optimal profit in AVG is only about 85% of that in a complete market; i.e.,

R(E,ψs,ψb) = 0.85×R(E,ψs,ψb).

that if the seller-to-buyer population ratio
∑
i∈NE(B̃)

si∑
j∈B̃ bj

in each sub-market is sufficiently

large, the platform could achieve the maximum optimal profit. One may wonder if the

same result would hold in a dynamic setting. Interestingly, we observe from the numerical

example in Figure 3 that when the population ratio is endogenously formed as in our

model, using the equilibrium population ratio at the optimal steady state as a metric for

the network connectivity can overestimate the profit guarantee for the platform relative

to the maximum achievable profit given the set of sellers and buyers. Hence, it becomes

crucial to incorporate temporal factors, i.e., the long-run growth potential, in (10) into the

“connectivity” measure in the network.

To signify the dependence on the network structure E and long-term growth potential

(ψs,ψb), we let R(E,ψs,ψb) denote the platform’s optimal steady-state profit from AVG

in the network G(S ∪B,E). We let E denote the edge set for the complete graph with the

set of seller types S and that of buyer types B. Since the platform can achieve the maximum

optimal profit in a complete graph given that the feasible region for a complete graph is the

largest in Problem (3), we use R(E,ψs,ψb) to benchmark the impact of network structure

E on the platform’s profit. The following theorem establishes a connection between the

temporal-spatial market structure and the platform’s optimal profit in networkG(S∪B,E).

Theorem 2. ((1− ϵ)-optimal network structure) For any ϵ ∈ [0,1], if G(B ∪S,E)

satisfies that ∑
i∈S1 ψsi∑
j∈B1 ψbj

≥ (1− ϵ)
∑

i∈S ψ
s
i∑

j∈B ψ
b
j

, (12a)
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then

R(E,ψs,ψb) ≥ (1− ϵ)R(E,ψs,ψb). (12b)

In Condition (12a), the right-hand-side expression
∑
i∈S ψ

s
i∑

j∈B ψ
b
j
represents the relative long-

term growth potential of all sellers to all buyers within the entire network G(B ∪ S,E).

Likewise, the left-hand-side term is the relative growth potential of the compatible sellers

to a subset of buyers B1, whose relative long-term growth potential is the lowest (see

(11)). Therefore, ϵ quantifies the degree of imbalance: a positive value of ϵ indicates that

there exists no submarket in which the relative growth potential is ϵ lower than that of

the entire market. The profit guarantee in (12b) implies that the degree of imbalance ϵ

in the network does not cause more than ϵ optimal profit loss for the platform. When

ϵ= 0, the condition in (12a) ensures that the relative growth potential for all submarkets

is weakly higher than that for the entire market. In other words, the long-term growth

potentials are “balanced” in the network. Note that even though the market E may be

incomplete, as long as the market is balanced (i.e., ϵ = 0 in (12a)), the lower bound in

(12b) is tight, and the platform’s optimal profit achieves the maximum possible optimal

profit, i.e., R(E,ψs,ψb) =R(E,ψs,ψb).

The managerial insight derived from Theorem 2 suggests that the platform should aim

to enhance the balance of the network in terms of long-term growth potential to maximize

its steady-state optimal profit. Specifically, the platform could prioritize agent types with

relatively low long-term growth potential in targeted marketing campaigns to attract new

customers and increase customer retention.

Remark. A related work by Alizamir et al. (2022) considers a monopoly firm providing

service to a network of individual customers with externality. They find that a balanced

network with symmetrical mutual interactions among agents results in the lowest profit for

the firm. In their setting, they assume a linear impact of agents’ consumption on others,

and the effects of network externalities go beyond immediate neighbors over time, causing

increasing externalities in a network. In contrast, in our setting, increasing the population

of one agent type leads to higher transaction quantities on the other side in equilibrium, and

the marginal impact on the future population on the other side is decreasing. The marginal

decreasing effect of agents’ consumption and population on growth can be explained by

the fact that the potential market size is usually finite in practice. ♢
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6. Conclusion

In this study, we consider a two-sided platform with heterogeneous growth potentials

among agent types. The compatibility between buyer and seller types is captured by a

bipartite graph, which is not necessarily complete. The platform leverages the commissions

to maximize its T -period profit. To address the complexity of the platform’s profit opti-

mization problem, we consider the long-run average problem as a benchmark and propose

a heuristic algorithm with a provable performance guarantee. We show that boosting the

growth of the agent type with the lowest population ratio compared with the long-run

average benchmark leads to a profit loss bounded by a constant for any positive integer T .

Furthermore, we delve into the optimal steady state and explore how the growth poten-

tials of agents and network structure influence the agents’ income/payment in the market

and the platform’s profit. We begin by introducing a set of metrics designed to capture the

growth potentials and connectivity of agents. We then show that buyer (seller) types com-

patible with higher sellers’ (buyers’) growth potentials experience lower payments (higher

income). A sensitivity analysis demonstrates the impact of agent type’s long-term growth

potential on income/payment. In addition, the commission charged by the platform in a

submarket depends on the relative growth potentials from the two sides of the market.

Finally, we show that a balanced network, in which sellers with relatively high (low) growth

potentials trade with buyers with relatively high (low) growth potentials, results in max-

imum profitability, while the degree of imbalance in the graph establishes a lower bound

for the platform’s optimal profit (relative to that under the complete graph).
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Online Appendix

A. Proof of Results in Section 3

We first provide some Auxiliary Results used to prove the results in Section 3 in Appendix A.1, then we prove

the results in Section 3 in Appendix A.2. Finally, we present the alternative formulation for the platform’s

profit optimization problem in (3) in Appendix A.3.

A.1. Auxiliary Results for Section 3

Lemmas 3 - 5 are needed to prove Proposition 1. In Lemma 5, we establish the connection between the

equilibrium and the optimal solution to an optimization problem in (14). Before that, we establish some

properties for the optimization problem in Lemma 3. We also establish the existence of the optimal solution

to this optimization problem in Lemma 4, and show that it is essentially unique. These lemmas enable us to

establish the existence and uniqueness of the competitive equilibrium in Definition 1. The proof of Auxiliary

Results follows a similar argument as the proof of Proposition EC.1 and Proposition 9 in Birge et al. (2021).

Therefore, we omit the detail of the proof of auxiliary results for simplicity.

For simplicity of notation, we first define that

W t
bj
(qbj(t)) :=

∫ qbj (t)

0

F−1
bj

(
1− z

bj(t)

)
dz− rbj(t)qbj(t), (13a)

W t
si
(qsi (t)) := −

∫ qsi (t)

0

F−1
si

( z

si(t)

)
dz− rsi (t)qsi (t). (13b)

Note that the sum of W t
bj
(qbj(t)) and W t

si
(qsi (t)) can be viewed as the total surplus of buyers and sellers

trading in the platform, and is the objective function in Problem (14). Let W t′

bj
(q) be the derivative of

W t
bj
(q) at q = qbj(t) for any 0 < qbj(t) < bj(t), and abusing some notation, W t′

bj
(0) = lim

qb
j
(t)↓0

W t
bj
(qbj(t)) and

W t′

bj
(bj(t)) = lim

qb
j
(t)↑bj(t)

W t
bj
(qbj(t)) given Assumption 2(i). Similarly, we letW t′

si
(q) be the derivative ofW t

si
(q) at

q= qsi (t) for any 0< qsi (t)< si(t), and we let W t′

si
(0) = lim

qs
i
(t)↓0

W t
si
(qsi (t)) and W

t′

si
(si(t)) = lim

qs
i
(t)↑si(t)

W t
si
(qsi (t))

given Assumption 2(i). We consider the following properties of functions W t
bj
(qbj(t)) and W

t
si
(qsi (t)).

Lemma 3. For any j ∈B, i∈ S and t∈ {1, . . . , T},

(i) W t
bj
(q) is continuously differentiable and strictly concave in q ∈ (0, bj(t)); moreover, both W t

bj
(q) and

W t′

bj
(q) are right continuous at q= 0 and left continuous q= bj(t).

(ii) W t
si
(q) is continuously differentiable and strictly concave in q ∈ (0, si(t)); moreover, both W t

si
(q) and

W t′

si
(q) are right continuous at q= 0 and left continuous q= si(t).

For any t∈ {1, ..., T}, we proceed to consider the following optimization problem:

W (t) = max
x(t),qs(t),qb(t)

∑
i∈B

(∫ qbj (t)

0

F−1
bj

(
1− z

bj(t)

)
dz− rbj(t)qbj(t)

)

−
∑
i∈S

(∫ qsi (t)

0

F−1
si

(
z

si(t)

)
dz+ rsi (t)q

s
i (t)

)
(14a)

s.t. qbj(t) =
∑

i′:(i′,j)∈E

xi′,j(t), ∀j ∈B, (14b)
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∑
j′:(i,j′)∈E

xi,j′(t) = qsi (t), ∀i∈ S, (14c)

qbj(t)≤ bj(t), ∀j ∈B, (14d)

qsi (t)≤ si(t), ∀i∈ S, (14e)

xij(t)≥ 0, ∀(i, j)∈E. (14f)

From Problem (14), we establish the result below. Before that, we define the notation “a ≤ 0 ⊥ b ≥ 0” as

a≤ 0, b≥ 0, ab= 0.

Lemma 4. (i) There exists an optimal solution (x(t),qs(t),qb(t)) to Problem (14).

(ii) Given any optimal primal solution (x(t),qs(t),qb(t)), there exists a dual multiplier vector

(θb(t),θs(t),ηb(t),ηs(t),π(t)) associated with constraints (14b)-(14f) that satisfy the KKT conditions

below:

F−1
bj

(
1−

qbj(t)

bj(t)

)
− rbj(t)− θbj(t)− ηbj(t) = 0, ∀j ∈B, (15a)

F−1
si

(qsi (t)
si(t)

)
+ rsi (t)− θsi (t)+ ηsi (t) = 0, ∀i∈ S, (15b)

θbj(t)− θsi (t)+πij(t) = 0, ∀(i, j)∈E, (15c)

qbj(t)− bj(t)≤ 0 ⊥ ηbj(t)≥ 0, ∀j ∈B, (15d)

qsi (t)− si(t)≤ 0 ⊥ ηsi (t)≥ 0, ∀i∈ S, (15e)

xij(t)≥ 0 ⊥ πij(t)≥ 0, ∀(i, j)∈E, (15f)

qbj(t) =
∑

i′:(i′,j)∈E

xi′,j(t), ∀j ∈B, (15g)

qsi (t) =
∑

j′:(i,j′)∈E

xi,j′(t), ∀i∈ S. (15h)

In addition, these KKT conditions in (15) are necessary and sufficient conditions for the optimality of

solution (x(t),qs(t),qb(t)).

(iii) All primal optimal solution (x(t),qs(t),qb(t)) share the same vector (qs(t),qb(t));

(iv) The dual solution θsi (t) for i∈ {i′ : 0< qsi′ < si′} that satisfies (15) is unique.

The conditions in Lemma 5(i)-(ii) are sufficient and necessary conditions, while those in Lemma 5(iii) are

only sufficient conditions for equilibrium, as the prices for type i ∈ {i′ : qsi′(t) = 0 or qsi′(t) = si′(t)} are not

necessarily unique.

Lemma 5. In each period t ∈ {1, ..., T}, given any commission profile (rs(t),rb(t)) ∈R|S|×R|B| and pop-

ulation vector (s(t),b(t))∈R|S|×R|B|,

(i) (x(t),qs(t),qb(t)) satisfies the equilibrium conditions in Definition 1 if and only if it is an optimal

solution to Problem (14);

(ii) for i∈ {i′ : 0< qsi′(t)< si′(t)}, pi(t) satisfies the equilibrium conditions in Definition 1 if and only if

pi(t) = θsi (t). (16a)
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(iii) for i∈ {i′ : qsi′(t) = 0 or qsi′(t) = si′(t)}, pi(t) satisfies the equilibrium conditions in Definition 1 if

pi(t) = θsi (t). (16b)

Before proceeding, note that functions F−1
si

(·) and F−1
bj

(·) have the following properties in an equilibrium:

(1) On the seller side, if pi(t)− rsi (t)≤ 0, then qsi (t) = 0 and

F−1
si

(qsi (t)
si(t)

)
≥ pi(t)− rsi (t), (17a)

if 0< pi(t)− rsi (t)< vsi , then 0< qsi (t)< si(t) and

F−1
si

(qsi (t)
si(t)

)
= pi(t)− rsi (t), (17b)

if vsi ≤ pi(t)− rsi (t), then qsi (t) = si(t) and

F−1
si

(qsi (t)
si(t)

)
≤ pi(t)− rsi (t). (17c)

(2) On the buyer side, if mini′:(i′,j)∈E{pi′(t)+ rbj(t)} ≤ 0, then qbj(t) = bj(t) and

F−1
bj

(
1−

qbj(t)

bj(t)

)
≥ min

i′:(i′,j)∈E
{pi′(t)+ rbj(t)}, (18a)

if 0<mini′:(i′,j)∈E{pi′(t)+ rbj(t)}< vbj , then 0< qbj(t)< bj(t) and

F−1
bj

(
1−

qbj(t)

bj(t)

)
= min

i′:(i′,j)∈E
{pi′(t)+ rbj(t)}, (18b)

if mini′:(i′,j)∈E{pi′(t)+ rbj(t)} ≥ vbj , then q
b
j(t) = 0 and

F−1
bj

(
1−

qbj(t)

bj(t)

)
≤ min
i′:(i′,j)∈E

{pi′(t)+ rbj(t)}. (18c)

A.2. Proof of Results for Section 3

Based on Lemmas 3 - 5, Proposition 1 is proved as below:

Proof of Proposition 1. We establish the following two claims of this result.

Claim (i). Lemma 4(i) implies that the optimal primal solution to (14) always exists, and Lemma 5(i) implies

that the (x,qs,qb) is the equilibrium if and only if it is the optimal primal solution to (14). Therefore, the

equilibrium transaction vector (x,qs,qb) exists.

Lemma 4(ii) implies that the optimal dual solution to (14) always exists, and Lemma 5(ii) implies that

p that satisfies the equality in (16) is the equilibrium price vector. Therefore, there exists a corresponding

equilibrium price vector.

Claim (ii). Lemma 4(iii) implies that the optimal primal solution (qs,qb) to (14) is unique. Lemma 5(i)

implies that the (qs,qb) is the equilibrium if and only if it is the optimal primal solution to (14). Therefore,

the equilibrium supply-demand vector (qs,qb) is unique.

Lemma 4(iv) implies that the optimal dual solution θs to Problem (14) is unique for i∈ {i′ : 0< qsi′ < si′},

and Lemma 5(ii) implies that pi(t) = θsi (t) for i that satisfies 0 < qsi (t) < si(t). Therefore, the equilibrium

price is unique for i that satisfies 0< qsi (t)< si(t). ■
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Proof of Lemma 1. We establish the sufficiency of (4) in Step 1 and construct a feasible commission profile

in Step 2 to show that the feasible commission profile always exists.

Step 1: Sufficiency. We show that for any (qb(t),qs(t),x(t)) that satisfies (2c)-(2e), if vector (rs(t),rb(t))

satisfies the conditions in (4), then it satisfies the conditions in Definition 1.

We first verify the conditions in Definition 1, in which (2c)-(2e) immediately follow from our conditions.

(2a) We consider the following two cases:

When qsi (t)> 0, si(t)Fsi(pi(t)− rsi (t))
(a)
= si(t)Fsi(F

−1
si

(
qsi (t)

si(t)
)) = qsi (t), (a) follows from (4a).

When qsi (t) = 0, 0≤ si(t)Fsi(pi(t)− rsi (t))
(b)

≤ si(t)Fsi(F−1
si

(
qsi (t)

si(t)
)) = qsi (t) = 0, (b) follows from (4b).This

implies that the inequalities are all tight, then si(t)Fsi(pi(t)− rsi (t)) = qsi (t).

(2b) We consider the following two cases:

When qbj(t) = 0, then xij(t) = 0 for ∀i : (i, j) ∈ E, then 0 ≤ bj(t)
(
1− Fbj ( min

i′:(i′,j)∈E
{pi′(t)}+ rbj(t))

) (c)

≤

bj(t)
(
1−Fbj (F

−1
bj

(1− qbj (t)

bj(t)
))
)
= qbj(t) = 0, where (c) follows from (4d).This implies that the inequalities

are all tight, then bj(t)
(
1−Fbj ( min

i′:(i′,j)∈E
{pi′(t)}+ rbj(t))

)
= qbj(t).

When qbj(t) > 0, pick a i1 such that xi1j(t) > 0 we have pi1(t) = F−1
bj

(1− qbj (t)

bj(t)
)− rbj(t) based on (4c);

if there exists any i2 such that xi2j(t) = 0, we have pi2(t) ≥ F−1
bj

(1 − qbj (t)

bj(t)
) − rbj(t) based on (4d);

then min
i′:(i′,j)∈E

{pi′(t)}= F−1
bj

(1− qbj (t)

bj(t)
)− rbj(t) , then bj(t)

(
1−Fbj ( min

i′:(i′,j)∈E
{pi′(t)}+ rbj(t))

)
= bj(t)

(
1−

Fbj (F
−1
bj

(1− qbj (t)

bj(t)
))
)
= qbj(t).

(2f) We consider two cases: When qbj(t) = 0, then xij(t) = 0 for ∀i : (i, j) ∈ E. When qbj(t)> 0, we show in

proof of (2b) that pi(t)≥ min
i′:(i′,j)∈E

{pi′}= F−1
bj

(1− qbj (t)

bj(t)
)− rbj(t) for xij(t) = 0.

Step 2: construct an instance. In each period, given (qb(t),qs(t),x(t)) that satisfies (2c)-(2e), consider the

following one-period problem:

R̃t = max
qs,qb,x

[∑
j∈B

qbj +
∑
i∈S

qsi

]
s.t. qbj ≤ qbj(t), ∀j ∈B (19a)

qsi ≤ qsi (t), ∀i∈ S (19b)∑
j′:(i,j′)∈E

xi,j′ = qsi , ∀i∈ S (19c)

qbj =
∑

i′:(i′,j)∈E

xi′,j , ∀j ∈B (19d)

xij ≥ 0, ∀(i, j)∈E. (19e)

Note that the feasible solution set is not empty, as qbj = qbj(t) for ∀j ∈B, qsi = qsi (t) for ∀i∈ S and xij = xij(t)

for ∀(i, j) ∈ E is a feasible solution. Since the constraints are all linear, the KKT conditions are necessary

for the optimal solution in (19). Let (ωsi (t),ω
b
j(t),πij(t)) be the Lagrange multipliers corresponding to the

constraint in (19c)-(19e), then we can write down the KKT conditions corresponding to x:

ωsi (t)−ωbj(t)−πij(t) = 0, ∀(i, j)∈E, (20a)

xij(t)≥ 0 ⊥ πij(t)≥ 0, ∀i∈ S,∀(i, j)∈E. (20b)
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Then we consider the commission and equilibrium price as follows:

pi(t) = ωsi (t), ∀i∈ S, (21a)

rsi (t) = ωsi (t)−F−1
si

(
qsi (t)

si(t)

)
, ∀i∈ S, (21b)

rbj(t) = F−1
bj

(
1−

qbj(t)

bj(t)

)
−ωbj(t), ∀j ∈B. (21c)

then the conditions (4a)-(4b) immediately follow. For (4c),

pi(t)+ rbj(t) = ωsi (t)+F−1
bj

(1−
qbj(t)

bj(t)
)−ωbj(t)

(a)
= ωbj(t)+F−1

bj
(1−

qbj(t)

bj(t)
)−ωbj(t) = F−1

bj
(1−

qbj(t)

bj(t)
).

where (a) follows from (20a) and (20b) that πij(t) = 0 when xij(t)≥ 0.

For (4d),

pi(t)+ rbj(t) = ωsi (t)+F−1
bj

(1−
qbj(t)

bj(t)
)−ωbj(t)

(b)
= ωbj(t)+πij(t)+F−1

bj
(1−

qbj(t)

bj(t)
)−ωbj(t)

(c)

≥ F−1
bj

(1−
qbj(t)

bj(t)
).

where (b) follows from (20a) and (c) follows from (20b). In summary, (4) holds for our construction in (21).

■

A.3. Alternative Formulation for the Platform’s Profit Optimization Problem

Consider the following convex optimization problem:

R(T ) = max
s,b,x,qs,qb

T∑
t=1

[∑
j∈B

F−1
bj

(
1−

qbj(t)

bj(t)

)
qbj(t)−

∑
i∈S

F−1
si

(qsi (t)
si(t)

)
qsi (t)

]
(22a)

s.t. qsi (t)≤ si(t), ∀i∈ S, t∈ {1, ..., T}, (22b)

qbj(t)≤ bj(t), ∀j ∈B, t∈ {1, ..., T}, (22c)∑
j′:(i,j′)∈E

xi,j′(t) = qsi (t), ∀i∈ S, t∈ {1, ..., T}, (22d)

qbj(t) =
∑

i′:(i′,j)∈E

xi′,j(t), ∀j ∈B, t∈ {1, ..., T}, (22e)

xij(t)≥ 0, ∀(i, j)∈E, t∈ {1, ..., T}, (22f)

si(t+1)≤ αsisi(t)+Gsi (qsi (t)), ∀i∈ S, t∈ {1, ..., T − 1}, (22g)

bj(t+1)≤ αbjbj(t)+Gbj (qbj(t)), ∀j ∈B, t∈ {1, ..., T − 1}. (22h)

From Problem (22), we can establish Proposition 6, which enables us to solve a concave maximization

problem to obtain the optimal solution (s,b,x,qs,qb) to Problem (22), from which we can further establish

the optimal commission profile (rs,rb) by solving a set of linear inequalities in (4) of Lemma 1.

Proposition 6. (tightness of relaxation) For any T ≥ 1, Problem (22) is a tight relaxation of Problem

(3): R∗(T ) =R(T ) and any optimal solution (s,b,x,qs,qb) to Problem (22) is also optimal to Problem (3).

Proof of Proposition 6 We need to prove that the optimal solutions to (3) exist and that they achieve an

objective value of R∗ =R. We first show that R∗ ≤R in step 1, and construct a solution to (3) whose value

equals to R in step 2, which implies that R∗ =R and the solution is optimal.
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Step 1: Establish that R∗ ≤R. We show that any feasible solution to (3) is feasible in Problem (22) in Step

1.1, and we further show that it leads to a higher objective value in Problem (22) in Step 1.2.

Step 1.1: Any feasible solution in (3) is feasible in (22). To prove the claim, it is sufficient to verify the con-

straints (22b)-(22c), as other constraints immediately follow from the constraints in (3).

Based on (2a) and (2b), we have qsi (t) = si(t)Fsi(pi(t)−rsi (t))≤ si(t) as Fsi(pi(t)−rsi (t))∈ [0,1] and qbj(t) =

bj(t)[1− Fbj ( min
i:(i,j)∈E

{pi(t)}+ rbj(t))] ≤ bj(t) as Fbj ( min
i:(i,j)∈E

{pi(t)}+ rbj(t)) ∈ [0,1]. Therefore, the constraints

(22b)-(22c) are satisfied.

Step 1.2: Any feasible solution in (3) results in a higher objective value in (22). We first show that the opti-

mal solution to Problem (3) satisfies the following:(
F−1
si

(qsi (t)
si(t)

))
qsi (t)≤

(
pi(t)− rsi (t)

)
qsi (t), ∀i∈ S, t∈ {1, ..., T}, (23a)(

F−1
bj

(
1−

qbj(t)

bj(t)

))
qbj(t)≥

(
min

i′:(i′,j)∈E
{pi′(t)}+ rbj(t)

)
qbj(t), ∀j ∈B, t∈ {1, ..., T}. (23b)

For (23a), when qsi (t) = 0, (23a) immediately holds; when qsi (t)> 0, (23a) follows from (17b) and (17c) in the

proof of Lemma 5. For (23b), when qbj(t) = 0, (23b) immediately holds; when qbj(t)> 0, (23b) follows from

(18a) and (18b) in the proof of Lemma 5.

Given (23), the objective function in (3a) satisfies the following:

R∗ =

T∑
t=1

[∑
j∈B

rbj(t)q
b
j(t)+

∑
i∈S

rsi (t)q
s
i (t)
]

(a)
=

T∑
t=1

[∑
j∈B

rbj(t)
∑

i′:(i′,j)∈E

xi′j(t)+
∑
i∈S

rsi (t)
∑

j′:(i,j′)∈E

xij′(t)
]

=

T∑
t=1

[∑
j∈B

∑
i′:(i′,j)∈E

(
pi′(t)+ rbj(t)

)
xi′j(t)−

∑
i∈S

(
pi(t)− rsi (t)

) ∑
j′:(i,j′)∈E

xij′(t)
]

(b)
=

T∑
t=1

[∑
j∈B

(
min

i′:(i′,j)∈E
{pi′(t)}+ rbj(t)

) ∑
i′:(i′,j)∈E

xi′j(t)−
∑
i∈S

(
pi(t)− rsi (t)

) ∑
j′:(i,j′)∈E

xij′(t)
]

=

T∑
t=1

[∑
j∈B

(
min

i′:(i′,j)∈E
{pi′(t)}+ rbj(t)

)
qbj(t)−

∑
i∈S

(
pi(t)− rsi (t)

)
qsi (t)

]
(c)

≤
T∑
t=1

[∑
j∈B

F−1
bj

(1−
qbj(t)

bj(t)
)qbj(t)−

∑
i∈S

F−1
si

(
qsi (t)

si(t)
)qsi (t)

]
=R,

where (a) follows from (2c)-(2d); (b) follows from (2f) that xij = 0 for i /∈ argmin
i′:(i′,j)∈E

{pi+ rsi }; (c) follows from

(23).

Step 2: Establish that R∗ =R. Given any feasible solution to (22), we construct a feasible solution for (3)

in Step 2.1, and we further obtain an objective value that equals R in Step 2.2.

Step 2.1: Construct a feasible solution for Problem (3).

In each period, given the solution for Problem (22), we consider the construction from (21) as in the proof

of Lemma 1. We need to verify that all the constraints in (3) hold. Notice that we only need to verify that

(2a) (2b) (2f) (3c) and (3d) hold, as other constraints exist in (22) and automatically hold.
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(2a) from the construction of pi(t) and r
s
i (t), we can establish that

si(t)Fsi(pi(t)− r
s
i (t)) = si(t)Fsi

(
F−1
si

(qsi (t)
si(t)

))
= qsi (t).

(2b) We consider the following two cases:

(i) if qbj > 0, we pick a i′ such that (i′, j) ∈ E, then there are two further cases: (1) xi′j > 0, then

pi′(t)
(a)
= ωsi′(t)

(b)
= ωbj(t) + πi′j(t)

(c)
= ωbj(t), where (a) follows form the construction of pi′(t); (b) follows

from (20a); (c) follows from (20b) for xi′j > 0; (2) xi′j = 0, then pi′(t) = ωsi′(t) = ωbj(t)+πi′j(t)
(d)

≥ ωbj(t),

where (d) follows from (20b) for xi′j = 0. In summary, min
i′:(i′,j)∈E

{pi′(t)}= ωbj(t), then

bj(t)[1−Fbj ( min
i′:(i′,j)∈E

{pi′(t)}+ rbj(t))] = bj(t)[1−Fbj (ω
b
j(t)+ rbj(t))]

(e)
= bj(t)[1−F−1

bj
(1−

qbj(t)

bj(t)
)] = qbj(t),

where (e) follows from the construction of rbj(t);

(ii) if qbj = 0, we have pi′(t) = ωsi′(t) = ωbj(t)+πi′j(t)≥ ωbj(t), then 0
(f)

≤ bj(t)[1−Fbj (min{pi(t)+rbj(t)})]≤

bj(t)[1−Fbj (ωbj(t)+ rbj(t))]
(g)
= bj(t)[1−F−1

bj
(1− qbj (t)

bj(t)
)] = qbj(t) = 0,, where (f) follows from Fbj (·)≤ 1, (g)

follows from the construction of rbj(t). This implies that inequality must be tight. Therefore, (2b) holds.

(2f) We have verified in the proof of (2b) that for any (i, j)∈E, we have pi = ωbj for xij > 0 and pi ≥ ωbj for

xij = 0. Therefore, xij = 0 for i /∈ argmin
i′:(i′,j)∈E

pi′ .

(3c) We first prove (22g) holds as equality by contradiction. Suppose that si(t+1)<αsisi(t)+Gsi (qsi (t)) in the

optimal solution to (22), then let s′i(t+1) = αsisi(t)+Gsi (qsi (t)), we can obtain higher objective value by

replacing the si(t+1) in the optimal solution with s′i(t+1) as the objective function in (22a) increases in

si(t+1); in addition, si(t+2)≤ αsisi(t+1)+Gsi (qsi (t+1))<αsis
′
i(t+1)+Gsi (qsi (t+1)), which implies that

the constraint in (22g) still hold. This contradicts to our assumption that si(t+1)<αsisi(t)+Gsi (qsi (t))

in the optimal solution to (22). Therefore, si(t+1) = αsisi(t)+Gsi (qsi (t)) in the optimal solution to (22),

and (3c) immediately holds.

(3d) Similarly, suppose that bj(t+1)<αbjbj(t)+Gbj (qbj(t)) in the optimal solution to (22), then let b′j(t+1) =

αbjbj(t) + Gbj (qbj(t)), we can obtain higher objective value by replacing the bj(t + 1) in the optimal

solution with b′j(t+ 1). Therefore, bj(t+ 1) = αbjbj(t) + Gbj (qbj(t)) in the optimal solution to (22), and

(3d) immediately holds.

Step 2.2: Obtain a value that equals R. We can deduce that

R∗ =

T∑
t=1

[∑
i∈S

rsi (t)q
s
i (t)+

∑
j∈B

rbj(t)q
b
j(t)

]
(a)
=

T∑
t=1

[∑
i∈S

(ωsi (t)−F−1
si

(
qsi (t)

si(t)
))qsi (t)+

∑
j∈B

(F−1
bj

(1−
qbj(t)

bj(t)
)−ωbj(t))qbj(t)

]
(b)
=

T∑
t=1

[∑
j∈B

F−1
bj

(1−
qbj(t)

bj(t)
)qbj(t)−

∑
i∈S

F−1
si

(
qsi (t)

si(t)
)qsi (t)

]

+

T∑
t=1

[∑
i∈S

ωsi (t)
∑

j′:(i,j′)∈E

xij′(t)−
∑
j∈B

ωbj(t)
∑

i′:(i′,j)∈E

xi′j(t)

]
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=

T∑
t=1

[∑
j∈B

F−1
bj

(1−
qbj(t)

bj(t)
)qbj(t)−

∑
i∈S

F−1
si

(
qsi (t)

si(t)
)qsi (t)

]
+

T∑
t=1

[ ∑
(i,j)∈E

(
ωsi (t)−ωbj(t)

)
xij(t)

]
(c)
=

T∑
t=1

[∑
j∈B

F−1
bj

(1−
qbj(t)

bj(t)
)qbj(t)−

∑
i∈S

F−1
si

(
qsi (t)

si(t)
)qsi (t)

]
=R,

where (a) follows from the construction of rsi (t) and r
b
j(t), (b) follows from (22d) and (22e), (c) follows from

(20a) and (20b) that when xij > 0, ωsi = ωbj , while when xij = 0, ωsi ≥ ωbj . ■

B. Proof of Results in Section 4

We provide and prove some auxiliary results in Appendix B.1 and prove the result in Section 4 in Appendix

B.2. Finally, we provide some numerical results for TRP in Appendix B.3.

B.1. Auxiliary Results for Section 4

Given the definitions of the value functions F̃bj for any j ∈ B and F̃si for any i ∈ S from Problem (8), we

have the following lemma.

Lemma 6. F̃bj (q, b) is continuous at (0,0) for i∈ S and F̃si(q, s) is continuous at (0,0) for j ∈B.

Proof of Lemma 6. We need to show that lim
(q,b)↓(0,0)

F̃bj (q, b) = F̃bj (0,0) = 0 and lim
(q,s)↓(0,0)

F̃si(q, s) =

F̃si(0,0) = 0, which holds because

0 ≤ lim
(q,b)↓(0,0)

F̃bj (q, b) = lim
(q,b)↓(0,0)

F−1
bj

(
1− q

b

)
q ≤ vbj × 0 = 0,

0 ≤ lim
(q,s)↓(0,0)

F̃si(q, s) = lim
(q,s)↓(0,0)

F−1
si

(q
s

)
q ≤ vsi × 0 = 0,

where given Assumption 2, all of the inequalities above follow from F−1
bj

(x) ∈ [0, vbj ] for x ∈ [0,1] where

vbj <∞ and F−1
si

(x)∈ [0, vsi ] for x∈ [0,1] where vsi <∞. ■

We next develop an auxiliary result about the growth of populations. To simplify the notation, we let

N := {1, ..., |S|, |S|+ 1, ..., |S|+ |B|}, where the first |S| nodes represent the types from the seller side and

the last |B| nodes represent the types from the buyer side. In addition, we use ni(t) and qi(t) to respectively

denote the population and transaction quantity of type i ∈N at time t ∈ {1, . . . , T}. We define αi := αsi for

i∈ {1, ..., |S|} and αi := αbi−|S| for i∈ {|S|+1, ..., |S|+ |B|}; similarly, we define Gi(·) := Gsi (·) for i∈ {1, ..., |S|}

and Gi(·) := Gbi−|S|(·) for i∈ {|S|+1, ..., |S|+ |B|}. In addition, we define N+ := {i∈N : ni > 0}.

Recall that

m(t) = min
i∈N+

ni(t)

ni
. (24)

Given the minimum population ratio m(t) in (24), we let l(t) be the agent type with the lowest population

ratio at time t or “the lowest node at time t” for short:

l(t) := argmin
i∈N+

ni(t)

ni
. (25)

If there is more than one i such that ni(t)

ni
=m(t), we can set l(t) as any node with the minimum population

ratio. After the population evolves in period t, it is worth noting that the lowest node can change. Let τ0 := 0
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and m(τ0) be a dummy agent type with the minimum ratio in period 0 with m(τ0) ̸∈ S ∪ B. Moreover, we

let X be the total number of times that the lowest node changes in Algorithm 1 for some X ∈ {1, . . . , T}. we

let τx := min{t : t > τx−1, l(t) ̸= l(τx−1)} for t ∈ {1, . . . , T}, in which τx is the xth time that the lowest node

changes for x ∈ {1, . . . ,X}. For example, for x ∈ {0,1, ...,X}, if node i has the lowest ratio at time τx − 1,

then nl(τx−1)(τx) denotes the population ratio of the node i at time τx.

Given the lowest node l(t)∈ S ∪B we let

gt(n) := αl(t)n+Gl(t)
(
n
ql(t)
nl(t)

)
, (26)

where n ≥ 0. Then gt(n) is the transition equation for the lowest node in period t, as by the population

transition specified in Algorithm 1 and the definition of gt(·), we have that

nl(t)(t+1) = αl(t)nl(t)(t)+Gl(t)
(
nl(t)(t)

ql(t)
nl(t)

)
= gt(nl(t)(t)). (27)

We have the following observation about function gt(·).

Lemma 7. gt(n) is differentiable, increasing and strictly concave in n≥ 0. Moreover, its derivative satisfies

g′t(nl(t))< 1 for all t∈ {1, ..., T}. Moreover, gt(n)−n< 0 for n> nl(t) and gt(n)−n> 0 for 0<n<nl(t).

Proof of Lemma 7. We divide the proof arguments into the following components.

Differentiability and monotonicity. From Assumption 1, we have that function Gi(n) is continuously differen-

tiable, increasing and strictly concave in n≥ 0, which directly implies that gt(n) is differentiable, increasing

and strictly concave in n≥ 0.

g′t(nl(t))< 1 for all t∈ {1, ..., T}. By Algorithm 1, we have that nl(t) > 0. Since gt(n) is continuous in n ∈

[0, nl(t)] and differentiable (0, nl(t)), by the mean value theorem, there exists a ñl(t) ∈ (0, nl(t)) such that

g′t(ñl(t)) =
gt(nl(t))−gt(0)

nl(t)−0

(a)
=

nl(t)−gt(0)
nl(t)−0

(b)
=

nl(t)−0

nl(t)−0
= 1, where (a) follows from Lemma 2(i) and (b) follows from

Assumption 1(i). Since gt(n) is strictly concave in n ≥ 0, its derivative strictly decreases in n ≥ 0, which

implies that g′t(nl(t))< 1 given that ñl(t) ∈ (0, nl(t)).

gt(n)−n< 0 for n> nl(t). we define that yt(n) := gt(n) − n, and it remains to show that yt(n) < 0 for

n> nl(t). Since y
′
t(nl(t)) = g′t(nl(t))−1< 0 for nl(t) >nl(t) and yt(nl(t)) = 0 based on Lemma 2(ii), yt(nl(t))< 0

for nl(t) >nl(t).

gt(n)−n> 0 for 0<n<nl(t). It remains to show that yt(n)> 0 for 0<n<nl(t). Note that yt(n) is concave

in n. Since yt(0) = gt(0)− 0 = 0 and yt(nl(t)) = gt(nl(t))−nl(t) = 0, we know yt((1−a)×nl(t))>ayt(0)+ (1−

a)yt(nl(t)) = 0+0= 0 for a∈ (0,1), therefore yt(n)> 0 for 0<n<nl(t). ■

Lastly, we formally define the myopic policy and establish its tractability as a supporting result for our

proof arguments for Section 4.

Definition 2. (myopic policy) For t ∈ {1, ..., T}, given the current population (sM(t),bM(t)), the

myopic policy solves the following optimization problem:

RM∗(t) = max
r(t),p(t),x(t),qs(t),qb(t)

∑
i∈S

rsi (t)q
s
i (t)+

∑
j∈B

rbj(t)q
b
j(t) (28a)

s.t. (sM (t),bM (t),r(t),p(t),x(t),qs(t),qb(t)) satisfies (2), ∀t∈ {1, ..., T}. (28b)
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To solve Problem (28), we consider the following optimization problem:

RM(t) = max
qs(t),qb(t),x(t)

∑
j∈B

F−1
bj

(
1−

qbj(t)

bMj (t)

)
qbj(t)−

∑
i∈S

F−1
si

( qsi (t)
sMi (t)

)
qsi (t) (29a)

s.t. qsi (t)≤ sMi (t),
∑

j′:(i,j′)∈E

xi,j′(t) = qsi (t), ∀i∈ S, t∈ {1, ..., T}, (29b)

qbj(t)≤ bMj (t), qbj(t) =
∑

i′:(i′,j)∈E

xi′,j(t), ∀j ∈B, t∈ {1, ..., T}, (29c)

xij(t)≥ 0, ∀(i, j)∈E, t∈ {1, ..., T}. (29d)

Recalling the observations about Problem (22), we can apply exactly the same arguments as in the proof of

Proposition 6 to establish the following result about Problem (29), whose proof will be neglected for avoiding

repetition:

Corollary 2. For any t ∈ {1, ..., T}, Problem (29) is a tight relaxation of Problem (28), i.e., RM∗(t) =

RM(t) and any optimal solution (qs(t),qb(t),x(t)) to Problem (29) is also optimal to Problem (28).

B.2. Proof of Results in Section 4

Proof of Lemma 2. Given Assumption 1, we first show that AVG’s optimal solution and objective value

are finite.

On the seller side, for any i ∈ S, note that the constraint of AVG requires that qsi ≤ si ≤ Gs
i (q

s
i )

1−αs
i
, or

equivalently,
Gs
i (q

s
i )

1−αs
i
− qsi ≥ 0. We consider the following two cases:

(1) when (Gsi )′(0) ≤ 1− αsi , then for all qsi > 0, we have
Gs
i (q

s
i )

1−αs
i
− qsi

(a)

≤ Gs
i (0)+Gs′

i (0)qsi
1−αs

i
− qsi

(b)

≤ 0, where (a)

follows from the concavity of Gsi (·) by Assumption 1, and (b) follows from the condition that (Gsi )′(0)≤ 1−αsi
with Gsi (0) = 0. Then, we obtain that any solution with qsi > 0 is not feasible, which implies that a necessary

condition for the optimal solution (q,s,b) to AVG in this case is that qsi = 0 for some i∈ S with Gs′i (0)> 1−αsi ;

(2) when Gs′i (0)> 1−αsi , given that lim
q→∞

(Gsi )′(q) = 0 and Gsi (q) is continuously differentiable in q ≥ 0 by

Assumption 1, there exists a 0< q̂ <∞ such that (Gsi )′(q̂)< 1−αsi . We observe that for any solution q where

for all qsi > max{q̂, G
s
i (q̂)

1−αs
i
/(1 − Gs′

i (q̂)

1−αs
i
)}, we have

Gs
i (q

s
i )

1−αs
i
− qsi

(a)

≤ Gs
i (q̂)+Gs′

i (q̂)(qsi −q̂)
1−αs

i
− qsi <

Gs
i (q̂)+Gs′

i (q̂)qsi
1−αs

i
− qsi =

Gs
i (q̂)

1−αs
i
+ (

Gs′
i (q̂)

1−αs
i
− 1)qsi

(b)

< 0, where (a) follows from the concavity of Gsi (·) in R+ ∪ {0}, and (b) follows from
Gs′
i (q̂)

1−αs
i
− 1< 0 given that qsi > (

Gs
i (q̂)

1−αs
i
)/(1− Gs′

i (q̂)

1−αs
i
). In summary, we obtain that any solution q to AVG with

qsi >max{q̂, (Gs
i (q̂)

1−αs
i
)/(1− Gs′

i (q̂)

1−αs
i
)} for some i ∈ S with Gs′i (0)> 1− αsi is not feasible. Therefore, any optimal

solution (q,s,b) to AVG satisfies that qsi ≤max{q̂, (Gs
i (q̂)

1−αs
i
)/(1− Gs′

i (q̂)

1−αs
i
)} if Gs′i (0)> 1−αsi .

In summary, we have that qsi is finite for all i∈ S. Together with the observation that qsi ≤ si ≤
Gs
i (q

s
i )

1−αs
i
, we

obtain that s is also finite.

On the buyer side, following the same arguments above, we can show that in any optimal solution (q,s,b)

to AVG, (qbj , bj) is finite for all j ∈B.

Furthermore, for any u∈ [0,1], we have that F−1
si

(u)≤ vsi <∞ for any i∈ S and F−1
bj

(u)≤ vbj <∞ for all

j ∈ B. Therefore, the objective value of AVG is also finite. We have already shown that the feasible set of

(q,s,b) is closed and bounded. The constraints in (6a)-(6b) also ensure that the feasible set of x is closed
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and bounded. In summary, the feasible set characterized by constraint (6a)-(7b) is compact. In addition, the

feasible set is not empty, as solution 0 is feasible. Furthermore, the objective function in (8a) is continuous

in this compact set based on Assumption 2(i). By the extreme value theorem, an optimal solution (q,s,b)

to AVG exists.

We proceed to prove the lemma.

(i). By the extreme value theorem, the optimal solution to (8) exists. Since the objective function is strictly

concave and the feasible region is a convex set, the optimal solution to (8) is unique.

(ii). We prove it by contradiction. If there exists a i ∈ S such that si < αsisi + Gsi (qsi ), then consider the

alternative solution s′i := si+ϵ for a ϵ > 0. We can always find a ϵ > 0 small enough such that (si+ϵ)(1−αsi )<
Gsi (qsi ) holds. In addition, s′i > si ≥ qsi . Furthermore, since the objective function strictly increases in si, by

replacing si with s′i, we obtain a higher objective value. Therefore, the assumption αsisi + Gsi (qs)− si > 0

contradicts the optimality of (qs,qb,s,b) to Problem (8). The same proof arguments can be applied to show

that bj ≤ αbjbj +Gbj (qbj) is tight for any j ∈B. ■

Proof of Proposition 2. By Proposition 6,R(T ) =R∗(T ). So it suffices to show that there exists a constant

C1 such that |R(T )−TR| ≤ C1. To prove the result, we establish the following two claims.

Claim 1: R(T )−TR≥−C ′
1. We delay the proof to Step 3 in the proof of Theorem 1 that there exists

a constant C ′
1 and a policy π such that Rπ(T ) − TR ≥ −C ′

1, which further implies that R(T ) − TR ≥
Rπ(T )−TR≥−C ′

1 given that R(T )≥Rπ(T ).
Claim 2: R(T )−TR≤C ′′

1 . Before proving the claim, we first consider the following optimization problem

for any T > 0:

R̃ = max
s,b,qs,qb,x

∑
j∈B

F̃bj (q
b
j , bj)−

∑
i∈S

F̃si(q
s
i , si) (30a)

s.t. qsi ≤ si, ∀i∈ S, (30b)

qbj ≤ bj , ∀j ∈B, (30c)∑
j:(i,j)∈E

xij = qsi , ∀i∈ S, (30d)

qbj =
∑

i:(i,j)∈E

xij , ∀j ∈B, (30e)

xij ≥ 0, ∀(i, j)∈E, (30f)

si ≤ αsisi+Gsi (qsi )+
si(1)

T
, ∀i∈ S, (30g)

bj ≤ αbjbj +Gbj (qbj)+
bj(1)

T
, ∀j ∈B. (30h)

Note that the only difference between Problem (30) and Problem (8) is the right-hand side of the constraints

(30g)-(30h). Given that si(1)> 0 for all i∈ S and bj(1)> 0 for all j ∈B, Problem (30) could be viewed as a

relaxation of Problem (8). We first show that T R̃ ≥R(T ) and then show that there exists a positive constant

C ′′
1 such that T R̃−TR≤C ′′

1 for any T > 0. Consequently, we can have R(T )−TR≤C ′′
1 for any T > 0.

Step 2.1: Show that T R̃ ≥R(T ). For any optimal solution (s(t),b(t),qs(t),qb(t),x(t) : t= 1, . . . , T ) to Prob-

lem (22), we construct the following alternative solution vector (s,b,qs,qb,x) for Problem (30):

si =
1

T

T∑
t=1

si(t) and q
s
i =

1

T

T∑
t=1

qsi (t), ∀i∈ S,
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bj =
1

T

T∑
t=1

bj(t) and q
b
j =

1

T

T∑
t=1

qbj(t), ∀j ∈B,

xij =
1

T

T∑
t=1

xij(t), ∀(i, j)∈E

We establish the feasibility of (s,b,qs,qb,x) for Problem (30) in Step 2.1.1 and then show that T R̃ ≥R(T )

in Step 2.1.2.

Step 2.1.1: Feasibility. First, from the constraints in Problem (22), we can easily show (30b) - (30f) hold. In

particular, qsi =
1
T

∑T

t=1 q
s
i (t)

(a)

≤ 1
T

∑T

t=1 si(t) = si. The same argument applies for qbj and b̄j on the buyer side.

For (30d)-(30e), qsi =
1
T

∑T

t=1 q
s
i (t)

(b)
= 1

T

∑
j′:(i,j′)∈E

∑T

t=1 xij′(t) =
∑

j′:(i,j′)∈E xij . and qbj =
1
T

∑T

t=1 q
b
j(t)

(c)
=

1
T

∑
i′:(i′,j)∈E

∑T

t=1 xi′j(t) =
∑

i′:(i′,j)∈E xij . For (30f), xij =
1
T

∑T

t=1 xij(t)
(e)

≥ 0.

For constraints in (30g)-(30h), we show that

si−
(
αsisi+Gsi (qsi )

)
− si(1)

T

(a)
=

1

T

T∑
t=1

si(t)−αsi
1

T

T∑
t=1

si(t)−Gsi
( 1

T

T∑
t=1

qsi (t)
)
− si(1)

T

(b)

≤ 1

T

T∑
t=1

[
si(t)−

(
αsisi(t)+Gsi (qsi (t))

)]
− si(1)

T

=
1

T

T−1∑
t=1

[
si(t+1)−

(
αsisi(t)+Gsi (qsi (t))

)]
+

1

T
(si(1)−αsisi(T )−Gsi (qsi (T )))−

si(1)

T

≤ 0+
1

T

(
−αsisi(T )−Gsi (qsi (T ))

)
≤ 0,

where (a) follows from the construction of si and q
s
i at the beginning of Step 2.1; (b) follows the Assumption

1(ii) that Gsi (·) is concave. This proves that Constraint (30g) holds. Following the same argument, we can

show that Constraint (30h) holds.

Step 2.1.2: T R̃ ≥R(T ). Given the construction of si and bj , we obtain that si > 0 and bj > 0. Given the

definitions of F̃b(q
b
j , bj) and F̃s(q

s
i , si) in Problem (8), the objective value in (8a) is given by

∑
j∈B F

−1
bj

(
1−

qbj

bj

)
qbj −

∑
i∈S F

−1
si

( qsi
si

)
qsi . This allows us to establish that

T R̃ (a)
= T

[∑
j∈B

F−1
bj

(
1−

1
T

∑T

t=1 q
b
j(t)

1
T

∑T

t=1 bj(t)

) 1

T

T∑
t=1

qbj(t)−
∑
i∈S

F−1
si

( 1
T

∑T

t=1 q
s
i (t)

1
T

∑T

t=1 si(t)

) 1

T

T∑
t=1

qsi (t)
]

(b)

≥ T × 1

T

T∑
t=1

[∑
j∈B

F−1
bj

(
1−

qbj(t)

bj(t)

)
qbj(t)−

∑
i∈S

F−1
si

(
qsi (t)

si(t)

)
qsi (t)

]
=R(T ).

where (a) follows from the construction of (s,b,qs,qb,x) in Step 2-1; (b) follows from the concavity of

F−1
bj

(1− a
b
)a and −F−1

si
(a
b
)a by Assumption 3.

Summarizing the arguments in these two steps, we have T R̃ ≥R(T ).

Step 2.2: Show that T R̃−TR≤C ′′
1 for some C ′′

1 > 0. Let (µs,µb) be the dual optimal solution correspond-

ing to the constraint si ≤ αsisi + Gsi (qsi ) and bj ≤ αbjbj + Gbj (qbj) in Problem (8), then µsi ≥ 0 for ∀i ∈ S and

µbj ≥ 0 for ∀j ∈B according to duality theory. Note that the only difference between Problem (8) and Problem
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(30) is the right-hand side of the constraints in (30g)-(30h). Therefore, based on (5.57) in Boyd et al. (2004),

we can establish that

R̃ ≤ R+
∑
i∈S

µsi ×
1

T
si(1)+

∑
j∈B

µbj ×
1

T
bj(1),

which further implies that

T (R̃−R) ≤ T
(∑
i∈S

µsi ×
1

T
si(1)+

∑
j∈B

µbj ×
1

T
bj(1)

)
=
∑
i∈S

µsisi(1)+
∑
j∈B

µbjbj(1).

We let C ′′
1 :=

∑
i∈S µ

s
isi(1)+

∑
j∈B µ

b
jbj(1), and obtain the desired result.

In summary, |R(T )−TR| ≤ C1, where C1 =max{|C ′
1|, |C ′′

1 |}. ■

Proof of Theorem 1. We divide the proof arguments into the following steps: in Step 1, we show that the

solution generated by the TRP is feasible to Problem (22); in Step 2, we show under the TRP, there exists a

constant γ ∈ (0,1) such that |m(t+1)− 1| ≤ γ|m(t)− 1| for ∀t∈ {1, ..., T − 1}; in Step 3, we show that there

exists a constant C ′
1 such that TR−RTR(T )≤C ′

1. Then, together with Proposition 2, we conclude that there

exists a constant C2 :=C1 +C ′
1 such that LTR(T ) =R∗(T )−RTR(T ) =

(
R∗(T )−TR

)
+
(
TR−RTR(T )

)
≤

C2.

Step 1: Show that the solution generated by the TRP is feasible to Problem (22).

We let (qs,qb,x,s,b) be the optimal solution to the AVG in Problem (8). Recall the definition of m(t)

in (24), we have that the TRP uses the commissions (rs(t),rb(t)) in Algorithm 1 to induce the populations

and transaction quantities that satisfy qsi (t) = qsim(t) and si(t+1) = αsisi(t) +Gsi (qsi (t)) for i ∈ S. Similarly,

for the buyer side, qbj(t) = qbjm(t) and b(t+1) = αbjb(t)+Gbj (qbj(t)) for j ∈B.
We first verify that the feasibility of the transaction vector (qs(t),qb(t),x(t)) to Constraints (22b) - (22h).

(22b)-(22c). qsi (t)
(a)
= qsim(t)

(b)

≤ si(t)
qsi
si

(c)

≤ si(t), where (a) follows from Algorithm 1; (b) follows directly from the

definition of m(t) in (24); (c) follows from Constraint (6a) that qsi ≤ si. Similarly, qbj(t) = qbjm(t) ≤
bj(t)

qbj

bj
≤ bj(t).

(22d)-(22e). qsi (t) = qsim(t)
(a)
=

∑
j′:(i,j′)∈E

xi,j′m(t)
(b)
=

∑
j′:(i,j′)∈E

xi,j′(t), where (a) follows from (6a); (b) follows from

Algorithm 1. Similarly, qbj(t) = qbjm(t) =
∑

i′:(i′,j)∈E
xi′,jm(t) =

∑
i′:(i′,j)∈E

xi′,j(t).

(22f) . xi,j = xi,jm(t)≥ 0 follows from (6c).

(22g)-(22h). Given si(t+ 1) = αsisi(t) + Gsi (qsi (t)), the inequality is a relaxation, which directly follows. A similar

argument holds for the buyer side.

Summarizing the arguments above, the solution generated by the TRP is feasible to Problem (22).

Step 2: Show that there exists a constant γ ∈ (0,1) such that |m(t+1)− 1| ≤ γ|m(t)− 1| for t∈ {1, ..., T − 1}.
Recall the definition of l(t) and gt(n) in (25) and (26), respectively. We discuss three cases: (1) m(1)> 1,

(2) m(1)< 1 and (3) m(1) = 1. In each case, we will first show that m(t) gets closer to 1 as t increases, and

then we show that the convergence rate can be upper bounded by γ < 1.

Step 2 - Case 1: m(1)> 1.

Step 2 - Case 1 - Step 2.1: Show that m(1)>m(2)> ... >m(T − 1)>m(T )> 1. To prove the claim of this

case, we show that for any t ∈ {1, . . . , T − 1}, if m(t)> 1, then m(t)>m(t+ 1)> 1. Let X > 0 denote the
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number of times the agent type with the lowest ratio changes. We consider the following two cases for ∀t ∈

{1, . . . , T}: (1) the lowest node does not change in the next period, i.e., τx ≤ t≤ τx+1−2 for x∈ {0, ...,X−1}

; (2) the lowest node changes in next step, i.e., t= τx+1− 1 for x∈ {0, ...,X − 1}.

(1) For any τx ≤ t≤ τx+1− 2 with x∈ {0, ...,X − 1}, we show that if m(t)> 1, then m(t)>m(t+1)> 1.

Recall that m(t) =
nl(t)(t)

nl(t)
and m(t + 1) =

nl(t+1)(t+1)

nl(t+1)

(a)
=

nl(t)(t+1)

nl(t)
, where (a) holds given that l(t) =

l(t + 1) for τx ≤ t ≤ τx+1 − 2 and x ∈ {0, . . . ,X − 1}. Then, to show that m(t) > m(t + 1) > 1, it is

equivalent to establish that nl(t)(t)>nl(t)(t+1)>nl(t). First, we have

nl(t)(t+1)−nl(t)(t)
(b)
= gt(nl(t)(t))−nl(t)(t)

(c)

< 0,

where (b) follows from (27); (c) follows directly from Lemma 7. Second, we deduce that

nl(t)(t+1)−nl(t)
(d)
= gt(nl(t)(t))−nl(t)

(e)
= gt(nl(t)(t))− gt(nl(t))

(f)

> 0,

where (d) follows from (27); (e) follows from Lemma 2(ii); (f) follows from nl(t)(t) > nl(t) given that

m(t) =
nl(t)(t)

nl(t)
> 1 and that gt(n) increases in n≥ 0 from Lemma 7.

In summary, for τx ≤ t≤ τx+1− 2, if m(t)> 1, then m(t)>m(t+1)> 1.

(2) For t= τx− 1 with x ∈ {1, . . . ,X}, we want to show that if m(τx− 1)> 1, then m(τx− 1)>m(τx)> 1.

To prove this, we can deduce that

m(τx) =
nl(τx)(τx)

nl(τx)

(a)

≤
nl(τx−1)(τx)

nl(τx−1)

(b)

<
nl(τx−1)(τx− 1)

nl(τx−1)

= m(τx− 1),

where (a) follows directly from the definition that l(τx) in (25); (b) follows from nl(τx−1)(τx) =

gτx−1(nl(τx−1)(τx − 1)) < nl(τx−1)(τx − 1), where the second inequality follows from nl(τx−1)(τx − 1) >

nl(τx−1) given that m(τx− 1) =
nl(τx−1)(τx−1)

nl(τx−1)
> 1 and Lemma 7. Therefore, m(τx)<m(τx− 1).

Next, we show that m(τx)> 1. Since

m(τx) =
nl(τx)(τx)

nl(τx)

(c)
=
αl(τx)nl(τx)(τx− 1)+Gl(τx)

(
ql(τx)

nl(τx−1)(τx−1)

nl(τx−1)

)
nl(τx)

(d)

≥
αl(τx)nl(τx)(τx− 1)+Gl(τx)(ql(τx))

nl(τx)

(e)

>
αl(τx)nl(τx) +Gl(τx)(ql(τx))

nl(τx)
= 1,

where (c) follows from Algorithm 1; (d) follows from the condition that
nl(τx−1)(τx−1)

nl(τx−1)
=m(τx − 1)> 1

given that Gl(τx)(q) increases in q≥ 0; (e) follows from
nl(τx)(τx−1))

nl(τx)
≥m(τx−1)> 1. Therefore,m(τx)> 1.

Based on the arguments above, if m(t)> 1, then m(t)>m(t+1)> 1, which holds for any t ∈ {1, ..., T − 1}.

Thus, we can conclude that if m(1)> 1, then m(1)>m(2)> ... >m(T − 1)>m(T )> 1.

Step 2 - Case 1 - Step 2.2: Show that there exists a constant γ1 ∈ (0,1) such that |m(t+1)− 1| ≤ γ1|m(t)− 1|

for any t∈ {1, . . . , T}. Again, we consider the following two cases: (1) the lowest node does not change in

the next step, i.e., τx ≤ t≤ τx+1− 2 for any x∈ {0, ...,X − 1}; (2) the lowest node changes in next step, i.e.,

t= τx+1− 1 for any x∈ {0, ...,X − 1}. For both cases, we first show that
∣∣m(t+1)− 1

∣∣≤ g′t(nl(t))∣∣m(t)− 1
∣∣.

Then we show that there exists a γ1 ∈ (0,1) independent from T such that for any positive integer T ,

max
t=1,...,T

g′t(nl(t))≤ γ1 < 1.
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(1) For τx ≤ t≤ τx+1− 2, we observe that∣∣∣nl(t)(t+1)−nl(t)
∣∣∣ (a)
= nl(t)(t+1)−nl(t)

(b)
= gt(nl(t)(t))− gt(nl(t))

(c)

< (nl(t)(t)−nl(t))g′t(nl(t))
(d)
=
∣∣∣nl(t)(t)−nl(t)∣∣∣g′t(nl(t)),

where (a) follows from
nl(t)(t+1)

nl(t)
≥ m(t + 1) > 1 for any t ∈ {1, ..., T − 1}; (b) follows from (27) and

Lemma 2(ii); (c) follows from Lemma 7 given that gt(n) is strictly concave in n≥ 0; (d) follows from

m(t) =
nl(t)(t)

nl(t)
> 1 for any t∈ {1, ..., T}. Therefore,

∣∣m(t+1)−1
∣∣= ∣∣nl(t)(t+1)

nl(t)
−1
∣∣< g′t(nl(t))∣∣nl(t)(t)

nl(t)
−1
∣∣=

g′t(nl(t))
∣∣m(t)− 1

∣∣.
(2) For t= τx− 1,∣∣∣m(τx)− 1

∣∣∣ (a)
= m(τx)− 1 =

nl(τx)(τx)

nl(τx)
− 1

(b)

≤
nl(τx−1)(τx)

nl(τx−1)

− 1

(c)
=
gτx−1(nl(τx−1)(τx− 1))− gτx−1(nl(τx−1))

nl(τx−1)

(d)

<
(nl(τx−1)(τx− 1)−nl(τx−1)

nl(τx−1)

)
g′τx−1(nl(τx−1))

= (m(τx− 1)− 1)g′τx−1(nl(τx−1))
(e)
=
∣∣∣m(τx− 1)− 1

∣∣∣g′τx−1(nl(τx−1)),

where (a) follows from m(t)≥ 1 for any t ∈ {1, ..., T}; (b) follows from nl(τx)(τx)

nl(τx)
=m(τx)≤

nl(τx−1)(τx)

nl(τx−1)
;

(c) follows from gt(·) in (26) and Lemma 2(ii); (d) follows from the strict concavity of gt(·) in Lemma

7; (e) follows from m(τx− 1) =
nl(τx−1)(τx−1)

nl(τx−1)
> 1.

In summary,
∣∣m(t+1)− 1

∣∣≤ g′t(nl(t))∣∣m(t)− 1
∣∣ for any t∈ {1, . . . , T}.

Given the solution vector (q,n), we let γ1 := max
i∈N+

{αi + G′
i(qi)

qi
ni
}. We first show that γ1 ∈ (0,1). Define

yi(n) := αin+ Gi(n qini
). In [0, ni], by the mean value theorem, there exists a ñi ∈ (0, ni) such that y′i(ñi) =

yi(ni)−yi(0)
ni−0

(a)
= ni−yi(0)

ni−0

(b)
= ni−0

ni−0
= 1, where (a) follows from yi(ni) = ni with yi(n) := αin + Gi(n qini

) given

Lemma 2(ii), and (b) follows from Assumption 1(i). Since yi(n) is strictly concave in n ≥ 0, its derivative

strictly decreases in n≥ 0, which implies that y′i(ni)< 1 given that ñi ∈ (0, ni), then y′i(ni) = αi+G′
i(qi)

qi
ni
< 1

for any i∈N . Given the finite network G(S ∪B,E), γ1 := max
i∈N+

{αi+G′
i(qi)

qi
ni
}< 1.

By definition of gt(·) in (26), we have that

max
t=1,...,T

g′t(nl(t)) = max
t=1,...,T

(
αl(t) +G′

l(t)(ql(t))
ql(t)
nl(t)

)
≤ max
i∈N+

(
αi+G′

i(qi)
qi
ni

)
≤ γ1 < 1,

which allows us to conclude the contraction arguments for the case of m(1)> 1.

Step 2 - Case 2: m(1)< 1.

Step 2 - Case 2 - Step 2.1: Show that m(1)<m(2)< ... <m(T − 1)<m(T )< 1. Similar to the discussions in

Step 2 - Case 1, we consider the following two cases: (1) the lowest node does not change in the next step,

i.e., τx ≤ t≤ τx+1 − 2 for any x ∈ {0, ...,X − 1} ; (2) the lowest node changes in next step, i.e., t= τx+1 − 1

for any x∈ {0, ...,X − 1}.
(1) For τx ≤ t≤ τx+1− 2, we want to show that if m(t)< 1, then m(t)<m(t+1)< 1.

Recall that m(t) =
nl(t)(t)

nl(t)
and m(t+1) =

nl(t+1)(t+1)

nl(t+1)

(a)
=

nl(t)(t+1)

nl(t)
, where (a) holds as l(t) = l(t+1) for

τx ≤ t≤ τx+1− 2. Therefore, m(t)< 1 implies that nl(t)(t)<nl(t). We observe that m(t)<m(t+1)< 1

is then equivalent to nl(t)(t)<nl(t)(t+1)<nl(t), which holds because

nl(t)(t+1)−nl(t)(t) = gt(nl(t)(t))−nl(t)(t) > 0,
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where the equality follows from (27) and the inequality follows from the condition that 0<nl(t)(t)<nl(t)

and Lemma 7. In addition,

nl(t)(t+1)−nl(t) = gt(nl(t)(t))− gt(nl(t))< 0,

given that nl(t)(t)< nl(t) and that gt(n) increases in n≥ 0 based on Lemma 7. The derivations above

allow us to establish that nl(t)(t)<nl(t)(t+1)<nl(t).

(2) For t= τx− 1, we show that m(τx− 1)<m(τx)< 1 if m(τx− 1)< 1, then

m(τx)
(a)
=

nl(τx)(τx)

nl(τx)
=
αl(τx)nl(τx)(τx− 1)+Gl(τx)(ql(τx)

nl(τx−1)(τx−1)

nl(τx−1)
)

nl(τx)

(b)

≥
αl(τx)nl(τx)

nl(τx−1)(τx−1)

nl(τx−1)
+Gl(τx)(ql(τx)

nl(τx−1)(τx−1)

nl(τx−1)
)

nl(τx)

(c)

>
αl(τx)nl(τx)

nl(τx−1)(τx−1)

nl(τx−1)
+

nl(τx−1)(τx−1)

nl(τx−1)
Gl(τx)(ql(τx))

nl(τx)

=
nl(τx)

nl(τx−1)(τx−1)

nl(τx−1)

nl(τx)

(d)
=

nl(τx−1)(τx− 1)

nl(τx−1)

=m(τx− 1),

where (a) follows the definition of m(τx) in (24) and l(τx) in (25); (b) follows from
nl(τx)(τx−1)

nl(τx)
≥

m(τx − 1) =
nl(τx−1)(τx−1)

nl(τx−1)
given the definition of m(τx − 1) in (24); (c) follows from Gi(aqi) = Gi(aqi +

(1− a)0) > aGi(qi) + (1− a)Gi(0) = aGi(qi) for 0 < a < 1 where the first inequality Gi(0) = 0 and the

second inequality follows from the condition that Gi(qi) is strictly concave in qi; in addition, (d) follows

from
nl(τx−1)(τx−1)

nl(τx−1)
=m(τx−1)< 1 where the inequality holds given the condition that m(τx−1)< 1 in

this case. In summary, we have m(τx)>m(τx− 1).

To proceed, we further observe that

m(τx) =
nl(τx)(τx)

nl(τx)

(d)

≤
nl(τx−1)(τx)

nl(τx−1)

(e)

< 1,

where (d) follows from
nl(τx)(τx)

nl(τx)
=m(τx)≤

nl(τx−1)(τx)

nl(τx−1)
given the definition of m(τx) in (24); (e) follows

from Lemma 7 that nl(τx−1)(τx) = gτx−1(nl(τx−1)(τx−1))<nl(τx−1) for nl(τx−1)(τx−1)<nl(τx−1). Thus,

we have that m(τx)< 1.

In summary, m(t)<m(t+ 1)< 1 if m(t)< 1 for ∀t ∈ {1, ..., T − 1}. Since m(t)< 1, we obtain that m(1)<

m(2)< ... <m(T − 1)<m(T )< 1.

Step 2 - Case 2 - Step 2.2: Show that there exists a constant γ2 ∈ (0,1) such that |m(t+1)−1| ≤ γ2|m(t)−1|

for any t∈ {1, . . . , T}. Following a similar argument in the previous step, we can obtain the desired results.

Step 2 - Case 3: m(1) = 1. When m(1) = 1, we want to show that m(t) = 1 for any t∈ {1, ..., T}. To establish

the claim, we show that inductively, if m(t) = 1 then m(t+1) = 1 for any t∈ {1, ..., T − 1}. We observe that

nl(t)(t+1)
(a)
= αl(t)nl(t)(t)+Gl(t)(ql(t)m(t))

(b)
= αl(t)nl(t) +Gl(t)(ql(t))

(c)
= nl(t),

where (a) follows from the population transition induced by Algorithm 1; (b) holds given that m(t) = 1,

which further implies that nl(t)(t) = nl(t); (c) follows from Lemma 2(ii). Thus,
nl(t)(t+1)

nl(t)
= 1.
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In addition, for i∈N+ with i ̸= l(t), we can deduce that

ni(t+1) = αini(t)+Gi(qim(t))
(d)

≥ αini+Gi(qi) = ni,

where (d) follows from ni(t)

ni
≥m(t) = 1 given the definition of m(t) in (24) and the condition that i ̸= l(t).

The observation above implies that ni(t+1)

ni
≥ 1 for i∈N+ with i ̸= l(t). Therefore, we can establish that

m(t+1) = min
{nl(t)(t+1)

nl(t)
, min

i∈N+,
i̸=l(t)

{ni(t+1)

ni

}}
= 1.

Given that m(1) = 1, by inductively establishing that m(t+1) = 1 for any t∈ {1, ..., T − 1}, we have that

m(t) = 1 for any t∈ {1, ..., T}. Thus, we obtain that
∣∣m(t+1)− 1

∣∣= 0≤ γ3
∣∣m(t)− 1

∣∣= 0 for any γ3 ∈ (0,1).

In summary of the three cases above for m(t)< 1, m(t)> 1 and m(t) = 1, by letting γ =max{γ1, γ2, γ3},

We have that for some γ ∈ (0,1), ∣∣m(t+1)− 1
∣∣≤ γ∣∣m(t)− 1

∣∣,
for any t= {1, ..., T − 1}.

Step 3: Show that there exists a constant C ′
1 such that |TR−RTR(T )| ≤C ′

1. We prove this by the following

steps. Given q(t) and n(t) induced by TRP, we show in Step 3.1 that there exists a positive constant Cqi

such that lim
T→∞

∑T

t=1 |qi(t)− qi| ≤ Cqi ; In Step 3.2, we show that the previous two steps induce a positive

constant C qi
ni

that satisfies lim
T→∞

∑T

t=1 |
qi
ni
− qi(t)

ni(t)
| ≤C qi

ni

for any i∈N+; In Step 3.3, based on Steps 3.1 - 3.2,

we conclude that there exists a constant C ′
1 such that

∣∣TR−RTR(T )∣∣≤C ′
1.

Step 3.1: Show that there exists constants Cqi such that lim
T→∞

∑T

t=1 |qi(t)− qi|<Cqi for any i∈N+. Notice

that

lim
T→∞

T∑
t=1

∣∣∣qi(t)− qi∣∣∣ (a)= lim
T→∞

T∑
t=1

qi

∣∣∣m(t)− 1
∣∣∣ (b)≤ lim

T→∞

T∑
t=1

qi

∣∣∣m(1)− 1
∣∣∣γt−1

= lim
T→∞

qi

∣∣∣m(1)− 1
∣∣∣1− γT
1− γ

(c)
=

1

1− γ
qi

∣∣∣m(1)− 1
∣∣∣,

where (a) follows from qi(t) = qim(t) in Algorithm 1; (b) follows from the contraction arguments in Step 2;

(c) follows from γ < 1 in Step 2. Let Cqi =
qi|m(1)−1|

1−γ , and then the result follows.

Before proceeding, we provide some supporting results whose proofs will be provided towards the end of

this section:

Lemma 8. For any i∈N+ with ni(1)≥ ni, there exists a positive constant Cni
such that lim

T→∞

∑T

t=1 |ni(t)−

ni|<Cni
. Moreover, for any i∈N+ with ni(1)<ni, if m(1)< 1, then ni(t)<ni for t∈ {1, ..., T}.

Step 3.2: Show that there exists positive constants C qi
ni

such that limT→∞
∑T

t=1 |
qi
ni
− qi(t)

ni(t)
| ≤ C qi

ni

for any

i∈N+. To show the claim for this step, we notice that for any i∈N+,∣∣∣ qi
ni
− qi(t)

ni(t)

∣∣∣ (a)
=
∣∣∣ qi
ni
− qim(t)

ni(t)

∣∣∣ = qi
ni

∣∣∣1− nim(t)

ni(t)

∣∣∣ (b)

≤ qi
ni

(∣∣∣1− ni
ni(t)

∣∣∣+ ni
ni(t)

∣∣∣1−m(t)
∣∣∣),

where (a) follows from the population transition induced by Algorithm 1, and (b) follows directly from the

triangle inequality. Therefore,

lim
T→∞

T∑
t=1

∣∣∣ qi
ni
− qi(t)

ni(t)

∣∣∣ ≤ lim
T→∞

T∑
t=1

qi
ni

(∣∣∣1− ni
ni(t)

∣∣∣+ ni
ni(t)

∣∣∣1−m(t)
∣∣∣)
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= lim
T→∞

qi
ni

(
T∑
t=1

ni
ni(t)

∣∣∣1− ni(t)

ni

∣∣∣+ T∑
t=1

ni
ni(t)

∣∣∣1−m(t)
∣∣∣)

(c)

≤ lim
T→∞

qi
ni

(
T∑
t=1

1

m(t)

∣∣∣1− ni(t)

ni

∣∣∣+ T∑
t=1

1

m(t)

∣∣∣1−m(t)
∣∣∣), (∗) (31)

where (c) follow from the definition of m(t) in (24).

Notice that if m(1) = min
i∈N+

ni(1)

ni
≥ 1, then n(1)≥ ni for any i ∈N+. Thus, it is without loss of generality

to consider the following three cases for any i∈N+ to further relax the term in the RHS of (31), which we

denote by “(*)”.

(1) When ni(1)≥ ni and m(1)≥ 1, we show that

(∗)
(d)

≤ lim
T→∞

qi
ni

(
T∑
t=1

∣∣∣1− ni(t)

ni

∣∣∣+ T∑
t=1

∣∣∣1−m(t)
∣∣∣) (e)

≤ lim
T→∞

qi
ni

(
Cni

ni
+

T∑
t=1

∣∣∣1−m(1)
∣∣∣γt−1

)

=
qi
ni

(
Cni

ni
+
∣∣∣1−m(1)

∣∣∣ 1

1− γ

)
,

where (d) follows from the result in Step 2 - Case 1- Step 2.1 and Step 2 - Case 3 that if m(1) > 1,

then m(1)≥m(2)≥ ...≥m(T )≥ 1; (e) follows from Lemma 8 that lim
T→∞

∑T

t=1 |ni(t)− ni| ≤ Cni
given

that ni(1) ≥ ni, and we also have |m(t)− 1| ≤ γ|m(t− 1)− 1| for γ < 1 and t ∈ {2, ..., T} by Step 2.

Therefore, by letting C qi
ni

:= qi
ni

(Cni

ni
+ |1−m(1)| 1

1−γ

)
, we obtain the desired result.

(2) When ni(1)<ni and m(1)< 1, we show that

(∗)
(f)

≤ lim
T→∞

qi
ni

(
T∑
t=1

1

m(t)

∣∣∣1−m(t)
∣∣∣+ T∑

t=1

1

m(t)

∣∣∣1−m(t)
∣∣∣)

(g)

≤ lim
T→∞

qi
ni

(
1

m(1)

T∑
t=1

∣∣∣1−m(1)
∣∣∣γt−1 +

1

m(1)

T∑
t=1

∣∣∣1−m(1)
∣∣∣γt−1

)
≤ qi

ni

(
2|1−m(1)|
m(1)(1− γ)

)
,

where (f) follows from the observation that m(t)≤ ni(t)

ni
< 1, where the first inequality follows from the

definition of m(t) in (24) and the second inequality follows from Lemma 8 that if ni(1)<ni and m(1)<

1, then ni(t) < ni for t ∈ {1, ..., T}; (g) follows from the observation that |m(t)− 1| ≤ γ|m(t− 1)− 1|
for γ < 1 and t∈ {2, ..., T} by Step 2, and therefore |m(t)− 1| ≤ γt−1|m(1)− 1|; in addition, we show in

Step 2 - Case 2- Step 2.1 that when m(1)< 1, we have m(1)≤m(t) for any t∈ {1, ..., T}. Therefore, we
can let C qi

ni

:= qi
ni

(
2|1−m(1)|
m(1)(1−γ)

)
, and then obtain the desired result.

(3) When ni(1)≥ ni and m(1)< 1, we show that

(∗)
(h)

< lim
T→∞

qi
ni

(
1

m(1)

Cni

ni
+

T∑
t=1

1

m(1)

∣∣∣1−m(t)
∣∣∣)

(i)

≤ lim
T→∞

qi
ni

(
1

m(1)

Cni

ni
+

T∑
t=1

1

m(1)

∣∣∣1−m(1)
∣∣∣γt−1

)
(j)
=

qi
ni

(
1

m(1)

Cni

ni
+
∣∣∣ 1

m(1)
− 1
∣∣∣ 1

1− γ

)
,

where (h) follows from the observation in Step 2 -Case 2- Step 2.1 that m(1)<m(2)< ... <m(T )< 1

when m(1)< 1 and the result in Lemma 8 that lim
T→∞

∑T

t=1 |ni(t)−ni| ≤Cni
when ni(1)≥ ni; (i) follows

from the results in Step 2 that |m(t+ 1)− 1| ≤ γ|m(t)− 1|; (j) follows from the observation in Step

2 that γ < 1. Therefore, by letting C qi
ni

:= qi
ni

(
1

m(1)

Cni

ni
+ | 1

m(1)
− 1| 1

1−γ

)
, we can establish the desired

result.
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In summary, we have that for any i∈N+, there exists a positive constant C qi
ni

such that

lim
T→∞

T∑
t=1

∣∣∣ qi
ni
− qi(t)

ni(t)

∣∣∣ ≤ C qi
ni

.

Step 3.3: Show that there exists a constant C ′
1 such that |TR−RTR(T )| ≤C ′

1. Note that for j ∈B with bj =

0, we have F̃bj (q
b
j , bj) = 0 based on the definition of F̃bj before the formulation of (8). Since qbj ≤ bj = 0,

we have qbj(t) = qbjm(t) = 0 induced by Algorithm 1, which further implies that F−1
bj

(1 − qbj (t)

bj(t)
)qbj(t) = 0.

Therefore,

lim
T→∞

T∑
t=1

∑
j∈B: bj=0

(
F̃bj (q

b
j , bj)−F−1

bj
(1−

qbj(t)

bj(t)
)qbj(t)

)
= 0.

Similarly, we can establish that for any i∈ S with si = 0, we have that F̃si(q
s
i , si) = 0, which further implies

that qsi (t) = qsim(t) = 0. Thus, we have that

lim
T→∞

T∑
t=1

∑
i∈S:si=0

(
F̃si(q

s
i , si)−F−1

si
(
qsi (t)

si(t)
)qsi (t)

)
= 0.

Based on the two observations above, with (qs(t),qb(t),s(t),b(t) : t= 1, . . . T ) induced by the TRP, we can

deduce that

lim
T→∞

T∑
t=1

∣∣∣TR−RTR(T ) ∣∣∣
= lim

T→∞

T∑
t=1

[∑
j∈B

(
F̃bj (q

b
j , bj)−F−1

bj

(
1−

qbj(t)

bj(t)

)
qbj(t)

)
−
∑
i∈S

(
F̃si(q

s
i , si)−F−1

si

(qsi (t)
si(t)

)
qsi (t)

)]

= lim
T→∞

T∑
t=1

[ ∑
j∈B:bj>0

(
F−1
bj

(
1−

qbj

bj

)
qbj −F−1

bj

(
1−

qbj(t)

bj(t)

)
qbj(t)

)
−

∑
i∈S:si>0

(
F−1
si

(qsi
si

)
qsi −F−1

si
(
qsi (t)

si(t)
)qsi (t)

)]
(a)

≤ lim
T→∞

T∑
t=1

[ ∑
j∈B:bj>0

(∣∣∣F−1
bj

(
1−

qbj

bj

)
qbj −F−1

bj

(
1−

qbj(t)

bj(t)

)
qbj

∣∣∣+ ∣∣∣F−1
bj

(
1−

qbj(t)

bj(t)

)
qbj −F−1

bj

(
1−

qbj(t)

bj(t)

)
qbj(t)

∣∣∣)

+
∑

i∈S:si>0

(∣∣∣F−1
si

(qsi
si

)
qsi −F−1

si

(qsi (t)
si(t)

)
qsi

∣∣∣+ ∣∣∣F−1
si

(qsi (t)
si(t)

)
qsi −F−1

si

(qsi (t)
si(t)

)
qsi (t)

∣∣∣)]
(b)

≤ lim
T→∞

T∑
t=1

[ ∑
j∈B:bj>0

(
qbj

1

dbj

∣∣∣qbj
bj
−
qbj(t)

bj(t)

∣∣∣+F−1
bj

(1−
qbj(t)

bj(t)
)
∣∣∣qbj − qbj(t)∣∣∣

)

+
∑

i∈S:si>0

(
qsi

1

dsi

∣∣∣qsi
si
− qsi (t)

si(t)

∣∣∣+F−1
si

(
qsi (t)

si(t)
)
∣∣∣qsi − qsi (t)∣∣∣

)]

≤
∑

j∈B:bj>0

(
qbj

1

dbj
lim
T→∞

T∑
t=1

∣∣∣qbj
bj
−
qbj(t)

bj(t)

∣∣∣+max
t
F−1
bj

(1−
qbj(t)

bj(t)
) lim
T→∞

T∑
t=1

∣∣∣qbj − qbj(t)∣∣∣
)

+
∑

i∈S:si>0

(
qsi

1

dsi
lim
T→∞

T∑
t=1

∣∣∣qsi
si
− qsi (t)

si(t)

∣∣∣+max
t
F−1
si

(
qsi (t)

si(t)
) lim
T→∞

T∑
t=1

∣∣∣qsi − qsi (t)∣∣∣
)

(c)

≤
∑

j∈B:bj>0

(
qbj

1

dbj
Cqb

j
/bj

+ vbjCqbj

)
+

∑
i∈S:si>0

(
qsi

1

dsi
Cqs

i
/si + vsiCqsi

)
:= C ′

1.

where (a) follows from the triangle inequality; (b) follows from Assumption 2(ii) that the derivative of

Fbj (Fsi) is lower bounded by a positive constant dbj (dsi ), and therefore the derivative of F−1
bj

(F−1
si

) is
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upper bounded by 1
db
j
( 1
ds
i
), then |F−1

bj
(x1) − F−1

bj
(x2)| ≤ 1

db
j
|x1 − x2| for ∀x1, x2 in the domain, otherwise

|F−1
bj

(x1)−F−1
bj

(x2)|

|x1−x2|
> 1

db
j
implies that there exists a x3 ∈ (x1, x2) such that f ′(x3) =

|F−1
bj

(x1)−F−1
bj

(x2)|

|x1−x2|
> 1

db
j
by

mean value theorem, which contradicts to the fact that the derivative of F−1
bj

is upper bounded by 1
db
j
;

following the same argument, |F−1
si

(x1)−F−1
si

(x2)| ≤ 1
ds
i
|x1− x2| for ∀x1, x2 in the domain. (c) follows from

the results in Step 3.1- Step 3.2 that lim
T→∞

∑T

t=1 |qi(t)− qi| < Cqi and lim
T→∞

∑T

t=1 |
qi
ni
− qi(t)

ni(t)
| ≤ C qi

ni

for any

i ∈N+; in addition, F−1
bj
≤ vbj and F−1

si
≤ vsi . Note that we have vbj <∞ for j ∈ B and vsi <∞ for i ∈ S

and 1
db
j
<∞ for j ∈B and 1

ds
i
<∞ for i∈ S given Assumption 2(ii).

Together with the observation from Proposition 2, we can conclude that there exists a constant C2 :=

C1 +C ′
1 such that

Lπ(T ) = R∗(T )−Rπ(T ) =
(
R∗(T )−TR

)
+
(
TR−TRπ(T )

)
≤ C1 +C ′

1 = C2.

This concludes the proof of this result. ■

Proof of Proposition 3. We denote by (rM (t),pM (t),qs,M(t),qb,M(t),xM(t)) the optimal solution to the

optimization problem for the MP in Definition 2. We consider the following problem instance: Consider a

simple network in which there is only one buyer type and one seller type with initial population s(1) =

b(1)> 0. Given the commissions rM (t) induced by the MP, we let the populations for the next period be

(sM(t+1),bM(t+1)) is updated by sM(t+1) = αsM(t)+ β(qs,M(t))ξ and bM(t+1) = αbM(t)+ β(qb,M(t))ξ,

where we assume β > 0 and 0< ξ < 1 so that the Assumption 1 holds. In addition, we let Fs(·) and Fb(·) be

the distribution functions over [0,1] from the uniform distribution.

We establish two claims to complete the proof.

Claim 1: limt→∞RM(t) exists . We divide the proof arguments into the following steps. In Step 1.1, we show

that if a steady state induced by the MP exists, we characterize the properties of the steady state. In Step

1.2, we show that the populations converge to the steady state under the platform’s MP. For simplicity of

notations, we let RM(t) denote the profit in period t under the MP.

Step 1.1. Characterize the quantity qM and the profit R
M

in a steady state. We first define a steady state

as such that the populations and transaction quantities remain unchanged after the population transition

in each period. Given the definition of a steady state, under the platform’s myopic policy, the steady-state

population vector (sM , b
M
, qM) should satisfy the following three conditions:

qM = argmax
0≤q≤min{sM ,b

M}

[(
1− q

sM
− q

b
M

)
q
]
, (32a)

sM = αsM +β(qM)ξ, (32b)

b
M

= αb
M
+β(qM)ξ. (32c)

Condition (32a) ensures that given the population in each period (sM , b
M
), the platform’s commissions r

could induce the equilibrium quantity qM to maximize its profit in the current period (see Corollary 2 for the

formulation of optimization problem); (32b) and (32c) ensure that the population vector (sM , b
M
) remains

unchanged after the update in each period.
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For Problem (32a), from the first-order-condition ∂
∂q

[(
1 − q

sM
− q

b
M

)
q
]
= 0, we can obtain that qM =

sM b
M

2sM+2b
M , which falls in the region (0,min{sM , bM}). Thus, the optimal solution to (32a) is an interior point.

Together with the equations in (32b)-(32c), we obtain that

qM =
(k
4

) 1
1−ξ

, b
M

= k
(k
4

) ξ
1−ξ

, sM = k
(k
4

) ξ
1−ξ

.

where we let k = β

1−α for simplicity of notations. This allows us to show that the profit induced by the

platform’s MP satisfies that

RM =
(
1− qM

sM
− qM

b
M

)
qM =

1

2

(k
4

) 1
1−ξ

.

Step 1.2: For the seller side, show that there exists a γ ∈ (0,1) such that |sM − sM(t+1)| ≤ γ|(sM − sM(t))|.

Next, we establish the convergence of the platform’s MP. Without loss of generality, we prove the convergence

on the seller side, and notice that the same argument would hold for the buyer side as well.

Since we have sM(1) = bM(1) in the problem instance, and in each iteration we have sM(t+1) = αsM(t)+

β(qM(t))ξ and bM(t+1) = αbM(t)+β(qM(t))ξ, we obtain that sM(t) = bM(t) for any t∈ {1, ..., T}. Based on

this observation, we can obtain that

qM(t) = argmax
0<q<min{sM (t),bM (t)}

{(
1− q

sM(t)
− q

bM(t)

)
q
}

= argmax
0<q<sM (t)

{(
1− q

sM(t)
− q

sM(t)

)
q
}

=
sM(t)

4
.

From the optimal solution qM(t) above, we obtain that

sM(t+1) = αsM(t)+β(qM(t))ξ = αsM(t)+β
(sM(t)

4

)ξ
.

Abusing some notations, we let gs(s) := αs+ β( s
4
)ξ for any s ≥ 0 such that gs(s

M) = sM based on the

condition in (32b). To proceed, we consider the following two cases that sM(1)≥ sM and sM(1)< sM :

(1) When sM(1)≥ sM , we want to show that sM(t)≥ sM for t∈ {1, .., T}. By induction, if sM(t)≥ sM , we

have sM(t+ 1) = gs(s
M(t))≥ gs(sM) = sM , where the inequality follows from the fact that gs(·) is an

increasing function. Since sM(1)≥ sM , we obtain that sM(t)≥ sM for t∈ {1, .., T}.

Based on the observation above, we can establish that∣∣∣sM(t+1)− sM
∣∣∣ = ∣∣∣gs(sM(t))− sM

∣∣∣ (a)
= gs(s

M(t))− gs(sM)
(b)

≤
∣∣∣sM(t)− sM

∣∣∣g′s(sM), (33)

where (a) follows from the observation that sM(t)≥ sM for t∈ {1, .., T} in this case; (b) follows from the

condion that gs is concave given that gs(s) = αs+β( s
4
)ξ with a∈ (0,1). Moreover, we have g′s(s

M)< 1

given that gs(0) = 0 and gs(s
M) = sM , and so by the mean value theorem, there exists a s̃ ∈ (0, sM)

such that g′s(s̃) =
gs(s

M )−gs(0)
sM−0

= 1. Since gs(·) is concave, we have that g′s(s
M) < g′s(s̃) = 1 given that

sM > s̃. By letting γ1 := g′s(s
M), we establish that there exists γ1 ∈ (0,1) such that |sM − sM(t+1)| ≤

γ1|(sM − sM(t))| for t∈ {1, ..., T − 1} if sM(1)≥ sM . From the definition of gs(·) and sM , we see that γ1

is independent of T .
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(2) When sM(1)< sM , we want to show that sM(t)< sM for t∈ {1, .., T}. If sM(t)< sM , we have sM(t+1) =

gs(s
M(t))< gs(s

M) = sM , where the inequality follows from that gs(·) is an increasing function given

that sM(t)< sM . Since sM(1)< sM , by induction we obtain that sM(t)< sM for any t∈ {1, .., T}.

Then, we can establish that

sM − gs(sM(t))

sM − sM(t)

(c)

<
sM − gs(sM(1))

sM − sM(1)

(d)

< 1,

where in Step (c), we establish the following set of observations: (c-i) we first establish that sM−gs(s)
sM−s

decreases in s≥ 0 by showing that ∂
∂s

(
sM−gs(s)
sM−s

)
=

(s−sM )g′s(s)−gs(s)+s
M

(s−sM )2
< 0, with the inequality following

as gs(s) is strictly concave in s ≥ 0 such that sM = gs(s
M) < gs(s) + (sM − s)g′s(s); (c-ii) we then

show that sM(t) > sM(1) for t ∈ {2, .., T}. Note that gs(0) = 0 and gs(s
M) = sM . Since gs(s) − s is

strictly concave in s≥ 0, by the Jensen’s inequality, we obtain that gs(as
M)− asM >a(gs(s

M)− sM)+

(1− a)
(
gs(0)− 0

)
= 0 for 0 < a < 1. Therefore, we have gs(as

M) > asM for 0 < a < 1, which further

implies that sM(t+1) = gs(s
M(t))> sM(t) given that 0< sM(t)< sM . Thus, we can obtain that sM(t)<

sM(t+ 1)< sM for t ∈ {1, .., T − 1}. Combining the observations in (c-i) and (c-ii), since sM−gs(sM (t))

sM−sM (t)

decreases in sM(t) and sM(t+1)> sM(t)> sM(1) for t∈ {2, .., T − 1}, we have that Step (c) holds. For

Step (d), we have sM(1) < sM(2) = gs(s
M(1)) < gs(s

M) = sM , where the first inequality follows from

sM(t+ 1) = gs(s
M(t))> sM(t) for 0< sM(t)< sM based on previous discussion; the second inequality

follows from the condition that sM(1) < sM in this case and gs(.) is a increasing function; the last

equation follows directly from the observation in (32b). Therefore, we have that sM−gs(sM (1))

sM−sM (1)
< 1.

By letting γ2 =
sM−gs(sM (1))

sM−sM (1)
, we obtain that sM−gs(sM (t))

sM−sM (t)
≤ γ2, which implies that∣∣∣sM − gs(sM(t))

∣∣∣ (e)= sM − gs(sM(t))≤ γ2
(
sM − sM(t)

)
(f)
= γ2

∣∣∣sM − sM(t)
∣∣∣

where (e) and (f) follow from the observations that sM(t) < sM for t ∈ {1, .., T}. In summary, there

exists a γ2 ∈ (0,1) such that |sM − sM(t+ 1)| ≤ γ2|(sM − sM(t))| for t ∈ {1, ..., T − 1} if sM(1) < sM .

Again, from the definition of gs(·), we see that γ2 is independent of T .

In summary of the two cases above, we let γ :=max{γ1, γ2}, which allows us to obtain the desired result.

Claim 2: For any ϵ > 0, there exists a∈ (0,1) for the population transition in this problem instance such that

RM < ϵR. For the AVG in (8) given the problem instance before Step 1, we have that

R = max
s,b,q

(
1− q

s
− q

b

)
q

s.t. 0≤ q≤ s, 0≤ q≤ b, s≤ αs+βqξ, b≤ αb+βqξ.

In addition, based on Lemma 2(ii), the inequalities in the last two constraints are both tight. Note that

s = αs+ βqξ and b = αb+ βqξ are equivalent to s = b = kqξ, where k = β

1−α . By plugging s = b = kqξ into

the objective function we obtain R=max0≤q≤kqξ(1− q

kqξ
− q

kqξ
)q. Since (1− q

kqξ
− q

kqξ
)q is concave in q ≥ 0

for 0< ξ < 1, from the first-order condition, we have q =
(

k
2(2−ξ)

) 1
1−ξ , which satisfy 0< q < kqξ. Thus, the

optimal commission r and the optimal profit R for the instance of the AVG in (8) satisfies that

r = 1− q

kqξ
− q

kqξ
=

1− ξ
2− ξ

,
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R =
(
1− q

kqξ
− q

kqξ

)
q=

1− ξ
2− ξ

( k

2(2− ξ)

) 1
1−ξ

,

which further implies that RM

R = ( 2−ξ
2
)

1
1−ξ 2−ξ

2(1−ξ) . Therefore, we can obtain that

lim
ξ→1

RM

R
= lim

ξ→1

(2− ξ
2

) 1
1−ξ 2− ξ

2(1− ξ)
= 0.

■

Proof of Lemma 8. We prove the two claims of this result separately. Given that the supporting lemma

is located in Step 3 in the proof of Theorem 1, we would borrow some observations from Step 2 in the proof

of Theorem 1 in the proof arguments below.

Claim 1. For i ∈ N+, when ni(1) ≥ ni, we further consider the following two cases: (1) m(1) ≥ 1; (2)

m(1)< 1.

(1) When ni(1)≥ ni and m(1)≥ 1, we first show that if ni(1)≥ ni and m(1)≥ 1, then ni(t)≥ ni for any

t ∈ {1, ..., T}. Given that ni(1)≥ ni for any i ∈N+, we assume for induction purpose that ni(t)≥ ni,
and then we can establish that

ni(t+1)
(a)
= αin(t)+Gi(qim(t))

(b)

≥ αin(t)+Gi(qi)≥ αini+Gi(qi)
(c)
= ni,

where (a) follows from the population transitions induced by Algorithm 1; (b) follows from our obser-

vations in Step 2 Case 1 in the proof of Theorem 1 that if m(1)> 1, then we have m(1)>m(2)> ... >

m(T )> 1, and in Step 2 Case 3 that if m(1) = 1, then we have m(1) =m(2) = ...=m(T ) = 1 given that

function Gi(q) increases in q ≥ 0; (c) follows directly from Lemma 2(ii). In summary, if ni(t)≥ ni and
m(1)≥ 1, we have ni(t+1)≥ ni . By induction, with ni(1)≥ ni and m(1)≥ 1, we obtain that ni(t)≥ ni
for any t∈ {1, ..., T}.

To proceed, we further notice that for any t∈ {1, ..., T},

ni(t)−ni
(d)
= αini(t− 1)+Gi(qim(t− 1))−αini−Gi(qi)
(e)

≤ G′
i(qi)

(
qim(t− 1)− qi

)
+αi

(
ni(t− 1)−ni

)
,

where (d) follows from population transition induced by Algorithm 1 and Lemma 2(ii); (e) follows from

the condition that Gi(q) is concave in q by Assumption 1. Since ni(t)≥ ni, the LHS of the inequality

for (e) is nonnegative, and we can take the absolute values and obtain the following inequality:∣∣∣ni(t)−ni∣∣∣ ≤ ∣∣∣G′
i(qi)

(
qim(t− 1)− qi

)
+αi

(
ni(t− 1)−ni

)∣∣∣
≤
∣∣∣G′
i(qi)

(
qim(t− 1)− qi

)∣∣∣+ ∣∣∣αi(ni(t− 1)−ni
)∣∣∣

= qiG′
i(qi)

∣∣∣(m(t− 1)− 1
)∣∣∣+αi

∣∣∣(ni(t− 1)−ni
)∣∣∣.

(34)

From the inequality above, we can establish that

T∑
t=2

∣∣∣ni(t)−ni∣∣∣ (f)
=

T∑
t=2

[
G′
i(qi)qi

∣∣∣1−m(t− 1)
∣∣∣+αi

∣∣∣ni(t− 1)−ni
∣∣∣]

(g)

≤
T∑
t=2

G′
i(qi)qiγ

t−2
∣∣∣1−m(1)

∣∣∣+ T∑
t=2

αi

∣∣∣ni(t− 1)−ni
∣∣∣,
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where (f) follows directly from (34); (g) follows from Step 2 in the proof of Theorem 1 that there exists

a constant γ ∈ (0,1) such that |m(t+ 1)− 1| ≤ γ|m(t)− 1| for any t ∈ {1,2, . . .}. From the inequality

above, we subtract a common term
∑T−1

t=2 αi
∣∣ni(t)− ni∣∣ on both sides of the inequality, and then by

moving the term
∣∣ni(T )− ni∣∣ from the LHS to the RHS given that both terms have finite values, we

can establish that

(1−αi)
T−1∑
t=2

∣∣∣ni(t)−ni∣∣∣ ≤ T∑
t=2

G′
i(qi)qiγ

t−2
∣∣∣1−m(1)

∣∣∣+αi

∣∣∣ni(1)−ni∣∣∣− ∣∣∣ni(T )−ni∣∣∣
Then by dividing both sides by 1−αi and adding

∣∣∣ni(1)−ni∣∣∣+ ∣∣∣ni(T )−ni∣∣∣, we have

T∑
t=1

∣∣∣ni(t)−ni∣∣∣ ≤ T∑
t=2

G′
i(qi)qiγ

t−2
∣∣∣1−m(1)

∣∣∣+ 1

1−αi

∣∣∣ni(1)−ni∣∣∣− αi
1−αi

∣∣∣ni(T )−ni∣∣∣
≤

T∑
t=2

G′
i(qi)qiγ

t−2
∣∣∣1−m(1)

∣∣∣+ 1

1−αi

∣∣∣ni(1)−ni∣∣∣
Therefore, lim

T→∞

∑T

t=1

∣∣∣ni(t)−ni∣∣∣≤ 1
1−αi
G′
i(qi)qi

∣∣∣1−m(1)
∣∣∣ 1
1−γ +

1
1−αi

∣∣∣ni(1)−ni∣∣∣. In the end, we define

the positive constant

Cni
:= G′

i(qi)qi

∣∣∣1−m(1)
∣∣∣ 1

1− γ
+
∣∣∣ni(1)−ni∣∣∣ 1

1−αi
,

which allows us to obtain the desired result.

(2) Given that m(1) < 1 and that ni(1) ≥ ni, we consider two cases. In the first case, we consider the

scenario where there exists a threshold t̃ ∈ {2, ..., T} such that ni(t) ≥ ni for t < t̃ and ni(t) < ni for

t≥ t̃. In the second case, we consider the scenario where ni(t)≥ ni for all t∈ {1, . . . , T}.

In the first case, given t̃ ∈ {2, . . . , T} such that ni(t̃) < ni, we want to show that ni(t) < ni for t ≥ t̃.

We prove the claim by induction. Given that ni(t̃)< ni, for any t≥ t̃, suppose towards an induction

purpose that ni(t)<ni, and we can establish that

ni(t+1)
(a)
= αin(t)+Gi(qim(t))

(b)

< αin(t)+Gi(qi) < αini+Gi(qi)
(c)
= ni, (35)

where (a) follows from the population transition rule induced by Algorithm 1 such that qi(t) = qim(t);

(b) follows from the condition that Gi(q) strictly increases in q≥ 0 and from the observation in Step 2.1

from the proofs of Theorem 1 that if m(1)< 1, then m(1)<m(2)< ... <m(T )< 1; (c) follows directly

from Lemma 2(ii). Therefore, we obtain that if there exists a t̃ ∈ {2, . . . , T} such that ni(t̃) < ni, we

have ni(t)<ni for t≥ t̃.

We then show that t̃ is independent of T . Given the definition of t̃ as the first time that ni(t)<ni, it is

equivalent to show that the value of ni(t) for 0≤ t≤ t̃ is independent of T . This is true as given ni(1)

and m(1), for t∈ {1, ..., t̃−1}, ni(t+1) = αin(t)+Gi(qim(t)), where m(t) = min
i′∈N+

{ni′ (t)

ni′
} is independent

of T for 1≤ t≤ t̃− 1.

The observations above allow us to deduce that in the first case,

lim
T→∞

T∑
t=1

∣∣∣ni(t)−ni∣∣∣ = t̃−1∑
t=1

∣∣∣ni(t)−ni∣∣∣+ lim
T→∞

T∑
t=t̃

∣∣∣ni(t)−ni∣∣∣
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(d)
=

t̃−1∑
t=1

∣∣∣ni(t)−ni∣∣∣+ni lim
T→∞

T∑
t=t̃

∣∣∣m(t)− 1
∣∣∣ (e)

≤
t̃−1∑
t=1

∣∣∣ni(t)−ni∣∣∣+ni lim
T→∞

T∑
t=t̃

∣∣∣m(t̃)− 1
∣∣∣γt−t̃

=

t̃−1∑
t=1

∣∣∣ni(t)−ni∣∣∣+ni

∣∣∣m(t̃)− 1
∣∣∣ 1

1− γ
(f)

≤
t̃−1∑
t=1

∣∣∣ni(t)−ni∣∣∣+ni

∣∣∣m(1)− 1
∣∣∣ 1

1− γ
(g)

≤G′
i(qi)qi

∣∣∣1−m(1)
∣∣∣ 1

1− γ
+
∣∣∣ni(1)−ni∣∣∣ 1

1−αi
+ni

∣∣∣m(1)− 1
∣∣∣ 1

1− γ
,

where (d) follows from the definition of m(t), (e) follows from Step 2, and (f) follows from m(1) <

m(2)< ... <m(T )< 1 if m(1)< 1 in Step 2.1; (g) follows from the (34).

In the second case, if ni(t)≥ ni for all t∈ {1, ..., T}, we can apply the same upper bound
∑T

t=1

∣∣ni(t)−
ni
∣∣ ≤ lim

T→∞

∑T

t=1

∣∣ni(t)− ni∣∣ ≤ G′
i(qi)qi

∣∣∣1−m(1)
∣∣∣ 1
1−γ +

∣∣∣ni(1)− ni∣∣∣ 1
1−αi

in as in Case (1) above under

Claim 1.

Then let Cni
=
∣∣∣ni(1)−ni∣∣∣+G′

i(qi)qi

∣∣∣1−m(1)
∣∣∣ 1
1−γ +

∣∣∣ni(1)−ni∣∣∣ αi

1−αi
+ni

∣∣∣m(1)− 1
∣∣∣ 1
1−γ , we obtain the

desired result.

Claim 2. To establish the second claim of this result, when ni(1)≤ ni and m(1)< 1, by applying the same

induction arguments as in (35) from the previous claim, we can establish that ni(t)≤ ni for any t∈ {1, . . . , T}.

Summarizing the arguments above, we complete the proofs of the two claims in this result. ■

B.3. Additional Numerical Results

We first provide additional numerical examples for the TRP in Section 4, and then provide the additional

analytical results in Section 5 and their proof.
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Figure 4 TRP

C. Proof of Results in Section 5

In this section, we develop some auxiliary results that are needed for the proofs of results in Section 5 in

C.1. We then respectively prove the results from Section 5.1 in C.2 and those from 5.2 in C.3.
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C.1. Auxiliary Results for Section 5.

In this section, we first develop a simper formulation for Problem (8) in (41). To do that, we first characterize

the properties of Problem (8) in Lemma 9 and Lemma 10. Next, we reformulate it in Lemma 11, and will

further simplify its formulation into (41) in Lemma 12. We then show the connection between the optimal

solution to (41) w∗ and (Sτ ,Bτ ) constructed in (11) in Lemma 13. The proof of the auxiliary results follows

a similar argument to the proof of Lemma 1, Lemma 2 and Proposition 10 in Birge et al. (2021). Therefore,

we omit the detail of the proof of auxiliary results for simplicity.

To develop an equivalent reformulation in (q,x) for AVG, recall from Lemma 2(ii) that the relaxed

population dynamics constraints si ≤ αsisi+Gsi (qsi ) and bj ≤ αbjbj+Gbj (qbj) with the optimal solutions to AVG

are tight. Together with Assumption 4(ii), on the seller side, we have si =
βs
i (q

s
i )

ξs

1−αs
i

for any i∈ S. We further

let ksi :=
βs
i

1−αs
i
, which allows us to obtain that si = ksi (q

s
i )
ξs for any i ∈ S. Similarly, on the buyer side, we

have bj = kbj(q
b
j)
ξb for any j ∈B, where kbj =

βb
j

1−αb
j
. Plugging the expressions of si = ksi (q

s
i )
ξs and bj = kbj(q

b
j)
ξb

into AVG, we obtain the following reformulation of AVG:

R = max
qs,qb,x

[∑
j∈B

F̃b(q
b
j , k

b
j(q

b
j)
ξb)−

∑
i∈S

F̃s(q
s
i , k

s
i (q

s
i )
ξs)
]

(36a)

s.t. qsi ≤ ksi (qsi )ξs , ∀i∈ S, (36b)

qbj ≤ kbj(qbj)ξb , ∀j ∈B, (36c)∑
j:(i,j)∈E

xij = qsi , ∀i∈ S, (36d)

qbj =
∑

i:(i,j)∈E

xij , ∀j ∈B, (36e)

xij ≥ 0, ∀(i, j)∈E. (36f)

where F̃b(·) and F̃s(·) are defined before Problem (8).

For ξs ∈ (0,1) and ξb ∈ (0,1), define yb(q) := F−1
b (1− (q)1−ξb) q for 0 ≤ q ≤ 1. Define ys(q,u) :=

−F−1
s

(
(q)1−ξs

u1−ξs

)
q for 0 ≤ q ≤ u and u > 0, ys(0,0) := lim

(q,u)→(0,0)
ys(q,u). For simplicity of notations, we let

y′b(q) :=
dyb(q)

dq
for 0 < q < 1 and y(1,0)s (q,u) := ∂ys(q,u)

∂q
for 0 < q < u. Furthermore, we let y′b(0) := lim

q↓0
y′b(q),

y′b(1) := lim
q↑1

y′b(q); for u > 0, we let y(1,0)s (0, u) := lim
q→0

y(1,0)s (q,u), y(1,0)s (u,u) := lim
q→u

y(1,0)s (q,u); for q > 0, we

let y(0,1)s (q, q) := lim
u→q

y(0,1)s (q,u). We show in the following lemma that all of the limiting values are finite.

Lemma 9. (i) yb(q) is continuously differentiable and strictly concave in q ∈ [0,1];

(ii) ys(q,u) is continuous and strictly concave in (q,u)∈ {(q′, u′) : 0≤ q′ ≤ u′}; moreover, ys(q,u) is contin-

uously differentiable in (q,u)∈ {(q′, u′) : 0≤ q′ ≤ u′, u′ > 0};

(iii) for any 0< ξs < 1, −(1− ξs)
[
F−1
s

]′
(x)x−F−1

s (x) strictly decreases in x∈ [0,1].

Before the next auxiliary result, we define

ρ(u) := argmax
0≤q≤min{1,u}

(
yb(q)+ ys(q,u)

)
, for u≥ 0, (37)

h(u) = max
0≤q≤min{1,u}

(
yb(q)+ ys(q,u)

)
, for u≥ 0. (38)
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Given the definition of ρ(u) and h(u) above, we proceed to consider the following auxiliary result about

(ρ(u), h(u)) for u≥ 0. Notice that −y(1,0)s (u,u) = (1− ξs)[F−1
s ]′ (1)+ vs > 0, which is a constant. To support

our proof arguments below, when u> 0, if y′b(0)> (1−ξs)[F−1
s ]′ (1)+vs, we let ũ := (y′b)

−1((1−ξs)[F−1
s ]′ (1)+

vs); if y
′
b(0)≤ (1− ξs)[F−1

s ]′ (1)+ vs, we let ũ := 0.

Lemma 10. (i) ρ(u) is a well-defined and strictly increasing in u ≥ 0; moreover, given ũ ≥ 0 defined

before the lemma statement, ρ(u)

u
= 1 for u∈ (0, ũ] and ρ(u)

u
strictly decreases in u≥ ũ;

(ii) h(u) is continuous, strictly increasing and strictly concave in u≥ 0.

We next develop an alternative optimization for Problem (36). Consider the following optimization prob-

lem:

V = max
w,z

∑
j∈B

[
(kbj)

1
1−ξb h

( (wj) 1
1−ξb

(kbj)
1

1−ξb

)]
(39a)

s.t. (wj)
1

1−ξb =
∑

i:(i,j)∈E

zij , j ∈B (39b)

∑
j:(i,j)∈E

zij = (ksi )
1

1−ξs , i∈ S, (39c)

zij ≥ 0, ∀(i, j)∈E. (39d)

where

h(u) = max
0≤q̃j≤min{1,u}

F−1
b (1− (q̃j)

1−ξb)q̃j −F−1
s

( (q̃j)1−ξs
u1−ξs

)
q̃j for any u> 0 (40)

and h(0) = 0. We consider the following result:

Lemma 11. We have the following equivalence properties between Problem (39) and Problem (40):

(i) let (x,qs,qb) be the optimal solution to Problem (36), and construct (w,z) such that wj =

(
qbj

qs
i
(ksi )

1
1−ξs )1−ξb for any i : xij > 0 and zij =

xij

qs
i
(ksi )

1
1−ξs , q̃j =

qbj

(kb
j
)

1
1−ξb

, then (w,z) is the optimal

solution to Problem (39) and q̃j is the optimal solution to Problem (40) with uj =
(wj)

1
1−ξb

(kb
j
)

1
1−ξb

;

(ii) let (w,z) be the optimal solution to Problem (39) and q̃j is the optimal solution to Problem (40) with

uj =
(wj)

1
1−ξb

(kb
j
)

1
1−ξb

, then construct (x,qs,qb) such that xij =
zij(k

b
j)

1
1−ξb q̃j

(wj)
1

1−ξb

and qsi =
(kbj)

1
1−ξb q̃j(k

s
i )

1
1−ξs

w

1
1−ξb
j

for

j : zij > 0, qbj = (kbj)
1

1−ξb q̃j, then (x,qs,qb) is the optimal solution to (36);

(iii) Problem (36) and Problem (39) share the same optimal objective value, i.e., R= V.

We can further simplify the formulation in (39) in the following Lemma 12.

Lemma 12. Problem (39) and the following problem share the same optimal solution vector w,

Y = max
w

∑
j∈B

[
(kbj)

1
1−ξb h

( (wj) 1
1−ξb

(kbj)
1

1−ξb

)]
(41a)

s.t.
∑
j∈B̃

(wj)
1

1−ξb ≤
∑

i∈NE(B̃)

(ksi )
1

1−ξs , ∀B̃ ⊆ B, (41b)

wj ≥ 0, ∀j ∈B, (41c)

and moreover, Y = V where V is the optimal objective value for Problem (39).
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The next lemma establishes the connection between the optimal solution w∗ to Problem (41) and the

network components G(Sτ ∪ Bτ ,Eτ ) constructed in (11). Given the finiteness of the network G(S ∪ B,E),

the iteration in (11) yields a maximum index τ .

Lemma 13. For any τ ∈ {1, ..., τ} and any j′ ∈Bτ , we have
(w∗

j′ )
1

1−ξb

(kb
j′
)

1
1−ξb

=
∑

i∈Sτ
(ksi )

1
1−ξs∑

j∈Bτ
(kb

j
)

1
1−ξb

.

C.2. Proof of Results in Section 5.1.

Proof of Proposition 4. Recall that we have established the connection for the optimal solution and the

optimal objective value of Problem (36) with those of Problem (39) and Problem (41) in Lemma 11 and

Lemma 12. Therefore, we focus on characterizing the properties of optimization problems in (39) and (41)

instead of (36) in this proof. We have already shown that (39) and (41) share the same optimal solution w∗

in Lemma 12. To prove the claim, we consider the buyer side in Step 1 and the seller side in Step 2.

Step 1: Establish the ranking of buyers’ service levels and payments. Based on Lemma 11(ii), we let (w,z)

be the optimal solution to Problem (39) and q̃j is the optimal solution to Problem (40) with the parameter

uj =
(wj)

1
1−ξb

(kb
j
)

1
1−ξb

. We know the optimal solution to Problem (36) satisfies

qbj
bj

(a)
=

(qbj)
1−ξb

kbj

(b)
= (q̃j)

1−ξb (c)
= ρ1−ξb

( (wj) 1
1−ξb

(kbj)
1

1−ξb

)
,

where Step (a) follows from the observation that bj = kbj(q
b
j)
ξb in Problem (36); Step (b) follows from the

solution property of q̃j in Problem (40) by Lemma 11(ii); Step (c) follows from the definition of the opti-

mal solution ρ to Problem (37). Therefore, the ranking of service levels (
qbj

bj
)j∈B is the same as that of(

ρ
( (wj)

1
1−ξb

(kb
j
)

1
1−ξb

))
j∈B

.

For buyers’ payments, we know that

min
i′:(i′,j)∈E

{psi′}+ rbj = F−1
b

(
1−

qbj
bj

)
= F−1

b

(
1− ρ

( (wj) 1
1−ξb

(kbj)
1

1−ξb

))
.

Therefore, the ranking of buyers’ payments ( min
i′:(i′,j)∈E

{psi′}+ rbj)j∈B is the opposite of
(
ρ
(

(wj)
1

1−ξb

(kb
j
)

1
1−ξb

))
j∈B

.

By Lemma 10(i), we have that ρ(u) strictly increases in u > 0. From Lemma 13, we know that

(wj)
1

1−ξb

(kb
j
)

1
1−ξb

=

∑
i∈N

Eτ−1 (Bτ )(k
s
i )

1
1−ξs

∑
j∈Bτ

(kb
j
)

1
1−ξb

for j ∈ Bτ and τ = 1, . . . τ . Furthermore, the definition in (11) implies that

∑
i∈N

Eτ−1 (Bτ )(k
s
i )

1
1−ξs

∑
j∈Bτ

(kb
j
)

1
1−ξb

strictly increases in τ = 1, . . . , τ . Therefore, we have

qbj1
bj1

=
qbj2
bj2

, for j1, j2 ∈Bτ , τ ∈ {1, ..., τ},

qbj1
bj1

<
qbj2
bj2

, for j1 ∈Bτ1 , j2 ∈Bτ2 , τ1, τ2 ∈ {1, ..., τ} and τ1 < τ2.

and

min
i′:(i′,j1)∈E

{psi′}+ rbj1 = min
i′:(i′,j2)∈E

{psi′}+ rbj2 , for j1, j2 ∈Bτ , τ ∈ {1, ..., τ},

min
i′:(i′,j1)∈E

{psi′}+ rbj1 > min
i′:(i′,j2)∈E

{psi′}+ rbj2 , for j1 ∈Bτ1 , j2 ∈Bτ2 , τ1, τ2 ∈ {1, ..., τ} and τ1 < τ2.
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Step 2: Establish the ranking of sellers’ service levels and incomes. To establish the ranking of sellers’ service

levels, given the optimal solution w to Problem (41) and the optimal solution q̃j to Problem (40) with

parameter uj =
(wj)

1
1−ξb

(kb
j
)

1
1−ξb

, we have that for any i∈ S and j : xij > 0,

qsi
si

(a)
=

(qsi )
1−ξs

ksi

(b)
=

(
ρ((wj)

1
1−ξb/(kbj)

1
1−ξb )

(wj)
1

1−ξb/(kbj)
1

1−ξb

)1−ξs

, (42)

where (a) follows from our discussion before Problem (36) that si = ksi (q
s
i )
ξs ; (b) follows from Lemma 11(ii)

for j : xij > 0.

We next show that for any τ1 ̸= τ2, we have xij = 0 with i∈ Sτ1 and j ∈Bτ2 . Based on Lemma 11(ii), it is

equivalent to show the optimal solution to Problem (39) satisfies that for any τ1 ̸= τ2, zij = 0 for i∈ Sτ1 and

j ∈Bτ2 . We show it by induction. Again, to simplify the notation in Problem (39), we letWj := (wj)
1

1−ξb and

ψbj := (kbj)
1

1−ξb for any j ∈ B and let ψsi := (ksi )
1

1−ξs for any i ∈ S. We first consider τ = 1. The buyers in B1

can only trade with the sellers in S1 given that they are not connected to any other seller types. It remains to

show that the sellers in S1 only trade with the buyers in B1 at the platform’s optimal commissions. Suppose

towards a contradiction that there exist τ1 ̸= 1 such that zij > 0 for some i∈ S1 and j ∈Bτ1 , then∑
i∈S1

∑
j:(i,j)∈E

zij =
∑
i∈S1

∑
j:(i,j)∈E,j∈B1

zij +
∑
i∈S1

∑
j:(i,j)∈E,j /∈B1

zij

(a)

>
∑
j∈B1

∑
i:(i,j)∈E,i∈S1

zij
(b)
=
∑
j∈B1

Wj

(c)
=
∑
j∈B1

ψbj

∑
i∈S1

ψsi∑
j∈B1

ψbj
=
∑
i∈S1

ψsi (43)

where (a) follows from the assumption that zij > 0 for some i∈ S1 and some j ∈Bτ1 with τ1 ̸= 1; (b) follows

from (39b); (c) follows from the observation in Lemma 13. In summary,
∑

i∈S1

∑
j:(i,j)∈E zij >

∑
i∈S1

ψsi ,

which violate Constraint (39c). In summary, we have that zij = 0 for all i∈ S1 and j ∈Bτ1 if τ1 ̸= 1. Assuming

that Bτ only trade with Sτ and vice versa, we proceed to show that Bτ+1 only trade with Sτ+1 and vice

versa. First, the buyers in Bτ+1 only trade with the sellers in Sτ+1, because they are not adjacent to the seller

types from Sτ ′ for any τ ′ ≥ τ +1; and the seller types with an index lower than τ +1 does not trade with

them based on our previous discussion. Second, Sτ+1 only trade with Bτ+1, otherwise we can also obtain∑
i∈Sτ+1

∑
j:(i,j)∈E zij >

∑
i∈Sτ+1

ψsi following the same argument in (43), which violate Constraint (39c) to

Problem (39) given that Problem (41) is a reformulation without loss of optimality. In summary, for any

τ1 ̸= τ2, xij = 0 for i∈ Sτ1 and j ∈Bτ2 . This allows us to show that for any i∈ Sτ with τ = 1, . . . , τ , we have

that if j : xij > 0, then we obtain that j ∈Bτ .

Thus, regarding the sellers’ incomes, for any i∈ Sτ with τ = 1, . . . , τ and any j : xij > 0, we have that

psi − rsi = F−1
s

(qsi
si

)
= F−1

s

(ρ((wj)
1

1−ξb/(kbj)
1

1−ξb

)
(wj)

1
1−ξb/(kbj)

1
1−ξb

)
.

Since
(wj)

1
1−ξb

(kb
j
)

1
1−ξb

=

∑
i∈N

Eτ−1 (Bτ )(k
s
i )

1
1−ξs

∑
j∈Bτ

(kb
j
)

1
1−ξb

for j ∈Bτ with τ = 1, . . . , τ in Lemma 13, we can next focus on the

ranking of
ρ

(∑
i∈N

Eτ−1 (Bτ )(k
s
i )

1
1−ξs /

∑
j∈Bτ

(kb
j)

1
1−ξb

)
∑

i∈N
Eτ−1 (Bτ )(k

s
i )

1
1−ξs /

∑
j∈Bτ

(kb
j)

1
1−ξb

for τ = 1, . . . , τ . Recall from Step 1 that

∑
i∈N

Eτ−1 (Bτ )(k
s
i )

1
1−ξs

∑
j∈Bτ

(kb
j
)

1
1−ξb
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strictly increases in τ = 1, . . . τ . Based on Lemma 10, for some constant ũ ≥ 0, we have that ρ(u)

u
= 1 for

0< u≤ ũ and ρ(u)

u
strictly decreases in u for u > ũ. Define τ̃ := max{τ |uj < ũ for j ∈ Bτ}. We observe that

(i) for any τ ≤ τ̃ , we have
qsi
si

= ρ(u)

u
= 1 and psi − rsi = F−1

s

(
ρ(u)

u

)
= F−1

s (1) = vsi for i∈ Sτ ; (ii) for any τ > τ̃ ,

we have
ρ(

∑
i∈N

Eτ−1 (Bτ )(k
s
i )

1
1−ξs /

∑
j∈Bτ

(kb
j)

1
1−ξb )

∑
i∈N

Eτ−1 (Bτ )(k
s
i )

1
1−ξs /

∑
j∈Bτ

(kb
j)

1
1−ξb

strictly decreases in τ . Therefore, we can summarize that

qsi1
si1

=
qsi2
si2
, for i1, i2 ∈ Sτ , τ ∈ {1, ..., τ},

qsi
si

= 1, for i∈ Sτ , τ ≤ τ̃ ,

qsi1
si1

>
qsi2
si2
, for i1 ∈ Sτ1 , i2 ∈ Sτ2 , τ1, τ2 ∈ {τ̃ +1, ..., τ} and τ1 < τ2.

and

psi1 − r
s
i1
= psi1 − r

s
i1
, for i1, i2 ∈ Sτ , τ ∈ {1, ..., τ},

psi − rsi = vsi , for i∈ Sτ , τ ≤ τ̃ ,

psi1 − r
s
i1
> psi2 − r

s
i2
, for i1 ∈ Sτ1 , i2 ∈ Sτ2 , τ1, τ2 ∈ {τ̃ +1, ..., τ} and τ1 < τ2.

Summarizing the two steps above, we conclude the claims in this result. ■

Proof of Corollary 1. Given the definition of (ks,kb) at the beginning of Appendix C.1, for any ξs ∈ (0,1)
and ξb ∈ (0,1), we first let ψsi = (ksi )

1
1−ξs and ψbj = (kbj)

1
1−ξb for simplicity of notations. We consider the

equivalent reformulation in Problem (39) with decision variables (w,z) by Lemma 11 and Problem (41) with

the decision variable vector w and Lemma 12. We let Wj = (wj)
1

1−ξb for all j ∈B.
Notice that it is without loss of generality to consider a connected graph G(S ∪ B,E) for the proof

arguments. We prove the impact of ψs and ψb on the service levels in Step 1, and then the impacts on

supply/demand and population in Step 2.

Proof of Claim (1): Establish the impact of ψs and ψb on the service levels. Recall from Step 1 in the proof

arguments of Proposition 4 that for any j ∈ B, when Wj

ψb
j
becomes larger under the optimal solution W to

Problem (41),
qbj

bj
becomes larger at the optimal solution as well. As a result, we can focus on the impact of

ψs and ψb on
Wj

ψb
j
for j ∈Bτ .

Step (1-i): Establish the impact of (ψs,ψb) on the service levels of the buyer side. Let (W ,z) be the opti-

mal solution to (39) given parameters (ψs,ψb) and let {(Sτ ,Bτ ) : τ = 1, . . . τ} be the network components

obtained from (11) given this parameter set. We define the index set τi := {τ |i ∈ Sτ} and τj := {τ |j ∈Bτ}.
We consider an alternative vector (ψ̂s, ψ̂b) in which we pick any ĩ∈ S, and let ψ̂s

ĩ
>ψs

ĩ
; we also let ψ̂si :=ψsi

for all i ̸= ĩ and let ψ̂bj := ψbj for all j ∈ B. Then we obtain that the parameter vector (ψ̂s, ψ̂b) has only one

entry on the seller side that is higher than in (ψs,ψb). Let (Ŵ , ẑ) be the optimal solution to (39) given the

parameter set (ψ̂s, ψ̂b), and let {(Ŝτ , B̂τ ) : τ = 1, . . . τ̃} be the network components obtained from (11) given

this parameter set for some positive integer τ̃ .

To prove the claim of this step, we want to show that Wj ≤ Ŵj for all j ∈B. This leads to the observation

that
Wj

ψb
j
≤ Ŵj

ψ̂b
j

given our construction that ψ̂bj := ψbj for all j ∈ B. In this way, we can claim that a higher ψsi

leads to weakly higher
Wj

ψb
j
for all j ∈B.
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Suppose towards a contradiction that there exists a j1 ∈ B such that Wj1 > Ŵj1 at the optimal solution.

Based on Constraint (39b), we have that
∑

i∈NE(j1)
zij1 =Wj1 > Ŵj1 =

∑
i∈NE(j1)

ẑij1 , which implies that

there exists a i1 ∈NE(j1) such that zi1j1 > ẑi1j1 ≥ 0. Similarly, given i1 ∈NE(j1), based on Constraint (39c),

we have that
∑

j∈NE(i1)
zi1j = ψsi1 ≤ ψ̂

s
i1
=
∑

j∈NE(i1)
ẑi1j where the inequality follows from the construction

of ψ̂ above. This implies that there exists j2 ∈NE(i1) such that 0≤ zi1j2 < ẑi1j2 . Using the same argument

as above, there must exist a i2 ∈NE(j2), i2 ̸= i1 such that zi2j2 > ẑi2j2 ≥ 0 and there exists some j3 ∈NE(i2)

such that 0 ≤ zi2j3 < ẑi2j3 . In this iteration, given the finiteness of the graph, we have that there exists

a finite list (j1, i1, j2, i2..., jn) such that Wj1 > Ŵj1 and Wjn ≤ Ŵjn . We let B1 = {j1}, and S1 = {i|i ∈

NE(j1), zi1j1 > ẑi1j1 ≥ 0}. For t ∈ {2,3 . . .}, we further let Bt = {j|j ∈ NE(i),0 ≤ zij < ẑij , ∀i ∈ St−1}, and

St = {i|i ∈ NE(j), zij > ẑij ≥ 0, ∀j ∈ Bt−1}. We have that Bt := ∪l∈{1,...,t}Bl and St := ∪l∈{1,...,t}Sl are the

sets of all possible buyer types and seller types accessed within the first 2t steps in this iteration. Since

Bt−1 ⊂Bt ⊂B and |B| is finite, there exists a finite t such that Bt =Bt−1, i.e., the set Bt stops expanding.

Under the assumption that Wj1 > Ŵj1 at the optimal solution for j1 ∈ B1, we next show that there exists

j ∈Bt such thatWj < Ŵj . We further suppose towards a contradiction thatWj > Ŵj for any j ∈Bt. Consider

the set of seller types S̃ := {i|i ∈ NE(j), zij > ẑij ≥ 0, ∀j ∈Bt}. We can show that S̃ ⊆ St by definition.

Moreover, we would obtain that∑
i∈S̃

ψ̂si =
∑
i∈S̃

∑
j:zij>ẑij

ẑij +
∑
i∈S̃

∑
j:zij<ẑij

ẑij +
∑
i∈S̃

∑
j:zij=ẑij

ẑij

(a)
=
∑
i∈S̃

∑
j:zij>ẑij

ẑij +
∑
i∈S̃

∑
j:zij=ẑij

ẑij

<
∑
i∈S̃

∑
j:zij>ẑij

zij +
∑
i∈S̃

∑
j:zij=ẑij

zij

≤
∑
i∈S̃

∑
j:zij>ẑij

zij +
∑
i∈S̃

∑
j:zij>ẑij

zij +
∑
i∈S̃

∑
j:zij=ẑij

zij =
∑
i∈S̃

ψsi

where in Step (a), with S̃ ⊆St = ∪l∈{1,...,t}Sl, in the iterative construction above, given that Bt = {j|j ∈

NE(i),0≤ zij < ẑij , ∀i∈ St−1} and that Bt =∪l∈{1,...,t}Bl, the subset of buyer types {j : zij < ẑij for some i∈

S̃} should be a subset of Bt; based on the definition S̃ = {i|i ∈ NE(j), zij > ẑij ≥ 0, ∀j ∈ Bt}, we

have that zij > ẑij for any i ∈ S̃ and j ∈ Bt, which further implies that {j : zij < ẑij , ∀i ∈ S̃} = ∅ and

that
∑

i∈S̃

∑
j:zij<ẑij

ẑij = 0. However, the observation that
∑

i∈S̃ ψ̂
s
i <

∑
i∈S̃ ψ

s
i contradicts with the fact

that
∑

i∈S̃ ψ̂
s
i ≥

∑
i∈S̃ ψ

s
i by construction of (ψ̂s, ψ̂b) above. Therefore, such a contradiction implies that

there exists a jl ∈ Bl ⊂ Bt for some l ∈ N+ such that Wjl ≤ Ŵjl . Thus, there must exist a finite path

(j1, i1, j2, i2..., jl) for jt ∈ Bt and it ∈ St such that zitjt > 0 for t ∈ {1, .., l} and ẑit−1jt > 0 for t ∈ {2, . . . , l}

under the assumption that Wjl ≤ Ŵjl . For any t∈ {1, . . . , l−1}, we let τit and τjt be the corresponding index

for the seller subgroup for Sτ and the buyer subgroup Bτ by the iterative construction in (11). Since zitjt > 0,

we know that τit = τjt . With the iterative construction, we have jt+1 ∈NE(it), which satisfies that τit ≤ τjt+1

given that Sit is not adjacent to Bl with l < τit with the iterative construction in (11). In summary, τj1 =

τi1 ≤ τj2 = ...≤ τjl , which implies that
Wjn

ψb
jn

≥ Wj1

ψb
j1

based on Lemma 13. Therefore,
Ŵjn

ψ̂b
jn

≥ Wjn

ψb
jn

≥ Wj1

ψb
j1

>
Ŵj1

ψ̂b
j1

.

We proceed to show that the constructed solution (Ŵ , ẑ) cannot be the optimal solution to Problem (39)

given the parameter set (ψ̂s, ψ̂b). We first send a flow ϵ along jn→ in−1→ jn−1→ ...→ i1→ j1 to construct
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a new feasible solution (W̃ , z̃): since
Ŵjn

ψ̂b
jn

>
Ŵj1

ψ̂b
j1

and ẑit,jt+1
> 0 for all t ∈ {1, ..., n− 1}, we can pick any

ϵ ∈ (0,min{(Ŵjn ψ̂
b
j1
− Ŵj1 ψ̂

b
jn
)/(ψ̂bj1 + ψ̂bjn), min

t∈{1,...,n−1}
{ẑit,jt+1

}}); for t ∈ {1, ..., n− 1}, let z̃itjt := ẑitjt + ϵ,

z̃itjt+1
:= ẑitjt+1

− ϵ, z̃ij := ẑij for all (i, j) ̸= (itjt+1), (i, j) ̸= (itjt). Let W̃j1 := Ŵj1 + ϵ and W̃jn := Ŵjn − ϵ,

W̃j′ := Ŵj′ for all j′ ̸= j1, j
′ ̸= jn. We next verify the feasibility of this new solution (W̃ , z̃) in Problem

(39). Since ϵ ≤ min
t∈{1,...,n−1}

{ẑit,jt+1
}, we can obtain that z̃itjt+1

≥ 0 such that Constraint (39d) is satisfied.

In addition, in our construction of the new feasible solution (W̃ , z̃), since we only send a flow ϵ along

jn→ in−1→ jn−1→ ...→ i1→ j1, Constraints (39b) - (39c) are preserved. Thus, (W̃ , z̃) is feasible in Problem

(39). We define the super-gradient of h(u) as ∂h(u) = {z ∈R|h(t)≤ h(u) + z(t− u),∀t≥ 0}. In addition, we

define ∂−h(u) := inf{∂h(u)} and ∂+h(u) := sup{∂h(u)}. Given the strict concavity of h(u) for u≥ 0, we have

that if u2 >u1 > 0, then ∂+h(u2)<∂−h(u1), which implies that

ψ̂bj1h
(W̃j1

ψ̂bj1

)
+ ψ̂bjnh

(W̃jn

ψ̂bjn

)
= ψ̂bj1h

(Ŵj1 + ϵ

ψ̂bj1

)
+ ψ̂bjnh

(Ŵjn − ϵ
ψ̂bjn

)
> ψ̂bj1h

(Ŵj1

ψ̂bj1

)
+ ϵ∂h−

(Ŵj1 + ϵ

ψ̂bj1

)
+ ψ̂bjnh

(Ŵjn

ψ̂bjn

)
− ϵ∂h+

(Ŵjn − ϵ
ψ̂bjn

)
≥ ψ̂bj1h

(Ŵj1

ψ̂bj1

)
+ ψ̂bjnh

(Ŵjn

ψ̂bjn

)
where the first inequality follows from the concavity of h(·) in R+; for the second inequality, since

Ŵjn

ψ̂b
jn

>
Ŵj1

ψ̂b
j1

and ϵ <
Ŵjn ψ̂j1

+Ŵj1
ψ̂jn

ψ̂j1
+ψ̂jn

, we have
Ŵjn−ϵ
ψ̂b
jn

>
Ŵj1

+ϵ

ψ̂b
j1

, and therefore, ∂+h(
Ŵjn−ϵ
ψ̂b
jn

)<∂h−(
Ŵj1

+ϵ

ψ̂b
j1

). Since other terms

in the objective function remain unchanged, (W̃ , z̃) leads to a strictly higher objective value than (Ŵ , ẑ),

which contradicts with the fact that (Ŵ , ẑ) be the optimal solution to (39) given the parameter set (ψ̂s, ψ̂b).

In conclusion, we have that
Wj

ψb
j
≤ Ŵj

ψ̂b
j

for all j ∈B. This concludes the claim about the impact of ψsi .

For the impact of ψbj , we can apply exactly the same proof-by-contradiction arguments as above to establish

that when ψb
j̃
increases for any j̃ ∈B, then we have that the optimal solution

Wj

ψb
j
decreases for any j ∈B.

Step (1-ii): Establish the impact of (ψs,ψb) on the service levels of the seller side. For the impact of ψs on

the service levels of the seller side, we first recall the construction of (ψ̂s, ψ̂b) based on (ψs,ψb) in Step (1-i),

which satisfies that ψ̂s
ĩ
>ψs

ĩ
, ψ̂si := ψsi for all i ̸= ĩ and ψ̂bj := ψbj for all j ∈ B. Without loss of generality, we

suppose that a type-i seller trades with type-j1 buyer where i ∈ Sl1 and j1 ∈ Bl1 given the parameter set

(ψs,ψb); and given the parameter set (ψ̂s, ψ̂b), we suppose that the type-i seller trades with type-j2 buyer

for some j2 ∈Bl2 . The index satisfies that l2 ≥ l1 given that Sl1 is not connected with Bt for any t < l1 by the

iterative construction of network components in (11). Therefore, we have that
Wj1

ψb
j1

≤ Wj2

ψb
j2

≤ Ŵj2

ψ̂b
j2

, where the

first inequality follows from Lemma 13 given that l2 ≥ l1, and the second inequality follows from the same

arguments in Step (1-i). Since type-i sellers have positive trades with type-j1 buyers in the optimal solutions

given the parameters (ψs,ψb), and with type-j2 buyers in the optimal solutions given the parameters (ψ̂s, ψ̂b),

based on the observation that
Wj1

ψb
j1

≤ Ŵj2

ψ̂b
j2

, we can establish that

qsi
si

(a)
=
(ρ(Wj1/ψ

b
j1
)

Wj1/ψj1

)1−ξs (b)

≥
(ρ(Ŵj2/ψ̂

b
j2
)

Ŵj2/ψ̂j2

)1−ξs
(c)
=

q̂si
ŝi
, (44)
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where Step (a) and Step (c) follow from the optimality equation in (42) from the proof arguments in Proposi-

tion 4; Step (b) follows from the fact that ρ(x)

x
monotonically decreases in x≥ 0 (see Lemma 10). In summary,

when ψs
ĩ
increases for any ĩ∈ S, we have that

qsi
si

becomes weakly lower for all i∈ S.

Using the same arguments above, we could establish the impact of ψb on the seller side: when ψb
j̃
increases

for any j̃ ∈B, we have that
qsi
si

becomes weakly higher for all i∈ S.

Proof of Claim (2): Establish the impact of ψs and ψb on transaction quantities and populations. Recall

from (9) that we have qbj =ψbj(
qbj

bj
)

1
1−ξb and bj =ψbj(

qbj

bj
)

ξb
1−ξb for any j ∈B at the optimal solution to Problem

(8) given Assumption 4. We establish this claim in the following two substeps.

Step (2-i): Establish the impact of ψb on the transaction quantities and populations. For any j ∈ B, recall

from Step (1-i) above that if ψb
j̃
increases for any j̃ ̸= j, or if ψs

ĩ
increases for any ĩ ∈ S, then qbj

bj
weakly

decreases at the optimal solution. Given that qbj = ψbj(
qbj

bj
)

1
1−ξb , we can establish that as ψb

j̃
increases for any

j̃ ̸= j, then qbj weakly decreases at the optimal solution for any j ∈ B. From qbj = ψbj(
qbj

bj
)

1
1−ξb , we have that

bj = ψbj(q
b
j)
ξb for any j ∈ B, which further suggests that bj weakly decreases at the optimal solution for any

j ∈B.

For any j ∈ B, it remains to consider the impact of ψbj on (qbj , bj) at the optimal solution for j ∈ B. We

first show that qbj increases in ψbj ≥ 0 for any j ∈ B. Recall from Constraints (36d)-(36e) that
∑

i∈S q
s
i =∑

i∈S

∑
j:(i,j)∈E xij =

∑
j∈B

∑
i:(i,j)∈E xij =

∑
j∈B q

b
j , which means that qbj =

∑
i∈S q

s
i −

∑
j′ ̸=j,j′∈B q

b
j′ . Since

higher ψbj leads to weakly higher qsi for any i∈ S and weakly lower qbj′ for any j
′ ∈B with j′ ̸= j, we conclude

that higher ψbj leads to weakly higher qbj . Similarly, higher ψsi leads to weakly higher qsi .

Step (2-ii): Establish the impact of ψs on the transaction quantities and populations. By applying the same

arguments as in Step (2-i), we can establish that (qi, si) weakly increases in ψsi for all i ∈ S, and qsi and si

weakly decreases in ψsi′ for any i
′ ̸= i and weakly increases in ψbj for all j ∈B. ■

Proof of Proposition 5. Let (x,qs,qb) be the optimal solution to Problem (36); we let uj :=

(wj)
1

1−ξb /(kbj)
1

1−ξb for any j ∈B where (w,z) is the optimal solution to the reformulation into Problem (39)

(see Lemma 11). Recall that for given τ = 1, . . . , τ from (11), type-i sellers for i∈ Sτ trade with type-j buyers

for j ∈Bτ . Moreover, for any i∈ Sτ and j ∈Bτ ,

rsi + rbj = F−1
b

(
1−

qbj
kbj(q

b
j)
ξb

)
−F−1

s

( qsi
ksi (q

s
i )
ξs

)
= F−1

b

(
1− ρ1−ξb(uj)

)
−F−1

s

(ρ1−ξs(uj)
u1−ξs
j

)
,

where the first equation follows from the conditions in (4a) and (4c) where the expressions of si and bj

are given before Problem (36); the second equation follows from the observations in Lemma 11(ii) and the

definition of ρ(u) in (37). In addition, at the optimal solution, the value of uj for any j ∈ Bτ increases in

τ = 1, . . . , τ (see Lemma 13 and the definition in (11)). For simplicity of notations, we let r(u) := F−1
b (1−

ρ1−ξb(u))−F−1
s ( ρ

1−ξs (u)

u1−ξs
) for any u> 0. Recall the definition ũ := (y′b)

−1((1−ξs)[F−1
s ]′ (1)+vs) before Lemma

10.

We prove the two claims of this result.

Claim (1). If uj ≤ ũ, we have ρ(uj) = uj (see Lemma 10(i)). This implies that F−1
b (1 − ρ1−ξb(uj)) −

F−1
s (

ρ1−ξs (uj)

u
1−ξs
j

) = F−1
b (1 − u1−ξb

j ) − F−1
s (1), which is decreasing in uj ∈ [0,1] given that Fb(·) is a strictly
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increasing function in [0, vb] (see Assumption 2). We let τ̃ := max{τ |uj < ũ for j ∈ Bτ}. Together with the

fact that at the optimal solution, the value of uj for j ∈Bτ increases in τ = 1, . . . , τ , we obtain that the value

r(uj) increases in τ < τ̃ .

Claim (2). If uj ≥ ũ, we know that y′b(ρ(uj)) + y(1,0)s (ρ(uj), uj) = 0. Define Y (q̃j , uj) := y′b(q̃j) + y(1,0)s (q̃j , uj)

given the definitions of ys and yb before Lemma 9: for any ξs ∈ (0,1) and ξb ∈ (0,1), yb(q) = F−1
b (1− (q)1−ξb) q

for 0≤ q ≤ 1 and ys(q,u) =−F−1
s

(
(q)1−ξs

u1−ξs

)
q for 0≤ q ≤ u and u > 0, ys(0,0) := lim

(q,u)→(0,0)
ys(q,u). We have

that

Y (q̃j , uj) = y′b(q̃j)+ y(1,0)s (q̃j , uj)

=

(
(ξb− 1)q̃1−ξbj (F−1

b )′
(
1− q̃1−ξbj

)
+F−1

b

(
1− q̃1−ξbj

))
+

(
(ξs− 1)

q̃j

u1−ξs
j

(F−1
s )′

(
q̃j

u1−ξs
j

)
−F−1

s

(
q̃j

u1−ξs
j

))
Since Fs and Fb are twice differentiable, we know that F−1

s and F−1
b are continuously differentiable, and

therefore Y (q̃j , uj) is continuously differentiable at (q̃j , uj) for 0≤ q̃j ≤min{uj ,1}. By the implicit function

theorem, there exists a continuously differentiable function ρ(uj) such that q̃j = ρ(uj) given Y (q̃j , uj) = 0.

By differentiating Y (ρ̃(uj), uj) = 0 with respect to uj , we obtain

ρ′(uj) =

(ξs− 1)uξs−3
j ρ(uj)

1−2ξs

(
(ξs− 1)ρ(uj)u

ξs
j (F−1

s )′′
(
ρ1−ξs (uj)

u
1−ξs
j

)
+(ξs− 2)ujρ(uj)

ξs(F−1
s )′

(
ρ1−ξs (uj)

u
1−ξs
j

))
(ξb− 1)ρ(uj)−2ξbfb+(ξs− 1)uξs−2

j ρ(uj)−2ξsfs

where

fb : = (ξb− 2)ρ(uj)
ξb(F−1

b )′
(
1− ρ(uj)1−ξb

)
− (ξb− 1)ρ(uj)(F

−1
b )′′

(
1− ρ(uj)1−ξb

)
,

fs : = (ξs− 1)ρ(uj)u
ξs
j (F−1

s )′′

(
ρ1−ξs(uj)

u1−ξs
j

)
+(ξs− 2)ujρ(uj)

ξs(F−1
s )′

(
ρ1−ξs(uj)

u1−ξs
j

)
.

We proceed to show that fs < 0 and fb < 0 for later use:

fb : = (1− ξb)ρ(uj)ξb
( (2− ξb)
(ξb− 1)

(F−1
b )′

(
1− ρ(uj)1−ξb

)
+ ρ1−ξb(uj)(F

−1
b )′′

(
1− ρ(uj)1−ξb

))
(a)

< (1− ξb)ρ(uj)ξb
(
− 2(F−1

b )′
(
1− ρ(uj)1−ξb

)
+ ρ1−ξb(uj)(F

−1
b )′′

(
1− ρ(uj)1−ξb

)) (b)

< 0,

fs : = (ξs− 1)ujρ
ξs(uj)

(
ρ1−ξs(uj)u

ξs−1
j (F−1

s )′′

(
ρ1−ξs(uj)

u1−ξs
j

)
+
ξs− 2

ξs− 1
(F−1

s )′

(
ρ1−ξs(uj)

u1−ξs
j

))
(c)

< (ξs− 1)ujρ
ξs(uj)

(
ρ1−ξs(uj)u

ξs−1
j (F−1

s )′′

(
ρ1−ξs(uj)

u1−ξs
j

)
+2(F−1

s )′

(
ρ1−ξs(uj)

u1−ξs
j

)) (d)

< 0,

where (a) and (c) follow from the facts that ξs ∈ (0,1) and ξb ∈ (0,1), which imply that 2−ξb
ξb−1

< −2 and

ξs−2
ξs−1

> 2 given that (F−1
b )′ > 0 and (F−1

s )′ > 0 on the domains; (b) and (d) follow from the conditions that

−F−1
s (a/b)a and F−1

b (1− a/b)a are concave in (a, b) for 0≤ a≤ b and b > 0 by Assumption 3, and therefore

a
b
(F−1

s )′′
(
a
b

)
+2(F−1

s )′
(
a
b

)
> 0 and a

b
(F−1

b )′′
(
1− a

b

)
− 2(F−1

b )′
(
1− a

b

)
< 0. In summary, we have fs < 0 and

fb < 0.

Finally, we want to establish how r(uj) = F−1
b (1− ρ1−ξb(uj))− F−1

s (
ρ1−ξs (uj)

u
1−ξs
j

) changes in uj > 0. Again,

given the continuity of r(u), we define the sup-derivative

∂r(u) = {z ∈R | r(t)≤ r(u)+ z(t−u), ∀t≥ 0},



68

which implies that

∂r(u) = (ξb− 1)ρ(uj)
−ξbρ′(uj)(F

−1
b )′

(
1− ρ(uj)1−ξb

)
+(ξs− 1)uξs−2

j ρ(uj)
−ξs (ujρ

′(uj)− ρ(uj)) (F−1
s )′

(
ρ1−ξs(uj)

u1−ξs
j

)
.

Plugging in the expression of ρ′(uj), we obtain that

∂r(u) =
(ξb− 1)(ξs− 1)ρ(uj) (f1 + f2 + f3)

uj ((ξb− 1)s2−ξsρ(uj)2ξsfb+(ξs− 1)ρ(uj)2ξbfs)
,

where

f1 = (ξb− 1)ujρ(uj)
ξs+1(F−1

b )′′
(
1− ρ(uj)1−ξb

)
(F−1

s )′

(
ρ1−ξs(uj)

u1−ξs
j

)

f2 = (ξs− 1)uξsj ρ(uj)
ξb+1(F−1

b )′
(
1− ρ(uj)1−ξb

)
(F−1

s )′′

(
ρ1−ξs(uj)

u1−ξs
j

)

f3 =−uj(ξb− ξs)ρ(uj)ξb+ξs(F−1
b )′

(
1− ρ(uj)1−ξb

)
(F−1

s )′

(
ρ1−ξs(uj)

u1−ξs
j

)
.

Based on the observation above, we discuss the two cases of this claim:

(i) if Fs(v) and Fb(v) are convex in v ∈ [0, vs] and v ∈ [0, vb], we have (F−1
b )′′(v)< 0 and (F−1

s )′′(v)< 0 in

their domains. Given (F−1
b )′(v)> 0 and (F−1

s )′(v)> 0, ρ(uj)< 1 (see (37)) and ξs, ξb ∈ (0,1), we know

that f1 > 0 and f2 > 0. Since ξs = ξb, f3 = 0. Therefore, the numerator of
∂r(uj)

∂uj
is positive. Since fs < 0

and fb < 0, the denominator of
∂r(uj)

∂uj
is positive. In summary,

∂r(uj)

∂uj
> 0 for uj ≥ ũ;

(ii) if Fs(v) and Fb(v) are concave in v ∈ [0, vs] and v ∈ [0, vb] respectively, we have (F−1
b )′′(v) > 0 and

(F−1
s )′′(v)> 0, then f1 < 0 and f2 < 0. Therefore,

∂r(uj)

∂uj
< 0 for uj ≥ ũ.

■

C.3. Proof of Results in Section 5.2.

Proof of Theorem 2. Recall that R(E,ψs,ψb),V(E,ψs,ψb),Y(E,ψs,ψb) are respectively the optimal

objective value to (36), (39) and (41). To simplify the notations, we use R(E), V(E), Y(E) to denote

R(E,ψs,ψb), V(E,ψs,ψb), Y(E,ψs,ψb). From Lemma 11 and 12, we have that R(E) = V(E) = Y(E).

Therefore, to prove the claim in this result, it is equivalent to focus on Problem (41) and show that Y(E)≥

(1− ϵ)Y(E).

We next consider Problem (45) below with an additional constraint F−1
b (1− q1−ξbj )−F−1

s

( q1−ξs
j

u
1−ξs
j

)
≥ r for

some r ∈ R in comparison with Problem (41). We then show that even the problem with this constraint

can obtain the objective value weakly higher than (1− ϵ)Y(E), from which we can conclude that Y(E)≥

Yh(E)≥ (1− ϵ)Y(E). Given the edge set E of the complete graph, for any edge set E ⊂ E, we define this

auxiliary problem below

Yh(E) = max
w,r

∑
j∈B

[
(kbj)

1
1−ξb h

( (wj) 1
1−ξb

(kbj)
1

1−ξb

, r
)]

(45a)

s.t.
∑
j∈B̃

(wj)
1

1−ξb ≤
∑

i∈NE(B̃)

(ksi )
1

1−ξs , ∀B̃ ⊆ B, (45b)

wj ≥ 0, ∀j ∈B (45c)



69

r≤ vb, (45d)

where for any u> 0,

h(u, r) = max
0≤q̃≤min{1,u},

F
−1
b

(1−q̃1−ξb )−F
−1
s

(
q̃1−ξs

u1−ξs

)
≥r

(
F−1
b (1− q̃1−ξb)−F−1

s

( q̃1−ξs
u1−ξs

))
q̃. (45e)

Step 1: Show that Y(E)≥Yh(E). Note that the only difference between (45) and (41) is that one more

constraint F−1
b

(
1− (q̃j)

1−ξb
)
−F−1

s

( q̃1−ξs
j

u1−ξs

)
≥ r for any (i, j) ∈E is added to Problem (45). With r ≤ vb, we

have that the constraint for the maximization problem in (h, r) is non-empty given that solution q̃ = 0 is

feasible. Therefore, the solution to Problem (45) is also feasible in Problem (41), and two problems share

the same objective functions. Thus, we have that

Y(E)≥Yh(E).

Step 2: Show that Yh(E)≥ (1− ϵ)Y(E). To establish the claim, we first reformulate the optimization prob-

lems for Yh(E) and Y(E).

Step 2.1: Reformulate the problem for Yh(E). With uj =
(wj)

1
1−ξb

(kb
j
)

1
1−ξb

for any j ∈B, we define

q̂j(r,uj) :=max
{
q̃ : r≤ F−1

b (1− (q̃)1−ξb)−F−1
s

( q̃1−ξs
u1−ξs
j

)
,0≤ q̃≤min{1, uj}

}
. (46)

Note that since F−1
b (1− q̃1−ξb)− F−1

s

(
q̃1−ξs

u
1−ξs
j

)
strictly decreases in q̃ ∈ [0,min{1, uj}], we know q̂j(r,uj) is

unique given (r,uj). Given that r is a lower bound of F−1
b (1 − (q̃)1−ξb) − F−1

s

(
(q̃)1−ξs

(uj)1−ξs

)
and q̂j(r,uj) is

suboptimal to Problem (45e), the optimal objective value Yh(E) from Problem (45e) is weakly higher than

the optimal objective value of following optimization problem

max
w,r

∑
j∈B

(kbj)
1

1−ξb rq̂j

(
r,
(wj)

1
1−ξb

(kbj)
1

1−ξb

)
s.t.

∑
j∈B̃

w
1

1−ξb
j ≤

∑
i∈NE(B̃)

(ksi )
1

1−ξs , ∀B̃ ⊆ B,

wj ≥ 0, ∀j ∈B,

r≤ vb.

For any r ∈ (−∞, vb] and ϵ∈ (0,1), we observe that (wj)
1

1−ξb = (kbj)
1

1−ξb (1− ϵ)
∑

i∈S(ksi )
1

1−ξs∑
j∈B(kb

j
)

1
1−ξb

is feasible in the

optimization problem above given that wj ≥ 0 for any j ∈B and for any B̃ ⊆ B,∑
∈B̃

w
1

1−ξb
j =

∑
j∈B̃

(kbj)
1

1−ξb (1− ϵ)
∑

i′∈S(k
s
i′)

1
1−ξs∑

j′∈B(k
b
j′)

1
1−ξb

≤
∑

i∈NE(B̃)

(ksi )
1

1−ξs ,

where the inequality follows directly from the condition in the theorem statement. By letting u :=∑
i∈S(ksi )

1
1−ξs∑

j∈B(kb
j
)

1
1−ξb

, we have that

Yh(E) ≥ max
r≤vb

∑
j∈B

(kbj)
1

1−ξb rq̂j

(
r, (1− ϵ)

∑
i∈S(k

s
i )

1
1−ξs∑

j∈B(k
b
j)

1
1−ξb

)
= max

r≤vb

∑
j∈B

(kbj)
1

1−ξb rq̂j
(
r, (1− ϵ)u

)
.
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Step 2.2: Reformulate the problem for Y(E). We first show that given the graph set to the complete graph

G(S ∪B,E), the optimal solution to Problem (41) satisfies (w∗
j′)

1
1−ξb = (kbj′)

1
1−ξb

∑
i∈S(ksi )

1
1−ξs∑

j∈B(kb
j
)

1
1−ξb

for any j′ ∈B.

Given the definition of (Sτ ,Bτ ) in (11), in a complete graph, we have that B1 =B, as for any B̃ ⊆ B, we have
that ∑

i∈NE(B̃)(k
s
i )

1
1−ξs∑

j∈B̃(k
b
j)

1
1−ξb

(a)
=

∑
i∈S(k

s
i )

1
1−ξs∑

j∈B̃(k
b
j)

1
1−ξb

(b)

≥
∑

i∈S(k
s
i )

1
1−ξs∑

j∈B(k
b
j)

1
1−ξb

=

∑
i∈NE(B)(k

s
i )

1
1−ξs∑

j∈B(k
b
j)

1
1−ξb

,

where Step (a) follows from the fact that network G(S∪B,E) is complete; Step (b) follows from the condition

that B̃ ⊆ B. By Lemma 13, we have
(w∗

j′ )
1

1−ξb

(kb
j′
)

1
1−ξb

=
∑

i∈S(ksi )
1

1−ξs∑
j∈B(kb

j
)

1
1−ξb

for any j′ ∈B. Therefore, we can obtain that

Y(E) =
∑
j∈B

(kbj)
1

1−ξb h

(∑
i∈S(k

s
i )

1
1−ξs∑

j∈B(k
b
j)

1
1−ξb

)
.

Similar to Step 2.1, given definition of h(.) in (40), we could reformulate h(.) by defining that

q := argmax
q̃∈[0,min{1,u}]

(
F−1
b (1− q̃1−ξb)−F−1

s

( q̃1−ξs
u1−ξs

))
q̃, (47)

where we recall that we have set
∑

i∈S(ksi )
1

1−ξs∑
j∈B(kb

j
)

1
1−ξb

= u in Step 2.1 above. By letting r := F−1
b (1− (q)1−ξb)−

F−1
s ( (q)1−ξs

(u)1−ξs
), given definition of h(.) in (40), we have that

Y(E) =
∑
j∈B

(kbj)
1

1−ξb h

(∑
i∈S(k

s
i )

1
1−ξs∑

j∈B(k
b
j)

1
1−ξb

)
=
∑
j∈B

(kbj)
1

1−ξb rq.

Step 2.3: Establish that Yh(E)≥ (1− ϵ)Y(E). To establish the claim, for any j ∈ B, we want to show that

q̂j(r, (1− ϵ)u)≥ (1− ϵ)q.
By the definition of q̂j(r,u) in (46), we have that for any j ∈B,

q̂j(r, (1− ϵ)u) :=max

{
q̃ : r≤ F−1

b (1− q̃1−ξb)−F−1
s

( q̃1−ξs

((1− ϵ)u)1−ξs
)
,0≤ q̃≤min

{
1, (1− ϵ)u

}}
.

For simplicity of notations, we use q̂j to denote q̂j(r, (1 − ϵ)u). Since F−1
b (1 − q̃1−ξb) − F−1

s ( (q̃)1−ξs

((1−ϵ)u)1−ξs
)

decreases in q̃ ∈ [0,min{1, (1− ϵ)u}], we have that either r = F−1
b (1− (q̂j)

1−ξb)− F−1
s (

(q̂j)
1−ξs

((1−ϵ)u)1−ξs
) or q̂j =

min{1, (1− ϵ)u}.
For any j ∈B, to show that q̂j(r, (1− ϵ)u)≥ (1− ϵ)q, we consider the following two cases:

(1) if q̂j =min{1, (1− ϵ)u}, then q̂j =min{1, (1− ϵ)u} ≥ (1− ϵ)min{1, u}= (1− ϵ)q, where the last equality

follows from the constraint in Problem (47);

(2) if r = F−1
b (1 − q̂1−ξbj ) − F−1

s (
q̂
1−ξs
j

((1−ϵ)u)1−ξs
), then based on the definition that r = F−1

b (1 − q1−ξb) −
F−1
s ( q

1−ξs

u1−ξs
) in Step 2.2, we have that

F−1
b (1− q1−ξb)−F−1

s

(
q1−ξs

u1−ξs

)
= F−1

b (1− q̂1−ξbj )−F−1
s

( q̂1−ξsj

((1− ϵ)u)1−ξs
)
.

Note that F−1
b (1 − q1−ξb) − F−1

s ( q
1−ξs

u1−ξs
) strictly increases in u ≥ q ≥ 0 and strictly decreases in q ∈

[0,min{1, u}]. With the equation above, given that 0 < (1− ϵ)u ≤ u, we have that q ≥ q̂j , which fur-

ther implies that q1−ξs

u1−ξs
≤ q̂

1−ξs
j

((1−ϵ)u)1−ξs
. This allows us to establish that q̂1−ξsj ≥ ((1− ϵ)u)1−ξs q1−ξs

u1−ξs
=

(q)1−ξs(1− ϵ)1−ξs . Therefore, we have q̂j ≥ (1− ϵ)q.
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Summarizing the two cases above, we can establish that

Yh(E)
(a)

≥
∑
j∈B

(kbj)
1

1−ξb rq̂j(r, (1− ϵ)u)
(b)
=
∑
j∈B

(kbj)
1

1−ξb r(1− ϵ)q (c)
= (1− ϵ)Y(E),

where (a) follows from Step 2.1 and r= F−1
b (1− (q)1−ξb)−F−1

s ( (q)1−ξs

(u)1−ξs
)≤ F−1

b (1) = vb; (b) follows from the

observation that q̂j(r, (1− ϵ)u)≥ (1− ϵ)q for any j ∈ B; (c) follows directly from the reformulation in Step

2.2. ■
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