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Abstract

In this paper, we study the discrete analogy of Aleksandrov’s projection theorem and prove

the three sets given by Gardner, Gronchi and Zong in [12] are the only non-congruent finite

origin-symmetric convex lattice subsets of {(x, y) ∈ Z2 : |y| ≤ 2} with equal lattice projection

counts, up to unimodular transformations. Some general results without constraint is also

obtained in our paper through out which discrete covariogram functions and the unimodular

transformation group are intensively applied.

1 Introduction

1From 1937 to 1939, A.D. Aleksandrov published a series of papers([1],[2],[3] and [4]) concerning

a geometric tomographic problem: whether the projection function Vk(A|S), k = n− 1 determine

A ∈ Rn from origin-symmetric convex bodies and he provided an affirmative answer, Aleksandrov’s

Projection Theorem, to this problem, which becomes the starting point of several lines of research

in convex geometry, geometric tomography, etc. The theorem is rigorously stated as follows:

Theorem 1.1 (Aleksandrov’s Projection Theorem, Theorem 3.3.6 in [13]) Assume i ≤ k ≤
n − 1, K1 and K2 are origin-symmetric convex bodies of dimension at least k + 1, in Rn. If

Vi(K1|S) = Vi(K2|S) for all k-dimensional subspace S, then K1 = K2.

Remark 1.2 Aleksandrov only proved the case k = n − 1, but revealed all insights and

techniques essential for other k’s. The proof of this elegant result, either the original one by

Aleksandrov or an alternative version given by Fenchel and Jessen independently in [10], relies

essentially on area measures, mixed volumes and Aleksandrov-Fenchel Inequality. For a complete

discussion, see [13] chapter 3 or [17] chapter 5.

In [12], the authors introduced the discrete analogy of projection functions: |K|S|, where K

is a finite origin-symmetric convex subset of Zn, and raised the issue of the discrete analogy of

Theorem 1.1: whether the lattice projection counts on (n−1)-dimensional subspaces can determine

K among all finite origin-symmetric convex subsets of Zn, stated as follows:

Problem 1.3 (Problem 5.3 in [12]) Let n ≥ 2, A, B ∈ O, with dimA=dimB=n and for each

u ∈ Pn, we have:

|A|u⊥| = |B|u⊥| (1.1)

Can A = B be implied?

Unlike the original theorem, however, [12] provided a counterexample in R2, as illustrated in

Figure 1: S1, S2 and S3 are non-congruent, but they have equal lattice projection counts.
1Some definitions and notations in this section will be introduced later in the following section.
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Figure 1: The Counterexample Found in [12]

Remark 1.4 In discrete geometry and computer science, there is a widely studied problem

dual to what we discuss in this paper: how to determine and reconstruct a finite convex lattice

set from its X-rays XuA(v) = |A ∩ (Lu + v)| where u, v ∈ Zn and Lu is the line through origin

parallel to u. Such technique is highly applicable in the study of atoms in crystals and medical

imagelogy. Detailed discussions can be found in [11], [14] and the references therein.

The only attempt to the solution of Problem 1.3 was given by Zhou, in [18], and he showed

that the counterexample in Figure 1 is the only one in Z2, up to unimodular transformations

and with cardinality not larger than 17. The essence of the proof is to enumerate the form of

a finite origin-symmetric convex set with cardinality no larger than 17 and taking unimodular

transformations appropriately so as to simplify the structure of the investigated sets.

In 1975, the covariogram function gA(u) was introduced by Mathereon in [5]. Initially, this

function is used to interpret the difference of 2 random variables uniformly distributed on two

subsets of Rn: gA = 1A ∗ 1−A. The Mathereon’s Conjecture is also stated in [5] as follows: A

convex body A is determined by the distribution of X − Y , where X and Y are independent

random variables uniformly distributed over A. This conjecture is settled, affirmatively in the

planar case by Bianchi, but he also gave a series of counterexamples when dim(A) ≥ 4, while the

3−dimensional case is still an open problem, see [6] [7] [8] [9] and [16], for example.

In [12], the authors generalized covariogram function to its discrete analogue: gA(u) = |A ∩
(A + u)| where A is a finite set in Rn, and the connection between Problem 1.3 and discrete

covariogram was established (Lemma 2.2), too. In this paper, we are going to make a thorough

use of this lemma to show that: S1, S2 and S3 given in Figure 1 is the only finite origin-symmetric

convex lattice subsets of {(x, y) ∈ Z2 : |y| ≤ 2} that cannot be determined by lattice projection

counts, up to unimodular transformations. The unimodular transformation group will also be

applied frequently in our discussion. The following sections will be organized as follows:

In section 2, we introduce the definitions, notations and preliminaries used in this paper. Some

of the basic properties of discrete covariogram and lattice projection counts and several technical

lemmas are studied in section 3. Our main result is provided and proved in section 4. Section

5 is devoted to some general results in the planar case without constraint, the last subsection of

which contains a few concluding remarks.
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2 Definitions, Notations and Preliminaries

As usual, o refers to the origin in Euclidean n-space Rn and the integer lattice in Rn is Zn. For

Rn ∋ u ̸= 0, u⊥ is the (n − 1)-dimensional subspace orthogonal to u. If A ⊂ Rn, then |A|, int(A)

and conv(A) represent the cardinality, the interior and the convex hull of A, respectively. The

dimension of A dimA is the dimension of its affine hull. DA = {x − y|x, y ∈ A} is the difference

set of A and the Minkowski Sum of set A and B refers to A + B = {x + y : x ∈ A, y ∈ B}. In

a similar way, we define λA as λA = {λx : x ∈ A} where λ ∈ R and A is a subset of Rn. In

this paper origin-symmetry is always applied to describe a set that is centrally symmetric and its

center is o. We say a vector u ∈ Zn is primitive if the greatest common divisor of its n coordinates

is 1. And we denote the set of all primitive vectors in Zn as Pn. [x] stands for the floor of x, or

the greatest integer not bigger than x.

A set A ⊂ Rn is a convex set if ∀x, y ∈ A, we have λx + (1 − λ)y ∈ A,∀λ ∈ [0, 1]. A convex

body C is a compact convex set with non-empty interior, and the sets of all convex bodies is

denoted as Kn. Vk(·) is the k-dimensional Lebesgue measure in Rn, where k = 1, 2, 3, . . . , n, while

|A| is the cardinality of a finite set A. A|S means the orthogonal projection of A onto a subspace

S of Rn. So Vk(K|S) is the kth projection function of a convex body K onto a k−hyperplane,

1 ≤ k ≤ n− 1. A ⊂ Zn is a called a convex lattice set if A = conv(A)∩Zn. As a discrete analogy

of Vk(K|S), we define |A|u⊥| as the lattice projection count of a finite lattice set A in Zn onto

the (n − 1)−dimensional hyperplane orthogonal to u ̸= 0. Clearly |A|u⊥| is the number of lines

parallel to u which contain at least one point in A.

For the convenience of our discussion, we apply some unstandard notations which can only be

found, strictly, in this paper: On is the collection of finite origin-symmetric convex lattice subsets

of Zn. S is applied to denote the slab {(x, y) : |y| ≤ 2}. We first prove a lemma that characterizes

the convexity of a set in O2.

Lemma 2.1 Let A ∈ O2. Suppose P1 = (x1, y1), P2 = (x2, y2) ∈ A, y1 > y2, x1 < x2, and o is

contained in the left-half plane separated by the line through P1 and P2, then for any y2 ≤ y ≤ y1,

we have P = (x, y) ∈ A where x := [x1 + (x2−x1)(y1−y)
y1−y2

]. Further x ≥ x1 + (x2−x1)(y1−y)−(y1−y2)+1
y1−y2

.

Proof The first assertion is just a consequence of the definition of convex lattice set while the

next assertion follows from the first and that [x] ≤ x ≤ [x]+ n−1
n , when x = m

n , gcd(m,n) = 1.

There are other criteria for the convexity of a lattice set, but we only need the one presented

in Lemma 2.1.

Assume A is a bounded Lebesgue measurable subset of Rn,

gA(u) := Vn((A + u) ∩ A) (2.1)

is the (usual) covariogram function of A. Analogously, if B is a finite lattice subset of Zn, the

discrete covariogram function gB is defined as follows:

gB(u) := |(B + u) ∩ B| (2.2)

We will introduce some basic properties of discrete and usual covariogram functions later in this

section.

The fundamental lemma, provided in [12], in our discussion reads as follows:
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Lemma 2.2 (Lemma 5.1 of [12]) If A is a finite convex lattice set in Zn and u ∈ Pn, then

|A|u⊥| = |A| − gA(u) (2.3)

Proof (see also [12]) Notice that |A| = gA(0u), so |A| − gA(u) = gA(0u) − gA(1u). Since

u ∈ Pn and A is convex, every line parallel to u with at least one point in A contributes exactly

1 to gA(0u) − gA(1u). The number of such lines equals |A|u⊥|, so the lemma follows.

We will frequently use this lemma in our paper. Next, we define the terms similar and exception:

Definition 2.1 Assume that A,B ∈ On. If |A|u⊥| = |B|u⊥|, we say A and B are similar,

and write A ∼ B if A and B are similar. (A,B) is an exception, if A ∼ B but A is not congruent

with B.

It’s easy to see that similarity is an equivalence relation, and, with the help of Lemma 2.2, we

have |A| = |B| and gA(u) = gB(u) (∀u ∈ Pn) if A ∼ B.

For a linear transformation T ∈ GL(n), if |det(T )| = 1 and all of T ’s entries are integers,

T is called unimodular. Obviously, T is nondegenerate and has a unimodular inverse T−1. In

our paper Gn denotes the unimodular linear transformation group, i.e. Gn = {T ∈ GL(n) :

|det(T )| = 1, all of T ’s entries are integers}. We are going to show that there are only three orbits

of exceptions contained in S under G2.

3 The Invariance Properties of Covariogram Functions

As is shown in [18] Theorem 2.1, for A, B ∈ On if |A|u⊥| = |B|u⊥| for any u ∈ Pn, then

|T (A)|u⊥| = |T (B)|u⊥| for any u ∈ Pn where T ∈ Gn. We restate this property in the language

of similarity:

Lemma 3.1 Assume A,B ∈ On, A ∼ B and T ∈ Gn, then we have T (A) ∼ T (B).

Proof The proof is almost the same as the one provided in [18], proving T (A), T (B) ∈ On,

u is primitive if and only if T (u) is, and gT (A)(T (u)) = gT (B)(T (u)) if and only if gA(u) = gB(u).

However, the proof of T (A) and T (B)’s convexity is not missing in [18], so we fill in the gap here.

Since T is nondegenerate and linear, we have that for P ∈ Zn, P ∈ bd(conv(A)) if and

only if T (P ) ∈ bd(T (conv(A))). In other words, T (bd(conv(A)) ∩ Zn) = T (bd(conv(A))) ∩ Zn

|det(T )| = 1, so, for P ∈ Zn, if P ∈ int(conv(A)) then we have T (P ) ∈ int(conv(T (A))). The

same argument applies to T−1 and T (A) and we get T (int(conv(A))∩Zn) = T (int(conv(A)))∩Zn.

Consequently, the above two equalities imply that the convexity of T (A) is equivalent to that of

A when T ∈ Gn.

As a direct consequence, we have:

Corollary 3.2 For any A,B ∈ O2, A ∼ B, if and only if Tk(A) ∼ Tk(B), where Tk(x, y) =

(x + ky, y).

So we define a subset of G2 mentioned in Corollary 3.2:

T = {Tk ∈ O2 : Tk(x, y) = (x + ky, y), k ∈ Z} (3.1)

Lemma 3.1 inspires us to look for exceptions in different equivalent classes according to different

orbits under G2. Now we define this rigorously.
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Definition 3.1 We say an exception (A,B) is equivalent to exception (A′, B′), if ∃T ∈ Gn

such that A′ = T (A), B′ = T (B) or A′ = T (B), B′ = T (A).

For our later use, we restate the main result in [18] as follows:

Theorem 3.3 (Theorem 4.2 in [18]) Assume A,B ∈ O2 and (A,B) is an exception. If

|A| = |B| ≤ 17, then (A,B) is equivalent to one of the following: (S1, S2), (S2, S3) and (S3, S1),

where S1, S2 and S3 are illustrated in Figure 1.

In the next section, we will demonstrate that there are only three equivalent classes of exceptions

if the centered convex lattice sets are contained in the slab S.

4 Projection Counts of Sets in {(x, y) : |y| ≤ 2}

4.1 Main Results

As is mentioned in section 1, there are three exceptions to Problem 1.3, each composed of 2 of

the three sets in Figure 1. In this section, however, We will show they are the only exceptions

contained in S. The main result of this paper is established in the following theorem.

Theorem 4.1 Let A,B ∈ O2, A,B ⊂ S. If (A, B) is an exception, then (A, B) is equivalent

to one of the following: (S1, S2), (S2, S3) and (S3, S1), where S1, S2 and S3 are illustrated in

Figure 1.

Remark 4.2 Theorem 4.1 is generalizable with the help of the following lemma:

Lemma 4.3 If u = (x1, x2, · · · , xn) ∈ Pn, then there exists T ∈ Gn such that T (u) =

(1, 0, 0, · · · , 0).

This is a fundamental and widely applicable result in the theory of integer matrices. The

reader may refer to [15], chapter 14 for a proof and extensive discussions. Applying Lemma 4.3,

we generalize Theorem 4 into the following result:

Theorem 4.4 Let A,B ∈ O2 and (A,B) is an exception. If inf{|A|u⊥| : u ∈ P2} ≤ 5, we

have (A,B) is equivalent to one of the following: (S1, S2), (S2, S3) and (S3, S1), where S1, S2 and

S3 are illustrated in Figure 1.

We leave the proof, based on some analysis on convexity, of Theorem 4.4 to the end of this

section after showing Theorem 4.1.

The key to our proof is that we choose primitive vectors u′s appropriately that lead to gA(u) ̸=
gB(u) when A ̸= B for A,B ∈ O2, thus ruling out other possible exceptions located in the slab S.

4.2 Analysis on the Structures of Possible Exceptions

Before entering the details of the proof, we’d like to introduce a few notations first. Ai = A ∩
{(x, y) : y = i}, Bi = B ∩ {(x, y) : y = i}, lAi = inf{x : (x, y) ∈ Ai}, rA

i = sup{x : (x, y) ∈ Ai},
lBi = inf{x : (x, y) ∈ Bi} and rB

i = sup{x : (x, y) ∈ Bi}. To illustrate, Ai is the intersection of

A and {(x, y) : y = i}, while lAi (rA
i ) is the x coordinate of the leftmost (rightmost respectively)

point in Ai. By origin-symmetry, we have A−i = −Ai, lA−i = −rA
i and rA

−i = −lAi , and analogous

equalities hold for Bi, lBi and rB
i . In the rest of the paper, we use the structure of A (or B) to
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depict the relative location and cardinality of Ai’s (Bi’s respectively), where i ∈ Z.1 We define

nA
k := l

Tk(A)
−1 − l

Tk(A)
2 and mA

k := r
Tk(A)
−1 − r

Tk(A)
2 where Tk ∈ T defined in (3.1). nB

k and mB
k are

defined analogously. The insight of n’s and m’s will be clear later in our discussion. Now let’s get

started from ruling out exceptions in S′ = {(x, y) : |y| ≤ 1}. A simple consequence of Lemma 3.4

in [18] yields the following lemma.

Lemma 4.5 If A ∼ B and A,B ⊂ S′, then A is congruent with B.

Proof Case I: set A lies entirely in the x-axis.

This case is trivial.

Case II: set A lies in the 3 lines y = 0, y = ±1.

Under this condition, the lemma is a direct corollary of Lemma 3.4 in [18].

With Lemma 4.5, we assume that Ai ̸= ∅ where i = 0,±1,±2 in the rest of the paper. Our

first step to simplify the structure of possible exceptions is the following lemma.

Lemma 4.6 If A ∼ B and |A2| = |A−2| ≥ 2, then A = B.

Proof Let uk = (2k + 1, 4), k = 0,±1,±2 · · · · · · The equality gA(uk) = gB(uk) (∀k ∈ Z)

yields B2 = A2 and B−2 = A−2. If |A1| = 1, by convexity, |A2| = 2, the problem is reduced to

the case in Lemma 4.5, if we exchange the role of x and y. If |A1| ≥ 2, we let v1
k = (3k + 1, 3),

v2
k = (3k − 1, 3). Similarly, by gA(v1

k) = gB(v1
k), gA(v2

k) = gB(v2
k) and B2 = A2, we derive that

B1 = A1, thus B−1 = A−1, and B0 = A0 by the equality of cardinality, i.e. A = B.

So, we obtain the following corollary:

Corollary 4.7 If (A,B) is an exception, then |A2| = |B2| = 1.

Without loss of generality, we assume that A2 = {(α, 2)} B2 = {(β, 2)} ,and let uk = (3k+1, 3),

vk = (3k − 1, 3), k = 0,±1,±2 · · · · · · in the rest of the paper. Deducing from the definition of

discrete covariogram, we have that gA(uk) = gB(uk) = 2 or 0, gA(vk) = gB(vk) = 2 or 0. So it

does make sense to investigate the position of cardinality of the points in A−1 and B−1. In the

following discussion, we let lA−1 = α + t0, rA
−1 = α + t0 + t while lB−1 = β + t1, rB

−1 = β + t1 + t∗.

Without loss of generality, we assume t ≥ t∗. From gA(uk) = gB(uk) and gA(vk) = gB(vk)

(∀k ∈ Z), we reach the point that t − t∗ = |A−1| − |B−1| ≤ 2, while the difference between t and

t∗, if there is any, owes entirely to the 4 boundary points:(α+ t0,−1), (α+ t0 + t,−1), (β + t1,−1)

and (β + t1 + t∗,−1). To explicate, we have:

Lemma 4.8 Let t0, t1, t and t∗ be defined as above. They must satisfy one of the 6 following

conditions:

t0 + t = t1 + t∗, t0 = 3k, t1 = 3k + 1 (4.1)

t0 = t1, t0 + t = 3k, t1 + t∗ = 3k − 1 (4.2)

t0 = 3k, t1 = 3k + 1, t0 + t = 3k′, t1 + t∗ = 3k′ − 1 (4.3)

t0 = 3k, t1 = 3k + 1, t0 + t = 3k′ − 1, t1 + t∗ = 3k′ (4.4)

t0 = 3k + 1, t1 = 3k, t0 + t = 3k′, t1 + t∗ = 3k′ − 1 (4.5)

t0 = t1, t = t∗. (4.6)

1This is not a rigorous definition, but we state it here for the convenience of our exposition.
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Proof We observe, again from the definition of discrete covariogram, that whether (α +

3l,−1) ∈ A−1 does not affect the values of gA(ul′) and gA(vl′′) (l′, l′′ ∈ Z) when α + 3l = lA−1 or

α +3l = rA
−1 (that is 3l = t0, or 3l = t0 + t, respectively). Analogously, we have similar results for

B. Whether (β + 3l,−1) ∈ B−1, does not affect the value of gB(ul′) and gB(vl′′) (l′, l′′ ∈ Z) when

β + 3l = lB−1 or β + 3l = rB
−1 (that is 3l = t1, or 3l = t1 + t∗ respectively). So the only possible

difference between the relative location of A−1 and A2 and that of B−1 and B2 only occurs at

(lA−1,−1), (rA
−1,−1), (lB−1,−1) or (rB

−1,−1). Based on this essential fact and the assumption that

t ≥ t∗, we derive, by enumeration, that the possible exceptions must satisfy one of the 6 equations

above.

Lemma 4.8 further simplifies the problem, since we only need to study the structure of A2∪A−1

to find the exceptions now. We discuss the easiest condition of Lemma 4.8, given by (4.6), first.

Lemma 4.9 When (4.6) holds, A = B.

Proof If |A1| = |A−1| = |B1| = |B−1| = 1, we let A1 = {(α∗, 1)}, A−1 = {(−α∗,−1)},
B1 = {(β∗, 1)} and B−1 = {(−β∗,−1)}. The convexity implies that α = 2α∗, β = 2β∗, and

|A0| = |B0| = 3. Let u = (α∗, 1), so gB(u) = gA(u) = 4, which is equivalent to α∗ = β∗, i.e.

A = B.

If |A1| = |A−1| = |B1| = |B−1| = t = t∗ ≥ 2, we let λk = (2k + 1, 2), k = 0,±1. ± 2, · · · · · ·
It is clear that |A0| = |B0|. What remains to be verified is α = β. If this is not true, we

assume, without loss of generality, α > β. And we let k∗ = sup{k : (α, 2) − λk ∈ A0}. However,

gA(λk∗) − gB(λk∗) ≥ 2 by the definition of k∗ and the convexity of A and B. This contradiction

concludes the proof.

4.3 The Structure of A2 ∪ A−1

The structure of the exceptions under the first 5 conditions are more obscure thus requiring preciser

analysis. The set of transformations T = {Tk ∈ O2 : Tk(x, y) = (x + ky, y), k ∈ Z} is an efficient

tool to analyze the structure ofA2∪A−1 (or B2∪B−1) mainly because it preserves the y coordinate

of each point in A and B and it changes nA
k and mA

k regularly.

nA
k − nA

k−1 = −3,mA
k − mA

k−1 = 3 (4.7)

Similar equalities hold for nB
k and mB

k too.

Motivated by Theorem 3.3, we first discuss the case when |A1| is small by the next lemma.

Lemma 4.10 Let A,B ⊂ O2, A, B ⊂ S. Suppose A ∼ B, |A2| = 1 and |A1| ≤ 4, then we

have A = B if A, B /∈ {S1, S2, S3}, where S1, S2 and S3 are illustrated in Figure 1.

Proof The assertion is a direct consequence of Theorem 3.3. Suppose, further, there exists

an exception (A,B) which satisfy the assumptions of the lemma. Theorem 3.3 implies |A| ≥ 19.

Hence, |A0| ≥ 19−2|A1|−2|A2| = 9. However, due to the convexity of A, |A0| ≤ 2(|A1|−1)+1 = 7.

As a result, there is no exception satisfying all the assumptions in the lemma, so A = B.

By Lemma 4.10, we only need to consider the exception (A, B) where |A1| ≥ 5, and we have:

Theorem 4.11 Let A,B ∈ O2, A,B ⊂ S. If |A1| = |A−1| ≥ 5, |A2| = 1 and A ∼ B, then

A = B.
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As we have assumed, A−1 = {(α + t0,−1), (α + t0 + 1,−1) · · · (α + t0 + t,−1)} where t ≥ 5.

Without loss of generality, we assume that t0 < 0 and t + t0 > 0. If not, by (4.7) ∃k∗ such that

−3 ≤ nA
k∗ < 0 and mA

k∗ ≥ nA
k∗ + 4 > 0, then we replace A and B with Tk∗(A) and Tk∗(A). This is

a crucial assumption in our later proof and is the reason why we choose the number 5. Prior to

looking for an appropriate vector u ∈ P2 which violates gA(u) = gB(u), we assign some values to

α, t0 and t. Let α = −a, t0 = −b and t = b + 2a + c, b > 0, c ≥ 0. So

A−1 = {(−b − a,−1), (−b − a + 1,−1) · · · · · · (a + c,−1)}

A1 = {(−a − c, 1), (−a − c + 1,−1) · · · · · · (a + b, 1)}

Further, let

A0 = {(−d, 0), (−d + 1, 0) · · · · · · (d, 0)}

Analogously, let β = −a∗, t1 = −b∗ and t∗ = b∗ + 2a∗ + c∗, so we have:

B2 = {P ∗
1 = (−a∗, 2)}, B∗

−2 = {P ∗
2 = (a∗,−2)}

B−1 = {(−b∗ − a∗,−1), (−b∗ − a∗ + 1,−1) · · · · · · (a∗ + c∗,−1)}

B1 = {(−a∗ − c∗, 1), (−a∗ − c∗ + 1, 1) · · · · · · (a∗ + c∗, 1)}

B0 = {(−d∗, 0), (−d∗ + 1, 0) · · · · · · (d∗, 0)}

We take P2 ∋ u = (a+b+d, 1) in the rest of the paper. In fact, u is a vector pointing from the

left-most point of A−1 to the right-most side of A0, so gA(u) = 4 if c ≥ a + b + d, while gA(u) = 2

if c < a + b + d. Essentially, gA(u) = 4 or 2 only depends on whether P2 + u ∈ A−1. We first

consider the case that gA(u) = 4, where the structure of A is more explicit.

Lemma 4.12 Let A,B ∈ O2, A,B ⊂ S. If |A1| = |A−1| ≥ 5, |A2| = 1, gA(u) = 4 and

A ∼ B, we must have A = B.

Proof gA(u) = 4, so g
A−1∪A−2

(u) = 1, i.e. c ≥ a + b + d. Lemma 2.1 indicates that

2a + b ≥ [d+a
2 ], 2a + b ≥ [ 2a+c

3 ], a + d ≥ [ c+4a+b
2 ] and d + a > [4a+2c

3 ] . Solve these integer linear

inequalities, and we get

3a + 2b − 1 ≤ d ≤ 3a + 2b + 1, a + b + d ≤ c ≤ 4a + 3b + 2 (4.8)

With these inequalities, we can identify every possible value of c and d:

1. d = 3a + 2b − 1, c = 4a + 3b − 1

2. d = 3a + 2b, c = 4a + 3b or 4a + 3b + 1

3. d = 3a + 2b + 1, c = 4a + 3b + 1 or 4a + 3b + 2.

Without loss of generality, we assume that |A1| ≥ |B1| and (A,B) is an exception to derive

contradictions. We divide the problem into several parts according to Lemma 4.8.

Case 1 (4.1) holds, i.e. b∗ = b − 1, c∗ + 2a∗ = c + 2a

From the identical cardinality of A and B, we get d∗ = d + 1. Since gB(u) = 4, the inequality

a + 1 ≥ a∗ ≥ a must hold.

If a∗ = a, we consider the convexity of B. We observe that rB
1 = a, but [ rB

0 +rB
2

2 ] = d+1+a
2 −a ≥

a + 2b > rB
1 . Such inequality unfortunately violates the convexity of B.

If a∗ = a + 1, we take vector u′ = (0, 1). It is rather obvious that gB(u′) < gA(u′).

Case 2 (4.2) holds, i.e. b∗ = b, c∗ + 2a∗ = c + 2a − 1
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Then we have d∗ = d. Taking u′ = (0, 1), we see a∗ = a+1 and c∗ = c− 1 by gA(u′) = gB(u′).

gB(u) = 4, so c∗ ≥ d + a + b, c ≥ d + a + b + 1. Since c + 2a ≡ 2(mod3), it follows that

c = 4a + 3b + 2, c∗ = 4a + 3b + 1, d∗ = 3a + 2b. Assuming u′ = (2a∗ + b∗,−1) = (2a + b + 1,−1),

gB(u′) − gA(u′) = 2. This is, again, a contradiction.

Case 3 (4.3) holds, i.e. b∗ = b − 1, c∗ + 2a∗ = c + 2a − 1

Then d∗ = d + 2, c + 2a ≡ 1(mod3), i.e. c + 2a = 6a + 3b + 1. Let u′ = (0, 1), gA(u′) = gB(u′),

so a∗ = a − 1. The convexity of B is also violated at the rightmost point of B1 because rB
1 =

2a + b − 3 < [ rB
0 +rB

2
2 ] = [4a+2b+1

2 ].

Case 4 (4.4) holds, i.e. b∗ = b − 1, c∗ + 2a∗ = c + 2a + 1

Explicitly d∗ = d + 1, c + 2a ≡ 1(mod3), i.e. c + 2a = 6a + 3b + 1. Since gB(u) = 4, one of

following holds: a∗ = a or a∗ = a − 1.

If a∗ = a, we take u′ = (0, 1) to deduce gA(u′) ̸= gB(u′).

If a∗ = a− 1, the contradiction follows immediately from the violation of B’s convexity at the

rightmost point of B1, as is shown in Case 3.

Case 5 (4.5) holds, i.e. b∗ = b + 1, c∗ + 2a∗ = c + 2a − 1

We have d∗ = d + 1, c + 2a ≡ 1(mod3), i.e. c + 2a = 6a + 3b + 1. Taking u′ = (0, 1),

gB(u′) = gA(u′), we find it easy to see a∗ = a − 1, from which gB(u) follows. The last assertion

contradicts our assumption that gA(u) = 4. The conclusion of the lemma is a consequence of the

results shown in the cases above.

The proof of Theorem 4.11 when gA(u) = 2 is a bit tricker, relying on the observation of some

other vectors in P2 violating A ∼ B.

Lemma 4.13 Let A,B ∈ O2, A,B ⊂ S. If |A1| = |A−1| ≥ 5, |A2| = 1, gA(u) = 2 and

A ∼ B, we must have A = B.

Proof As is assumed in Lemma 4.12, |A1| ≥ |B1| and (A, B) is an exception. To reach some

contradictions, we also divide the problem into 5 cases according to Lemma 4.8.

Case 1 (4.1) holds, i.e. b∗ = b − 1, c∗ + 2a∗ = c + 2a

Since |A| = |B|, it is clear that d∗ = d + 1. gA(u) = gB(u) = 2, so a∗ = a.

As before, we let vectors λk = (2k + 1, 2), k = 0,±1,±2 · · · · · · . If |A−1| ≥ 6, there exists

more than 3 k’s, s.t. gA−1∪A1
(λk) − gB−1∪B1

(λk) = 2. However, there are at most 2 λk’s which

may satisfy g
B−2∪B0∪B2

(λk) − g
A−2∪A0∪A2

(λk) = 2. Hence, ∃k0 ∈ Z s.t. gA(λk0) ̸= gB(λk0), which

contradicts the assumption that A ∼ B. So |A−1| ≤ 5, plus |A−1| ≥ 5, we have |A−1| = 5. By

Theorem 3.3, we know that d ≥ 19−10−2−1
2 = 3, so d∗ ≥ d + 1 = 4. Since t0 < 0, t + t0 > 0, we

have b = 3, t+ t0 = 2a+ c = 1. By convexity of A, all possible values of a are 0 and −1. However,

each case results in a violation of B’s convexity. This contradiction implies A = B in Case 1.

Case 2 (4.2) holds, i.e. b∗ = b, c∗ + 2a∗ = c + 2a − 1

Due to |A| = |B| and gA(u) = gB(u), we have d∗ = d + 1, a∗ = a − 1. We apply the same

method used in Case 1, taking λk’s to show {A : |A1| ≥ 6} is free from exceptions and enumerating

all possible A’s when |A1| = 5. The argument almost the same (To be precise set A in Case 2

is a mirror reflection by the y−axis of set A in Case 1.) as the one used in Case 1 leads to a

contradiction, thus proving the assertion in Case 2.

Case 3 (4.3) holds, i.e. b∗ = b − 1, c∗ + 2a∗ = c + 2a − 1

Clearly, with|A1| = |A−1| and gA(u) = gB(u), we obtain d∗ = d+2 and a∗ = a+1. By Lemma

4.8, we deduce b ≥ 3 and 2a + c ≥ 3, so |A−1| = 2a + c + b + 1 ≥ 7. Repeating the argument in

the proof of Case 1 and Case 2, we take λk’s and demonstrate that A is free from exceptions, thus
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concluding our proof of Case 3.

Case 4 (4.4) holds, i.e. b∗ = b − 1, c∗ + 2a∗ = c + 2a + 1

We have d∗ = d because d = d∗.

If a∗ ≤ a, we take k0 = sup{k : g
B2∪B0∪B−2

(λk) ̸= 0} so it is clear that g
A2∪A0∪A−2

(λk0) ≤
gB2∪B0∪B−2

(λk0). However, gA1∪A−1
(λk0) < gB1∪B−1

(λk0), by rA
1 − lA−1 ≤ lB1 − rB

−1 − 2, which is

yielded from (4.4).

If a∗ ≥ a + 2, gB(u) ≥ 4, contradictory to our assumption that gA(u) = 2.

If a∗ = a + 1, let u′ = (2a∗ + b∗,−1). We have that gB(u′) = gA(u′) + 2, contradiction again.

Case 5 (4.5) holds, i.e. b∗ = b + 1, c∗ + 2a∗ = c + 2a − 1

Similar to the Case 4, d∗ = d. Essentially, it is a inverse case of the last one. In other words, if

we exchange the role of A and B, the argument utilized in Case 4 is still valid in this case, which

results in another contradiction.

Combining the last five cases together, we safely conclude that there is no exception as long as

gA(u) = 2.

Proof of Theorem 4.1 Lemma 4.12 and Lemma 4.13 immediately leads to Theorem 4.11.

Summarizing the results given by Lemma 4.5, 4.8, 4.9, 4.10, Corollary 4.7 and Theorem 4.11, we

have proved Theorem 4.1.

4.4 On Theorem 4.4

We will generalize Theorem 4.1 to Theorem 4.4 in this subsection. Suppose A,B ∈ O2 with

A ∼ B and u∗ ∈ P2 such that |A|u⊥
∗ | = inf{|A|u⊥| : u ∈ P2} ≤ 5. We also assume that (A,B)

is not equivalent to (S1, S2), (S2, S3) or (S3, S1). We apply Lemma 4.3 to A and B, so we have:

∃T ∈ G2, such that |T (A)|T (u∗)⊥| = |T (B)|T (u∗)⊥| ≤ 5 and T (u∗) = (1, 0). So we replace A and

B with T (A) and T (B). In fact, we can prove, by the next lemma, that A,B ⊂ S, thus reducing

Theorem 4.4 to Theorem 4.1.

Lemma 4.14 Let A,B ∈ O2 and A ∼ B. Suppose again that |A|u⊥
∗ | ≤ 5 and (A, B) is not

equivalent to (S1, S2), (S2, S3) or (S3, S1). We have A,B ⊂ S, where u∗ = (1, 0) and |A|u⊥
∗ | is the

smallest among all the u ∈ P2.

Proof By Theorem 3.3, |A| ≥ 19. Assume that A ∩ S ̸= A, then A1 = ∅ or A2 = ∅.
Case 1 A1 = ∅

First we observe that |Ai| ≤ 1 for all i ≥ 1. Otherwise, by the convexity of A, we have |Aj | ≥ 1

when j ≤ k = sup{i : |Ai| = 2}, contradictory to |A1| = 0. If |A0| ≥ 3, by convexity again, we

have |A1| ≥ [23 · 2] = 1, contradicting the assumption that A1 = ∅. Hence, |A0| = 1. That is to

say |Ai| ≤ 1,∀i ∈ Z, so |A| ≤ 5. We have established a contradiction in Case 1.

Case 2 A2 = ∅
|A| ≥ 19, so 2|A1|+ |A0|+2 ≥ 19 and, by convexity of A, |A0| ≥ |A1|−1. This two inequalities

imply |A0| ≥ 4. Since |A0| is odd, we have |A0| ≥ 5. Hence |A2| ≥ [13 (|A0| − 1)] ≥ [ 43 ] = 1,

contradictory to that A2 = ∅.
Concluding the above two cases, we find that A ⊂ S. Identical argument holds for B too, so

we also have B ⊂ S.

As a corollary, it follows that:

Corollary 4.15 Suppose A,B ∈ O2 with A ∼ B, and ∃u∗ ∈ P2 such that |A|u⊥
∗ | =

inf{|A|u⊥| : u ∈ P2} ≤ 5. There exists T ∈ G2 such that T (u∗) = (1, 0), and T (A), T (B) ⊂ S.
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Proof If (A, B) is equivalent to (Si, Sj), 1 ≤ i, j ≤ 3, where S1, S2 and S3 are illustrated in

Figure 1, the assertion follows immediately by definition. If (A,B) is not equivalent to (Si, Sj), 1 ≤
i, j ≤ 3, the conclusion follows from Lemma 4.14.

Proof of Theorem 4.4 Once we have established Corollary 4.15 and Theorem 4.1, the con-

clusion of Theorem 4.4 follows immediately.

5 Projection of Sets without Constraint

In this section, we relax the constraint of |y| ≤ 2 and try to develop some general results about

Problem 1.3. We start from the case with a clear structure: rectangles. We say A ∈ O2 is a

rectangle if A = {(x, y) ∈ Z2 : −m ≤ x ≤ m,−n ≤ y ≤ n} and we denote A as Rm,n. (We only

consider when m ≥ 3, n ≥ 3 due to Theorem 4.1.) Our next result shows that rectangles can be

determined by lattice projection counts.

Proposition 5.1 Suppose Rm,n and A ∈ O2, and they satisfy that Rm,n ∼ A, then A =

Rm,n.

Proof Clearly, by Lemma 2.2, we have gA(u) = gRm,n(u),∀u ∈ P2 and |A| = (2m+1)(2n+1).

If ∃j > n, such that |Aj | ̸= 0, there must exist, by |A|{(x, y) : x = 0} = 2n+1|, 0 < k ≤ n such that

|Ak| = 0. Following the argument in the proof of Lemma 4.14, by convexity, |Al| ≤ 1,∀k ≤ |l| ≤ j.

Suppose |{l : |Al| = 0, k ≤ |l| ≤ n}| = 2α, then N := |{(x, y) : (x, y) ∈ Rm,n, (x, y) ̸∈ A}| ≥
2α(2m + 1). However, |A ∩ {(x, y) : |y| > n}| ≤ 2α. Let k0 := inf{k > 0 : |Ak| = 0}, then k0 ≥ 1

and it is the least k that makes {(x, y) : y = k} free of points in A. So

k0−1∑
i=−k0+1

|Ai| ≥ N − 2α + (2m + 1)(2k0 − 1) > (2m + 1)(2k0 − 1)

Hence, by Dirichlet’s Pigeonhole Principle, ∃q,−k0 + 1 ≤ q ≤ k0 − 1, such that |Aq| ≥ 2m + 2.

That is to say, |A|{(x, y) : y = 0}| ≥ 2m + 2, contradicting the assumption that |A|{(x, y) : y =

0}| = |Rm,n|{(x, y) : y = 0}| = 2m + 1, thus concluding the proof.

By Lemma 2.2, 3.1 and the last proposition, we know that any A = T (Rm,n), when T ∈ G2,

is also determined by its projection.

The following result illustrates that, applying suitable transformation in G2, we can reshape

the original set in O2 into one with a simple structure defined below. Further, for convenience

again, we let A′
i := A ∩ {(x, y) : x = i}.

Definition 5.1 Suppose A ∈ O2, we say A is compressed, if ∃a, b ≥ 0 such that A ⊂ Ra,b,

|Ai| > 0 and |A′
j | > 0, ∀− b ≤ i ≤ b,−a ≤ j ≤ a. C is called the maximal compressed subset of A,

if ∃a0, b0 ≥ 0 such that |Ci| > 0 and |C ′
j | > 0, ∀ − b0 ≤ i ≤ b0,−a0 ≤ j ≤ a0, but |Cb0+1| = 0 and

|C ′
a0+1| = 0. The maximal compressed subset of A is denoted as MC(A).

Essentially, for a compressed set A, we have a rectangle Ra,b such that A ⊂ Ra,b and each of

the lines: {(x, y) : y = i} or {(x, y) : x = j}, where |i| ≤ b and |j| ≤ a has at least one point in A.

Lemma 5.2 Let A ∈ O, C = M(A) and C $ A, then ∃T ∗ ∈ G2 such that |MC(T ∗(A))| ≥
|C| + 2.

Proof Since o ∈ A, MC(A) ̸= ∅. We first claim that there are exactly 2 points in A which

have the smallest Hausdorff Metric or Manhattan Distance from Ra0,b0 .
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To start with, the points in A but not in C must lie in R1 = {(x, y) ∈ Z2 : x > a0, y > b0},
R2 = {(x, y) ∈ Z2 : x > a0, y < −b0}, R3 = {(x, y) ∈ Z2 : x < −a0, y > b0} or R4 = {(x, y) ∈ Z2 :

x < −a0, y < −b0}. |Ai| ≤ 1 for |i| ≥ b0 +1, |A′
j | ≤ 1 for |j| ≥ a0 +1. Similar argument, based on

convexity, with that of Lemma 4.14 shows that every point in A but not in C must be contained

in either R1 ∪ R4 or R2 ∪ R3. Without loss of generality, we assume that A\C ⊂ R3 ∪ R2. If

there are two points P1 = (x1, y1), P2 = (x2, y2) ∈ R3 where x1 < x2 and y1 > y2 with the same

smallest distance to Ra0,b0 . The convexity of A soon yields that (x1, y2) ∈ A and it is nearer than

P1 and P2. So there is only one point of the smallest distance to Ra0,b0 in A ∩ R3, so is one in

A ∩ R2. The claim follows.

We assume P is the point nearest to Ra0,b0 and P ∈ R3. Clearly, by the convexity of A, P̂ =

(−a0, b0) ∈ A, since Ab0 ̸= ∅ and A′
−a0

̸= ∅. Suppose P − P̂ = (−p, q), where (p, q) = 1. As before,

we assume T = {Tk : Tk(x, y) = (x + ky, y), k ∈ Z} and T̄ = {T̄k : T̄k(x, y) = (x, y + kx), k ∈ Z}.
We now construct a suitable T ∗ satisfying the requirement of the lemma. For convenience, let

A0 = A,C0 = C,P 0 = P, P̂ 0 = P̂ . Without loss of generality, we simply assume that q > p then

by elementary number theory, we have ∃k1 ∈ Z such that yT̄k1 (P ) − yT̄k1 (P̂ ) = q − k1p = p1 < p

and p1 > 0.

We observe that T 1(C0) is still a compressed subset of T 1(A0). If not, ∃P ∗ ∈ T 1(C0) such

that its y coordinate is larger than that of T 1(P̄ 0). Hence, together with the convexity of T 1(A)

and the fact p1 > 0, T 1(P̄ 0) + (0, 1) ∈ T 1(C0). Therefore, P̄ 0 + (0, 1) ∈ C0, contradicting the

maximality of C0.

Now we replace A, A0, P , P̂ , p and q in the above argument with A1 = T 1(A0), C1 = T 1(C0),

P 1 = T 1(P 0), P̂ 1 = T 1(P̂ ), p1 and q1 = p respectively. We have P 1 − P̂ 1 = (−q1, p1). This time

we take T 2 = Tk2 ∈ T , such that xTk2 (P )−xTk2 (P̂ ) = −q1 +k2p1 = −p2 > −q1 and the maximality

of T 2(C0) as a compressed subset is still satisfied. As is shown in the argument above, the essence

of the induction process is the same as that of Euclidean’s Algorithm to find the greatest common

divisor. Hence, we have a finite sequence of transformations T 1, T 2, · · · · · ·Tn ∈ G2 the composite

composite T ∗ = Tn · Tn−1 · · ·T 1 of which satisfies T ∗(P ) = T ∗(P̂ ) + (−1, 1) and T ∗(C) is still

a compressed subset of T ∗(A), so T ∗(C) ∪ {T ∗(P )} ∪ {T ∗(−P )} ⊂ MC(T ∗(A)). This inclusion

concludes the proof.

We are motivated by Lemma 5.2 to induce on the cardinality of MC(T ∗
n(A)), where T ∗

n ∈ G2.

Proposition 5.3 Suppose A ∈ O, ∃T ∈ G2 such that T (A) is compressed.

Proof If A is compressed, there is nothing to prove and we just let T = Id. If MC(A) $ A, by

Lemma 5.2, ∃T ∗
1 , T ∗

2 , T ∗
3 · · · ∈ G2, such that |CM(T ∗

k (A))| ≥ |CM(A)| + 2k. Hence, ∃n such that

|CM(T ∗
n(A))| = |A|, which is equivalent to CM(T ∗

n(A)) = T ∗
n(A). It suffices to let T = T ∗

n .

5.1 Concluding Remarks

We have answered Problem 1.3 partly in this paper, under a strong condition. The proof relies so

heavily on the explicit and simple structure of the sets that it is not well generalizable. Further,

though with Lemma 2.2, we still know little about the discrete covariogram function. We can

hardly retrieve the original set from the discrete covariogram function. The only thing we know is

that without the assumption of convexity and origin-symmetry, the discrete covariogram function

even fails to ensure the uniqueness of the original set, see [12] for counterexamples of either case

(loss of convexity and loss of origin-symmetry).
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Applying Fourier transformation to the covariogram function, in [12], the authors show that

discrete covariogram function can determine sets in On:

Proposition 5.4 (Corollary 4.5 in [12]) If A,B ∈ On and gA = gB , it follows that A = B.

With Lemma 2.2, Problem 1.3 can be restated as follows: if A,B ∈ On and gA(u) = gB(u)∀u ∈
Pn can A = B be implied? By Proposition 5.4, for any exception (A,B), ∃v ∈ Pn and k ≥ 2 such

that gA(kv) ̸= gB(kv).
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