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Nonprogressive diffusion describes the spread of behavior on a social network, where agents are allowed to

reverse their decisions as time evolves. It has a wide variety of applications in service adoption, opinion

formation, epidemiology, etc. To offer an efficient framework for evaluating and optimizing nonprogres-

sive diffusion, we introduce a comprehensive model and a Fixed-Point Approximation (FPA) scheme. This

approximation scheme admits both theoretical guarantee and computational efficiency. We establish that

the approximation error is inherently related to the network structure, and derive order-optimal bounds for

the error using two novel network metrics. We show that the FPA scheme is most accurate for dense and

large networks that are generally prohibitive to analyze by simulation. Taking the widely studied influence

maximization and optimal pricing problems on a social network as examples, we further illustrate the broad

applications of our FPA scheme. Finally, we conduct comprehensive numerical studies with synthetic and

real-world networks. In real networks, the FPA scheme shows 70-230 times more speed up in computation

time than simulation while achieving a mean absolute percentage error of less than 3.48%. Moreover, our

proposed two network metrics are reliable indicators of the FPA scheme’s performance.

Key words : Nonprogressive network diffusion, Large-scale network approximation, Network centrality,

Influence maximization, Pricing

1. Introduction

Social networks fundamentally shape our lives. People are more receptive to information shared by

their friends and relatives (Lu et al. 2013) and more inclined to make a purchase when informed by

their acquaintances (Ma et al. 2015, Bapna and Umyarov 2015). It is even more so in the digital

era—globally, 4.62 billion people, approximately 58.4% of the population worldwide, used online

social network platforms, such as Facebook, YouTube, and Tiktok, by January 2022 (Datareportal

2022). These platforms extend the reach and complexity of our social networks, as both friends and

strangers online contribute to shaping our opinions and choices.
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Within such networks, each agent both affects and is affected by others, setting the stage for the

diffusion of information and behavior. In this work, we use the term diffusion to represent the general

phenomenon of information or behavior spread when agents’ beliefs or behaviors are influenced by

their social connections. Platforms that harness this power of network diffusion can substantially

boost their impact and profitability (Shriver et al. 2013). However, understanding diffusion within

social networks is a complex undertaking. It involves not just individual behaviors, but also the

intricate relationships that bind them. This complexity has made network analysis an enduring

subject of study that has engaged generations of researchers (see books Jackson 2010).

Network diffusion analysis spans multiple domains, such as computer science (Kempe et al. 2003,

Acemoğlu et al. 2013), economics (Sadler 2020, Acemoglu et al. 2011), operations management (Song

and Zipkin 2009, Candogan et al. 2012, Shen et al. 2017, Wang and Wang 2017) and epidemiology

(Kermack and McKendrick 1927, Drakopoulos and Zheng 2017). In the seminal paper (Kempe

et al. 2003), diffusion processes are broadly categorized into progressive and nonprogressive types.

While progressive diffusion deals with unidirectional changes in the state—such as adopting new

technology or purchasing a product—our study focuses on nonprogressive diffusion, which allows

for bidirectional state transitions. This framework is especially relevant in contexts where decisions

can be reversed, such as signing up for a membership program, belief propagation influenced by

social learning behaviors, being infected in a pandemic, etc.

Analyzing network diffusion primarily adheres to one of two approaches. The first is microfounded

by capturing the concrete network topology and the stochastic evolution of agent states. Notable

models of this include the independent cascade model (Goldenberg et al. 2001) and the linear thresh-

old model (Granovetter 1978, Schelling 1978). While these models capture fine granularity, detailing

the diffusion on an individual basis over time, their intricate nature often leads to computational

challenges. In most cases, simulation happens to be the only viable tool to analyze such models,

making the optimization, even for a sparse and moderate-sized network, time-consuming (Chen

et al. 2009). Conversely, the second approach offers a macroscopic view, simplifying the diffusion

process. Some models, (e.g., Bass models; Bass 1969), bypass the intricacies of network topology,

focusing on the overall population. Others, like Candogan et al. (2012), Jackson et al. (2020), ignore

the stochasticity and focus on the equilibrium outcome. This macro lens, while sacrificing detailed

characterization of the diffusion, facilitates efficient analyses and generates sharper insights.

Our work bridges these two approaches in the context of nonprogressive diffusion by providing

a simple, efficient, and accurate approximation scheme. We base on a general diffusion model that

takes into account heterogeneous agents, local network effects, and network topology. While char-

acterizing the long-run adoption rate for each agent in such a detailed model may seem technically

intractable, we investigate a fixed-point approximation (FPA) scheme that estimates the adoption
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rates through a set of easily solvable fixed-point equations. Notably, we show that the FPA scheme

comes with provable guarantees. Its performance is associated with the network structure and

improves for larger and denser networks. We also propose metrics at both node and network levels

that can efficiently indicate the FPA’s performance for different network structures. Moreover, the

FPA scheme further paves the way for optimizing operational decisions, such as the influence maxi-

mization and pricing problems in the nonprogressive diffusion context. It allows for straightforward

problem formulation and algorithm development, that are not just computationally efficient but

also yield near-optimal solutions. In summary, through the FPA scheme, we show that the diffusion

outcome characterized by the “micro-model” can be accurately approximated by an easy-to-analyze

“macro-model”, integrating the advantages of both modeling paradigms.

1.1. Contributions and Organization

Our research contributions are summarized as follows:

• Provable approximation scheme for a general nonprogressive diffusion model. We

investigate nonprogressive diffusion through a micro-founded, dynamic and stochastic model,

which captures local network effects and individual heterogeneity. Our model generalizes the

well-known linear threshold (LT) model and adapts it to the nonprogressive diffusion (also see

related discussions in the literature review). Within this model, we propose the FPA scheme

to approximate the limiting adoption probability of each agent. To validate this approach,

we develop a nontrivial “fixed-point sandwich” technique, establishing an order-optimal error

bound. This bound indicates its superior performance for large and dense networks, which

are otherwise challenging to simulate. These bounds naturally link to novel network structure

metrics we propose to gauge the performance of the FPA scheme: the inverse in-degree centrality

and the inverse in-degree density. These metrics provide valuable insights into both node-level

and network-wide structures of the network, serving as reliable indicators for the performance

of FPA in diverse network configurations. Under mild technical assumptions, we also show

that our bound is tight. Our large-scale empirical studies highlight the FPA scheme’s superior

performance over a wide range of networks. For example, it achieves a mean absolute percentage

error of less than 3.48% among all tested real-world networks while concurrently accelerating

computation by factors ranging from 70 to 230, compared with traditional simulation methods.

• Wide applicability in optimizing operational decisions. The FPA scheme offers a pow-

erful tool to reformulate and solve operational decision-making problems in the nonprogressive

diffusion setting. By virtue of our approximation error bound, the reformulated problem will

lead to efficient algorithms and provable high-quality decisions for problems that were previ-

ously only able to be solved by cumbersome simulation-based algorithms. We take the influence
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maximization (IM) and pricing problems on a social network as examples. For the IM problem,

we show that under technical conditions, the influence function is submodular with regard to

the seed set in the reformulated problem. This extends the greedy algorithm to more general

settings, with significant efficiency improvement. For the pricing problem, we can also provide

near-optimal algorithms by the FPA reformulation. Specifically, under technical conditions, the

pricing problem under perfect price discrimination can be reformulated as a convex program.

In more general settings where perfect price discrimination is infeasible, we derive approxi-

mate gradient expressions for the direct price optimization problem, with which near-optimal

solutions can be achieved efficiently.

The remainder of the paper is structured as follows: In the following of this section, we review

the related literature. Section 2 introduces the nonprogressive diffusion model and characterizes the

limiting adoption rate. In Section 3, we describe the FPA scheme and demonstrate our main theo-

retical results. Then in Section 4, we establish the order-optimal error bound followed by extensive

numerical experiments in Section 5. We study the IM and pricing problem using our FPA scheme in

Section 6. Section 7 concludes this paper. Throughout this paper, we use increasing and decreasing

in the non-strict sense.

1.2. Literature Review

Our paper is broadly related to the literature on network diffusion. We first review diffusion models

in different settings. Then, we discuss the optimization problems that involve network diffusion.

Diffusion Models. Various models have been proposed across disciplines to characterize diffusion

for specific applications. However, a consistent trade-off can be observed: researchers often have to

choose between the conciseness of the model and practical efficiency. For instance, the Bass model

(Bass 1969) ignores most information on network structure and agents but enjoys the advantages

of the analytical expressions on some critical values, allowing for easy optimization (Agrawal et al.

2021, Lin et al. 2021). In contrast, the LT model (Granovetter 1978, Schelling 1978) incorporates

the network structure, but is computationally challenging, as evidenced by Chen et al. (2010).

Given our specific focus on nonprogressive diffusion, we will discuss some parallel streams of work

related to our study. First, while the LT model is designed for a progressive case, a nonprogressive

variant1 has been introduced by Kempe et al. (2003). This model retains most features of the

traditional LT model but selects the random threshold independently at each time period, unlike the

fixed random threshold of the original model. Our model builds upon this nonprogressive LT model,

introducing agent heterogeneity and accommodating a more arbitrary randomness distribution.

Second, our work is related to the social learning literature (Jadbabaie et al. 2012, Chandrasekhar

1Hereafter, we will refer to this as the nonprogressive LT model to differentiate it from its progressive counterpart.
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et al. 2020, Allon et al. 2019), where agents form beliefs towards a binary signal of the world based

on their neighbors’ beliefs. While this body of work predominantly examines the learning process

and the final network-wide belief distribution, our emphasis is on characterizing individual agent

adoption states for an arbitrary network diffusion instance. Third, a variety of engineering and

economics applications describe the interactions across the network using network games (e.g., see

Ballester et al. 2006, Candogan et al. 2012, Afèche et al. 2023, Baron et al. 2022, Feng et al. 2022).

A central goal of this literature is to analyze various types of equilibria. Although our fixed-point

approximation is reminiscent of the equilibrium in the network games, our focus diverges in its

relation to a concrete micro-founded model. Fourth, a number of operations management studies

incorporate network externality into consumer choice models. This type of work, serving for the

subsequent assortment or pricing problem, generally simplifies the network structure. For example,

some studies consider only global effects by looking at market-wide adoption averages (Du et al.

2016, Wang and Wang 2017), while others restrict their focus to myopic local proxy or specific types

of networks (Gopalakrishnan et al. 2022, Xie and Wang 2020). Our work, instead, accounts for full

network information and operates under a more general setting. Finally, our work also relates to

works studying the mean-field approximation for stochastic processes (Benaïm and Weibull 2003,

Van Mieghem et al. 2008). While these works typically offer a deterministic description at the

population level, we go further by addressing the operational aspects at the individual level.

Optimization with Network Diffusion. The FPA scheme is applicable in a wide variety of applica-

tions. In this paper, we highlight its applications in two examples: influence maximization and pricing

within social networks, and provide a concise review of the literature on these themes. Kempe et al.

(2003) first consider the issue of choosing an influential set of seed agents to maximize the spread

of diffusion influence as a discrete optimization problem. They show that the IM problem, under

the LT model, is NP-hard for both progressive and nonprogressive cases. This NP-hard result can

also be extended to various other diffusion models. Moreover, to evaluate the total influence under

different influential sets, extensive simulations are required so that it is time-consuming to even

achieve an approximate solution. We refer readers to the survey (Li et al. 2018) for a comprehensive

review of the existing approaches. These approaches compromise either accuracy or efficiency and

are not ideal for practical use. However, with the FPA scheme, we can effectively balance both.

We also point out that a recent paper (Chan et al. 2020) specifically studies the IM problem with

the nonprogressive LT model, closely aligning with our setting. For the pricing problem, there is

a growing literature in the economics and operations management communities that considers the

presence of network effects (Anari et al. 2010, Hu et al. 2020, Li 2020, Yang and Zhang 2022, Huang

et al. 2022). Recent studies on the single-item pricing problem with the network effect can be found

in Candogan et al. (2012), Du et al. (2018), and Nosrat et al. (2021). Compared with these three



Lin et al.: Nonprogressive Diffusion on Social Networks
6 Article submitted to Management Science; manuscript no.

papers, our framework as well as the proposed algorithms can be used to consider a more general

and flexible setting, with theoretical guarantees rooted in our micro-founded model.

2. Nonprogressive Network Diffusion Model

In this section, we first introduce the network diffusion model and then characterize the limiting

behavior of each agent within it. This model can be applied to various nonprogressive diffusion

settings, among which we use service adoption on an online social network platform for illustration.

2.1. Preliminaries and Formulation

We model the social network platform (e.g., TikTok) as a graph G= (V,E) with n agents, where

V := {1,2, ..., |V |} is the set of agents and E := {1,2..., |E|} is the set of directed edges. A directed

edge (i, j) ∈ E, where i, j ∈ V , implies that agent j is influenced by agent i, and we call i an in-

neighbor of j. We interpret (i, j)∈E as j following i on the platform. We use Ni to denote the set

of all in-neighbors for agent i (i.e., Ni := {j ∈ V : (j, i) ∈E}) and di := |Ni| to denote the in-degree

(i.e., the number of in-neighbors). Throughout, we use agent and node interchangeably.

We use t to denote the discrete time period, starting with t = 0 as the service launch time.

Define Yi(t) ∈ {0,1} as the state of agent i at period t, where Yi(t) = 1 (resp. Yi(t) = 0) means the

adoption (resp. nonadoption) of the service in this period. The initial state Y(0) follows an arbitrary

distribution on {0,1}n. For all t ≥ 1, each agent’s decision to adopt is governed by their realized

utility ui(t) during that period, as given by

ui(t) := vi +β ·
∑

j∈Ni
Yj(t− 1)

di
+ εi(t). (1)

Without loss of generality, we normalize the utility of nonadoption to 0, and thus Yi(t) = 1{ui(t)≥
0}. As shown by (1), ui(t) consists of three parts: the idiosyncratic intrinsic value vi, the local

network effect β ·
∑
j∈Ni

Yj(t−1)
di

and the random noise εi(t). The value vi reveals the personalized

preference and remains constant over time. From an analytical point of view, vi can be estimated

from agent features such as demographic information and behavioral data with the support of big

data. It may also be affected by the platform’s operational strategies. For example, the price of a

paid service (e.g., YouTube Premium) will definitely affect whether and how, the agent likes it. The

local network effect captures the peer influence on the agent from in-neighbors, with parameter β

to quantify the network effect intensity. If agent i has no in-neighbors (i.e., Ni = ∅), we set this term
to 0. Finally, we assume the random noise εi(t) is independent and identically distributed (i.i.d.)

across agents and time. We assume, without loss of generality, that E[εi(t)] = 0. For now, we impose

no further constraints on its distribution, except for the following mild condition.

Assumption 1 (Lipschitz Continuity). The random noise εi(t) has an L-Lipschitz continuous

cumulative distribution function (CDF): |Fε(x)−Fε(y)| ≤L|x− y| for any x, y ∈R.
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We require that the noise distribution is sufficiently smooth. Assumption 1 is satisfied by any

continuous distribution with a bounded probability density function (PDF), making common distri-

butions like the uniform, logistic, or normal distribution compatible with our model. We also impose

a bound for the network effect intensity β that facilitates characterizing the limit of diffusion.

Assumption 2 (Bounded Network Effects). The network effect satisfies |β|< 1/L.

Parameter β quantifies the magnitude of network externality. Similar assumptions are commonly

made in the network economics literature (e.g., see Horst and Scheinkman 2006, Wang and Wang

2017, Xu 2018, Jackson et al. 2020, Gopalakrishnan et al. 2022). In these settings, such assumptions

are often introduced to ensure that the equilibrium of a network game uniquely exists. However, our

model assigns additional significance to Assumption 2. It not only excludes divergent or periodic

behavior in the long run in our diffusion model (Proposition 1) but also guarantees a valid fixed-

point characterization of the limiting adoption probabilities (Proposition 2). In Section 5.1, we also

extend our discussion through extensive numerical experiments to investigate the implications of

Assumption 2 being violated. For the remainder of this analysis, we assume that the network effects

are positive, operating under the assumption that 0<β < 1
L
. However, it should be noted that our

results can be generalized to scenarios where − 1
L
< β < 0, thereby covering situations of negative

network effects as well.

A natural goal in such a setting is to quantify the total diffusion in the network. In line with prior

studies (Kempe et al. 2003), we focus on the limiting adoption probability. Provided it converges,

it also represents accumulated reward (frequency of adoption) in the long run.

We remark on the notations. Hereafter, we use a bold math notation to denote the collection of a

particular variable over all agents in vector form. It is important to note that the network structure

and intrinsic values together identify a specific diffusion case. Meanwhile, the noise distribution and

the network effect intensity make up the diffusion environment. Accordingly, a specific diffusion

instance is represented by a quadruple (G,v,Fε(·), β). Sequences of such instances are likewise

represented by a series of these quadruples.

2.2. A Markov Chain Perspective

Notably, each diffusion instance can be characterized by a Markov chain (MC), of which the state

space is the set of indicator vectors denoting all possible combinations of adoption decisions, repre-

sented by {0,1}n. The transition probability from state y to y′ can be computed as

P (y,y′) =
∏
i∈V

P(Yi(t) = y′i|Y(t− 1) = y) =
∏
i∈V

Fε

(
−vi−β

∑
j∈Ni yj

di

)1−y′i

·

[
1−Fε

(
−vi−β

∑
j∈Ni yj

di

)]y′i
.
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As our primary interest lies not in the individual MC states, but rather in the overall adoption

probability for each agent. To that end, we define the adoption probability of agent i at time t as

qi(t) := P(Yi(t) = 1) ≡
∑

y∈{0,1}n
1{yi = 1} ·P(Y(t) = y). (2)

We have the following proposition on the limiting behavior of q(t) when t tends to infinity.

Proposition 1 (Limiting Adoption Probability). Under Assumptions 1 and 2, for any ini-

tial state Y(0), the adoption probability of each agent i converges to

lim
t→∞

qi(t) = q∗i :=
∑

y∈{0,1}n
1{yi = 1} ·π(y),

when t increases, where π is the stationary distribution of the MC that satisfies π=πP .

As made clear in the proof of Proposition 1, with assumptions on random noise and network

effect, the MC only has a single aperiodic recurrent class. Thus, a limiting distribution π leads to

the limiting adoption probabilities q∗. By the standard MC theory, one can easily verify that

lim
t→∞

1

t
·

t∑
s=1

Yi(s) = q∗i a.s. and lim
t→∞

1

t
·

t∑
s=1

qi(s) = q∗i , ∀i∈ V, (3)

for any initial state Y(0). As a result, this enables us to leverage the limiting adoption probability

q∗ when formulating optimization problems related to nonprogressive diffusion. Specifically, various

operational problems, such as the influence maximization problem (Section 6.1) and the pricing

problem on a social network (Section 6.2), can be generally framed as:

maximize
x∈X

g
(
q∗(G,v(x),Fε(·), β),x

)
. (4)

Here, x represents platform decisions with X denoting the feasible set of such decisions. For sim-

plicity, we only consider decisions influence diffusion outcomes by altering the intrinsic values. with

a slight abuse of notation, v(·) represents intrinsic values as a function of platform decisions, and

q∗(·) denotes the mapping from a diffusion instance to the limiting probability vector. Finally, g(·, ·)

is the objective function that depends on the diffusion outcome q∗ and decision variables x. For

example, the influence maximization problem can be formulated as (4) with the decision vector

x defined as setting the intrinsic utility of a set of seed users to sufficiently high levels; and the

objective g(·, ·) defined as the limiting total expected adoptions
∑

i∈V q
∗
i . For the optimal pricing

problem, the decision vector x is the price vector that affects the intrinsic value of each agent, and

the objective g(·, ·) is the expected profit under the limiting adoption probability, i.e.,
∑

i∈V q
∗
i xi.

The specific formulations of these problems will be presented in Section 6.
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Solving the optimization problem (4) is challenging, due to the absence of closed-form expressions

for q∗ and the exponential growth in the MC state space. It is intractable to construct the tran-

sition matrix even for a moderate-sized network, let alone to calculate q∗. Therefore, problem (4)

is generally intractable either analytically or computationally, which motivates us to develop our

approximation scheme for q∗ presented in Section 3.

Before presenting our approximation scheme, it is worth situating our diffusion model within the

broader network diffusion literature. Our model is most closely related to the LT model (Granovetter

1978), which is one of the most widely studied diffusion models. We extend the LT model for

nonprogressive settings (see Kempe et al. 2003), by introducing the heterogeneity of agents’ intrinsic

values and incorporating different random noise distributions. One advantage of the LT model

is its ability to closely represent rational decision-making by agents, thereby characterizing the

evolution of diffusion processes. While the LT model offers a solid micro-foundation for diffusion, it

comes with the drawback of computational intractability. Our subsequent approximation technique

offers a practical solution to this limitation. Our model also bears similarities to the game-theoretic

discrete choice models with network effects (Du et al. 2016, Wang and Wang 2017). There are two

noteworthy distinctions. First, our model accommodates a broader range of choice models than what

the standard logistic distribution covers. Second, we include the stochasticity of network effects by

assuming that the network effects come from realized average adoptions, as opposed to the more

commonly assumed expected adoption rates. Interestingly, our result shows that, in the long term,

the expected adoption rates that arise naturally from a game-theoretic perspective are also well-

justified in a dynamic and micro-founded setting. This convergence validates the use of expected

adoption rates, effectively bridging the LT and game-theoretic choice models.

3. Fixed-Point Approximation (FPA)

In this section, we introduce the FPA scheme. We present a comprehensive analysis of the scheme’s

performance, offering theoretical upper bounds for approximation error. Furthermore, we put forth

two critical metrics designed to evaluate the difficulty of approximation and the performance of the

FPA scheme; see (6). In this section, we assume that Assumptions 1 and 2 hold.

3.1. Overview and Motivating Example

For a given diffusion instance (G,v,Fε(·), β), we will show that the limiting adoption probability q∗

can be reasonably approximated by the solution µ∗ of the following simple system of equations:

µi = 1−Fε
(
−vi−β

∑
j∈Ni

µj

di

)
, for all i∈ V. (5)

We begin with a motivating example to demonstrate the values of q∗ and µ∗. This particular

instance features heterogeneity in both network connectivity and intrinsic values among agents. To
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facilitate an intuitive understanding of the impact of network effects, we also introduce a misspecified

model as a benchmark scenario. In this misspecified model, the adoption probability for each agent

i, qMM
i , is calculated as E [1{vi + εi ≥ 0}] so the network effects are ignored. For detailed information

about this example instance, including numerical results, please refer to Appendix C.1.
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Figure 1 The 10-node example to illustrate the FPA scheme. In the left subfigure, the color denotes the true value

of q∗ and the size denotes the absolute error between q∗ and µ∗.

Figure 1a presents the network structure and the approximation results. Clearly, nodes with fewer

neighbors exhibit higher errors, whereas well-connected nodes yield smaller errors. Further insights

can be gained from Figure 1b, which enumerates the values of q∗, µ∗ and qMM. The strong impact

of network effects is underscored by the large discrepancy between q∗ and qMM. Against q∗ as a

baseline, the mean absolute error values for µ∗ and qMM are 0.045 and 0.310, respectively. These

observations confirm the high quality of the FPA solution and suggest that the approximation tends

to be more accurate for agents with central positions in the network.

In the following, we quantitatively measure the deviation between q∗ and µ∗, with a particular

focus on its dependence on network structures. The key technical challenge arises from the fact

that adoption decisions exhibit temporal and spatial correlations, compounded by the non-linearity

introduced by a general distribution of noise. To overcome this challenge, we employ a novel “fixed-

point sandwich” technique to provide the theoretical guarantee for general diffusion instances.

3.2. The Approximation Error

We first remark on notations before formally presenting our analysis on error bound. Given an

network G= (V,E) with n nodes, we define the matrix Ã ∈ Rn×n such that Ãij = 1
di

if an edge is

directed from j to i, and Ãij = 0 otherwise. This matrix can be viewed as a transformation of the

network’s adjacency matrix A, where Aij = 1 if there is an edge directing from i to j and Aij = 0

otherwise. Specifically, one obtains Ã by scaling row i of A> by 1
di
. It is worth noting that Ã is a row

scholastic matrix; that is, Ãe= e where e is a vector of ones. Additionally, we introduce the vector
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b=
(

1
d1
, 1
d2
, . . . , 1

dn

)>
, consisting of the reciprocal of each node’s in-degree. Lastly, we define ρ :=Lβ

as the discount parameter that characterizes the diffusion environment (ρ < 1 by Assumption 2).

Let dmin be the minimum in-degree of the network with dmin > 0.

We introduce two centrality metrics critical in our analysis, which we term as the inverse in-degree

centrality C(G;ρ) and the inverse in-degree density D(G). They are defined as follows:

C(G;ρ) := (1− ρ)

(
I +

∞∑
`=1

ρ`Ã
`

)
b= (1− ρ)

(
I− ρÃ

)−1
b and D(G) :=

e>b
n
. (6)

The inverse in-degree centrality C(G;ρ) is an n-dimensional vector that captures the centrality of

each agent, with its i-th entry denoted by Ci(G;ρ). It bears similarities to the classical Bonacich

centrality (Bonacich 1987), taking the form of summed discounted matrix powers. On the other

hand, it introduces distinct features regarding the inverse in-degree properties, making it specifically

tailored to evaluate the FPA scheme. Importantly, this centrality measure is well-defined given

that Ã is row stochastic and ρ < 1 by Assumption 2. The inverse in-degree density D(G) is a

scalar that represents the average inverse in-degree of all agents in the network, serving as an

aggregate measure of the FPA scheme’s performance. Together, these two centrality metrics offer

comprehensive evaluations, affording both individualized and holistic views of the network. Such

a dual perspective not only enhances our understanding of the FPA scheme but also provides

actionable insights into its application across different network configurations.

For clarity in our subsequent theoretical analysis, we adopt the notations | · | and (·) 1
2 to represent

entry-wise operations on vectors. For instance, for vector q, we define |q| := (|q1|, |q2|, . . . , |qn|)> and

q
1
2 := (

√
q1,
√
q2, . . . ,

√
qn)>. We also define the constant Cρ := ρ

(1−ρ)
√

(1−ρ/2)
. We now present our

technical key result. In Theorem 1, our primary focus is to characterize the entry-wise error between

the limiting probability q∗ and our FPA solution µ∗.

Theorem 1 (Entry-wise Error Bound of the FPA Scheme). Under Assumptions 1 and 2,

for any diffusion instance
(
G,v,Fε(·), β

)
, the absolute difference between the limiting adoption prob-

ability q∗ and the fixed-point solution µ∗ can be upper bounded by

|q∗−µ∗| ≤ Cρ ·
[
C(G;ρ)

] 1
2 .

Theorem 1 shows that the entry-wise error of FPA is closely related to the network

structure through the inverse in-degree centrality C(G;ρ) := (1 − ρ)
(
I +

∑∞
`=1 ρ

`Ã
`
)
b = (1 −

ρ)
(
I− ρÃ

)−1
b. Note that

∑∞
`=0 ρ

` = 1/(1− ρ) and Ã is a row stochastic matrix, so each compo-

nent of C(G;ρ) is always within the range [0,1]. Similar to the Bonacich centrality, C(G;ρ) can also

be interpreted as the weighted sum of different entries of b, the vector of inverse in-degrees. These
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weights capture the connectedness between node pairs. To illustrate, consider P(j,i) as the set of

directed paths from agent j to agent i. The weight allocated to the inverse in-degree bj in the i-th

term of C(G,ρ) is (1− ρ)
∑

P∈P(j,i)
ρ|P |

∏
k∈P

1
dk
. Remarkably, this weight decays exponentially fast

with respect to the length of the path that connects nodes j and i. As a consequence, the inverse

in-degree centrality of each node is predominantly affected by the inverse in-degrees of its nearby

nodes. This result rationalizes the observations in Figure 1.

To further understand the intuition of C(G,ρ), we let dmin,i(`) be the minimum in-degree of any

node j that is connected to node i via a path of length `. It is straightforward that dmin,i(`)≥ dmin.

By Theorem 1, it then holds that

Ci(G;ρ) ≤ (1− ρ)
∞∑
`=0

ρ`

dmin,i(`)
≤ 1

dmin

, for all i∈ V, (7)

where the first inequality holds because Ã is a row stochastic matrix. Consequently, we arrive at:

|q∗i −µ∗i | ≤ Cρ ·

√√√√ (1− ρ)
∞∑
`=0

ρ`

dmin,i(`)
, (8)

which suggests that the error is small for nodes with large in-degrees and only distantly connected

to nodes with low in-degrees. A subsequent corollary is then derived directly from (7).

Corollary 1 (`∞-Norm Bound). Under Assumptions 1 and 2, for any diffusion instance(
G,v,Fε(·), β

)
, the `∞-norm of the difference between q∗ and µ∗ can be upper bounded by

‖q∗−µ∗‖∞ ≤ Cρ ·
√

1

dmin

. (9)

Corollary 1 removes the dependence on the specific network structure from the bound to high-

light a worst-case convergence rate as the network expands. Specifically, for a sequence of diffusion

instances characterized by an increasing minimum in-degree dmin, the maximal deviation shrinks at

a rate of O
(√

1/dmin

)
. As dmin approaches infinity, µ∗ is asymptotically equal to q∗. This simplified

bound clearly indicates that the FPA scheme can perform better in larger and denser networks. We

remark that although (8) and (9) are both intuitively appealing, these bounds are looser than the

one based on the inverse in-degree centrality presented in Theorem 1.

The `∞-norm, while easy to understand, has its limitations. It relies entirely on the minimal

in-degree of the network, rendering it overly conservative and vulnerable to the isolated outliers.

For most real-world networks, the minimal in-degree is often quite small even if its size n is large,

limiting the applicability of this bound. Corollary 2 below counters this limitation by introducing

an upper bound characterized by the scaled `1-norm. This bound takes into account the inverse

in-degree density across the entire network D(G), providing a more reliable and effective metric
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compared to the minimal in-degree dmin. Define r(G) := maxi∈V (
∑n

j=1Aij/
∑n

j=1Aji) as the largest

out-degree to in-degree ratio among all nodes in the network. It always holds that r(G)≥ 1, with a

smaller value indicating a more evenly distributed degrees in the network.

Corollary 2 (Scaled `1-Norm Bound). Under Assumptions 1 and 2, for any diffusion

instance
(
G,v,Fε(·), β

)
, the scaled `1-norm of the difference can be upper bounded by

1

n
‖q∗−µ∗‖1 ≤ Cρ ·

√
‖C(G,ρ)‖1

n
. (10)

If r(G)< 1/ρ, the bound can be further simplified as

1

n
‖q∗−µ∗‖1 ≤ Cρ ·

√
1− ρ

1− ρr(G)
· D(G). (11)

In light of (7), the worst-case network-structure-free bound on 1
n
‖q∗ − µ∗‖1 is also of order

O
(√

1/dmin

)
. However, Corollary 2 provides more meaningful bounds. Particularly, (10) bounds the

scaled `1-norm of the error by that of the inverse in-degree centrality C(G,ρ). In poorly conditioned

networks with a large r(G), large weights may apply to nodes with a small in-degree, pushing this

bound closer to the worst-case scenario of O
(√

1/dmin

)
. Yet, for most networks, we believe that

(10) gives an accurate characterization of the `1-norm that takes into account the whole network

structure. When the network is appropriately conditioned (i.e., r(G) < 1/ρ), we obtain a more

transparent bound in (11) characterized by D(G), which is an aggregate measure of the network

structure. Unlike the minimal in-degree which offers a perspective of extreme nodes, D(G) provides a

holistic view. It emphasizes the average inverse in-degree, thereby giving an encompassing depiction

of network connectivity and underscoring the relationship between network structure and the FPA

error. Moreover, the inverse in-degree density D(G) is also computationally more efficient than the

aforementioned inverse in-degree centrality C(G,ρ), which requires inverting an n-by-n matrix. As

a consequence, D(G) is a more practical performance indicator for the FPA scheme across different

networks.

Another key observation pertains to the largest out-to-in-degree ratio r(G). Interestingly, the

derived upper bound is tighter as r(G) decreases, indicating a better performance of the FPA scheme

for more balanced networks. We also highlight that the assumption r(G)< 1/ρ for the second part of

Corollary 2 is not restrictive in general. Notably, all undirected graphs and balanced directed graphs

satisfy that r(G) = 1 < 1/ρ. Studies such as Mislove (2009) also validate the balanced nature of

social networks in practice. In particular, active agents (i.e., those who create many links) also tend

to be popular (i.e., they are the target of many links). This high correlation is generally attributed

to the prevalence of reciprocal links in social networks.



Lin et al.: Nonprogressive Diffusion on Social Networks
14 Article submitted to Management Science; manuscript no.

We remark on two facts. First, all the aforementioned bounds apply to networks where dmin > 0.

For any standalone node i with no in-neighbors, the local network effect term in (1) is zero. Thus,

for these nodes, µ∗i = q∗i holds trivially. Therefore, the inclusion of such nodes would only tighten

the derived bounds. Further discussions of this aspect are deferred to the numerical experiments in

Section 5. Second, it is easy to show that the constant Cρ is strictly decreasing in ρ and converges

to zero as ρ converges to zero. Therefore, our bounds suggest that FPA works better when ρ, which

represents the compound effect of network externality and noise magnitude, is small.

Operationalizing the FPA solution. The significance of the FPA solution µ∗ lies in the fact that it

allows us to reformulate and simplify problem (4). Instead of solving (4) directly, we can replace q∗

with µ∗ and approximate (4) as follows:

maximize
x∈X ,µ

g(µ,x) s.t. µ= h
(
µ ; G,v(x),Fε(·), β

)
, (12)

where h(· ; G,v,Fε(·), β) is the adoption evolution operator (AEO) induced by the diffusion instance

(G,v,Fε(·), β), which we will formally define using (13) in Section 3.3. The approximate problem

(12) offers an explicit formulation by incorporating the FPA scheme as a constraint. This stands

in contrast to the implicit variable q∗ in problem (4), which emerges from a complex stochastic

process. The formulation (12) thus simplifies the optimization problem and facilitates its solution.

We advocate for the use of this approximate optimization problem (12). The benefits are as

follows: (i) Theoretical Guarantee. The FPA scheme is especially appealing due to its superb per-

formance, particularly for large and dense networks. Stronger results can be obtained for specific

network structures, such as regular networks and random graphs (see Sections 4.2 and 5.2). From a

practical standpoint, many real-world networks are large and continuously expanding, making the

FPA scheme a promising tool (see Section 5.3). (ii) Computational Efficiency. The FPA scheme

offers significant computational advantages over traditional Markov Chain Monte Carlo (MCMC)

simulations. According to Rheinboldt (1998), a fixed-point iteration converges to the FPA solution

in linear time. In contrast, MCMC simulations require considerable computational resources and

become more cumbersome as network sizes grow. (iii) Insights on Network Structure. Our proposed

metrics, namely inverse in-degree centrality and inverse in-degree density, serve as accurate indica-

tors of the FPA scheme’s performance. These metrics offer actionable insights on whether to employ

the FPA scheme, depending on specific accuracy and efficiency goals. (iv) Closed-Form Expression.

The approximate problem (12) is considerably more tractable than (4), which paves the way for

developing more efficient algorithms tailored for specific problems (see Section 6).
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3.3. Proof Sketch of Theorem 1

In this section, we sketch the proof of Theorem 1, which is our main methodological contribution.

The key idea is to construct an approximate process {µ(t)}∞t=0 for a given instance (G,v,Fε(·), β).

We show that {µ(t)}∞t=0 closely aligns with the adoption probability process {q(t)}∞t=0. As a result,

q∗, as the limit of q(t), is expected to be closely approximated by µ∗, the limit of {µ(t)}∞t=0.

Specifically, we define {µ(t)}∞t=0 as a deterministic dynamic system throughout the time horizon:

µi(t) =

{
qi(0) t= 0

1−Fε
(
−vi−β

∑
j∈Ni

µj(t−1)
di

)
t > 0

, for all i∈ V. (13)

By Proposition 1, q∗ has a unique value regardless of the initial distribution of the adoption state

Y(0). Without loss of generality, we assume Yi(0) = 0 for all i ∈ V . Indeed, by Proposition 1, the

limiting distribution q∗ is irrelevant to the starting adoption status so any bound on q∗−µ∗ derived

under Y(0) = 0 applies to an arbitrary initial distribution of Y(0). We introduce h : Rn→ Rn as

the mapping function that allows us to express {µ(t)}∞t=0 in the form µ(t) = h
(
µ(t− 1)

)
for t≥ 1.

We refer to h(·) as the adoption evolution operator (AEO) and define a family of auxiliary AEOs

H :=
{
hζ(·) = h(·) + ζ : ζ ∈Rn

}
. We proceed by discussing the properties of any AEO h ∈H and

its role in shaping the approximate diffusion process {µ(t)}∞t=0.

Proposition 2 (Partial Order Preserving, Existence, and Uniqueness). Any AEO h ∈

H satisfies the following properties (i) and (ii), and the induced dynamic system {ν(t)}∞t=0 defined

by fixed-point iteration ν(t) = h
(
ν(t− 1)

)
satisfies the following property (iii):

(i) h(a)≤ h(b) if a≤ b.

(ii) There exists a unique fixed-point solution ν∗ ∈Rn with h(ν∗) = ν∗.

(iii) For any initial state ν(0), the dynamic system {ν(t)}∞t=0 satisfies limt→∞ ν(t) = ν∗.

The proof of Proposition 2(i) follows from the definition of h(·). Proposition 2(ii) and (iii) are

consequences of the fact that h(·) is a contraction mapping. Note that {µ(t)}∞t=0 is the special case

of the induced dynamic system {ν(t)}∞t=0 when ν(0) = q(0). Given these properties of {µ(t)}∞t=0,

for any diffusion instances under Assumptions 1 and 2, we can always find the well-defined FPA

solution µ∗ for limiting adoption probability q∗ by solving the system of equations h(µ∗) =µ∗.

To show that {µ(t)}∞t=0 closely approximates {q(t)}∞t=0, we face two challenges. The first stems

from the temporal and spatial dependencies among (un)adoptions. Specifically, an agent’s adoption

utility is directly shaped by the behavior of their immediate in-neighbors. Over time, these localized

correlations not only accumulate but also spread across the network. The second challenge arises

from the non-linearity of the CDF Fε of a general distribution. This non-linearity makes it difficult

to analytically track the transition of adoption states over time and particularly complicates the
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characterization of adoption correlations. To address these challenges, our subsequent efforts focus

on bounding the spatio-temporal variances and the nonlinear dynamics in a sequential manner.

In our first analytical phase, we focus on bounding the variance of agents’ adoptions, particularly

addressing the local network effect term presented in (1). This term is essentially an average over

a set of mutually dependent random variables. To quantify its variability, we introduce κi(t) :=

Var
(

1
di

∑
j∈Ni

Yj(t)
)
as the variance of the in-neighbor adoption fraction for agent i. Lemma 1

provides an upper bound of this variance for each period over the entire time horizon.

Lemma 1 (In-Neighbor Variance Bound). Under Assumptions 1 and 2, for any diffusion

instance
(
G,v,Fε(·), β

)
and t≥ 0, the in-neighbor adoption variance can be upper bounded by

κ(t) ≤ 1

4

[
I+

t−1∑
τ=1

(
ρ2

2

)τ
Ã
τ

]
b.

Since Ã is row stochastic, Lemma 1 bounds κ by (approximately) the weighted sum of inverse

in-degrees b. This essentially implies that as the number of in-neighbors increases, the variance

decreases. In other words, having more in-neighbors reduces the impact of any single neighbor,

thereby reducing the mutual dependence among the adoptions of different agents. As time progresses,

this upper bound gradually increases, which can be interpreted as a discounted contribution from

the neighbors that are connected through a path of length t−1. As we can see, the network structure

plays a critical role here. The expression I+
∑t−1

τ=1

(
ρ2

2

)τ
Ã
τ
offers insights into how stochasticity is

disseminated, including both spatial and temporal aspects. We can then connect this bound to the

centrality measure that resembles our inverse in-degree centrality as follows:

κ(t) ≤ lim
t→∞

1

4

[
I+

t−1∑
τ=1

(
ρ2

2

)τ
Ã
τ

]
b =

1

4

(
I− ρ

2

2
Ã

)−1
b, for all t≥ 0. (14)

With the variance bound (14), we move to our second analytical phase of bounding the nonlinear

dynamics. Although the adoption probability process {q(t)}∞t=0 lacks a closed-form expression, we

expect that its transition between consecutive time periods akin to the AEO h(·).

Lemma 2 (Fixed-Point Deviation of Adoption Probability). Under Assumptions 1 and 2,

for any diffusion instance
(
G,v,Fε(·), β

)
and t≥ 1, we have

∣∣h(q(t− 1)
)
−q(t)

∣∣ ≤ δ,

where δ=

[(
ρ
2

)2 (
I− ρ2

2
Ã
)−1

b

] 1
2

.

Building on Lemma 1, Lemma 2 establishes a connection between the transitions of {q(t)}∞t=0

and {µ(t)}∞t=0, providing a one-step guarantee for their similarity. Based on this fact, we use a
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“fixed-point sandwich” technique to prove the final results in Theorem 1. Specifically, we define a

lower bound system {µ(t)}∞t=0 and an upper bound system {µ(t)}∞t=0 as follows:

µ
i
(t) =

{
qi(0) t= 0

1−Fε
(
−vi−β

∑
j∈Ni

µ
j
(t−1)

di

)
− δi t > 0

, for all i∈ V,

µi(t) =

{
qi(0) t= 0

1−Fε
(
−vi−β

∑
j∈Ni

µj(t−1)
di

)
+ δi t > 0

, for all i∈ V.

Employing our auxiliary AEOs, these two systems can be expressed as two fixed-point iterations:

µ(t) = h−δ(µ(t−1)) and µ(t) = hδ(µ(t−1)), with µ∗ and µ∗ being the fixed-point solutions to these

two systems, respectively. The proof of Theorem 1 uses these two fixed-point iterations to sandwich

both {q(t)}∞t=0 and {µ(t)}∞t=0. When t goes to infinity, |q∗ − µ∗| can be bounded by
∣∣µ∗ − µ∗∣∣,

which we can quantify by the lemmas above. This allows us to show that the entire trajectories of

{q(t)}∞t=0 and {µ(t)}∞t=0 are close to each other. Therefore, the FPA solution µ∗ serves as a good

approximation for the limiting adoption probability q∗.

4. Improved Error Bounds for the FPA Scheme

In this section, we delve deeper into the error bound of the FPA scheme. We demonstrate that, by

introducing a mild additional assumption on the noise distribution Fε(·), a tighter upper bound can

be derived. Moreover, we also present a matching lower bound of the same order with this refined

upper bound, closing the gap in our analysis. For the subsequent analysis in this section, we will

proceed under Assumption 3.

Assumption 3 (Smoothness Condition). The random noise εi(t) has a differentiable proba-

bility density function (PDF) fε(·) with its derivative upper bounded by |f ′ε(·)| ≤Lf .

This assumption mainly requires the smoothness of the PDF fε. It is worth noting that this assump-

tion is fairly mild, given that many commonly used distributions inherently exhibit high degrees of

differentiability, including but not limited to the normal and logistic distributions.

4.1. Improved Upper Bounds

Recall that Theorem 1 establishes an upper bound for the error of FPA at the order of
[
C(G;ρ)

] 1
2 .

Under Assumption 3, Theorem 2 below refines this upper bound to a lower order of C(G;ρ) ≤[
C(G;ρ)

] 1
2 , where the inequality follows immediately from C(G;ρ) ≤ e. Define the constant C̃ :=

Lfβ
2

4(1−ρ)(1−ρ/2) , which is increasing in both ρ and Lf .

Theorem 2 (Improved Entry-Wise Error Bound of the FPA Scheme). Under Assump-

tions 1, 2 and 3, for any diffusion instance
(
G,v,Fε(·), β

)
, we have

|q∗−µ∗| ≤ C̃ · C(G;ρ) and ‖q∗−µ∗‖∞ ≤ C̃ · 1

dmin

. (15)
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Our inverse indegree centrality C(G;ρ) remains essential in the improved bounds. In light of the

refined bound (15), we also sharpen the scaled `1-norm of the approximation error.

Corollary 3 (Improved Bound for Scaled `1-Norm). Under Assumptions 1, 2 and 3, for

any diffusion instance
(
G,v,Fε(·), β

)
with r(G)< 1/ρ, we have

1

n
‖q∗−µ∗‖1 ≤

(1− ρ)C̃

1− ρr(G)
· D(G). (16)

Finally, we remark that the proof of Theorem 2 largely parallels that of Theorem 1, with the pri-

mary difference in that we employ a second-order Taylor expansion of Fε(·), enabled by Assumption

3 to bound the deviation |h(q(t− 1))− q(t)|. Lemma 3 refines Lemma 2 by removing the square

root in the upper bound.

Lemma 3 (Improved Fixed-Point Deviation of Adoption Probability). Under Assump-

tions 1, 2 and 3, for any diffusion instance
(
G,v,Fε(·), β

)
and t≥ 1, we have

∣∣∣h(q(t− 1))−q(t)
∣∣∣ ≤ Lfβ

2

8

(
I− ρ

2

2
Ã

)−1
b.

4.2. A Matching Lower Bound

Our results in Section 4.1 highlight a linear dependence of FPA’s error upper bounds on the network

measures such as C(G;ρ), 1/dmin, and D(G). We next establish matching lower bounds of the same

orders, suggesting that the order-optimality of the upper bounds.

Theorem 3 (A Lower Bound with Regular Graphs). For any (n,d)∈Z2
+ with d≤ n, there

exists a diffusion instance
(
G,v,Fε(·), β

)
satisfying Assumptions 1, 2 and 3 such that |V |= n, G is

d-regular and

|q∗−µ∗| ≥ c · 1
d
e, (17)

where c≈ 0.003> 0. Consequently, it holds that

|q∗−µ∗| ≥ c · C(G;ρ), ‖q∗−µ∗‖∞ ≥ c · 1

dmin

, and
1

n
‖q∗−µ∗‖1 ≥ c · D(G). (18)

For a regular graph G, it follows that C(G;ρ) = e/d and 1/dmin = D(G) = 1/d, so (18) follows

from (17). Note that, for any minimal in-degree dmin and inverse in-degree density D(G), we can

construct instances such that the bounds (15) and (16) are order-tight with respect to network-

structure-based measures. We relegate the analysis regarding the (sub-)optimality of the constants

Cρ and C̃ to future research.

To show the lower bound (17), we construct a diffusion instance such that (i) the network structure

is a d-regular (directed) graph G= (V,E), (ii) each agent i ∈ V has the same intrinsic value vi =
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−1.5, (iii) the strength of the network effect is β = 1, and (iv) the random noise follows εi(t) ∼
Logistic(0,1)2. A key observation that enables the analysis is that for any node i∈ V ,

vi +β

∑
j∈Ni

Yj(t− 1)

di
∈ [v, v+β] = [−1.5,−0.5].

Then, we exploit the boundedness of Fε(·), fε(·), and f ′ε(·), as well as the convexity of Fε(·) in

[−1.5,−0.5] to derive sharp bounds that allow us to reverse the chain of inequalities in the analysis

of the upper bounds, thus eventually establishing (17).

5. Numerical Experiments
In this section, we conduct a series of numerical studies, spanning across the 10-node example (i.e.,

Figure 1a), large-scale random networks, and real-world networks, to validate our FPA scheme in

different scenarios. We underscore a few key insights from our numerics. Firstly, our FPA scheme

consistently achieves superior approximation performance in every scenario, even for small and

sparse networks or some instances where the assumptions necessary for the theoretical analysis,

such as Assumption 2, are not met. Secondly, both the inverse in-degree centrality, C(G,ρ), and the

inverse in-degree intensity, D(G), emerge as highly indicative metrics that offer precise evaluations of

the FPA scheme’s efficacy for a wide range of networks. Lastly, in terms of computational efficiency,

FPA significantly outperforms alternative approaches, notably the MCMC method.

We note a fundamental challenge in measuring the accuracy of the FPA scheme that the ground-

truth limiting adoption probabilities q∗ are generally unknown. As outlined in Section 2, deriving q∗

would require solving the stationary distribution of a large-scale MC, which is generally prohibitive

both analytically and computationally.3 Thus, as a workaround, we resort to the MCMC simulation

with a long running time horizon to estimate the ground-truth q∗. See Appendix C.3 for details.

Unless otherwise specified, we adhere to the following settings for all subsequent experiments. The

limiting adoption probability q∗ is computed by MCMC simulations, while the FPA solution µ∗ is

obtained through fixed point iteration, with an initial value µ(0) = 0 and a convergence criterion

of 10−5. The noise distribution follows εi(t)
i.i.d.∼ Logistic(0,1) and the network effect intensity is

set to be β = 3.5, so ρ = 0.875. By setting a relatively high value for ρ, our experiments aim

to provide insights into the near-worst-case scenarios, offering a robust assessment of the FPA

scheme. Further, to quantify performance for a specific diffusion instance (G,v,Fε(·), β), we use

a self-normalized measure, the mean absolute percentage error (MAPE) across all agents, defined

as MAPE = 1
n

∑
i∈V

|µ∗i−q
∗
i |

q∗i
× 100%, rather than absolute errors as in the theoretical discussion in

previous sections. Doing so allows to focus on the relative errors, which is more interpretable and

facilitates the comparisons across different scales of adoption probabilities.

2 The CDF of Logistic(µ,σ) is Fε(x) = 1/(1+ exp{−(x−µ)/σ}).
3 For some highly structured symmetric networks (such as star networks and complete networks), solving the station-
ary distribution is tractable. See Appendix C.2 for details.
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5.1. Revisiting the Motivating Example

In this subsection, we revisit the 10-node motivating example introduced in Section 3.1 to numeri-

cally validate our theoretical results. We focus on two aspects: the role of our centrality measure as a

node-level metric for the performance of FPA, and a thorough examination of Assumption 2, which

serves as a sufficient condition for all our theoretical results. For the experiments in this subsection,

the limiting adoption probability q∗ is achieved by solving the exact MC stationary distribution.

We use the same set of parameters and still compute the FPA solution initialized at µ(0) = 0.

5.1.1. Discussions on the inverse in-degree centrality. As highlighted in Theorem 1, the

upper bound of the approximation error is intrinsically linked to the inverse in-degree centrality,

C(G,ρ). Each component of C(G,ρ) is computed as a weighted average of the inverse in-degrees across

all nodes, emphasizing the connectivity of each node to those with different in-degrees. In Figure 2,

we juxtapose the absolute approximation error |q∗i −µ∗i | with the inverse in-degree centrality Ci(G,ρ)

for this illustrative set of 10 nodes, which show a discernible positive correlation between these

two metrics. This underscores the significance of inverse in-degree centrality as a sharp node-level

indicator in evaluating the performance of the FPA scheme.
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Figure 2 Analysis of the 10-node example instance. Left: Reproduction of the network diagram from Figure 1a;

Right: Illustration of the relationship between the approximation error and inverse in-degree centrality.

5.1.2. Discussions on Assumption 2. Although similar assumptions as ρ= βL< 1 are com-

monly made in the network literature (e.g., see Huang et al. 2022), its implications on the FPA

scheme warrant further exploration—especially when this assumption is not satisfied. The parame-

ter ρ has two key elements, namely the network effect intensity β and the Lipschitz constant L of

Fε(·). We experiment by varying each of these two components, benchmarking against the misspec-

ified model where the network diffusion is not incorporated (similar to the setup in Section 3.1).

Figure 3 plots the MAPE of the FPA scheme for instances with different values of β and L.

(i) Sensitivity analysis regarding the network effect intensity . We vary β from 0 to 10 and keep

all other parameters fixed. Given that the noise distribution follows εi
i.i.d.∼ Logistic(0,1) with L=
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(b) Sensitivity regarding noise distribution

Figure 3 Sensitivity of the FPA error against the discount parameter ρ. In the plot on the right, FPA scheme 0 (1,

resp.) represents the FPA solution initialized with µ(0) = 0 (µ(0) = 1, resp.).

fε(0) = 0.25, our experiments encompass both scenarios when Assumption 2 is satisfied or violated.

As illustrated in Figure 3a, the MAPE first increases with β, but at a notably slower rate compared

to the misspecified model. Subsequently, the MAPE gradually declines to 0 when ρ= βL> 1.

For ρ < 1, it is not surprising that the FPA scheme performs exceptionally well when β is close

to 0 (i.e., the network effect is weak). When β increases, the network effect becomes increasingly

influential on user adoption behavior, leading to a slight degradation in the FPA’s quality. This

dependency on β is primarily reflected in the constant Cρ (and C̃) in our theoretical results. Never-

theless, even when β = 3.5 where the MAPE peaks at 9.11%, the performance remains commendable,

substantially lower than what is observed in the misspecified model (64.42%). This underscores the

superb quality of the FPA scheme even with strong network effects in such a small network.

When ρ > 1, we observe an intriguing trend: the MAPE decreases in β. This demonstrates the

robust and resilient performance of the FPA. The underlying reason can be attributed to the fact

that L is not uniformly tight for Fε(·). Specifically, with large values of β, network effects heavily

influence user behavior, driving the adoption probabilities close to 1 for agents. Thus, the nominal

utility in the FPA scheme, represented by vi + β
∑
j∈Ni

µj(t−1)
di

, gravitates towards the flat areas of

the CDF where the Lipschitz constant is significantly smaller than L, ensuring a unique limit of the

FPA. Thus, even if the nominal utility for adoption, given by vi +β
∑
j∈Ni

Yj(t−1)
di

, occasionally lands

in CDF regions with larger Lipschitz constants, thereby violating Assumption 2, the resilience of

the FPA scheme remains evident.

(ii) Sensitivity analysis regarding the noise distribution. The experiment above may lead the read-

ers to conceive that Assumption 2 is conservative, but we demonstrate that it is not the case by

varying L. Particularly, we assess the performance of the FPA scheme across a family of Logis-

tic distributions defined by εi
i.i.d.∼ Logistic(0, s), where s ranges from 0.0625 to 2.5. The associated

Lipschitz constant can be derived as L= 1
4s
. All other parameters are fixed as in Section 3.1.
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In Figure 3b, we observe a continuous increase of MAPE as L increases. Indeed, when ρ > 1,

the FPA scheme’s performance deteriorates drastically, approaching that of the misspecified model.

This deterioration can be attributed to the violation of Proposition 2, i.e., there may be multiple

solutions to the FPA scheme. In particular, the FPA solution initialized at µ(0) = 0 diverges from

q∗. To offer a more comprehensive view, we also present an additional FPA solution initialized at

µ(0) = 1 in Figure 3b. Notably, these two solutions exhibit divergent performance, with the latter

significantly outperforming the former when ρ > 1. We remark that other FPA solutions might

exist with different initial values and it is difficult to know which FPA solution provides a better

performance a priori.

Upon closer examination, an important difference emerges between the two scenarios. In the first,

the intrinsic utility v is in the same location within the noise distribution. In contrast, the second

scenario can exhibit extreme placements of v, either to the far left or far right relative to the noise

distribution, especially when s is small. Consequently, in the latter scenario, certain agents are

highly inclined to adopt, while others lean towards non-adoption. When Assumption 2 is breached

in this context, the FPA scheme has multiple solutions, complicating its application. In short, the

effects of violating Assumption 2 on the FPA’s quality are multifaceted, contingent on the specific

circumstances. We leave further explorations of these phenomena to future studies.

5.2. Random Networks

In this section, we evaluate the performance of the FPA scheme across a range of well-studied random

networks, with a focus on Erdős-Rényi networks of different sizes and densities. Additionally, we

explore the FPA scheme’s performance in power-law networks, varying the exponent and degree

correlation to gain insights into its sensitivity to network structure. These supplementary results are

provided in Appendix C.4. To ensure the robustness of our empirical findings, we run 50 repetitions

for each combination of random network parameters.

In the following, we consider a sequence of directed Erdős-Rényi networks, each denoted by

G(n,p(n)), where n represents the number of nodes and p(n) represents the network density—the

probability that any given edge connecting two nodes exists. In an Erdős-Rényi network, edges

are present independent of each other. To thoroughly understand the FPA scheme, we conduct

experiments focusing on two aspects: the sensitivity of FPA’s performance with respect to network

structures and the computational efficiency of the FPA scheme.

5.2.1. The FPA scheme’s accuracy with regard to network structure. We assess the

performance of the FPA scheme by varying the size and density of Erdős-Rényi networks.

(i) Network size. We vary the network size n from 20 to 10,000, and select densities p(n) from

the set { 1
n1.1

, 1
n
, (logn)

2

n
,0.1}. The choice of these values is motivated by the critical ranges of p(n)
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identified in the random graph literature. Further discussions on the properties of different Erdős-

Rényi networks can be found in Appendix C.5 (see, also, Huang et al. 2022).
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Figure 4 Performance of the FPA scheme on Erdős-Rényi networks of different network sizes. All horizontal axes

are in the log scale. Shaded areas represent the 95% confidence interval.

In Figure 4a, we examine how MAPE varies with the network size n. The MAPE either decreases

or remains stable as n grows, but the rate of decrease differs depending on p(n). Interestingly, the

decrease rate is faster when p(n) is relatively small or large and slower when p(n) is moderate. At first

glance, this may seem contradictory to our theoretical insights, which suggest that the FPA scheme

performs better in larger, denser networks. However, our theoretical results, as discussed in Sections

3 and 4, are developed under the assumption dmin > 0, thereby excluding standalone nodes. In the

FPA solution, these standalone nodes, which do not receive any influence but can exert influence

(i.e., their out-degree can be positive), are perfectly approximated, thereby leading to a decline

in MAPE once included. Consequently, we conclude that for dense networks (i.e., p(n) = (logn)2

n

and p(n) = 0.1), the fraction of standalone nodes remains minimal, but the in-degrees increases

and converges to its mean value np(n) as n increases, resulting in a rapid decrease in MAPE—

consistent with our theoretical predictions. Conversely, for very sparse networks (i.e., p(n) = 1
n1.1

),

the increasing fraction of standalone nodes with growing n also drives a reduction in MAPE.

The observation in Figure 4a reveals that some traditional measures of network density, such

as p(n) and average degree, may not effectively evaluate the FPA scheme’s performance, because

critical information regarding network configuration is absent in these measures. To confirm this

intuition, Figures 4b and 4c present two metrics—the inverse in-degree density D(G) and the inverse

of average in-degree, which is the metric widely used to measure network densities. We compute

D(G) as 1
n

∑
i∈Vi:di>0

1
di

to reflect the impact of standalone nodes. As n increases, we find that

D(G) follows a trend that matches that of MAPE, suggesting that it is a sharp indicator of the

scheme’s performance. Meanwhile, the average in-degree, which captures the traditional view of

network density, cannot reflect the trend.
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(ii) Network density : We fix a medium network size of n = 1,000 and focus on various densi-

ties p(n) ∈
{

1
n1.3

, 1
n1.1

, 1
n
,
√
logn
n

, logn
n
, (logn)

2

n
,0.1

}
. In Figure 5a, the MAPE first increases and then

decreases as the network gets denser, reflecting a trend that aligns with Figure 4a. The peak MAPE

1

n1.3

1

n1.1

1

n

√
logn

n

logn

n

(logn)2

n

0.1

0

2

4

6

8

10

12

14

16

Network density p(n)

M
A
P
E
(%

)

(a) MAPE against p(n)

1

n1.3

1

n1.1

1

n

√
logn

n

logn

n

(logn)2

n

0.1

0

0.1

0.2

0.3

0.4

0.5

Network density p(n)

In
ve
rs
e
in
-d
eg
re
e
de

ns
it
y
D

(G
)

(b) D(G) against p(n)

1

n1.3

1

n1.1

1

n

√
logn

n

logn

n

(logn)2

n

0.1

0

2

4

6

8

10

Edge probability p(n)

In
ve
rs
e
of

av
er
ag
e
in
-d
eg
re
e

(c) Inverse of average in-degree against p(n)

Figure 5 Performance of the FPA scheme on Erdős-Rényi networks of different network densities.

is achieved at p(n) =
√
logn
n

. When p(n) is very small (i.e., p(n) = 1
n1.3

) or very large (i.e., p(n) = 0.1),

the MAPE is less than 5%. Recall that we set ρ close to 1 to demonstrate the near-worst-case

performance. Even under such a setting, the FPA scheme performs exceptionally well. Figures 5b

and 5c further show the inverse in-degree density D(G) and the inverse of average in-degree, respec-

tively, for different random graphs. The trends largely mirror those seen in Figures 4b and 4c, again

confirming that D(G) is a robust indicator of PFA’s performance.

We observe that the enhanced performance of dense networks can also be partly attributed to

the largest out-in-degree ratio r(G). As highlighted in Corollary 2, we show that the upper bound

for approximation error increases as r(G) increases. In dense Erdős-Rényi networks, both the in-

degrees and the out-degrees of nodes tend to cluster around the mean value. This contributes to the

density of the network while also making it more balanced. To explore the role of network imbalance

level further, we conduct an extensive analysis with power-law networks, constructing in-degree and

out-degree sequences with different correlations (see Appendix C.4).

Finally, we complement our analysis by singling out the agents with low in-degrees, who, as illus-

trated by both numerical and theoretical analyses, significantly affect the performance of FPA. We

analyze the MAPE for the nodes with d= 0,1,2, and also those with d≥ 5 for comparison, visualized

in Figure 6, across various network sizes and densities. Key takeaways from our observations include

the following: Standalone agents, who have an in-degree of 0 always show zero error. However,

agents with an in-degree of 1 exhibit larger MAPE compared to those with larger in-degrees, far

exceeding the network-wise MAPE as shown in Figures 4a and 5a. These findings reaffirm our node-

level theoretical predictions (Theorem 1 and 2), suggesting that the FPA scheme is more accurate

for nodes with higher in-degrees. Additionally, for both agents with in-degrees of 1 and 2, we find
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Figure 6 Degree-level MAPE of the FPA scheme. Left: MAPE with regard to n and p(n) is fixed to be 1
n
. The

x-axis is in the log scale. Shaded areas represent the 95% confidence interval. Middle: MAPE with regard to p(n) and

n is fixed to be 1,000. Right: Inverse in-degree centrality with regard to p(n).

that their MAPEs remain relatively stable as n increases. However, there is a slight upward trend

with growing p(n). This can be attributed to the influence of more distant neighbors, highlighting

the importance of capturing network’s overall structure and connectivity beyond mere in-degrees.

We observe that such information is comprehensively represented by our inverse indegree centrality

measure, as depicted in Figure 6c. The patterns observed in the centrality align closely with those

of MAPE. Indeed, this alignment would be nearly impeccable if the mean absolute error was used

instead. However, we have omitted the corresponding results due to space constraints.

5.2.2. The computational efficiency of the FPA scheme. We evaluate the computational

efficiency by comparing the CPU time required to calculate µ∗ and that for approximating q∗ with

MCMC. To ensure a fair comparison, we report the computational time of the MCMC process once

its real-time MAPE falls below that achieved by the FPA scheme. Keeping the network density

constant at n(p) = 0.1, we vary n from 20 to 10,000. As shown in Table 1, the runtime for both

methods increases with n. However, the FPA scheme consistently outperforms MCMC by a sub-

stantial margin. The gap is even larger for large and dense networks. For instance, when n= 10,000,

approximately 40 minutes are required for MCMC to match the performance of the FPA scheme,

which completes the task in just 2.3 seconds.

Table 1 The CPU time required for the MCMC simulation and the FPA scheme.

Network size n 20 50 100 200 500 1,000 2,000 5,000 10,000

MCMC time (s) 0.1680 0.2576 0.5296 2.4152 18.9790 97.4521 286.7179 1315.3010 2366.8788
FPA time (s) 0.0015 0.0043 0.0074 0.0183 0.0438 0.1015 0.2298 1.0270 2.3044

In conclusion, the FPA scheme offers considerable advantages in computational efficiency across

all the tested scenarios without a significant compromise in accuracy, which implies its potential to

effectively characterize the diffusion process for a large variety of social networks.
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5.3. Real-world Networks

Our numerical experiments in Section 5.2 focus on the random networks, which may not capture

real-world phenomena (e.g., see Jackson 2010). As such, to evaluate the FPA scheme in more realistic

settings, we test this scheme on real-world networks from the Network Repository (Rossi and Ahmed

2015). More specifically, we select five social friendship networks extracted from Facebook. These

networks consist of people as nodes, with the edges representing friendship ties. An overview and

the results for these networks are summarized in Table 2. For the raw data and additional summary

statistics, readers can refer to the Network Repository website.4

Table 2 Experiment results for real-world networks.

Instance n dmin dmax Avg. in-degree D(G) MAPE(%) MCMC time (s) FPA time (s)

Caltech36 770 1 248 43.2623 0.1108 3.48 4.5335 0.0636
Reed98 963 1 313 39.0696 0.0962 3.14 5.6228 0.0623

Haverford76 1,447 1 375 82.3621 0.0427 1.59 23.2347 0.1009
Simmons81 1,519 1 300 43.4338 0.0857 2.85 11.9185 0.1426
Amherst41 2,236 1 467 81.3542 0.0488 1.71 35.6749 0.1846

We emphasize three key observations from these experiments on real-world networks. First, the

FPA scheme performs exceptionally well, achieving a maximum MAPE of just 3.48% across all

evaluated networks. This suggests that the FPA scheme is not only accurate but also reliable for

real-world applications. Second, the computational time required by the FPA scheme is significantly

less than that of the MCMC method, with a factor ranging from 70 to 230. This underscores the

computational efficiency of the FPA scheme, making it particularly well-suited for applications

where scalability matters. Third, among various metrics such as network size n, minimal in-degree

dmin, maximal in-degree dmax, and average in-degree, the inverse in-degree density D(G) stands out

as the most reliable indicator of the FPA scheme’s performance measured by MAPE.

Figure 7 presents a comprehensive overview of the relationship between the performance of FPA

and the inverse in-degree density across different families of networks. The figure clearly plots a

positive correlation between MAPE and D(G). This reaffirms that D(G) is not merely an upper

bound of performance, but also a dependable and easy-to-compute metric to gauge the FPA scheme’s

efficacy. Notably, real-world networks typically demonstrate lower D(G) values and MAPE for FPA

than several of the random networks we analyzed. This observation highlights the FPA scheme’s

practical relevance and resilience in real-world scenarios.

4 See https://networkrepository.com/networks.php.

https://networkrepository.com/networks.php
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Figure 7 Performance of the FPA scheme against the inverse in-degree density for different networks. Each node of

the random networks represents the average values of the same pair of parameters across all repetitions.

6. Applications of the Fixed-point Approximation Scheme

The FPA scheme can be applied to many classical operational decision problems that involve network

diffusion. In this section, we consider two noteworthy applications: the influence maximization (IM)

problem in network analysis, and optimal pricing on a social network in revenue management.

Hereafter, we assume that the (G,v,Fε(·), β) is known to the platform and confine our analysis of

the optimization problems to a given instance.

We first formulate how the approximation error of FPA translates into the optimality gap of the

original optimization problem. Consider the generally defined original problem (4) and its approxi-

mate formulation (12), we define the regret for a platform decision x as the difference between the

optimal objective value and the objective value under x. Formally, the regret for platform decision

x is given by:

Regret(x) = g
(
q∗(G,v(x∗),Fε, β),x∗

)
− g
(
q∗(G,v(x),Fε, β),x

)
, (19)

where x∗ is the optimal solution derived from original problem (4).

6.1. Influence Maximization

In the IM problem, we aim to select a set of up to K seed users to adopt the service at the beginning,

with the goal of maximizing the long-term expected total adoptions of the entire network. For

example, the service provider may select the key influencers on social media as the initial adopters

to promote the service to broader audiences. Additionally, we assume that the adoptions of seed

users are irreversible, contrasting the standard nonprogressive diffusion setting. This choice serves

two purposes. First, from an application perspective, it assumes that the influence of seed users

is long-lasting, as is often the case in practice. Second, as demonstrated in Proposition 1, merely

changing the initial states would not affect the long-run limit. Instead, by requiring the seed users’

adoption irreversible, we effectively change the limiting behavior. In terms of problem formulation,
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one can interpret it as increasing the intrinsic values sufficiently large for seed users so they will

always adopt.

Given diffusion instance (G,v,Fε(·), β), the original IM problem can be formulated as

maximize
S⊆V :|S|=K

∑
i∈V

q∗i = lim
t→∞

∑
i∈V

E[Yi(t)] (20a)

subject to Yi(t) =

{
1 ∀i∈ S, t≥ 1,

1

{
vi +β

∑
j∈Ni

Yi(t−1)
di

+ εi(t)≥ 0
}
∀i∈ V \S, t≥ 1.

(20b)

The objective (20a) is the limiting total expected adoptions. Constraint (20b) describes the stochas-

tic process that determines q∗ with Yi(t) = 1 for all i∈ S and t≥ 0 and initialization Y(0) = 1.

Employing the FPA scheme, the approximate IM problem can be formalized as follows:

maximize
µ,S⊆V :|S|=K

∑
i∈V

µi (21a)

subject to µi = 1, ∀i∈ S, (21b)

µi = 1−Fε
(
−vi−β

∑
j∈Ni

µj

di

)
, ∀i∈ V \S. (21c)

For ease of formulation, we use µ as an explicit decision variable and a set of equality constraints

specifies the FPA scheme which uniquely determines µ∗(S) for any given S ⊆ V . We next derive a

regret bound for the optimal solution SFPA to (21) compared with the optimal solution to (20), S∗.

Proposition 3 (IM Regret Bound). Under Assumptions 1 and 2, for any IM instance

(G,v,Fε(·), β),

Regret(SFPA) ≤ 2Cρ
√
n‖C(G,ρ)‖1.

The approximation error of the FPA scheme directly translates into the decision error. All our

previous findings, including the refined bounds discussed in Section 4.1, can be extended to the

approximate IM problem as well. For example, following (7), the worst-case regret bound in Propo-

sition 3 can also be adjusted to one with order O(n/
√
dmin), which is sublinear in n when dmin

increases with rate Ω(1).

While (21) provides an excellent approximation to the IM problem, solving it remains challenging.

Under a mild technical condition, g(µ∗(S), S) is also submodular in the seed set S as in the original

optimal seeding problem. Specifically, we impose the following assumption.

Assumption 4 (Restricted Convexity of the CDF). The random noise CDF Fε(·) is convex

on the range [−vmax−β,−vmin], where vmax := maxi∈V vi and vmin := mini∈V vi.
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Assumption 4 covers a wide range of commonly studied cases. For example, the nonprogressive

LT model, a special case of our model, naturally satisfies this assumption. Detailed discussions and

additional examples supporting this assumption can be found in Appendix D.1. Under Assumption

4, the following theorem shows the submodularity of g(µ∗(S), S).

Theorem 4 (Submodularity of Approximate IM Problem). Under Assumptions 1, 2 and

4, g(µ∗(S), S) is a submodular set function of seed set S.

As an immediate corollary of Theorem 4, the well-known greedy algorithm (e.g., see Nemhauser

et al. 1978) that recursively adds nodes with the largest marginal increase of total approximate

adoption (i.e., adding node i that maximizes µ∗(S ∪ {i}) − µ∗(S)) is applicable in our setting

for solving the approximate IM problem. For instances that align with Assumption 4, the greedy

algorithm provides a (1−1/e)-approximation solution to the approximate IM problem (21). Together

with Proposition 3, the simple greedy approach also provides a high-quality solution to the original

IM problem (20).

In summary, our approximate IM formulation presents several notable advantages. It facilitates

establishing clear-cut conditions, such as Assumption 4, which allow us to affirm submodularity,

thereby paving the way for efficient solution strategies. In contrast, verifying comparable conditions

for the original IM problem can be intractable. Additionally, solution techniques like the greedy algo-

rithm become markedly simpler to implement for the approximate IM problem. This simplification

is especially pertinent for the greedy algorithm, with O(nK) calculations of limiting adoptions. To

validate our findings, we conduct extensive numerical experiments on the approximate IM problem,

with details provided in Appendix D.2. Importantly, our results indicate that the greedy algorithm

for the approximate IM problem achieves near-optimal solutions irrespective of whether Assumption

4 holds or not. Moreover, this algorithm’s performance is nearly on par with the simulation-based

greedy algorithm for the original IM problem, surpassing many other heuristics. However, our greedy

algorithm is dramatically faster than the simulation-based counterpart.

6.2. Optimal Pricing

Network effects often play an important role in determining customers’ preferences for products

or services, motivating an emerging literature takes into account network effects in revenue man-

agement problems (Du et al. 2016, 2018, Wang and Wang 2017, Chen and Shi 2023, Chen and

Chen 2021, Gopalakrishnan et al. 2022). Our model is also naturally connected to this literature

which often employs the axiomatic or game-theoretic models. We highlight that these models also

arise naturally as approximations to the limiting customer purchasing behaviors in a dynamic and

stochastic environment.
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We assume that the firm uses pricing as the operational lever to steer consumers’ adoption or

purchase decisions, so we express the adoption utility for user i at time t as ui(t) = vi − γpi + β ·∑
j∈Ni

Yj(t−1)
di

+ εi(t), where pi is the price offered to user i and γ represents the price sensitivity. In

general, we allow offering different prices to different consumers. Indeed, many platforms have the

power to implement targeted price discrimination. Suppose the platform can set a maximum of m

distinct prices, represented by p∈Rm. We define a transformation matrixW ∈Rn×m, whereWik = 1

if consumer i is assigned with the k-th price, and Wi = 0 otherwise. When m = n and W = In,

customers face idiosyncratic prices. When m= 1 and W = en, customers face a homogeneous price.

Various forms of price-discrimination in between, such as price discrimination based on high or low

network connectivity, is also possible. We assume that the transformation matrix W is known by

the platform; that is, the platforms have pre-determined m customer segments for pricing purposes.

The ultimate objective is to identify an optimal price vector that maximizes profit.

Given diffusion instance (G,v,Fε(·), β), the original pricing problem can be formulated as

maximize
p

∑
i∈V

(
m∑
k=1

Wikpk

)
· q∗i =

∑
i∈V

(
m∑
k=1

Wikpk

)
· lim
t→∞

E[Yi(t)] (22a)

subject to Yi(t) = 1

{
vi− γ

m∑
k=1

Wikpk +β

∑
j∈Ni

Yi(t− 1)

di
+ εi(t)≥ 0

}
∀i∈ V, t≥ 1. (22b)

The objective (22a) represents the total profit and constraint (22b) describes the stochastic process

that determines q∗ with given price vector p.

Employing the FPA scheme, the approximate pricing problem can be formally stated as:

maximize
µ,p

µ>Wp (23a)

subject to µi = 1−Fε

(
−vi + γ

m∑
k=1

Wikpk−β
∑

j∈Ni
µj

di

)
, ∀i∈ V. (23b)

We use µ as an explicit decision variable and use constraint (23b) to link p and µ. The approximate

problem (23) is generally nonconvex due to the constraint (23b) and challenging to solve. Similar

to the IM problem, we first establish the regret bound for the optimal solution to (23), denoted by

pFPA, before discussing how to solve (23).

Proposition 4 (Regret Bound for Approximate Pricing Problem). Under Assumptions

1 and 2, for any pricing instance (G,v,Fε(·), β),

Regret(pFPA) ≤ pmaxCρ
√
n‖C(G,ρ)‖1,

where pmax := max
{∥∥p∗∥∥∞,∥∥pFPA

∥∥
∞

}
.



Lin et al.: Nonprogressive Diffusion on Social Networks
Article submitted to Management Science; manuscript no. 31

Proposition 4 establishes a similar regret bound to Proposition 3, except that the bound being

dependent on a derivative pmax. In practice, the platform usually has a natural upper bound for the

prices (e.g., the price under which no agent will make a purchase, regardless of his/her neighbors’

adoption decisions), so pmax can be bounded by some constant. Hence, like Proposition 3, our bound

in Proposition 3 also highlights a sublinear dependency on n and the network structure.

The distribution of random noise ε impacts the formulation and hardness of the problem. For

some common utility distributions, such as the normal distribution, the optimal pricing problem is

complex. Hereafter, we focus on the case with the logistic random noise where εi(t)
i.i.d.∼ Logistic(0,1).

In this case, the formulation naturally relates to the existing revenue management literature (Li

and Huh 2011, Gallego and Wang 2014, Golrezaei et al. 2020, Chen and Shi 2023), in which a

proven-useful technique to analyze such a pricing problem is to transform it into an optimization

problem in the demand space. Motivated by this technique, we consider the problem in both the

adoption probability and the price spaces.

6.2.1. Profit maximization in the adoption probability space. When considering the

adoption probability space, the pricing problem becomes less challenging when certain technical

conditions hold. In a perfect price discrimination environment (m= n, W = In) where the platform

can provide an idiosyncratic price/subsidy to each consumer and there are no price constraints, one

can reformulate the problem as follows.5

maximize
µ,p

µ>p (24a)

subject to µi = 1− 1

1 + exp{vi +β
∑

j∈Ni
µj/di− γpi}

, ∀i∈ V. (24b)

Cancelling out p, we can reformulate the problem in the adoption probability space as:

maximize
µ

∑
i∈V

1

γ

(
vi +β

∑
j∈Ni

µj
di

+ ln
1−µi
µi

)
µi (25a)

subject to 0≤ µi ≤ 1, ∀i∈ V. (25b)

When β = 0, the local network effect term does not play a role, so the problem is reduced to the

classical pricing problem with a concave objective. We show that this property is preserved when β

is sufficiently small.

Theorem 5 (Concavity of Price Optimization). The objective of the pricing problem (25)

is concave in µ if and only if 0<β ≤ 3.375.

5 Possible negative prices mean that the platform can subsidize some users, in particular those who might have a
large influence on the network. The platform incurs losses for these customers to promote a larger overall profit, as
commonly found in practice.
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Theorem 5 states that when the network diffusion intensity satisfies 0 < β ≤ 3.375, problem

(25) is a convex optimization problem and the optimal adoption probability µ∗ can be solved

by standard optimization techniques (i.e.. gradient methods). Given µ∗, we can then recover the

optimal prices. Furthermore, we remark that both Theorem 5 and Assumption 2 require the network

effect parameter to be relatively small, a condition consistently made in the related literature (e.g.,

Candogan et al. 2012).

6.2.2. Profit maximization in the price space. In a more general setting where perfect price

discrimination is not feasible, the pricing problem cannot be reformulated in the adoption probability

space. Thus, we need to study profit maximization directly in the price space. Particularly, we

represent the adoption probability as an implicit function of price, µ(p), and write the profit function

as Π(p). We can then derive the gradient of Π(p) as follows:

dΠ(p)

dp
=
dµ(p)

dp
·W ·p+W> ·µ(p), (26)

where the gradient of µ(p) is not explicitly given. To obtain this gradient, we apply the implicit

function theorem to (24b) (i.e., µ(p) = h(p,µ(p)); see Appendix D.3 for details) and rewrite (26)

as

dΠ(p)

dp
=
∂h(p,µ(p))

∂p
·
(
I− ∂h(p,µ(p))

∂µ(p)

)−1
·W ·p+W> ·µ(p). (27)

We can then apply the standard gradient descent techniques for nonlinear optimization problems to

find the near-optimal solution. As a final remark, the profit maximization in the price space is valid

under any noise distribution whereas the gradient-based approach can be easily applied to cases

with more sophisticated price constraints (e.g., the box constraints).

Finally, we conduct numerical experiments to implement the gradient-based algorithms for the

optimal pricing problem. We study two extreme scenarios, the perfect price discrimination case,

where each consumer is offered a personalized price, and the uniform price case, where all consumers

receive the same price. We show that, in both scenarios, near-optimal solutions can be achieved

with the FPA scheme. Interested readers are referred to Appendix D.3 and Appendix D.4 for more

detailed discussions of the implementation and results of the experiments, respectively.

7. Conclusion

In this study, we focus on nonprogressive diffusion on a social network, where agents can with-

draw their previous decisions in accordance with a change in the social environment. We tide over

the issues of the lack of a general modeling framework and efficient algorithms in the previous

studies. Specifically, we base on a general nonprogressive diffusion model that is agent-based, con-

siders the local network effect, and can be adapted to many utility models. We propose, with a
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provable performance guarantee, a fixed-point approximation scheme that can accurately and effi-

ciently approximate the limiting adoption probability for all agents and validate the results through

extensive experiments. We provide order-optimal bounds for the approximation error and conduct a

thorough analysis of its dependency with network structure. Finally, we investigate the conventional

optimization problems based on the fixed-point approximation.

We also view one of our contributions as proposing a novel approach to studying the long-run

behavior of the agents in networks in stochastic settings. In particular, there are several directions

for future research, in which our method seems readily extendable. First, the adoptions may not

change in each period but last for several periods in practice (e.g., a user needs to subscribe to Netflix

for at least one month). It would be interesting to investigate how we can represent the limiting

behavior in this scenario. Second, this work only considers a binary-choice case where each agent

only decides to adopt or not. It is worth investigating whether similar results can be extended to a

multiple-choice case (e.g., not to subscribe, to subscribe to a normal membership, or to subscribe

to a premium membership). Finally, the local network effect is captured by the average adoption

of the in-neighbors in our model. It is promising to consider the weighted average of in-neighbor

adoptions where the network effect is asymmetric.
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Online Appendices
Appendix A: Supporting Arguments for Section 3

In this Appendix, we start by showing the existence and uniqueness of the FPA solution.

Proof of Proposition 2: We first show the property (i) and then proof property (ii) and (iii) by showing

that h(·) is a contraction mapping.

Proof of (i): When a≤ b, we have
∑

j∈Ni
aj ≤

∑
j∈Ni

bj for all i ∈ V . Since CDF Fε(·) is monotonically

increasing, if a≤ b,

1−Fε
(
−vi−β

∑
j∈Ni

aj

di

)
≤ 1−Fε

(
−vi−β

∑
j∈Ni

bj

di

)
,

for all i∈ V , which implies h(a)≤ h(b).

Proof of (ii) and (iii): It is trivial that h(·) maps Rn to itself. Consider the Jacobian matrix of h(µ),

for all µ∈Rn,

∂h(µ)i
∂µj

=



0, j /∈Ni

β
di

∂Fε

(
−vi−β

∑
j′∈Ni

µj′

di

)
∂

(
−vi−β

∑
j′∈Ni

µj′

di

) , j ∈Ni.

By Assumption 1, we can have
∣∣∣∣ ∂h(µ)i∂µj

∣∣∣∣≤ βL

di
for all j ∈Ni. Therefore, the ∞-norm of dh(µ)

dµ
can be upper

bounded as ∥∥∥∥dh(µ)

dµ

∥∥∥∥
∞

= max
i∈V

∑
j∈V

∣∣∣∣∂h(µ)i
∂µj

∣∣∣∣≤max
i∈V

di
βL

di
= βL< 1

where the last inequality follows from Assumption 2.

Thus, for all µ ∈ Rn, we have
∥∥∥ dh(µ)dµ

∥∥∥
∞
< 1. It then implies that h(µ) is a contraction mapping. By

contraction mapping theorem, we conclude the proof. �

Then, we include the proof for the first analytical phase, namely, bounding the spatiotemporal variance.

Before that, we show an important gradient for the proof in Lemma 4.

Lemma 4 (Variance of Lipschitz functions). Let X be a random variable with a well-defined second

moment. If g(·) is a L-Lipschitz continuous function, the following inequality holds:

Var(g(X)) ≤ L2Var(X).

Proof of Lemma 4:

Var(g(X)) = Var(g(X)− g(E[X])) ≤ E[(g(X)− g(E[X]))2] ≤ E[L2(X −E[X])2] = L2Var(X)

where the first inequality follows since for any random variable Y , Var(Z) = E[Z2]− (E[Z])2 ≤ E[Z2], and

the last inequality follows from the L-Lipschitz continuity. �

Proof of Lemma 1: Using the law of total covariance, we can decompose Cov(Yi(t), Yi′(t)) into two parts:

Cov(Yi(t), Yi′(t)) = EY(t−1)

[
Covε(t)

(
Yi(t), Yi′(t)

∣∣Y(t− 1)
)]

+ CovY(t−1)

(
Eε(t)

[
Yi(t)

∣∣ Y(t− 1)
]
,Eε(t)

[
Yi′(t)

∣∣ Y(t− 1)
])
.
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The first term EY(t−1)
[
Covε(t)(Yi(t), Yi′(t)|Y(t− 1))

]
is always 0. The reason is as follows: by applying

the law of total conditional covariance, we have

Covε(t)
(
Yi(t), Yi′(t)

∣∣ Y(t− 1)
)

= Eε(t)
[

Cov
(
Yi(t), Yi′(t)

∣∣ Y(t− 1), ε(t)
)∣∣∣ Y(t− 1)

]
+ Covε(t)

(
E
[
Yi(t)

∣∣ Y(t− 1),ε(t)
]
, E
[
Yi′(t)

∣∣ Y(t− 1),ε(t)
] ∣∣∣ Y(t− 1)

)
.

The former term vanishes because Yi(t) and Yi′(t) are deterministic when given Y(t−1),εt. The latter term

is also zero since εi(t) and εi′(t) are independent of each other.

We then show that the second term CovY(t−1)

(
Eε(t)

[
Yi(t) |Y(t− 1)

]
, Eε(t)

[
Yi′(t)

∣∣ Y(t− 1)
])

can be

bounded recursively as

CovY(t−1)

(
Eε(t)

[
Yi(t)

∣∣ Y(t− 1
)]
, Eε(t)

[
Yi′(t)

∣∣ Y(t− 1)
])

= Cov

(
1−Fε

(
−vi−β

∑
j∈Ni

Yj(t− 1)

di

)
, 1−Fε

(
−vi′ −β

∑
j′∈Ni′

Yj′(t− 1)

di′

))

≤

√√√√Var

(
Fε

(
−vi−β

∑
j∈Ni

Yj(t− 1)

di

))
Var

(
Fε

(
−vi′ −β

∑
j′∈Ni′

Yj′(t− 1)

di′

))
(28a)

≤

√√√√√(Lβ)2 Var

(
1

di

∑
j∈Ni

Yj(t− 1)

)
(Lβ)2 Var

 1

di′

∑
j′∈Ni′

Yj′(t− 1)

 (28b)

≤ ρ2

2

Var

(
1

di

∑
j∈Ni

Yj(t− 1)

)
+ Var

 1

di′

∑
j′∈Ni′

Yj′(t− 1)

 , (28c)

where (28a) follows from Cauchy–Schwarz inequality, (28b) follows from Lemma 4 and (28c) follows from

the arithmetic-mean geometric-mean (AM-GM) inequality and the fact that ρ= Lβ. In summary, for any

time t≥ 1, we can upper bound the covariance between any pair of nodes by

Cov(Yi(t), Yi′(t)) ≤
ρ2

2

Var

(
1

di

∑
j∈Ni

Yj(t− 1)

)
+ Var

 1

di′

∑
j′∈Ni′

Yj′(t− 1)

 . (29)

Incorporating the trivial fact that the variance of a binary random variable can be no larger than 1/4, we

get Var(Yi(t))≤ 1/4 for all i∈ V and t≥ 0. As a consequence, we can show that

Var

(
1

di

∑
j∈Ni

Yj(t)

)
=

1

d2i

∑
j∈Ni

Var
(
Yj(t)

)
+

1

d2i

∑
j∈Ni

∑
j′∈Ni,j′ 6=j

Cov
(
Yj(t), Yj′(t)

)
≤ 1

4di
+
di− 1

d2i
· ρ

2

2

∑
j∈Ni

Var

 1

dj

∑
k∈Nj

Yk(t− 1)


≤ 1

4di
+

1

di
· ρ

2

2

∑
j∈Ni

Var

 1

dj

∑
k∈Nj

Yk(t− 1)

 ,

where the first inequality comes from (28) and the last inequality is trivial, given that di > 0 by definition.

Recalling the definition of Ã and b, we can write this inequality in matrix form as

κ(t) ≤ 1

4
b +

ρ2

2
Ãκ(t− 1).
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As a consequence, we can derive the upper bound for the variance recursively in the next. When t= 1,

agents indeed act independently given the initial adoption states Y(0). In other words, the diffusion process

is initialized with Cov(Yi(0), Yi′(0)) = 0 for all i, i′ ∈ V . Therefore, we can express the upper bound as

κ(1) ≤ 1

4
b.

By induction, we can show that

κ(t) ≤ 1

4
b +

ρ2

2
Ãκ(t− 1) ≤ 1

4
b +

ρ2

2
Ã

(
1

4
b +

ρ2

2
Ãκ(t− 2)

)
≤ · · · ≤ 1

4

(
I +

t−1∑
τ=1

ρ2τ

2τ
Ãτ

)
b.

The conclusion follows. �

We then move to the proof of the second analytical phase: bounding nonlinear dynamics.

Proof of Lemma 2: Let ∆i(t) = β

di

(∑
j∈Ni

qj(t − 1) −
∑

j∈Ni
Yj(t − 1)

)
. For any i ∈ V and t ≥ 0, the

adoption probability of agent i at t can be written as

qi(t) = EY(t−1)

[
Eε(t)

[
Yi(t)

∣∣Y(t− 1)
]]

= EY(t−1)

[
1−Fε

(
−vi−β

∑
j∈Ni

Yj(t− 1)

di

)]
= 1−EY(t−1)

[
Fε

(
−vi−β

∑
j∈Ni

qj(t− 1)

di
+ ∆i(t− 1)

)]
.

Therefore, we have∣∣∣∣EY(t−1)

[
Fε

(
−vi−β

∑
j∈Ni

qj(t− 1)

di
+ ∆i(t− 1)

)
−Fε

(
−vi−β

∑
j∈Ni

qj(t− 1)

di

)]∣∣∣∣
=

√(
EY(t−1)

[
Fε

(
−vi−β

∑
j∈Ni

qj(t− 1)

di
+ ∆i(t− 1)

)
−Fε

(
−vi−β

∑
j∈Ni

qj(t− 1)

di

)])2

≤

√√√√EY(t−1)

[(
Fε

(
−vi−β

∑
j∈Ni

qj(t− 1)

di
+ ∆i(t− 1)

)
−Fε

(
−vi−β

∑
j∈Ni

qj(t− 1)

di

))2
]

≤
√

EY(t−1)

[
L2
∣∣∆i(t− 1)

∣∣2] =

√√√√EY(t−1)

[
(Lβ)2

(∑
j∈Ni

qj(t− 1)

di
−
∑

j∈Ni
Yj(t− 1)

di

)2
]

=

√
ρ2 Var

[∑
j∈Ni

Yj(t− 1)

di

]
,

where the first inequality follows by Jensen’s inequality and the second inequality follows by Assumption 1.

Let δ=

[(
ρ

2

)2 (
I− ρ2

2
Ã
)−1

b

] 1
2

. Applying (14), we can obtain∣∣∣∣EY(t−1)

[
Fε

(
−vi−β

∑
j∈Ni

qj(t− 1)

di
+ ∆i(t− 1)

)
−Fε

(
−vi−β

∑
j∈Ni

qj(t− 1)

di

)]∣∣∣∣ ≤ δi,

which further leads to

1−Fε
(
−vi−β

∑
j∈Ni

qj(t− 1)

di

)
− δi ≤ qi(t) ≤ 1−Fε

(
−vi−β

∑
j∈Ni

qj(t− 1)

di

)
+ δi.

In summary, we have ∣∣∣h(q(t− 1)
)
−q(t)

∣∣∣ ≤ δ.

and this concludes the proof. �
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Finally, we prove our main result, i.e., Theorem 1.

Proof of Theorem 1: We first show by induction that, µ(t)≤ q(t)≤µ(t) for each t≥ 0.

Base case: t=0. By definition, we have µ(0) = q(0) =µ(0).

To show t= s+1: Assume that µ(t)≤ q(t)≤µ(t). Then we have

µ(s+ 1) = h−δ
(
µ(s)

)
≤ h−δ

(
q(s)

)
≤ q(s+ 1) ≤ hδ

(
q(s)

)
≤ hδ

(
µ(s)

)
= µ(s+ 1),

where the first and last inequalities follow from Proposition 2(i) while the other two follow from Lemma 2.

By the contraction mapping theorem, we know that µ(t) (resp. µ(t)) converges to µ∗ (resp. µ∗) where µ∗

(resp. µ∗) is the fixed-point solution for h−δ(µ∗) =µ∗ (resp. hδ(µ∗) =µ∗). Thus, the following result holds,

µ∗ ≤ q∗ ≤ µ∗ and µ∗ ≤ µ∗ ≤ µ∗. (30)

By the definition of AEOs, the difference between µ∗ and µ∗ can be written as

µ∗−µ∗ = h(µ∗)−h(µ∗) + 2δ.

Let ∆µ=µ∗−µ∗, for all i∈ V ,

|∆µi| ≤ ρ

∣∣∣∣∣
∑

j∈Ni
µ∗j

di
−
∑

j∈Ni
µ∗
j

di

∣∣∣∣∣+ 2δi = ρ

∣∣∣∣
∑

j∈Ni
∆µi

di

∣∣∣∣+ 2δi,

where the inequality comes from Assumption 1.

In matrix form, we can write it as |∆µ| ≤ ρÃ|∆µ|+ 2δ or equivalently

(I− ρÃ)|∆µ| ≤ 2δ. (31)

Recall that the inverse matrix (I−ρÃ)−1 can be expanded into the sum of matrix powers I+
∑∞

`=1 ρ
`Ã`.

Given that all elements of Ã are non-negative, it follows that all elements of (I−ρÃ)−1 are also non-negative.

Therefore, when we pre-multiply both sides of (31) by (I− ρÃ)−1, we obtain the inequality

|∆µ| ≤ 2(I− ρÃ)−1δ. (32)

Combining (30) and (32), we finally have the following chain of inequalities:

|q∗−µ∗| ≤ |∆µ| ≤ 2(I− ρÃ)−1δ = 2
(
I− ρÃ

)−1 [(ρ
2

)2(
I− ρ2

2
Ã

)−1
b

] 1
2

= ρ
(
I− ρÃ

)−1 [(
I− ρ2

2
Ã

)−1
b

] 1
2

=
ρ

1− ρ

[
(1− ρ)

(
I− ρÃ

)−1]
·

[(
I− ρ2

2
Ã

)−1
b

] 1
2

≤ ρ

1− ρ

[
(1− ρ)

(
I− ρÃ

)−1(
I− ρ2

2
Ã

)−1
b

] 1
2

=
ρ√

1− ρ

[(
∞∑
s=0

ρsÃs

)(
∞∑
t=0

(
ρ2

2

)t
Ãt

)
b

] 1
2

=
ρ√

1− ρ

 ∞∑
`=0

 ∑
s,t∈Z+: s+t=`

ρs ·
(
ρ2

2

)t Ã`b

 1
2

=
ρ√

1− ρ

 ∞∑
`=0

ρ`+1−
(
ρ2

2

)`+1

ρ− ρ2

2

Ã`b


1
2

≤ ρ√
1− ρ

[
∞∑
`=0

ρ`+1

ρ− ρ2

2

Ã`b

] 1
2

=
ρ√

(1− ρ)(1− ρ/2)

[ (
I +

∞∑
`=1

ρ`Ã`

)
b

] 1
2

.

where the third inequality follows from the Jensen’s inequality provided (1−ρ)
(
I− ρÃ

)−1
is a row-stochastic

matrix. This concludes the proof. �
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In the following, we prove the corollary for Theorem 1.

Proof of Corollary 2: From Theorem 1, it holds that

1

n
‖q∗−µ∗‖1 ≤

Cρ
n
e>C 1

2 (G,ρ)

(a)

≤ Cρ√
n

√∥∥∥C 1
2 (G,ρ)

∥∥∥
1

=
Cρ
√

1− ρ√
n

√√√√ e>

(
I +

∞∑
`=1

ρ`Ã`

)
b

where (a) follows due to Cauchy-Schwarz inequality. Further, (a) proves (10) in the corollary.

In the following, we will bound e>
(
I +

∑∞
`=1 ρ

`Ã`
)
b. Let us define D= diag(b), so that Ã =DA> holds

where let us recall that A is the adjacency matrix. Further, we define

Q(s) := A>Ãs−1 = A>(DA>)s−1, ∀ s≥ 0.

Then, it holds that∥∥∥Ãsb
∥∥∥
1

= e>DQ(s)De

=

N∑
i=1

N∑
j=1

1

didj
Qij(s) ≤

N∑
i=1

N∑
j=1

1

2

(
1

d2i
+

1

d2j

)
Qij(s) =

1

2

∥∥D2Q(s)e
∥∥
1

+
1

2

∥∥Q(s)D2e
∥∥
1
, (33)

where the inequality follows from the AM-GM inequality.

We then bound the two terms in (33) as follows:

1

2

∥∥D2Q(s)e
∥∥
1

=
1

2

∥∥∥D2A>Ãs−1e
∥∥∥
1

=
1

2

∥∥DDA>e
∥∥
1

=
1

2
‖De‖1 =

1

2
‖b‖1 ,

where the second and the third inequalities follow because Ã is row-stochastic and

1

2

∥∥Q(s)D−2e
∥∥
1

=
1

2

∥∥(A>D)sDe
∥∥
1
≤ 1

2

∥∥A>D∥∥s
1
‖De‖1

(b)
=

1

2
rs(G)‖De‖1 =

1

2
rs(G)‖b‖1 ,

where the inequality follows from the definition of matrix-`1-norm as an operator norm and (b) follows since

by inspection r(G) = A>D. Combined with (33), we get∥∥∥Ãsb
∥∥∥
1
≤ 1

2
(1 + rs(G))‖b‖1 ≤ r

s(G)‖b‖1 , (34)

where the last inequality follows since by definition the largest out-in-degree ratio r(G)≥ 1. Therefore, as

long as ρr(G)< 1,

e>

(
I +

∞∑
`=1

ρ`Ã`

)
b =

∥∥∥∥∥
(
I +

∞∑
`=1

ρ`Ã`

)
b

∥∥∥∥∥
1

≤ ‖b‖1 +

∞∑
`=1

ρ`
∥∥∥Ã`b

∥∥∥
1
≤ 1

1− ρr(G)
‖b‖1 ,

where the first inequality follows from the subadditivity of norms and the last inequality follows from (34).

This concludes the proof. �

Appendix B: Supporting Arguments for Section 4

For a refined upper bound on the approximation error, we first show the proof for Lemma 3, which is a

refined version of Lemma 2.
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Proof of Lemma 3: Let Xi =−vi − β 1
di

∑
j∈Ni

Yj(t− 1) and νi =−vi − β 1
di

∑
j∈Ni

qj(t− 1) for all i ∈ V .

For any i∈ V and t≥ 1, the adoption probability of agent i at t can be written as

qi(t) = EY(t−1)

[
E
[
yi(t)

∣∣ Y(t− 1)
]]

= EY(t−1)

[
1−Fε

(
−vi−β

∑
j∈Ni

Yj(t− 1)

di

)]
= 1−EXi

[
Fε (Xi)

]
.

With Assumption 3, we can apply Taylor expansion to Fε (Xi) and get∣∣∣EXi[Fε (Xi)−Fε (νi)
]∣∣∣ =

∣∣∣∣EXi [Fε (νi) + fε(νi)(Xi− νi) +
1

2
f ′ε(Ci)(Xi− νi)2−Fε (νi)

]∣∣∣∣ (35)

=
1

2

∣∣∣EXi [f ′ε(X̃i)(Xi− νi)2
]∣∣∣ ,

where X̃i is a random variable such that X̃i lies in between the random variable Xi and νi.

Consequently, we can upper bound (35) by∣∣EXi [Fε (Xi)−Fε (νi)]
∣∣ =

1

2

∣∣∣EXi [f ′ε(X̃i)(Xi− νi)2
]∣∣∣ ≤ 1

2
EXi

[
|f ′ε(X̃i)|(Xi− νi)2

]
≤ Lf

2
Var (Xi)

=
Lfβ

2

2
Var

(
1

di

∑
j∈Ni

Yj(t− 1)

)
,

where the first inequality comes from Jensen’s inequality and the second inequality is from Assumption 3.

Let η=
Lfβ

2

8
·
(
I− ρ2

2
Ã
)−1

b. By applying Lemma 1, we can finally get∣∣∣E[Fε(Xi)−Fε (νi)
]∣∣∣ ≤ ηi,

which further leads to

1−Fε
(
−vi−β

∑
j∈Ni

qj(t− 1)

di

)
− ηi ≤ qi(t) ≤ 1−Fε

(
−vi−β

∑
j∈Ni

qj(t− 1)

di

)
+ ηi.

In conclusion, we have

h(q(t− 1))−η ≤ q(t) ≤ h(q(t− 1)) +η.

�

Based on Lemma 3, we then show the proof for the refined Theorem 2 and Corollary 3.

Proof of Theorem 2: Following the same steps leading to (32), with Lemma 3, we obtain

|∆µ| ≤ 2(I− ρÃ)−1η. (36)

Therefore, following the same line of analysis in the proof of Theorem 1, it holds that

|q∗−µ∗| ≤ |∆µ| ≤ 2(I− ρÃ)−1η = 2
(
I− ρÃ

)−1
· Lfβ

2

8
·
(
I− ρ2

2
Ã

)−1
b

=
Lfβ

2

4

[(
∞∑
s=0

ρsÃs

)(
∞∑
t=0

(
ρ2

2

)t
Ãt

)
b

]
≤ Lfβ

2

4(1− ρ/2)
·

(
I +

∞∑
`=1

ρ`Ã`

)
b

=
Lfβ

2

4(1− ρ)(1− ρ/2)
· C(G;ρ).

We conclude the proof. �
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Proof of Corollary 3: By Theorem 2, we can upper bound the scaled `1-norm as

1

n
‖q∗−µ∗‖1 ≤

C̃

n
e>C(G,ρ) =

(1− ρ)C̃

n
· e>

(
I +

∞∑
`=1

ρ`Ã`

)
b

Following the proof of Corollary 2, the last term can be bounded by

(1− ρ)C̃

n
· e>

(
I +

∞∑
`=1

ρ`Ã`

)
b ≤ (1− ρ)C̃

n(1− ρr(G))
‖b‖1 ,

and we conclude the proof. �

Proof of Theorem 3: We use the diffusion instance given in the main text to show the lower bound. We

first remark on the following facts that will be used in the next. For this specific instance, the CDF Fε, PDF

fε and the derivative of PDF f ′ε are given by

Fε(x) =
1

1 + e−x
, fε(x) =

e−x

(1 + e−x)2
, and f ′ε(x) =

e−x(e−x− 1)

(1 + e−x)3
.

It is also convenient to define two constants that are crucial in showing the bounds as

u= max
0.5≤x≤1.5

{|fε(x)|, |f ′ε(x)|}= fε(0.5) ≈ 0.235 and l = min
0.5≤x≤1.5

{|fε(x)|, |f ′ε(x)|} = f ′ε(0.5)≈ 0.058.

Specifically, we have for all x∈ [0.5,1.5], l≤ fε(x)≤ u and−u≤ f ′ε(x)≤−l. Recall that−vi−β 1
di

∑
j∈Ni

Yj(t−
1) ∈ [−v − β,−v] = [0.5,1.5]. As a consequence, we remark that for the proof of Lemma 1 to be valid, it

suffices to use the Lipschitz constant L= u, see (28b).

To lower bound the variance, we first provide a lower bound of the variance of the adoption indicator Yi(t)

for each agent i∈ V and t≥ 0. Since var(Yi(t)) = qi(t)(1− qi(t)) where qi(t) = E[1−Fε(−v−β 1
d

∑
j∈Ni

Yj(t−
1))], we can derive that

var
(
Yi(t)

)
≥
(
1−Fε(−v)

)
·Fε(−v−β) =

(
1−Fε(1.5)

)
Fε(0.5) ≈ 0.114. (37)

We define constant c1 =
(
1−Fε(1.5)

)
Fε(0.5)≈ 0.114.

By Lemma 1, we have

κ(t) ≤ 1

4d

[
I+

t∑
τ=1

(
ρ2

2

)τ
Ãτ

]
e =

1

4d

[
1 +

t∑
τ=1

(
ρ2

2

)τ]
e ≤ 1

4
(

1− ρ2

2

)
d
e, (38)

where ρ=Lβ = uβ ≈ 0.235. Furthermore, we are able to provide a lower bound on the pair-wise covariance,

which is similar to (29) as

Cov(Yi(t), Yi′(t)) ≥ −
ρ2

2

Var

(
1

d

∑
j∈Ni

Yj(t− 1))

)
+ Var

1

d

∑
j′∈Ni′

Yj′(t− 1))

 . (39)

Therefore, we can derive a lower bound for the in-neighbor variance as

Var

(
1

d

∑
j∈Ni

Yj(t)

)
=

1

d2

∑
j∈Ni

Var (Yj(t)) +
1

d2

∑
j∈Ni

∑
j′∈Ni,j′ 6=j

Cov(Yj(t), Yj′(t))

≥ c1
1

d
− d− 1

d2
· ρ

2

2

∑
j∈Ni

Var

1

d

∑
k∈Nj

Yk(t− 1)

 (40a)

≥ c1
1

d
− 1

d
· ρ

2

2

∑
j∈Ni

Var

1

d

∑
k∈Nj

Yk(t− 1)

 (40b)

≥ c1
1

d
−

ρ2

2

4
(

1− ρ2

2

)
d
, (40c)
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where (40a) follows from (39) and (37), (40b) follows from the trivial fact that the variance is nonnegative,

and (40c) follows from (38).

Define c2 = c1−
ρ2

2

4
(
1− ρ

2

2

) ≈ 0.106. We then obtain that for all i∈ V and t≥ 0,

Var

(
1

d

∑
j∈Ni

Yj(t)

)
≥ c2

1

d
= 0.106

1

d
.

We then bound the difference between q(t) and h
(
q(t− 1)

)
. Similar to proof of Lemma 3, we obtain

E
[
Fε (Xi)−Fε (νi)

]
=

1

2
E
[
f ′ε(X̃i)(Xi− νi)2

]
≤ − l

2
Var (Xi) = − lβ2

2

(
1

d

∑
j∈Ni

Yj(t− 1)

)
≤ − lβ2c2

2d

where the first inequality follows because X̃i ∈ [0.5,1.5] and f ′ε(x)<−l for x in this range. Therefore,

qi(t) = 1−E[Fε (Xi)] ≥ 1−Fε (νi) +
lβ2c2

2d
= h(q(t− 1))i +

lβ2c2
2d

.

Letting c3 = lβ2c2/2≈ 0.003, we have

q(t) ≥ h(q(t− 1)) + c3
1

d
e. (41)

Finally, we lower bound the approximation error in a way analogous to Theorem 1. Let ζ = c3/n. We show

q(t)≥µ(t)≥µ(t) by induction, where

µi(t) =

qi(0) t= 0

1−Fε
(
−vi−β

∑
j∈Ni

µj(t−1)

di

)
+ ζ t > 0

, for all i∈ V.

Base case t=0: By definition, we have q(0) =µ(0) =µ(0).

To Show t= s+1: Assume that q(s)≥µ(s)≥µ(s). We have

q(s+ 1) ≥ hζe(q(s)) ≥ hζe(µ(s)) = µ(s+ 1) ≥ hζe(µ(s)) ≥ h(µ(s))

where the first inequality follows from (41), the second and third inequalities follow Proposition 2 and the

induction hypothesis, and the last inequality is trivial because ζ > 0.

Thus, the following result holds,

q∗ ≥ µ
∗ ≥ µ∗, (42)

where µ∗ is the limit of µ(t). By the contraction mapping theorem, we have

q∗−µ∗ ≥ µ
∗−µ∗ = h(µ

∗
)−h(µ∗) + ζe ≥ ζe = 0.003

1

d
e,

where both inequalities follow from (42). We conclude the proof. �

Appendix C: Supplementary Numerical Experiments on the FPA Scheme

C.1. Illustration of the 10-Node Example Instance

To offer a clear illustration of the instance, we construct an undirected network comprising 10 nodes. The

network structure is visualized in Fig. 1a, while the intrinsic values assigned to each agent are detailed

in Table 3. We set the network effect intensity at β = 3.5 and assume that the random noise distribution

is εi(t)
i.i.d.∼ Logistic(0,1) for all i ∈ V and t ≥ 0. The characteristics of this example network, along with

numerical results obtained from different models, are presented in Table 3.
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Table 3 Characteristics and results of the 10-node example instance

Node Degree Intrinsic value v q∗ µ∗ FPA error pMM MM error

0 5 -1.7064 0.5126 0.5292 0.0166 0.1536 -0.3590
1 7 -1.2453 0.5932 0.6069 0.0137 0.2235 -0.3697
2 4 -0.8789 0.6325 0.6524 0.0199 0.2934 -0.3391
3 4 -3.9454 0.1442 0.1221 -0.0222 0.0190 -0.1253
4 3 -0.0822 0.7827 0.8219 0.0393 0.4795 -0.3032
5 5 -3.4441 0.1933 0.1731 -0.0202 0.0309 -0.1624
6 3 -0.2877 0.7341 0.7755 0.0414 0.4286 -0.3055
7 2 -2.9084 0.3287 0.2849 -0.0438 0.0517 -0.2770
8 2 -1.2859 0.6702 0.7646 0.0944 0.2166 -0.4536
9 1 -0.6963 0.7416 0.8786 0.1371 0.3326 -0.4090

Note: p∗ is calculated by first constructing a 1,024-state MC according to Section 2.2 and calculating the

stationary distribution. µ∗ is calculated by conducting fixed-point iteration according to (5), and FPA error

equals (µ∗i − q∗i ). pMM is calculated as E[1{vi+ εi ≥ 0}], and MM error equals (µMM
i − q∗i ).

C.2. Numerical Experiments on Highly-Structured Symmetric Networks

To illustrate the exact performance of the FPA scheme, we focus on two kinds of highly-structured symmetric

networks, namely directed star network and complete network. These simple and symmetric structures make

it easier to calculate the limiting adoption probability. We further simplify the diffusion instance by setting

the intrinsic value of all agents in the network to be the same as v. This allows us either to directly compute

the limiting adoption probability or to construct an MC with a much smaller state space.

Network instances:

• Directed star network. A star network consists of a central node and several surrounding nodes. We

consider the directed version where the edges only point from surrounding nodes to the central node,

not vice versa. Figure 8a shows an example of network size n= 6.

• Complete network. A complete network is the network where each node is directly connected to every

other node. Figure 8b shows an example of network size n= 6.

(a) Directed star network (b) Complete network

Figure 8 Illustration of highly structured symmetric network structure.
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For directed star networks, the adoption decisions of surrounding nodes are independent of each other.

Therefore, we can directly calculate the limiting adoption probability of the central node as

q=

n−1∑
i=0

(
n− 1

i

)
(1−Fε(−v))

i
Fε(−v)n−1−i ·

[
1−Fε

(
−v−β i

n− 1

)]
.

For complete networks, we can construct a more efficient MC by using the number of adopted agents as the

MC states, rather than considering the combination of all agents’ adoption states. The transition probability

of this MC can be defined as

P (i, j) =

min{i,j}∑
k=0

(
i

k

)[
1−Fε

(
−v−β i− 1

n− 1

)]k
Fε

(
−v−β i− 1

n− 1

)i−k(
n− i
j− k

)
·
[
1−Fε

(
−v−β i

n− 1

)]j−k
Fε

(
−v−β i

n− 1

)n−i−j+k
.

Hence, the limiting adoption probability for this MC can be easily calculated.

We measure the performance of the FPA scheme by the percentage error (PE) of the representative node,

given in the following equation:

PE=
µ∗i − q∗i
q∗i

· 100%.

In directed star networks, we focus solely on the central node because the surrounding nodes have zero

in-degree and can thus be perfectly approximated by the FPA scheme. In complete networks, the PE is

identical for all nodes. Therefore, the PE for any arbitrary node in a complete network is equivalent to the

mean average percentage error.

To assess the FPA scheme’s performance, we investigate two scenarios for both types of network structures:

(i) a sequence of diffusion instances with different intrinsic values, and (ii) a sequence of diffusion instances

with different network sizes. For these experiments, we set the network effect intensity to be β = 1 and

generate the random noise εi(t)
i.i.d.∼ Logistic(0,1).

(i) The accuracy with regard to intrinsic values. We choose the intrinsic value v from -5 to 5 in increments

of 0.1. These instances are tested on networks of size n∈ {10,20,30}. Figure 9 shows the PE of both network

structures at different intrinsic values. Overall, all instances have a small absolute percentage error (less than
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Figure 9 PE versus intrinsic value. Left: directed star network; Right: complete network.

0.5%), illustrating the high accuracy of the FPA solution. We notice that the PE curves of different network
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structures possess similar shapes, however, the exact values are slightly different. In general, the FPA scheme

tends to underestimate the adoption probability when the intrinsic values are small and overestimate it when

they are large. There exist two critical points at around v=−1.7 and v= 0.4 where the PE reaches extremes.

These points exhibit the worst cases and align with regions where the CDF Fε has the highest curvature.

(ii) The accuracy with regard to network size. We then focus on instances with intrinsic values at the two

previously mentioned critical points v ∈ {−1.7,0.4}. We choose the network size n from 2 to 50. Figure 10

shows the PE across these different network sizes. Regardless of the network structure and the intrinsic
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Figure 10 PE versus network size. Left: directed star network; Right: complete network.

values, PE converges to 0 rapidly when the network size increases. This can be theoretically confirmed, and

we have explicitly demonstrated it in Corollary 1 or a refined version in Theorem 2. Our findings show

that, for highly-structured networks, the FPA scheme offers excellent approximation quality and exhibits

asymptotic convergence as the network size grows.

C.3. MCMC Simulation Settings

To estimate the limiting adoption probability for general instances where direct computation is impractical,

we employ the MCMC simulation technique. The simulation initiates with all agents in a non-adopted state.

We designate the first 1,000 time steps as the warm-up period to allow the system to reach a steady state,

which we will elaborate on shortly. These initial steps are discarded from our analysis to avoid transient

bias. In line with (3), we set the run length for each simulation replication to be 100,000 steps beyond the

warm-up period. The adoption frequency of each agent throughout this period then serves as the ground

truth for the limiting adoption probability.

In the following, we conduct additional experiments to empirically show when the MC enters a steady

state so that the data samples can be gathered to calculate limiting adoption probability. Instead of focusing

on the probability of each state of the MC, we use the average cumulative adoption proportion among the

population as an indicator. This is represented by the following equation:

1

t

t∑
τ=1

1

n

∑
i∈V

Yi(τ).

In Figure 11, we show how the average cumulative adoption proportion changes with time. We test on

4 different diffusion instances, each represented by a randomly sampled Erdős-Rényi network G(n,p(n)).
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Figure 11 Average cumulative adoption proportion versus MCMC time steps

We choose the network size from n∈ {10,100,1000,10000} and keep the probability of edge existence to be

p(n) = 0.1. We set the network effect coefficient β to be 1. Our observations reveal that after 1,000 time

steps, all tested trajectories have reached a steady state. Furthermore, larger networks appear to reach a

steady state more rapidly. Additional tests on diffusion instances with varying parameters yielded similar

results. Based on these results, we conclude that a warm-up period of 1,000 time steps is adequate for our

problem context.

C.4. Numerical Experiments for Power-Law Networks.

We extend our examination of the FPA scheme another important class of random networks i.e., power-

law networks. These networks exhibit a degree distribution that follows a power-law pattern. We consider

a sequence of directed power-law networks with n nodes and define the associated CDF of the degree

distribution as Fd(· ; n). The network in- and out-degrees are generated using the following CDF:

Fd(x;n) = P(d≤ x) =
1−

(
x

dmin

)1−α
1−

(
dmax

dmin

)1−α for dmin ≤ x≤ dmax = n,

where the α is the exponent of power-law distribution. We set dmin to be 2 and dmax to be n. Correspondingly,

the probability mass function satisfies fd(x)∝ x−α, which aligns with the conventional definition of a power-

law distribution. Power-law networks often pose significant challenges for the analysis and optimization on

networks due to the prevalence of low-degree nodes in such networks. Focusing on power-law networks with

dmin = 2 and ρ= 0.875 (see Section 5) allows us to test the limit of the FPA scheme.

We generate power-law network based on Fd(· ; n) following the approach proposed by Huang et al. (2022).

Detailed information on the generation process is included in Appendix C.5 for completeness. In this genera-

tion process we use an auxiliary parameter θ to account for the pairwise correlation between the in-degree and

out-degree sequences. Although θ is not the exact correlation between these two sequences, it approximates

the actual correlation between in- and out-degrees, particularly for large values of n.

We conduct two sets of experiments to test the FPA scheme across different power-law exponents α

and pairwise correlations θ. For each parameter combination, we conduct 100 repetitions to ensure stable

performance metrics. The results are presented in Figure 12. In general, The FPA scheme still performs
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Figure 12 Performance of the FPA scheme on power-law networks of different α and θ values. All horizontal axes

are in the log scale. Shaded areas represent the 95% confidence interval. In the legend of the right subfigure, numbers

within parentheses represent empirical correlations between in- and out-degrees.

reasonably well. Also, we observe a consistent decrease in the MAPE as n increases across all tested α and

θ values, albeit at a relatively modest pace in comparison with Erdős-Rényi networks. Additionally, power-

law networks exhibit both a higher mean and greater variance in MAPE. The increased mean MAPE in

power-law networks is largely attributable to a higher proportion of nodes with low in-degrees. The increased

variance, on the other hand, is primarily due to the more intricate structural variations inherent to power-law

networks when specified parameters are used.

We note that the power-law exponent α has a crucial impact on the degree distribution. Typically, power-

law networks feature an α > 2 to avoid divergence in the expected degree. In the case where α = 3, the

network adheres to a model generated through the preferential attachment process. Accordingly, we select

α from the set {2.5,3,3.5} and set θ = 0 to construct Figure 12a. Note that it is easy to see that when α

increases, the proportion of low degree nodes increases, and consistent with our theoretical analysis, we find

that the MAPE tends to increase as α increases.

In the second experiment, we generate the in-degree and out-degree sequences with θ ∈ {−1,−0.5,0,0.5,1}.
Corollary 2 shows that the FPA scheme’s performance is related to the imbalance level of the network,

which can be captured by this pairwise correlation coefficient θ. Specifically, a large positive θ indicates a

strong positive correlation between in-degree and out-degree sequences, resulting in a more balanced network.

Conversely, a negative θ, suggests a more imbalanced network. From Figure 12b, the MAPE remains relatively

stable when θ ranges between -1 and 0. However, it substantially diminishes as θ becomes positive, which

aligns with our theoretical findings that the FPA scheme performs better on balanced networks.

Finally, we focus on the FPA scheme’s performance for nodes with different in-degrees d. For illustration,

we choose instances with α= 2.5 and θ= 0. In Figure 13a, we illustrate how the MAPE varies with respect to

the in-degree d. Aside from standalone nodes—which display zero error—the MAPE consistently decreases

for nodes with d ≥ 1 as d increases. For nodes with more than 10 in-neighbors, the MAPE diminishes to

less than 6.5%. Furthermore, the network-wide MAPE stands at approximately 12.36%; notably, only nodes

with an in-degree of less than 3 exhibit errors above this level. In Figure 13b, we extend our analysis by
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Figure 13 Performance of the FPA scheme on power-law networks with regard to the in-degree values. The dotted

line in the left subfigure is the average network-wide MAPE. Shaded area represents 95% confidence interval.

displaying the empirical CDF for the in-degree distribution and the MAPE. Given the nature of power-law

networks, a substantial number of nodes exhibit low in-degree. Moreover, these low in-degree nodes are also

associated with larger errors. Specifically, 84.89% of the total error is attributable to agents with fewer than

5 in-neighbors, and 95.97% of the error can be attributed to agents with fewer than 10 in-neighbors.

C.5. Supplementary Discussions on Random Networks.

In our numerical experiments of random networks, we generate our data following the setup outlined in

Huang et al. (2022), which also offers an excellent discussion on the key properties of these networks. In

the following, we revisit some of the discussions on parameter selection and instance construction for both

Erdős-Rényi and power-law networks, supplementing them with additional numerical illustrations for more

robust empirical support. For more details, please refer directly to this paper.

(i) Erdős-Rényi networks. In the asymptotic analysis of Erdős-Rényi networks, the density p(n) plays a

pivotal role in shaping the structural attributes of the network. Some critical cases are outlined as follows:

• When p(n) = o(n−2), the Erdős-Rényi networks are empty almost surely (Erdős et al. 1960).

• When p(n) =O(n−(1+ε)) for some ε > 0, the expected in-degree and out-degree vanishes asymptotically.

Such networks are called very sparse networks. They are probabilistically acyclic and fragmented.

• When p(n) = Θ(n−1), the expected in-degree and out-degree remain asymptotically bounded and pos-

itive. Such networks are called critically sparse networks. At this point, a phase transition occurs: as

p(n) increases from 1
n
−O(n−

4
3 ) to 1

n
+O(n−

4
3 ), smaller components merge into a giant component

comprising a positive fraction of nodes, and cycles begin to form (Janson et al. 1993).

• When p(n) = ω( logn
n

), networks are called dense networks. These networks are highly likely to be

connected, contain many cycles, and are asymptotically regular and balanced. Both in-degree and

out-degree distributions concentrate around the mean value and converge asymptotically to a normal

distribution.

It is important to note that dense networks are asymptotically regular and balanced. This underlying

property aligns our numerical findings with the theoretical implications with regard to the imbalance level
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Figure 14 In-degree and out-degree distributions of Erdős-Rényi networks with different densities p(n)

of networks. In Figure 14, we illustrate the distribution of in-degree and out-degree pairs for each node in

the Erdős-Rényi networks with different densities. As evidenced by Figure 14, the distribution of in-degrees

and out-degrees approaches a normal distribution as p(n) increases. More importantly, this trend also shows

that the in-degree and the out-degree of a specific node become close to each other, contributing to a more

balanced network structure.

(ii) Power-law networks. To avoid notation confusion, in this part, we let dini and douti denote the in-degree

and out-degree of node i. To construct a power-law network, we require both the in-degrees din1 , din2 , . . . , dinn
and the out-degrees dout1 , dout2 , . . . , doutn are i.i.d. sampled from distribution Fd(·, n). One distinctive aspect of

our experiments with power-law networks is the introduction of a pairwise correlation parameter to capture

the imbalance level of the network. A valid correlated in-degree sequence and out-degree sequence can be

generated using the following procedure:

• Sample i.i.d. in-degrees din1 , din2 , . . . , dinn from the power-law distribution. Without loss of generality,

assume this sequence is sorted in descending order.

• Sample i.i.d. random variables Z1,Z2, . . . ,Zn as follows: for each i∈ V , Zi = 1 with probability |θ|, and

Zi = 0 with probability 1− |θ|, where θ ∈ [−1,1] is the parameter used to control the correlation. This

parameter θ is not necessarily the correlation Cov(dini , d
out
i ).

• Define sets of nodes I0 : {i :Zi = 0,1≤ i≤ n} and I1 : {i :Zi = 1,1≤ i≤ n}.

• If θ≥ 0, set douti = dini for i∈ I1 and set {douti : i∈ I0} by a random permutation of {dini : i∈ I0}; If θ < 0,

set douti = dinn−i+1 for i∈ I0 and set {douti : i∈ I1} by a random permutation of {dinn−i+1 : i∈ I1}.

• Use a configuration model (Molloy and Reed 1995, Newman et al. 2001) to construct the directed

random network with given in- and out-degree sequences.

Under this construction, when θ ≥ 0, the correlation is θ + O(n−1), so it asymptotically equals θ. When

θ < 0, the generated pairwise correlation may deviate from θ, and different values of θ yield similar degree

sequences, as evidenced by Figure 15.
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Figure 15 In-degree and out-degree distributions of power-law networks with different pairwise correlations θ

Appendix D: Supporting Arguments for Section 6

D.1. Supporting Arguments for Section 6.1

We first provide the proof to characterize the optimality gap of the approximate IM problem.

Proof of Proposition 3: The proof largely follows Corollary 2, where we bound the scaled `1-norm of the

FPA error. Therefore, the regret can be bounded by

Regret(SFPA) =
∑
i∈V

q∗i (S∗)−
∑
i∈V

q∗i
(
SFPA

)
=
∑
i∈V

q∗i (S∗)−
∑
i∈V

µ∗i (S∗) +
∑
i∈V

µ∗i (S∗)−
∑
i∈V

µ∗i
(
SFPA

)
+
∑
i∈V

µ∗i
(
SFPA

)
−
∑
i∈V

q∗i
(
SFPA

)
≤
∥∥∥q∗ (S∗)−µ∗ (S∗)

∥∥∥
1

+
(∑
i∈V

µ∗i (S∗)−
∑
i∈V

µ∗i
(
SFPA

))
+
∥∥∥q∗ (SFPA

)
−µ∗

(
SFPA

)∥∥∥
1

≤
∥∥∥q∗ (S∗)−µ∗ (S∗)

∥∥∥
1

+
∥∥∥q∗ (SFPA

)
−µ∗

(
SFPA

)∥∥∥
1

≤ 2Cρ
√
n‖C(G,ρ)‖1,

where the first inequality holds trivially, the second inequality follows from the optimality of SFPA for

approximate IM problem (21), and the third inequality follows from Corollary 2. �

In the next, we discuss the applicability of Assumption 4.

Instances that satisfy Assumption 4. As we mentioned immediately after the assumption, the classical

LT model (for nonprogressive diffusion) is a specific instance that meets this assumption. Recall we can

recover the LT model by setting vi =−0.5 and εi(t)∼U(−0.5,0.5) for all i∈ V and t≥ 1. Therefore, for any

β > 0, CDF Fε can be expressed as Fε(x) = 1{x≥−0.5} · (x+ 0.5) on range [0.5− β,0.5], which is convex.

Additionally, some other diffusion instances related to common utility models can also meet Assumption 4.

Some examples are: (i) Linear probability model: vi ≥−c and εi(t)∼U(−c, c) for all i ∈ V , t≥ 0. (ii) Logit

model: vi ≥ 0 and εi(t)∼ Logistic(0, s) and for all i ∈ V , t≥ 0. (iii) Probit model: vi ≥ 0 and εi(t)∼N (0, s)

and for all i ∈ V , t ≥ 0. For many general distributions, the convexity assumption essentially requires the

intrinsic values to be appropriately lower bounded.

Finally, we show the proof of the submodularity for the approximate IM objective.
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Proof of Theorem 4: Consider two seed set S1 ⊆ S2 ⊆ V and an additional user w ∈ V \S2, it is sufficient

to show that µ∗(S2 + {w})−µ∗(S2)≤µ∗(S1 + {w})−µ∗(S1).

We consider constraints (21b) and (21c) as the dynamic system, that is, µ(t) = h(µ(t−1)). We can notice

that, for different seed sets, the transition function h is not the same. However, for all the users that are not

selected as seed users, the transition function for the corresponding element is the same. With a little abuse

of notation, in the following proof, we use h to denote the transition function for all users in V \ (S2 + {w}).
We want to show that at all time steps t≥ 1, the inequality µ(S2 + {w}, t)−µ(S2, t)≤ µ(S1 + {w}, t)−

µ(S1, t) always holds. For user i ∈ S2, µi(S2 + {w}, t)− µi(S2, t) = 0 ≤ µi(S1 + {w}, t)− µi(S1, t). For user

w, µw(S2 + {w}, t)− µw(S2, t) = 1− µw(S2, t) ≤ 1− µw(S1, t) ≤ µw(S1 + {w}, t)− µw(S1, t). The above two

inequalities hold because of Proposition 2(i). For all the other users in V \ (S2∪{w}), we show by induction.

t=0: First of all, µ(S,0) = 0 for all S ⊆ S2 ∪{w} by definition. Therefore,

µ(S2 + {w},0)−µ(S2,0) =µ(S1 + {w},0)−µ(S1,0).

Assume t= s: The induction hypothesis holds such that

µ(S2 + {w}, s)−µ(S2, s)≤µ(S1 + {w}, s)−µ(S1, s).

Show t= s+1: We have

µ(S2 + {w}, s+ 1)−µ(S2, s+ 1) = h(µ(S2 + {w}, s))−h(µ(S2, s))

≤ h(µ(S2, s) +µ(S1 + {w}, s)−µ(S1, s))−h(µ(S2, s))

≤ h(µ(S1 + {w}, s))−h(µ(S1, s))

=µ(S1 + {w}, s+ 1)−µ(S1, s+ 1),

where the first inequality comes from Proposition 2(i) and the second inequality comes from Assumption 4.

When t tends to infinity, we get the fixed-point solution µ∗(S2 + {w})−µ∗(S2)≤µ∗(S1 + {w})−µ∗(S1),

and hence the submodularity is proved. �

D.2. Experiments on IM Problem

In the experiments, we consider two scenarios, one satisfies Assumption 4 and thus leads to a submodular

influence function, while the other does not. For both scenarios, we assume that the intrinsic value vi
i.i.d.∼

U(−4,0) and β = 3.5. In addition, we assume the random noise to be εi(t)
i.i.d.∼ U(−4,4) in the submodular

case, while εi(t)
i.i.d.∼ Logistic(0,1) in the nonsubmodular case.

The well-known greedy framework selects one user at each iteration which leads to the largest total

adoptions. We refer to the algorithm that embeds the FPA solution into this greedy framework for the total

influence evaluation as the greedy-FP algorithm. We randomly generate some small network instances to

illustrate that greedy-FP can find a near-optimal solution. Although there is no theoretical guarantee for

the nonsubmodular case, it is interesting to observe from the results that the FPA solutions are still of

good quality. For either scenario, we generate 100 diffusion instances with random graph G(15,0.5) and set

the number of seed users to 5. We enumerate all the subsets to find the optimal seed set and evaluate the

diffusion influence using MCMC. In Table 4, we show the numerical results of the greedy-FP algorithm.
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Table 4 Numerical results of greedy-FP algorithm for IM problem.

Scenario Percentage of instances where
the optimal seeding is recovered

Optimality Gap (%)
Mean Max

Submodular 91 0.0194 0.4704
Non-submodular 84 0.0685 1.7444

We notice that in both the submodular and nonsubmodular scenarios, the greedy-FP algorithm can generate

a near-optimal IM solution and even uncover the exact optimal solution for a large portion of instances.

Meanwhile, the greedy-FP algorithm has a slightly better performance in the submodular case than in the

nonsubmodular case but even in the nonsubmodular problem instances, it remains quite practical.

Furthermore, we choose a real-world network—Caltech36 as introduced in Section 5.3 and compare the

performance of greedy-FP with the traditional IM heuristics. Recall that the instance includes 765 agents

with an average number of neighbors of 43. We define several benchmark strategies as follows. The DEG

and EIG schemes are motivated by the important role of the centrality measures in diffusion discussed in the

network economics literature (e.g., Ballester et al. 2006, Jackson 2010). We include them for completeness,

but as substantiated in the numerical experiments, by overlooking the idiosyncratic features of the agents,

these schemes are dominated by the FPA-based heuristic.

Benchmarks:

• Greedy and MCMC (greedy-MCMC): This is the classical algorithm used for the IM problem. The

MCMC is embedded into a greedy framework for influence evaluation. The length of the MCMC run

is set to 100,000 after the warm-up period.

• Greedy and the FPA solution (greedy-FP): This is our proposed algorithm. We embed the FPA solution

into a greedy framework for an influence evaluation.

• Greedy and low-resolution MCMC (greedy-l-MCMC): The MCMC is embedded into a greedy framework

for an influence evaluation. The length of the MCMC run is set to 50 so that the runtime is at the

same scale as that of the FPA scheme.

• Degree centrality (DEG): Set K users with the largest degree to be seed users.

• Eigenvector centrality (EIG): Set K users with the largest eigenvector centrality to be seed users.

• Model misspecification without network effect (MM): This benchmark considers the misspecified model

that ignores the network effect in the IM problem. This is the same as setting K users with the smallest

intrinsic value to be seed users.

• Random (RAN): Randomly select K users to be seed users.

Figure 16 demonstrates the relative loss of the expected limiting adoptions compared with greedy-MCMC

against the number of seed users. Similarly, we also consider both the submodular and nonsubmodular cases.

When the number of seed users increases from 0 to 30, the difficulty of the IM problem increases since

the number of feasible solutions also increases. We observe that regardless of the number of seed users, the
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Figure 16 Performance of different IM algorithms. Left: submodular case; Right: non-submodular case.

performance of greedy-FP matches that of greedy-MCMC nearly perfectly. It significantly outperforms all

the other benchmarks. This is no surprise to us; this is driven by the high accuracy of the FPA scheme. In

particular, we also notice that the performance of the greedy framework with the MCMC method degrades

drastically when the simulation length of the MCMC procedure is small. Compared with greedy-l-MCMC,

greedy-FP achieves an improvement of 8.90% and 18.42% whenK = 30 in the submodular and nonsubmodular

cases. In short, we conclude that, by offering a significant efficiency gain, greedy-FP outperforms greedy-

MCMC in solving the IM problem.

D.3. Supporting Arguments for Section 6.2

We first provide the proof to characterize the optimality gap of the approximate pricing problem.

Proof of Proposition 4: The proof aligns with Corollary 3. Therefore, the regret can be bounded by

Regret(pFPA) = q∗ (p∗)
>
Wp∗−q∗

(
pFPA

)>
WpFPA

= q∗ (p∗)
>
Wp∗−µ∗ (p∗)

>
Wp∗+µ∗ (p∗)

>
Wp∗−µ∗

(
pFPA

)>
WpFPA

+µ∗
(
pFPA

)>
WpFPA−q∗

(
pFPA

)>
WpFPA

≤
∥∥∥(q∗ (p∗)−µ∗ (p∗)

)>
Wp∗

∥∥∥
1

+
(
µ∗ (p∗)

>
Wp∗−µ∗

(
pFPA

)>
WpFPA

)
+
∥∥∥(q∗ (pFPA

)
−µ∗

(
pFPA

))>
WpFPA

∥∥∥
1

≤
∥∥∥(q∗ (p∗)−µ∗ (p∗)

)>
Wp∗

∥∥∥
1

+
∥∥∥(q∗ (pFPA

)
−µ∗

(
pFPA

))>
WpFPA

∥∥∥
1

≤
∥∥∥q∗ (p∗)−µ∗ (p∗)

∥∥∥
1

∥∥∥Wp∗
∥∥∥
∞

+
∥∥∥q∗ (pFPA

)
−µ∗

(
pFPA

)∥∥∥
1

∥∥∥WpFPA
∥∥∥
∞

≤ 2Cρmax
{∥∥∥p∗∥∥∥

∞
,
∥∥∥pFPA

∥∥∥
∞

}√
n‖C(G,ρ)‖1,

where the first inequality follows trivially, the second inequality follows since the optimality of pFPA for

approximate pricing problem (23), the third inequality follows from Corollary 2, and the last one follows the

properties of matrix operator norms. �

We then focus on the proof of the pricing problem in the adoption probability space.



Lin et al.: Nonprogressive Diffusion on Social Networks
56 Article submitted to Management Science; manuscript no.

Proof of Theorem 5: Let π(µ) =
∑

i∈V

(
vi +β

∑
j∈Ni

µj

di
+ ln 1−µi

µi

)
µi. The Hessian matrix of π(µ) can

be derived as
∂2π

∂µ2
i

=− 1

γ

1

µi(µi− 1)2
and

∂2π

∂µi∂µj
=

1

γ
1{j ∈Ni}

β

di
+

1

γ
1{i∈Nj}

β

dj
.

For the diagonal elements of the Hessian matrix Hπ, we can have −1/[µ(µ− 1)2]≤−6.75 holds for any

x∈ [0,1]. The inequality is tight when µ= 1/3. For the nondiagonal elements of the Hessian matrix Hπ, we

can find them related to the structure of network G(V,E).

Therefore, we can have the Hessian matrix to be

Hπ = diag
({
− 1

µi(µi− 1)2

}
i∈V

)
+β

(
Ã+ Ã>

)
�−6.75I +β

(
Ã+ Ã>

)
By Gershgorin circle theorem, we can bound the eigenvalues of Ã by −1≤ λ(Ã)≤ 1. Since 1 is one of the

eigenvalues of Ã, we can have λmax(Ã) = 1. Therefore, when β ≤ 3.375,

λmax

(
−6.75I +β

(
Ã+ Ã>

))
≤ 0

which implies that Hπ is negative semi-definite. The equality holds when β = 3.375.

As a result, Hπ � 0 if and only if β ≤ 3.375. �

In the following, we illustrate the procedure of gradient descent for the pricing problem in the price space.

Gradient descent and approximate gradient descent. By taking the derivative on both sides of the

fixed-point equation, we get
dµ(p)

dp
=
∂h(p,µ(p))

∂p
+
dµ(p)

dp
· ∂h(p,µ(p))

∂µ(p)
.

By rearranging the terms, we obtain
dµ(p)

dp
·
(
I − ∂h(p,µ(p))

∂µ(p)

)
=
∂h(p,µ(p))

∂p
.

Matrix (I− ∂h(p,µ(p))/∂µ(p)) is guaranteed to be invertible. The reason is that, by Proposition 2, we

know that h is a contraction mapping and ‖∂h(p,µ(p))/∂µ(p)‖∞ < 1.

With an eye toward implementation, we also notice that (27) involves the derivation of the gradient, which

requires computing the inverse of an n× n matrix. When the network is large and dense, this calculation

becomes intimidating. However, we notice that ‖∂h(p,µ(p))/∂µ(p)‖∞ < 1, and therefore, the spectral radius

of ∂h(p,µ(p))/∂µ(p) is smaller than 1, so we can expand the inverse as the sum of discounted matrix

powers, which is similar to the centrality measure,(
I− ∂h(p,µ(p))

∂µ(p)

)−1
= lim
n→∞

k∑
`=0

(
∂h(p,µ(p))

∂µ(p)

)`
.

This leads to the following k-th order approximate gradient:

dΠ(p)

dp
≈ G̃k(p) =

∂h(p,µ(p))

∂p
·

(
I +

k∑
`=1

(
∂h(p,µ(p))

∂µ(p)

)`)
·W ·p+W> ·µ(p) (43)

for the pricing problem. We expect such an easy-to-compute approximate gradient to lead to a significant

efficiency gain, as is usually the case in the literature regarding approximate gradient descent (Ruder 2016).

Previous works have applied similar low-order approximations for network effects for different purposes (e.g.,

see Candogan et al. 2012, Zeng et al. 2023). In subsequent numerical experiments, we find that k= 2 works

very well in practice, leading to near-optimal solutions very quickly.
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D.4. Experiments on Pricing Problems

In the experiments for pricing problems on a social network, the first issue is that the optimal pricing

problem under the original diffusion model seems impossible to derive. We test over different randomly

generated instances and find that the profits calculated via MCMC and the FPA scheme are quite close,

with a percentage error almost uniformly bounded by 0.5% in our experiment.

In order to check the performance of the FPA scheme with regard to the total profit when price is

considered, we test over three groups of instances. By fixing the expected number of neighbors to be 10, we

generate diffusion instances with random graphs G(20,0.5), G(100,0.1), G(1000,0.01). For each instance, the

agent is associated with an intrinsic value i.i.d. sampled from U(0,4) and an offered price i.i.d. sampled from

U(0,4). We set β = 3 and γ = 1. In Figure 17, we show the distribution of profit difference among all diffusion

instances. We notice that the absolute profit difference is small. Furthermore, as the network becomes larger,
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Figure 17 Profit difference between MCMC and the FPA solution.

the performance gap becomes more concentrated. In conclusion, we consider the FPA scheme can achieve

almost the same performance as the simulation methods in the pricing problem.

Hereafter, we compare the pricing scheme under the FPA scheme as default. We assume εi(t)
i.i.d.∼

Logistic(0,1), which follows the theoretical analysis in Section 6.2. We study two extreme scenarios, the

perfect price discrimination case, where each consumer is offered a personal price, and the public price case,

where all consumers receive the same price.

In the perfect price discrimination scenario, we test three different algorithms. The first algorithm is the

gradient descent method in the adoption probability space (grad-PROB). With a network effect parameter

that satisfies Theorem 5, grad-PROB can find the global optimal solution. The second algorithm is the

gradient method in the price space (grad-PRICE). The third algorithm considers the pricing problem without

network diffusion, that is, the price is determined according to the standard logit model. We still refer to it

as the model misspecification (MM) scheme.

For the public price case, we also test three different algorithms. However, in this case, the pricing problem

cannot be considered in the adoption probability space. Instead, we use a grid search (GS) to find an upper-

bound solution for the problem. Specifically, we divide the price into grids of tolerance ξ. For each price

p, we upper bound the profit with (p− ξ) ·
∑

i∈V µi(p). The other two algorithms, grad-PRICE and MM, as

discussed above, are applied here.
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For both scenarios, we test on a real-world network—Amherst41 as introduced in Section 5.3. For each

diffusion instance, we set the price sensitivity as γ = 0.1, and the intrinsic value vi
i.i.d.∼ U(0,4). In Figures 18

and 19, we plot the realized profit of three algorithms and the relative profit loss against different values of

the network effect intensity β. The relative profit loss is compared with the optimal (upper bound) results

from grad-PROB and GS, respectively. Furthermore, as remarked before, algorithm grad-PRICE involves the

derivation of the gradient as (27), which requires calculating the inverse of a n×n matrix. We resort to the

second-order approximate gradient, G̃2(p), as given in (43).
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Figure 18 Realized profit versus network effect. Left: with price discrimination; Right: without price discrimination

(The curve of grad-PROB coincides with grad-PRICE in the left figure. In order to make them identifiable in the

figures, we shift the grad-PROB to the left by 0.05.)
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Figure 19 Profit loss compared with grad-PROB/GS versus network effect. Left: with price discrimination; Right:

without price discrimination

We offer several observations from these two figures. First, grad-PRICE obtains a near-optimal solution

in the case of price discrimination. This hints that we can use grad-PRICE to gain high-quality results in
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the general pricing setting when grad-PROB is not applicable. Second, there is a significant performance

degradation of MM when the network effect is large. When β = 3, the relative profit loss reaches 21.16%

and 8.30% if the network effect is ignored, respectively. Third, comparing these two scenarios, we find that

pricing discrimination can significantly increase the total profit, especially when the network effect is large.

Furthermore, we compare the performance of these algorithms on more instances in terms of their execution

time and the quality of solutions. We assume parameters (n,p(n), vmax) ∈ {100,1000}× {0.1,0.9}× {4,10},

where vmax is a parameter representing the range of intrinsic value vi. Specifically, we assume vi is i.i.d.

sampled from U(0, vmax). The numerical results for the two scenarios are shown in Tables 5 and 6. The

grad-PRICE approach derives high-quality solutions in both scenarios. We notice that in the perfect price

discrimination case, the run time for grad-PROB is less than grad-PRICE, although the margin is not too

large and the run times of the two algorithms are on a similar scale. The profit difference between these

two approaches is quite small, uniformly smaller than 0.2%. For the public price case, we set the tolerance

of the grid search to be 0.5 within the range [0,100]. grad-PRICE runs much faster than the grid search

with a performance loss of up to 2%. The performance of MM remains poor across the two scenarios in

this experiment, suggesting that the loss from ignoring network effects can be detrimental. In summary,

our main message through the numerical experiments is twofold. First, it is important to incorporate the

network effect into operational problems. The gain from doing so can be significant. Second, we advocate

grad-PRICE as a practical method for price optimization. With our approximate gradient expression tailored

to the network setting as in (43), grad-PRICE becomes a competitive price optimization technique. It can be

efficiently implemented in various practical scenarios to find high-quality price solutions.

Table 5 Numerical results of pricing problem for randomly generated instances (perfect price discrimination)

Parameters
(n,p(n), vmax)

grad-PROB grad-PRICE MM

time (s) time (s) profit loss (%) time (s) profit loss (%)
min mean max min mean max

(100,0.1,4) 0.035 0.115 0.064 0.079 0.100 0.007 19.0340 20.126 20.971
(100,0.1,10) 0.095 0.095 0.005 0.009 0.013 0.006 18.475 19.208 19.766
(100,0.9,4) 0.025 0.131 0.066 0.089 0.120 0.006 18.300 19.724 20.874
(100,0.9,10) 0.083 0.093 0.006 0.009 0.013 0.006 18.241 19.067 19.200
(10,000,0.1,4) 11.041 81.223 0.009 0.009 0.009 7.753 19.008 19.082 19.138
(10,000,0.1,10) 11.062 81.191 0.009 0.009 0.009 7.727 19.019 19.074 19.140
(10,000,0.9,4) 76.184 151.138 0.085 0.087 0.090 8.363 19.654 19.790 19.901
(10,000,0.9,10) 78.501 160.918 0.009 0.009 0.009 7.967 19.011 19.070 19.148



Lin et al.: Nonprogressive Diffusion on Social Networks
60 Article submitted to Management Science; manuscript no.

Table 6 Numerical results of pricing problem for randomly generated instances (public price)

Parameters
(n,p(n), vmax)

GS grad-PRICE MM

time (s) time (s) profit loss (%) time (s) profit loss (%)
min mean max min mean max

(100,0.1,4) 0.652 0.059 1.728 1.871 2.068 0.005 4.102 7.837 10.115
(100,0.1,10) 0.687 0.093 0.832 0.964 1.134 0.007 0.891 1.333 2.505
(100,0.9,4) 0.685 0.062 1.698 1.857 2.071 0.005 5.762 8.137 11.547
(100,0.9,10) 0.720 0.096 0.833 0.957 1.159 0.007 0.924 1.395 3.040
(10,000,0.1,4) 137.674 27.147 1.827 1.860 1.866 0.014 7.523 7.880 8.259
(10,000,0.1,10) 151.969 60.072 0.952 0.968 0.984 0.047 0.973 1.024 1.120
(10,000,0.9,4) 1070.717 91.743 1.835 1.860 1.866 0.024 7.634 7.879 8.294
(10,000,0.9,10) 1203.320 170.557 0.951 0.966 0.984 0.042 0.984 1.028 1.106
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