
AI for Business Research
Course Notes*

Instructor: Renyu (Philip) Zhang

Scribed by the students who took this course in Spring 2025.

August 28, 2025

Contents

Chapter: 1 Overview 8

1 Artificial Intelligence and Business Research 8
1.1 AI and the Evolution of Human Civilization 8
1.2 AI for Business Research: Conceptual Foundations 8
1.3 The AI Flywheel: Scaling Effects in Research and Practice 9
1.4 Key Distinctions: AI versus Traditional Statistical Methods 9
1.5 Toward a Scalable Research Mindset 10

2 Prediction Problems in Business Research 11
2.1 Why Do We Care About Prediction? 11
2.2 The Logic of “Predict Then Decide” . 11
2.3 When Do Predictions Fail to Matter? 12
2.4 Prediction Versus Estimation: A Broader Perspective 12

Chapter: 2 Deep Learning Basics 13

3 ML Techniques and Gradient Descent 13
3.1 Machine Learning in the Modern Scientific Landscape 13
3.2 Workflow of Supervised Learning . 14
3.3 Model Selection and Evaluation . 16

*See https://github.com/rphilipzhang/AI-PhD-S25 for more details about the 2025 offering of
this course. The course notes are scribed by the following students: Yiquan Chao, Yuxin Chen, Qilin
Huang, Yu Jiang, Ningfan Lai, Guohao Li, Keming Li, Mengyang Lin, Zhe Liu, Quan Long, Lin Ma,
Xiqing Qin, An Sheng, Chuchu Sun, Jin Wang, Tao Wang, Yachong Wang, Di Wu, Xinyu Xu, Jiaci Yi,
Zhengyun Yu, Bingqi Zhang, Shu Zhang, and Zizhou Zhang.

1

https://github.com/rphilipzhang/AI-PhD-S25

Lecture Notes AI for Business Research

3.3.1 Training, Validation, and Testing Splits 17
3.3.2 Cross-Validation . 17
3.3.3 Common Evaluation Metrics . 18

3.4 Supervised Learning Techniques . 19
3.4.1 Linear Regression: Housing Prices 20
3.4.2 Logistic Regression: Predicting Customer Churn 21
3.4.3 K-Nearest Neighbors: Classifying Fruits by Weight and Color . . 23
3.4.4 Decision Trees: Predicting Loan Approval 25
3.4.5 Random Forests: Predicting Credit Scores 27
3.4.6 Gradient Boosting: Predicting Purchase Intent 29
3.4.7 Bagging: Reducing Variance via Resampling 32

3.5 Gradient Descent . 34
3.5.1 Examples of GD . 34
3.5.2 Gradient Descent Convergence . 35
3.5.3 Momentum . 36
3.5.4 Stochastic Gradient Descent . 37
3.5.5 Adaptive Gradient . 37
3.5.6 Adam . 38

3.6 The Notebooks . 38

4 Deep Neural Networks 40
4.1 Neural Network Structure . 41
4.2 Activation Functions . 42
4.3 Training Deep Neural Networks . 42

4.3.1 Training Pipeline . 43
4.3.2 Common Layer Types . 43
4.3.3 Gradient-Based Estimation and Backpropagation 43
4.3.4 Loss Landscapes and Optimization Challenges 44

4.4 Overfitting and Regularization . 44
4.4.1 Weight Penalty Methods: L1 and L2 Regularization 45
4.4.2 Dropout: Randomized Regularization 46
4.4.3 Early Stopping: Validation-Guided Training 46
4.4.4 Data Augmentation . 46
4.4.5 Batch Normalization and Implicit Regularization 47
4.4.6 Summary . 47

4.5 Implementation with DL Libraries . 47
4.5.1 Core Deep Learning Frameworks 47
4.5.2 High-Level Abstractions and Model Hubs 48
4.5.3 Practical Benefits of Using DL Libraries 48

2

Lecture Notes AI for Business Research

4.5.4 Which Library to Choose? . 49
4.6 The Notebooks . 49

5 Computations in Deep Learning 50
5.1 Hardware Platforms for Deep Learning 50

5.1.1 Local Workstations and Servers . 50
5.1.2 Cloud Infrastructure . 50

5.2 GPU Benchmarking and Comparison 51
5.3 Model Size and Training Time Estimates 51
5.4 Case Study: Compute Costs of DeepSeek-V3 52
5.5 Geopolitical Constraints: GPU Export Bans 52

Chapter: 3 Large Language Models 54

6 From Machine Translation to Transformers: A Genealogy 56
6.1 Neural Machine Translation (NMT) . 56
6.2 Sequence-to-Sequence Architecture: The Encoder-Decoder Model . . 56

6.2.1 The Architecture . 57
6.2.2 Training of Seq2Seq . 58
6.2.3 Applications of Seq2Seq Modeling 59
6.2.4 Limitations of Seq2Seq with RNNs 59

6.3 Attention Mechanisms . 62
6.3.1 A Family of Attention Models . 63
6.3.2 Attention is all you Need . 64

6.4 Applications of Language Models in Economics and Social Science . 69
6.5 The Notebooks . 70

7 Pretrained Transformers: BERT, GPT, and the Rise of Foundation Models 71
7.1 Pretraining Models . 71

7.1.1 What is Pre-training? . 71
7.1.2 The Pre-training to Fine-tuning Pipeline 72
7.1.3 Architectural Variants in Pre-training 72

7.2 BERT . 73
7.2.1 The Architecture of Understanding 73
7.2.2 Masked Language Modeling: Learning Through Obscurity 74
7.2.3 Next Sentence Prediction: Modeling Coherence Across Sentences 75
7.2.4 Joint Objective: Language at Two Scales 76
7.2.5 Input Embeddings: Subwords, Segments, and Position 76
7.2.6 Scaling and Training Regime . 77
7.2.7 The Broader Picture: Understanding vs. Generating 78

3

Lecture Notes AI for Business Research

7.2.8 Fine-tuning BERT . 79
7.2.9 Frontiers and Applications . 81

7.3 GPT . 83
7.3.1 History of GPTs . 83
7.3.2 In-Context Learning: Prompting Instead of Fine-Tuning 85
7.3.3 Pretraining Data for LLMs: The Hidden Engine Behind GPT . . . 85
7.3.4 Tokenization . 87
7.3.5 Compute-Efficient Training with GPUs 88
7.3.6 Mixture of Experts (MoE) . 90
7.3.7 Native Sparse Attention (NSA) . 92

7.4 The Notebooks . 94

8 Posttraining LLMs 95
8.1 Motivation and Scope . 95

8.1.1 Why Posttraining Matters . 95
8.2 Core Techniques in Posttraining . 95

8.2.1 Supervised Fine-Tuning (SFT) . 95
8.2.2 Parameter-Efficient Fine-Tuning (PEFT) 97
8.2.3 Reinforcement Learning from Human Feedback (RLHF) 99
8.2.4 Direct Preference Optimization (DPO) 101
8.2.5 Test-Time Scaling and Reasoning 103
8.2.6 Knowledge Distillation (KD) . 105

8.3 The Notebooks . 107

9 Efficient LLM Inference 108
9.1 KV Caching: Memory as the New Compute Bottleneck 108
9.2 Quantization: Shrinking the Model Without Shrinking Its Brain . . . 111
9.3 DeepSeek Inference Architecture: High-Throughput, Low-Latency

Deployment . 112
9.4 Operations Research (OR) for KV-Aware Inference Scheduling 112
9.5 The Notebooks . 113

10 Research with LLMs 114
10.1 Research Affordances of LLMs . 114
10.2 From Tool to Agent: Task-Driven Control 115
10.3 Evaluation as a Methodological Safeguard 117
10.4 Agentic Research Workflows . 118
10.5 Pitfalls and Ethical Vigilance . 120
10.6 Conclusion: LLMs as Research Infrastructure 120

4

Lecture Notes AI for Business Research

Chapter: 4 Causal Inferences and Machine Learning 121

11 Foundations of Rubin’s Causal Model 123
11.1 Causal Inference: From Philosophy to Scientific Methodology 123
11.2 Randomized Controlled Trials (RCTs): The Gold Standard 124
11.3 Independence Assumptions . 125
11.4 The Rubin Causal Model: Formalizing Causal Inference 128
11.5 Regression Adjustment for Causal Inference 131
11.6 Matching and Inverse Probability Weighting (IPW) 133
11.7 Structure of Modern Causal Inference: Continuity and Innovation . . 135
11.8 The Notebooks . 136

12 Revisiting RCT with a Statistical and Big Data Taste 137
12.1 Motivation: Beyond the Gold Standard 137
12.2 Statistical Inferences of RCT . 137
12.3 Transition to Observational Data . 140
12.4 Relaxing the IID Assumption: Linear and Nonlinear Specification

Models . 141
12.4.1 Linear DGP with Covariates . 142
12.4.2 Nonlinear DGP: Randomization Without Linearity 143

12.5 Without Randomization: CIA-OC and Weighted IPW 145
12.5.1 The Limitations of IPW and the Emergence of Balancing Weights 148

12.6 AIPW and Double Robustness . 151
12.7 The Notebooks . 153

13 Double Machine Learning 154
13.1 From Classical Designs to Modern Data Environments 154
13.2 Partial Linear Model . 157

13.2.1 Impact of Confounders on Causal Effect Identification 157
13.2.2 Neyman Orthogonality: A Pillar of Double Machine Learning . . 158
13.2.3 Why Machine Learning Alone Is Not Sufficient in PLM 160
13.2.4 Regularization Bias . 161
13.2.5 Overfitting Bias . 164
13.2.6 Literature . 166

13.3 Generic Framework of DML . 170
13.3.1 Revisiting Neyman Orthogonality 171
13.3.2 Beyond PLM: Double Machine Learning in Interactive Regres-

sion Models . 173
13.3.3 Bias, Variances via Neyman Orthogonality 174
13.3.4 Literature . 175

5

Lecture Notes AI for Business Research

13.4 DML: Good News and Caveats . 179
13.4.1 DML for Difference-in-Differences (DiD) 180

13.5 The Notebooks . 182

14 Heterogeneous Treatment Effects (HTE) 183
14.1 From Average Treatment Effect to Conditional Effect 183

14.1.1 The Classical Setup . 183
14.1.2 Conditional Average Treatment Effect (CATE) 183

14.2 Overview of HTE Estimation Literature 185
14.2.1 Causal Trees and Causal Forests 186
14.2.2 Double Machine Learning (DML) 186
14.2.3 Uplift Modeling and Meta-learners 187

14.3 Causal Tree and Causal Forest Methods 187
14.3.1 The Causal Tree Algorithm . 188
14.3.2 Limitations of Causal Trees . 188

14.4 From Causal Trees to Causal Forests 189
14.4.1 Forest Construction and Estimation 189
14.4.2 Honest Estimation . 189
14.4.3 Inference and Theory . 190
14.4.4 Software and Practice . 190

14.5 Generalized Random Forests and the k-Nearest Neighbor Perspective 190
14.5.1 GRF as Adaptive Local Estimators 191
14.5.2 Key Features of GRF . 191
14.5.3 GRF vs Causal Forests . 191

14.6 Evaluating HTE Estimators . 192
14.6.1 Ground Truth CATE is Rarely Observed 192
14.6.2 Two Key Evaluation Criteria . 192
14.6.3 Simulation-based Evaluation . 193
14.6.4 Empirical Validation via Policy Evaluation 193
14.6.5 Summary . 193

14.7 Meta-Learners for HTE Estimation . 193
14.8 HTE Estimation for Policy Targeting 195

14.8.1 Policy Function Based on τ̂(x) . 195
14.8.2 Optimal Treatment Assignment . 196
14.8.3 Evaluating Policies . 196
14.8.4 Targeting and Fairness . 196

14.9 Practical Guidelines for Choosing HTE Estimators 196
14.9.1 Choosing Based on Analytical Goals 197
14.9.2 Implementation Advice and Caveats 197

6

Lecture Notes AI for Business Research

14.10 The Notebooks . 198

Chapter: 5 Appendices 199

15 Appendix A: Mathematical Prerequisites for Machine Learning 199
15.1 Linear Algebra . 199

15.1.1 Vectors and Matrices . 199
15.1.2 Operations . 200
15.1.3 Norms . 200
15.1.4 Important Matrix Properties . 200
15.1.5 Inverse and Pseudoinverse . 201
15.1.6 Application in ML . 201

15.2 Probability Theory and Statistics . 201
15.2.1 Random Variables . 201
15.2.2 Expectation and Variance . 202
15.2.3 Conditional Expectation . 202
15.2.4 Law of Large Numbers . 202
15.2.5 Application in ML . 202

15.3 Optimization . 203
15.3.1 Unconstrained Optimization . 203
15.3.2 First-Order Condition . 203
15.3.3 Gradient Descent Algorithm . 203
15.3.4 Convex Functions . 203
15.3.5 Application in ML . 204

15.4 Loss Functions . 204
15.4.1 Squared Loss (Regression) . 204
15.4.2 Logistic Loss (Classification) . 204
15.4.3 0-1 Loss (Classification, Theoretical) 205
15.4.4 Application in ML . 205

16 Appendix B: Some Missing Proof 205

7

Lecture Notes AI for Business Research

Chapter 1: Overview

1 Artificial Intelligence and Business Research

1.1 AI and the Evolution of Human Civilization

Artificial Intelligence (AI) is increasingly recognized as a defining force in the evolu-
tion of human civilization. Beyond its immediate technological applications, AI em-
bodies a deeper shift in the way humans interact with information, make decisions,
and shape their environments. As computational capabilities expand, the systems
that harness these capabilities transform from specialized tools into general-purpose
agents of innovation and discovery.

A pivotal insight into the development of AI comes from Richard Sutton’s essay
(Sutton, 2019). Sutton argues that the most profound advances in AI over the past
seventy years have not stemmed from intricate, domain-specific models, but rather
from general methods that scale with computation. Specifically, he contrasts two
paradigms:

• Domain-specific approaches, which encode expert knowledge and often achieve
early successes but are prone to plateauing.

• General, computation-intensive approaches, which initially may seem inefficient
or simplistic, but ultimately surpass their specialized counterparts by leveraging
large-scale computation and vast datasets.

This “bitter” realization challenges the traditional valorization of human-crafted
expertise in modeling. It suggests that scalability, adaptability, and computational lever-
age are not merely engineering conveniences, but fundamental scientific virtues in the
design of intelligent systems.

Implication for researchers. In the long run, methods that harness generic computa-
tional principles tend to dominate. Crafting elegant domain-specific models may be
intellectually gratifying, but it is unlikely to match the transformative power of scal-
able, data-driven techniques.

1.2 AI for Business Research: Conceptual Foundations

Within the domain of business research, AI serves a dual role: it is both an object
of study and a transformative methodological resource. Broadly speaking, AI con-
tributes to business research in two principal ways:

8

Lecture Notes AI for Business Research

• Direct Application. AI technologies can directly address substantive business
research questions. For instance, predictive modeling can inform operational de-
cisions, and causal inference techniques powered by machine learning can test hy-
potheses about managerial interventions.

• Facilitative Enhancement. AI can facilitate traditional business research by im-
proving data acquisition, feature extraction, and analytical scalability. For ex-
ample, natural language processing (NLP) can transform unstructured customer
feedback into structured data suitable for econometric analysis.

Thus, AI is not merely a technical tool; it redefines the epistemic infrastructure of busi-
ness research. It enables scholars to ask new types of questions, utilize previously
inaccessible data modalities, and model systems of unprecedented complexity.

1.3 The AI Flywheel: Scaling Effects in Research and Practice

A crucial conceptual model in understanding AI’s power is the AI Flywheel, a rein-
forcing cycle comprising three elements:

Compute→ Data→ AI Models→ Business Applications→ More Data

Each component reinforces the others:

• Increased computation enables more sophisticated model architectures.

• Enhanced models generate more valuable business applications.

• Wider adoption of AI applications generates larger and richer datasets.

• New datasets fuel further computational training.

This virtuous cycle suggests that impactful research strategies should align with
environments where outcomes improve naturally with scale—both in terms of data
volume and computational resources.

1.4 Key Distinctions: AI versus Traditional Statistical Methods

While traditional statistical methods often emphasize fixed sample inference and para-
metric rigor, AI methods prioritize scalability, adaptivity, and approximation under
computational constraints. Several conceptual differences are noteworthy:

This distinction does not imply a dichotomy. Rather, it highlights a continuum:
rigorous empirical business research increasingly draws on techniques from both tra-
ditions, depending on the nature of the question and the data environment.

9

Lecture Notes AI for Business Research

Aspect Traditional Statistics Modern AI/ML
Objective Estimation and inference under

fixed designs
Generalization under scalable
learning

Model Complex-
ity

Prefer parsimony (Occam’s Razor) Embrace complexity if warranted
by data and compute

Data Regime Small to moderate datasets Massive, high-dimensional
datasets

Emphasis Confidence intervals, hypothesis
testing

Prediction accuracy, robustness,
transferability

Table 1. Key Distinctions: AI versus Traditional Statistical Methods

1.5 Toward a Scalable Research Mindset

The lessons from AI development call for a recalibration of research strategies in busi-
ness academia:

• Favor generalizable over finely tuned models. Methods that require delicate ad-
justment to specific datasets are less likely to survive in dynamic environments.

• Anticipate scaling effects. Choose research problems and methods that become
easier or more powerful as data and computational resources grow.

• Leverage computation as a scientific variable. Treat computational capacity not
as a constraint, but as an experimental dimension, akin to sample size in tradi-
tional statistics.

In this context, business researchers can align themselves with the fundamental
drivers of AI success: generality, adaptability, and computational scalability.

10

Lecture Notes AI for Business Research

2 Prediction Problems in Business Research

2.1 Why Do We Care About Prediction?

Prediction tasks are central to both academic inquiry and practical decision-making
across a wide spectrum of fields, including economics, political science, finance, healthcare,
and operations management.

Accurate predictions can directly inform and improve decision-making. In do-
mains ranging from weather forecasting to cancer screening, predictive models act as
the foundation for actionable strategies that affect individual and societal welfare.

Moreover, in modern causal inference, prediction plays an indispensable role. Meth-
ods such as causal machine learning(in Lecture 10), double machine learning (DML, in
Lecture 11), honest trees, and matrix completion(A topic to be taught next year) fun-
damentally rely on accurately predicting counterfactual outcomes—that is, estimating
what would have happened under alternative scenarios. We now outline a handful of
illustrating examples:

Domain Specific Predictive Tasks
Macroeconomic forecasts GDP growth, unemployment rates, inflation, election out-

comes
Policy evaluation Impacts of tax changes, welfare programs, environmental

regulations
Market behavior Demand forecasts, asset price movements, consumer prefer-

ence trends
Operational decisions Inventory management, resource allocation, insurance un-

derwriting, and a very long description of healthcare diag-
nosis that needs to wrap across multiple lines because it con-
tains a lot of detail and specific conditions that are important
to enumerate.

Table 2. Examples of Critical Predictive Tasks

2.2 The Logic of “Predict Then Decide”

In many decision-making scenarios, prediction precedes and guides the choice of ac-
tion. This paradigm is particularly powerful when direct causal identification is diffi-
cult or costly.

The typical workflow involves:

• Predicting future states (e.g., demand levels, market responses).

• Optimizing actions based on predicted outcomes (e.g., pricing, inventory replen-
ishment).

11

Lecture Notes AI for Business Research

However, this approach hinges critically on the accuracy and stability of the predictive
models.

2.3 When Do Predictions Fail to Matter?

Prediction efforts can become irrelevant or even harmful under the following condi-
tions:

• Non-substantive outcomes: Predicting variables that have little strategic impor-
tance offers negligible value.

• Low predictive accuracy: Inaccurate predictions undermine decision quality
and may introduce systematic biases.

• Failure to predict counterfactuals correctly: Especially in causal settings, pre-
dictions based on flawed assumptions—such as the violation of unconfounded-
ness (Conditional Independence Assumption, CIA) or lack of overlap—lead to
misleading inferences.

Thus, effective predictive research must balance accuracy, causal interpretability, and
strategic relevance.

2.4 Prediction Versus Estimation: A Broader Perspective

The distinction between prediction and estimation reflects fundamental epistemolog-
ical differences:

• Prediction focuses on minimizing error in unseen instances, often tolerating model
misspecification if generalization improves.

• Estimation emphasizes recovering true underlying parameters or causal relation-
ships, often prioritizing identification rigor over predictive performance.

The two dimensions can be conceptually cross-classified as follows:

Without Intervention With Intervention
Focus on Specific
Features/Effects

Descriptive analysis, measure-
ment construction

Causal inference, applied microe-
conometrics

Focus on Out-
comes

Predictive modeling, forecasting Structural estimation, counterfac-
tual simulation

Table 3. Prediction Versus Estimation

12

Lecture Notes AI for Business Research

Chapter 2: Deep Learning Basics

3 ML Techniques and Gradient Descent

3.1 Machine Learning in the Modern Scientific Landscape

Machine Learning (ML) is increasingly regarded not merely as a subfield of computer
science, but as a new scientific methodology for discovery, prediction, and decision-
making across diverse domains. It embodies a fundamental epistemological shift:
from theory-driven, deductive modeling to data-driven, inductive inference.

The rise of ML is catalyzed by three reinforcing forces:

• Data revolution. The explosion of digital data in scale and scope.

• Computational advancements. Dramatic increases in processing power and algo-
rithmic sophistication.

• Methodological innovation. Development of scalable learning algorithms capable
of handling high-dimensional, non-linear, and noisy environments.

Period Key Developments Description
1940s–1950s Cybernetics and early AI Early cybernetics(Wiener, 1948) empha-

sized feedback loops and adaptive behav-
ior, laying the groundwork for machine
adaptation.

1950s–1960s Statistical Learning Theory Kolgomorov and Vapnik pioneered frame-
works for learning from data under uncer-
tainty. Vapnik (1995) formalized ML prob-
lems as mathematical optimization.

1950s–1980s Connectionism and neural networks Early models like neuron(McCulloch and
Pitts, 1943) and perceptron(Rosenblatt,
1958) introduced biologically inspired
learning systems. Progress stalled due to
computational limitations (“AI winters”).

1970s–1990s Decision Trees and Ensemble Methods Quinlan’s ID3 algorithm (Quinlan, 1986)
and Random Forests(Breiman, 2001) intro-
duced practical, interpretable models for
structured data learning.

1990s–present Modern Machine Learning Renaissance Availability of large datasets and compu-
tational resources led to mainstream adop-
tion of ML. Breakthroughs in deep learn-
ing, boosting (e.g., AdaBoost(Freund and
Schapire, 1997)), and generative models.

Table 4. A Historical Perspective on Machine Learning

In the realm of business research, ML empowers scholars to address complex, dy-
namic, and heterogeneous systems that traditional econometric techniques may inade-
quately capture.

13

Lecture Notes AI for Business Research

3.2 Workflow of Supervised Learning

Modern machine learning encompasses several major paradigms, each addressing dif-
ferent types of problems:

• Supervised Learning. Learning a mapping from inputs X to outputs Y based on
labeled examples (e.g., image classification, demand forecasting);

• Unsupervised Learning. Discovering patterns or structure within unlabeled
data (e.g., clustering, dimensionality reduction).

• Reinforcement Learning. Learning policies for sequential decision-making via
interactions with an environment (e.g., game-playing agents, adaptive pricing).

• Generative Learning. Modeling data distributions to generate new synthetic
samples (e.g., text generation, image synthesis).

Among these, supervised learning forms the backbone of most predictive modeling
tasks in business applications and will be the initial focus of our exploration. Typically,
the data in a supervised learning context consists of input-output pairs:

(Xi, Yi), i = 1, 2, . . . , n, (1)

where Xi ∈ Rd represents the feature vector and Yi represents the corresponding label
or response.

We assume there exists an underlying true relationship between X and Y:

Y = f (X) + ϵ, (2)

where f is an unknown deterministic function, and ϵ is a random noise term with
mean zero and finite variance.

General Objective. The goal of supervised learning is to construct an estimator f̂ (X)

that approximates the true function f (X) as accurately as possible.
A common criterion for measuring predictive performance is the mean squared

error (MSE):

MSE = E
[
(Y− f̂ (X))2

]
, (3)

where the expectation is taken over the joint distribution of (X, Y).

Classification versus Regression. Supervised learning tasks are broadly categorized
into classification and regression, depending on the nature of the output variable Y:

14

Lecture Notes AI for Business Research

• Classification: The output Y is categorical, typically taking values in a finite
discrete set (e.g., {0, 1} for binary classification, or more generally {1, 2, . . . , K}
for K-class classification). The objective is to make a prediction Ŷ of the correct
class label Y for a given input X. The commonly used metrics include:

– Zero-One Loss: L(Y, Ŷ) = I(Y ̸= Ŷ), where I(·) is the indicator function;

– Cross-Entropy Loss: L(Y, p̂) = −∑K
k=1 I(Y = k) log(p̂k), where p̂k is the

predicted probability of class k.

• Regression: The output Y is continuous, typically a real-valued variable. The
objective is to predict a real number Ŷ as accurately as possible based on the
input X. The commonly used metrics include:

– Squared Error Loss: L(Y, Ŷ) = (Y− Ŷ)2;

– Absolute Error Loss: L(Y, Ŷ) = |Y− Ŷ|.

The distinction between classification and regression influences the choice of mod-
els, loss functions, evaluation metrics, and theoretical analysis throughout the super-
vised learning pipeline.

Supervised Learning Pipeline. The typical supervised learning process consists of
the following steps:

• Model specification: Choose a class of models to approximate f (X), such as
linear functions, decision trees, or neural networks.

• Loss function selection: Define a loss function L(Y, f̂ (X)) that quantifies the
penalty for prediction errors. Common choices include:

– Squared loss L(Y, f̂ (X)) = (Y− f̂ (X))2 for regression tasks;

– Cross-entropy loss L(Y, f̂ (X)) = −[Y log f̂ (X) + (1− Y) log(1− f̂ (X))] for
classification tasks.

• Optimization: Choose an optimization method to minimize the empirical risk,
defined as the average loss over the training data:

min
f̂

1
n

n

∑
i=1

L(Yi, f̂ (Xi)). (4)

Examples include:

– Ordinary Least Squares (OLS) for linear regression;

– Gradient descent methods for more complex models.

15

Lecture Notes AI for Business Research

• Model selection and evaluation:

– Fit the model using the training dataset;

– Evaluate its generalization performance using a separate testing dataset,
typically by computing metrics such as the mean squared error (MSE), ac-
curacy, precision, recall, or area under the ROC curve (AUC).

3.3 Model Selection and Evaluation

Model selection and evaluation are critical steps in the supervised learning pipeline.
A good model should not only fit the observed training data well but also generalize
effectively to unseen data. Typically, a model that performs exceptionally well on the
training data may exhibit unstable performance on unseen data (overfitting), whereas
a model that performs poorly on the training data will consistently underperform on
unseen data (underfitting).

This trade-off between fitting the training data and generalizing to new data is
known as the bias-variance trade-off, which is summarized in the following figure.

Figure 3.3.1. Bias-Variance Tradeoff

Formally, consider the Mean-Squared Error conditioned on X, the Bias-Variance
trade-off is expressed as follows,

ED[((Y− f̂ (X,D))2]︸ ︷︷ ︸
Error Conditioned on X

= (ED[f̂ (X,D)]− f (X))2︸ ︷︷ ︸
Bias

+ ED[(ED[f̂ (X,D)]− f̂ (X,D))2]︸ ︷︷ ︸
Variance

+V(ϵ)︸ ︷︷ ︸
Noise
(5)

, and the total mean squared error will be

EX,D[(Y− f̂ (X,D))2]︸ ︷︷ ︸
Mean Squared Error

= E
{

BiasD[f̂ (X,D) + VarianceD[f̂ (X,D)]
}
+ V(ϵ) (6)

, that is, the total mean squared error of a model is split into two parts: the bias and
the variance.

16

Lecture Notes AI for Business Research

In the face of the tradeoff, we are expected to select the model that optimally bal-
ances bias and variance to minimize the expected prediction error. To achieve this
goal empirically, we need some standard methodologies for estimating a model’s out-
of-sample performance and selecting the best among competing models.

3.3.1 Training, Validation, and Testing Splits

A conventional approach is to partition the available dataset D into three disjoint sub-
sets:

• Training set (Dtrain): Used to fit candidate models.

• Validation set (Dval): Used to tune hyperparameters and select among models.

• Test set (Dtest): Used only once, to report the final model’s generalization perfor-
mance.

The typical workflow is as follows:

1. Fit multiple candidate models { f̂1, f̂2, . . . , f̂L} using Dtrain.

2. Evaluate each model on Dval by computing the average loss:

êl =
1
|Dval| ∑

(Xi,Yi)∈Dval

L(Yi, f̂l(Xi)). (7)

3. Select the model with the smallest validation error:

f̂ ∗ = arg min
l

êl. (8)

4. Finally, assess the selected model’s generalization error on the test set:

êtest =
1

|Dtest| ∑
(Xi,Yi)∈Dtest

L(Yi, f̂ ∗(Xi)). (9)

The test set must not be used during training or model selection. It should remain
unseen until the final evaluation to avoid bias.

3.3.2 Cross-Validation

When the size of the dataset is small, reserving a separate validation set may not be fea-
sible. In such cases, cross-validation provides an efficient way to estimate the model
performance.

17

Lecture Notes AI for Business Research

The most common variant is k-fold cross-validation. For each candidate model,
we can evaluate its performance via the following procedure.

Algorithm 1 k-Fold Cross-Validation Procedure

Require: Dataset D, number of folds k
1: Randomly partition D into k approximately equal-sized subsets D1, . . . ,Dk.
2: for j = 1 to k do
3: Train the model on D\Dj.
4: Evaluate the model on the validation fold Dj to obtain validation error êj.
5: end for
6: Compute the cross-validation error:

êCV =
1
k

k

∑
j=1

êj.

7: return Cross-validation error êCV

Cross-validation provides a more robust estimate of out-of-sample error, particu-
larly when data is limited.

Time-series Cross Validation Time-series cross-validation is a model evaluation tech-
nique tailored for sequential data, where observations are ordered over time. Un-
like standard k-fold cross-validation that randomly partitions data, time-series cross-
validation preserves temporal order to prevent information leakage from future to
past. The most common approach is the rolling or expanding window method, where
the model is trained on an initial segment and evaluated on subsequent time steps,
gradually incorporating more data. This technique ensures that predictions mimic
real-world forecasting scenarios and provides a robust assessment of model perfor-
mance over time.

3.3.3 Common Evaluation Metrics

Depending on the task, different metrics are used to evaluate models:

18

Lecture Notes AI for Business Research

Table 5. Metrics and Their Calculation Formulas

Metric Calculation Formula

Accuracy TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

Recall
(Sensitivity)

TP
TP+FN

F1 Score 2× Precision×Recall
Precision+Recall

Specificity TN
TN+FP

False Positive
Rate (FPR)

FP
FP+TN

False Negative
Rate (FNR)

FN
FN+TP

True Positive
Rate (TPR)

TP
TP+FN (Same as Recall)

True Negative
Rate (TNR)

TN
TN+FP (Same as Specificity)

Area Under
Curve (AUC)

Integral of ROC curve (TPR vs FPR)

Mean Absolute
Error (MAE)

1
n ∑n

i=1 |yi − ŷi|

Mean Squared
Error (MSE)

1
n ∑n

i=1(yi − ŷi)
2

Root Mean
Squared Error
(RMSE)

√
1
n ∑n

i=1(yi − ŷi)2

R-squared (R2) 1− ∑n
i=1(yi−ŷi)

2

∑n
i=1(yi−ȳ)2

, where the TP, TN, FP, FN represents true positive, true negative, false positive
and the false negative respectively. The choice of metric should align with the practical
objectives and costs associated with prediction errors.

3.4 Supervised Learning Techniques

We now introduce several fundamental supervised learning techniques. Each tech-
nique will be accompanied by the corresponding coding example for better under-
standing. The coding examples listed in the section can also be found in the jupyter
notebooks that will be discussed in the section 3.6. A more detailed review of the core

19

Lecture Notes AI for Business Research

mathematical concepts upon which these techniques rely, including linear algebra,
probability theory, and optimization, can be found in the appendix.

ML Technique Core Mathematics Involved Key Concepts

Logistic Regression Convex optimization, probability Logistic loss, likelihood maximization
Linear Regression Linear algebra, optimization Normal equations, least squares

K-Nearest Neighbors (KNN) Euclidean geometry, distance metrics Instance-based learning, majority voting
Decision Trees Combinatorics, greedy algorithms Impurity reduction, recursive partitioning

Random Forests Probability (bootstrap theory), ensemble theory Variance reduction, aggregation
Gradient Boosting Functional approximation, optimization Additive models, gradient descent on functions

Bagging (Bootstrap Aggregation) Probability, resampling theory Variance reduction, bootstrap sampling, averaging
Support Vector Machines (SVM) Convex optimization, geometry Max-margin hyperplane, duality
Deep Neural Networks(DNN) 1 Multivariate calculus, optimization Backpropagation, non-convex optimization

Table 6. Core mathematical concepts involved in several machine learning techniques.

3.4.1 Linear Regression: Housing Prices

Linear regression is the canonical model for supervised learning when the target vari-
able Y is continuous. It assumes a linear relationship between the input features
X ∈ Rd and the outcome Y ∈ R:

Y = β0 + β1X1 + β2X2 + · · ·+ βdXd + ϵ, (10)

where ϵ is an independent, zero-mean random error term. In matrix notation, for
a dataset of n observations, this can be written compactly as:

Y = Xβ + ϵ, (11)

where X ∈ Rn×(d+1) includes a column of ones for the intercept. The objective is to
estimate the parameter vector β by minimizing the sum of squared errors, that is, the
ordinary least squares(OLS):

β̂ = arg min
β

n

∑
i=1

(
Yi − X⊤i β

)2
. (12)

The closed-form solution is given by:

β̂ =
(

X⊤X
)−1

X⊤Y, (13)

assuming X⊤X is invertible.
Linear regression models the relationship between a continuous dependent vari-

able and one or more independent variables by fitting a linear equation to observed
data.

Example. Suppose we want to predict the sale price of a house based on its living
area (in square feet).

20

Lecture Notes AI for Business Research

The linear model is:

Price = β0 + β1 × LivingArea + ϵ,

where ϵ captures random noise. We use a simple synthetic dataset, with:

• LivingArea (sqft): X

• Price (USD): Y

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

Generate synthetic data

np.random.seed(42)

X = 2.5 * np.random.randn(100, 1) + 1.5 # Living Area

y = 200000 + 50000 * X.flatten() + np.random.randn(100) * 20000 # Price

Fit a linear regression model

model = LinearRegression()

model.fit(X, y)

Predict

X_test = np.linspace(min(X)[0], max(X)[0], 100).reshape(-1, 1)

y_pred = model.predict(X_test)

Plot

plt.scatter(X, y, color=‘blue’,␣label=‘Data␣Points’)

plt.plot(X_test, y_pred, color=‘red’,␣linewidth=2,␣label=’‘itted Line’)

plt.xlabel(‘Living␣Area␣(1000␣sqft)’)

plt.ylabel(‘Price (USD)’)

plt.title(‘Housing␣Price␣Prediction␣via␣Linear␣Regression’)

plt.legend()

plt.show()

, where β0 (intercept) estimates the baseline price when LivingArea = 0, and β1

(slope) estimates the additional price per unit increase in living area.

3.4.2 Logistic Regression: Predicting Customer Churn

Logistic regression models the probability that a binary outcome Y ∈ {0, 1} occurs,
given input features X. Instead of modeling Y directly, it models the conditional prob-
ability using the logistic (sigmoid) function:

21

Lecture Notes AI for Business Research

P(Y = 1|X) =
1

1 + exp (−(β0 + β1X1 + · · ·+ βdXd))
. (14)

The parameters β are estimated by maximum likelihood estimation (MLE), seeking to
maximize the likelihood function:

L(β) =
n

∏
i=1

(P(Yi = 1|Xi))
Yi (1−P(Yi = 1|Xi))

1−Yi , (15)

or equivalently, minimize the negative log-likelihood (logistic loss):

β̂ = arg min
β
−

n

∑
i=1

[Yi log P(Yi = 1|Xi) + (1−Yi) log(1−P(Yi = 1|Xi))] . (16)

This optimization is convex and is typically solved via gradient descent or Newton-
Raphson methods.

Example. Suppose we want to predict whether a customer will churn (i.e., cancel
their service) based on their usage duration.

The features and label are:

• X: Average monthly usage (in hours)

• Y: 1 if the customer churned, 0 otherwise

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear_model import LogisticRegression

Generate synthetic data

np.random.seed(42)

X = 2.5 * np.random.randn(100, 1) + 5.0 # Average monthly usage

y = (X.flatten() < 5.0).astype(int) # Customers with low usage more likely to

churn

Fit a logistic regression model

model = LogisticRegression()

model.fit(X, y)

Predict probability

X_test = np.linspace(min(X)[0], max(X)[0], 100).reshape(-1, 1)

y_prob = model.predict_proba(X_test)[:, 1]

22

Lecture Notes AI for Business Research

Plot

plt.scatter(X, y, color=’blue’, label=’Data␣Points’)

plt.plot(X_test, y_prob, color=’red’, linewidth=2, label=’Predicted␣

Probability’)

plt.xlabel(’Average␣Monthly␣Usage␣(Hours)’)

plt.ylabel(’Probability␣of␣Churn’)

plt.title(’Customer␣Churn␣Prediction␣via␣Logistic␣Regression’)

plt.legend()

plt.show()

, where the logistic function maps the linear score to a probability between 0 and 1.
A negative β1 implies that higher usage decreases the probability of churn.

3.4.3 K-Nearest Neighbors: Classifying Fruits by Weight and Color

K-Nearest Neighbors (k-NN) is a simple, non-parametric machine learning algorithm
used for both classification and regression tasks. In classification, the method assigns
a new observation to the majority class among its k closest training samples in the
feature space, where distance is typically measured using metrics like Euclidean or
Manhattan distance.

Given a query point x, its predicted class Ŷ(x) is:

Ŷ(x) = majority vote (Yi : xi ∈ Nk(x)) , (17)

where Nk(x) denotes the set of k training points nearest to x under a distance metric,
typically the Euclidean distance, that is, d(x, x′) =

√
∑d

j=1(xj − x′j)
2.

Unlike parametric methods(e.g. LR and Logit. R.), k-NN does not explicitly esti-
mate model parameters. It memorizes the training data and defers computation until
prediction time.

Theory Insights.

• Bias-Variance Tradeoff. A small k leads to low bias but high variance; a large k
smooths the decision boundary, reducing variance at the cost of increased bias.

• Curse of Dimensionality. As the number of dimensions d increases, the volume
of the feature space grows exponentially. Consequently, the number of samples n
required to maintain a fixed density grows exponentially with d, making nearest
neighbor methods less effective in high dimensions.

• Computational Complexity.

23

Lecture Notes AI for Business Research

– Training complexity: O(1) (lazy learning, just store data).

– Prediction complexity: O(n× d× k) (must compute distance to every train-
ing point).

• Distance Metric Sensitivity. Proper feature scaling (e.g., standardization) is cru-
cial because distance-based methods are sensitive to feature magnitudes.

Example. Suppose we want to classify whether a fruit is an apple (Y = 0) or an
orange (Y = 1) based on two features:

• X1: Weight (grams)

• X2: Color intensity (darker orange color has higher values)

import numpy as np

import matplotlib.pyplot as plt

from sklearn.neighbors import KNeighborsClassifier

Generate synthetic data

np.random.seed(42)

weight = 100 + 30 * np.random.randn(50) # Apples around 100g

color = 50 + 10 * np.random.randn(50) # Apples lower color intensity

X_apples = np.column_stack((weight, color))

weight = 150 + 30 * np.random.randn(50) # Oranges around 150g

color = 80 + 10 * np.random.randn(50) # Oranges higher color intensity

X_oranges = np.column_stack((weight, color))

X = np.vstack((X_apples, X_oranges))

y = np.array([0]*50 + [1]*50) # 0=Apple, 1=Orange

Fit a k-NN classifier

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(X, y)

Predict on a grid for visualization

xx, yy = np.meshgrid(np.linspace(X[:,0].min()-10, X[:,0].max()+10, 100),

np.linspace(X[:,1].min()-10, X[:,1].max()+10, 100))

grid = np.c_[xx.ravel(), yy.ravel()]

probs = knn.predict_proba(grid)[:, 1].reshape(xx.shape)

Plot

24

Lecture Notes AI for Business Research

plt.contourf(xx, yy, probs, levels=25, cmap="RdYlBu", alpha=0.6)

plt.scatter(X_apples[:,0], X_apples[:,1], color=’red’, label=’Apples’)

plt.scatter(X_oranges[:,0], X_oranges[:,1], color=’orange’, label=’Oranges’)

plt.xlabel(’Weight␣(grams)’)

plt.ylabel(’Color␣Intensity’)

plt.title(’Fruit␣Classification␣via␣k-NN’)

plt.legend()

plt.show()

, where the k-NN classifier predicts the label of a query fruit by majority voting
among its k nearest neighbors. In this case, heavier fruits with higher color intensity
are more likely to be classified as oranges.

3.4.4 Decision Trees: Predicting Loan Approval

Decision trees are non-parametric supervised learning models used for classification
and regression tasks. The core idea is to recursively partition the feature space into
disjoint regions by making a sequence of hierarchical decisions.

At each internal node, the data is split according to a feature Xj and a threshold s:

If Xj ≤ s, go left; else, go right. (18)

The goal is to find the feature and threshold that yield the largest reduction in
”impurity”.

Impurity Measures. The impurity of a node can be measured in various ways, de-
pending on the task:

• Classification:

– Gini index:

G(p) =
K

∑
k=1

pk(1− pk), (19)

where pk is the proportion of class k samples in the internal node.

– Entropy:

H(p) = −
K

∑
k=1

pk log(pk). (20)

• Regression:

– Mean Squared Error (MSE) within the internal node.

The best split is chosen to maximize the impurity reduction:

25

Lecture Notes AI for Business Research

∆Impurity =Impurity(parent node)

−
(

nleft node

nparent node
Impurity(left node) +

nright node

nparent node
Impurity(right node)

)
.

(21)

Theory Insights.

• Overfitting. Decision trees tend to overfit if grown too deep. Pruning techniques
(e.g., limiting max depth or minimum samples per leaf) are used to control com-
plexity.

• Bias-Variance Tradeoff. Shallow trees have high bias and low variance; deep
trees have low bias and high variance.

• Greedy Construction. Finding the globally optimal tree is NP-complete. Prac-
tical algorithms build trees greedily by locally optimizing impurity reduction at
each step.

• Interpretability. Decision trees are highly interpretable and can naturally handle
both numerical and categorical features.

Example. Suppose we want to predict whether a customer’s loan application will be
approved based on two features:

• X1: Applicant’s annual income (in $1000s)

• X2: Applicant’s credit score

• Y: 1 if loan approved, 0 otherwise

import numpy as np

import matplotlib.pyplot as plt

from sklearn.tree import DecisionTreeClassifier

from sklearn import tree

Generate synthetic data

np.random.seed(42)

income = 50 + 30 * np.random.randn(100) # Income in $1000s

credit_score = 600 + 100 * np.random.randn(100) # Credit score

X = np.column_stack((income, credit_score))

y = (income + credit_score/10 > 110).astype(int) # Approval if income + (

credit_score/10) > threshold

26

Lecture Notes AI for Business Research

Fit a Decision Tree

clf = DecisionTreeClassifier(max_depth=3)

clf.fit(X, y)

Visualize Decision Boundary

xx, yy = np.meshgrid(np.linspace(X[:,0].min()-10, X[:,0].max()+10, 200),

np.linspace(X[:,1].min()-50, X[:,1].max()+50, 200))

grid = np.c_[xx.ravel(), yy.ravel()]

probs = clf.predict_proba(grid)[:, 1].reshape(xx.shape)

plt.contourf(xx, yy, probs, levels=np.linspace(0,1,20), cmap="RdYlBu", alpha

=0.6)

plt.scatter(X[:,0], X[:,1], c=y, cmap="bwr", edgecolor=’k’)

plt.xlabel(’Annual␣Income␣($1000s)’)

plt.ylabel(’Credit␣Score’)

plt.title(’Loan␣Approval␣Prediction␣via␣Decision␣Tree’)

plt.show()

Optional: Visualize the Tree Structure

plt.figure(figsize=(12,8))

tree.plot_tree(clf, filled=True, feature_names=["Income", "CreditScore"])

plt.title(’Decision␣Tree␣Structure’)

plt.show()

The decision tree partitions the feature space into rectangular regions based on
applicant’s income and credit score thresholds. A deeper tree could capture more
nuances but risks overfitting the training data.

3.4.5 Random Forests: Predicting Credit Scores

Random Forests are ensemble learning methods that combine multiple decision trees
to improve predictive performance and mitigate overfitting.

A random forest constructs B decision trees {Tb}B
b=1 by:

• Drawing a bootstrap sample (with replacement) from the training data for each
tree.

• At each split, selecting a random subset of m features and choosing the best split
only among those features instead of all the features.

The final prediction aggregates the outputs of all trees:

27

Lecture Notes AI for Business Research

Ŷ(x) =

majority vote (T1(x), T2(x), . . . , TB(x)) , for classification
1
B ∑B

b=1 Tb(x), for regression
(22)

Theory Insights.

• Variance Reduction. Bagging (bootstrap aggregation) reduces variance without
increasing bias significantly.

• De-correlation of Trees. Random feature selection ensures that individual trees
are less correlated, making the ensemble stronger.

• Out-of-Bag (OOB) Estimation. Samples not included in a bootstrap sample can
be used as a validation set, providing an unbiased estimate of test error without
needing a separate hold-out set.

• Feature Importance. Random forests can estimate the importance of each feature
by measuring the decrease in impurity or prediction error when that feature is
used for splitting.

Example. Suppose we want to predict whether a customer has a high or low credit
score based on two features:

• X1: Customer’s total outstanding debt (in $1000s)

• X2: Customer’s annual income (in $1000s)

• Y: 1 if high credit score, 0 otherwise

import numpy as np

import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestClassifier

Generate synthetic data

np.random.seed(42)

debt = 30 + 20 * np.random.randn(200) # Outstanding debt

income = 60 + 25 * np.random.randn(200) # Annual income

X = np.column_stack((debt, income))

y = ((income - debt) > 40).astype(int) # Higher income vs debt -> better

credit

Fit a Random Forest

28

Lecture Notes AI for Business Research

rf = RandomForestClassifier(n_estimators=100, max_depth=5, oob_score=True,

random_state=42)

rf.fit(X, y)

Predict on a grid

xx, yy = np.meshgrid(np.linspace(X[:,0].min()-10, X[:,0].max()+10, 200),

np.linspace(X[:,1].min()-10, X[:,1].max()+10, 200))

grid = np.c_[xx.ravel(), yy.ravel()]

probs = rf.predict_proba(grid)[:, 1].reshape(xx.shape)

Plot decision boundary

plt.contourf(xx, yy, probs, levels=np.linspace(0,1,20), cmap="RdYlBu", alpha

=0.6)

plt.scatter(X[:,0], X[:,1], c=y, cmap="bwr", edgecolor=’k’)

plt.xlabel(’Outstanding␣Debt␣($1000s)’)

plt.ylabel(’Annual␣Income␣($1000s)’)

plt.title(’Credit␣Score␣Prediction␣via␣Random␣Forest’)

plt.show()

Show Out-of-Bag score

print(f"Out-of-Bag␣(OOB)␣estimate␣of␣accuracy:␣{rf.oob_score_:.3f}")

Feature Importance

importances = rf.feature_importances_

print(f"Feature␣Importances:␣Debt={importances[0]:.3f},␣Income={importances

[1]:.3f}")

, where the random forest aggregates predictions across many decorrelated deci-
sion trees, providing a smoother decision boundary and reducing overfitting com-
pared to a single tree. The Out-of-Bag (OOB) score gives a reliable estimate of the
model’s generalization error without needing an explicit validation set.

3.4.6 Gradient Boosting: Predicting Purchase Intent

Gradient Boosting is an ensemble method that builds a strong learner by sequentially
adding weak learners, typically shallow decision trees, to correct the errors made by
the ensemble thus far.

Starting with an initial constant prediction F0(x), Gradient Boosting updates the
model iteratively:

Fm(x) = Fm−1(x) + γmhm(x), (23)

29

Lecture Notes AI for Business Research

where hm(x) is the base learner (a small decision tree) fitted to the negative gradient
of the loss function, and γm is the learning rate or step size.

Mathematical Procedure. At each stage m:

1. Compute the pseudo-residuals:

rim = −
[

∂L(Yi, F(Xi))

∂F(Xi)

]
F=Fm−1

for all i = 1, . . . , n, (24)

where L(Y, F(X)) is the specified loss function (e.g., squared error for regression,
logistic loss for classification).

2. Fit a base learner hm(x) to predict the pseudo-residuals rim.

3. Find the optimal step size γm:

γm = arg min
γ

n

∑
i=1

L (Yi, Fm−1(Xi) + γhm(Xi)) . (25)

4. Update the model:
Fm(x) = Fm−1(x) + γmhm(x). (26)

Theory Insights.

• Bias Reduction. Boosting focuses on reducing bias by sequentially improving
the fit to the data.

• Overfitting Control. Shrinking the learning rate γm and limiting tree depth are
essential to prevent overfitting.

• Robustness. Gradient boosting can be adapted to different loss functions, allow-
ing flexible modeling (e.g., regression, binary classification, ranking).

• Interpretability. Despite being an ensemble, feature importance can be extracted
by aggregating across base learners.

Example. Suppose we want to predict whether a user intends to make a purchase
based on two features:

• X1: Time spent on product page (in minutes)

• X2: Number of product views

• Y: 1 if purchase intent detected, 0 otherwise

30

Lecture Notes AI for Business Research

import numpy as np

import matplotlib.pyplot as plt

from sklearn.ensemble import GradientBoostingClassifier

Generate synthetic data

np.random.seed(42)

time_spent = 5 + 2 * np.random.randn(200) # Minutes on page

product_views = 3 + 1.5 * np.random.randn(200) # Number of views

X = np.column_stack((time_spent, product_views))

y = ((time_spent + 2*product_views) > 11).astype(int) # Purchase intent if

weighted sum exceeds threshold

Fit a Gradient Boosting Classifier

gbm = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1,

max_depth=2, random_state=42)

gbm.fit(X, y)

Predict on a grid

xx, yy = np.meshgrid(np.linspace(X[:,0].min()-1, X[:,0].max()+1, 200),

np.linspace(X[:,1].min()-1, X[:,1].max()+1, 200))

grid = np.c_[xx.ravel(), yy.ravel()]

probs = gbm.predict_proba(grid)[:, 1].reshape(xx.shape)

Plot decision boundary

plt.contourf(xx, yy, probs, levels=np.linspace(0,1,20), cmap="RdYlBu", alpha

=0.6)

plt.scatter(X[:,0], X[:,1], c=y, cmap="bwr", edgecolor=’k’)

plt.xlabel(’Time␣Spent␣(Minutes)’)

plt.ylabel(’Product␣Views’)

plt.title(’Purchase␣Intent␣Prediction␣via␣Gradient␣Boosting’)

plt.show()

Feature Importance

importances = gbm.feature_importances_

print(f"Feature␣Importances:␣Time␣Spent={importances[0]:.3f},␣Product␣Views={

importances[1]:.3f}")

, where Gradient Boosting sequentially corrects its previous mistakes by fitting
trees to the residuals. The final decision boundary is flexible yet smooth, and feature
importances reveal the relative influence of time spent and product views.

31

Lecture Notes AI for Business Research

Applications. Gradient boosting models are widely applied in:

• Purchase intent prediction: Identifying customers likely to complete a transaction.

• Click-through rate (CTR) estimation: Predicting ad click probability in online ad-
vertising.

• Fraud detection: Detecting suspicious behaviors by sequentially correcting pre-
dictive errors.

3.4.7 Bagging: Reducing Variance via Resampling

Bagging (short for Bootstrap Aggregating) is an ensemble method that reduces model
variance by training multiple versions of a base learner on different bootstrap samples
and then averaging their predictions (regression) or using majority voting (classifica-
tion).

Formally, bagging constructs B bootstrap datasets {D(1), . . . , D(B)} by sampling
with replacement from the training set, and fits a base learner f (b)(x) on each D(b).

Mathematical Procedure. For input x, the aggregated bagging predictor is:

f̂bag(x) =
1
B

B

∑
b=1

f (b)(x). (27)

In classification tasks, majority voting is used instead:

f̂bag(x) = mode
(
{ f (b)(x)}B

b=1

)
. (28)

Theory Insights.

• Variance Reduction. Averaging over uncorrelated predictors reduces variance:

Var
(

f̂bag

)
=

1
B

Var(f) +
(

1− 1
B

)
Cov(f (i), f (j)).

• No Bias Correction. Unlike boosting, bagging does not attempt to correct the
bias of weak learners. It’s most effective when the base learner has low bias and
high variance (e.g., decision trees).

• Stability Through Resampling. Bagging improves unstable models by diluting
the effect of individual sample fluctuations.

32

Lecture Notes AI for Business Research

Example. Predicting customer satisfaction from two features:

• X1: Number of support tickets

• X2: Time since last contact (in days)

• Y: 1 if customer is satisfied, 0 otherwise

from sklearn.ensemble import BaggingClassifier

from sklearn.tree import DecisionTreeClassifier

import numpy as np

import matplotlib.pyplot as plt

Generate synthetic data

np.random.seed(42)

tickets = np.random.poisson(3, 200)

recency = np.random.normal(10, 3, 200)

X = np.column_stack((tickets, recency))

y = ((tickets < 4) & (recency < 12)).astype(int)

Fit a Bagging Classifier with decision trees

bag = BaggingClassifier(base_estimator=DecisionTreeClassifier(max_depth=3),

n_estimators=50, random_state=42)

bag.fit(X, y)

Predict over grid

xx, yy = np.meshgrid(np.linspace(X[:,0].min()-1, X[:,0].max()+1, 200),

np.linspace(X[:,1].min()-1, X[:,1].max()+1, 200))

grid = np.c_[xx.ravel(), yy.ravel()]

probs = bag.predict_proba(grid)[:, 1].reshape(xx.shape)

Plot

plt.contourf(xx, yy, probs, levels=np.linspace(0,1,20), cmap="RdYlBu", alpha

=0.6)

plt.scatter(X[:,0], X[:,1], c=y, cmap="bwr", edgecolor=’k’)

plt.xlabel(’Support␣Tickets’)

plt.ylabel(’Days␣Since␣Last␣Contact’)

plt.title(’Customer␣Satisfaction␣Prediction␣via␣Bagging’)

plt.show()

, where Bagging aggregates multiple weak decision trees trained on resampled
data, resulting in a smoother, more stable decision boundary. Unlike boosting, it does
not focus on previously misclassified examples, making it resistant to overfitting.

33

Lecture Notes AI for Business Research

Applications. Bagging is widely applied in:

• Churn prediction: Stabilizing noisy patterns from user histories.

• Fraud detection: Averaging over high-variance trees in imbalanced datasets.

• Medical diagnostics: Reducing overfitting in high-variance settings.

3.5 Gradient Descent

Having defined the key components of supervised learning—namely the statistical
models (e.g., linear and logistic regression), the loss functions (e.g., squared error and
cross-entropy), and the optimization objectives—they culminate in a common practi-
cal task: minimizing the empirical risk function over model parameters. In this con-
text, gradient-based optimization emerges as the central engine of training modern
machine learning systems.

Among various optimization techniques, Gradient Descent (GD) and its variants
form the foundational approach for updating parameters in both classical and deep
learning models. The appeal of GD lies in its simplicity, scalability, and wide appli-
cability to differentiable loss functions. Before we delve into practical optimizers like
stochastic gradient descent and adaptive methods, we first formalize the theoretical
structure of GD and establish its convergence properties.

Algorithm 2 Gradient Descent

1: Initialize θ(0), set k ← 0, set ϵ as a positive number representing the tolerance of
the numerical accuracy.

2: while ∥∇L(θ(k))∥ ≥ ϵ do
3: θ(k+1) = θ(k) − tk∇L(θ(k))
4: k← k + 1
5: end while
6: return θ̂ = θ(k)

The pseudocode of the GD is shown in the Algorithm 2. The crux of the algorithm
is to iteratively update the parameters via the information of the gradient at the current
step. To illustrate the process of how the algorithm works, we introduce two concrete
examples in the following subsection 3.5.1.

3.5.1 Examples of GD

In the subsection, suppose that we are given n data observations: (xi, yi), i = 1, 2, ..., n,
where (yi)

n
i=1 are labels. Let X = (x1, x2, ..., xn) and y = (y1, y2, ..., yn).

34

Lecture Notes AI for Business Research

Example 1: Estimating the OLS estimator by Gradient Descent Now we consider
how to use the GD to estimate the OLS estimator. Although the OLS estimator enjoys
a closed form solution β̂ = (X⊤X)−1X⊤y, the direct computation of it suffers from the
problem of scalability and numerical stability due to the inverse operation.

GD doesn’t require the inverse of the matrix. Instead, it utilizes the informa-
tion of the loss function. Remember that the loss function of the OLS is defined as
L(β) = ∑n

i=1 |yi−∑
p
j=1 xijβ j|2 = ||y−Xβ||2, and therefore, the gradient∇L(β) will be

XT(Xβk− y). And the third step in the Algorithm 2 will be βk+1 = βk− tkXT(Xβk− y).

Example 2: Logistic Regression by Gradient Descent Now, we turn to the logis-
tic regression. Recall that the Logistic regression it links yi and xi as the conditional
probability of a binary outcome given the feature. The loss function for the Logistic
Regression is known as the Cross-Entropy loss, whose empirical version is defined
to be ∑n

i

{
(yi ln(exp(x′i β)

1+exp(x′i β)
) + (1− yi) ln(1

1+exp(x′i β)
)
}

. Its gradient ∇L(β) is given by
1
n ∑n

i=1
(
σ(βTxi)− yi

)
xi, where σ(·) = exp(·)

1+exp(·) .

General Form We have grasped some sense of how the GD works for specific exam-
ples, now we turn to the summary of the workflow for the general problem.

To begin with, we define the cost function J(Θ0, Θ1) = 1
2m ∑m

i=1[hΘ(xi) − yi]
2 in

terms of a hypothetical function hΘ from some parameterized space and the label
yi, i = 1, 2, ..., n.

Next, we derive the iterative formula, Θj = Θj − α ∂
∂Θj

J(Θ0, Θ1), j ∈ {0, 1}, where
∂

∂Θ JΘ = ∂
∂Θ

1
2m ∑m

i=1[hΘ(xi)− y]2.
Therefore, Θj := Θj − α

n ∑n
i=1[(hΘ(xi)− y)xi], j ∈ {0, 1}.

Statistics convergence vs. Optimization convergence From now on, we have dis-
cussed a lot about how the GD works. But will GD return the estimate that we wants
and how? Specifically, we are asking the convergence of the estimator, that is,

• Convergence of estimator: Is the estimator constructed by the loss function con-
verging to the true underlying estimand? How fast? Bias and consistency?

The question has its own ”dual question” in the language of optimization, that is,

• Convergence of optimization: Will the optimization algorithm we use converge
to the minimizer of the loss function given data? How fast?

3.5.2 Gradient Descent Convergence

In the subsection2, we will introduce the convergence conditions for the GD. The
sketch of the proof is as follows,

2For more details, see https://www.stat.cmu.edu/~siva/teaching/725/lec3.pdf

35

https://www.stat.cmu.edu/~siva/teaching/725/lec3.pdf

Lecture Notes AI for Business Research

• The following inequality tells us when the gradient descent converges:

f (xk+1) ≤ f (xk)−
1

2L
||∇ f (xk)||22

• For Lipschitz continuous functions, we can use the Taylor expansion at a point
xk to show the inequality. Then, we can use the inequality to show that, for a
small enough learning rate, the function in period k + 1 is smaller than that in
period k.

• We can also leverage convexity to show the sequence decreases to the global
minimum, which is by the following theorem.

Theorem 3.1. Suppose the function f : Rn → R is convex and differentiable, and that
its gradient is Lipschitz continuous with constant L > 0, i.e., we have that ||∇ f (x)−
∇ f (y)||2 ≤ L||x − y||2 for any x, y. Then if we run gradient descent for k iterations
with a fixed step size t ≤ 1/L, it will yield a solution f (x(k)) which satisfies

f (x(k))− f (x∗) ≤ ||x
(0) − x∗||22

2tk

where f (x∗) is the optimal value. Intuitively, this means that gradient descent is guar-
anteed to converge and that it converges with rate O(1/k).

• The next theorem tells us the speed at which the gradient descent converges.

Theorem 3.2. Let f : S → R be a strongly convex function with parameters m, M as
in the definition above. For any ϵ > 0 we have that f (x(k))−minx∈S f (x) ≤ ϵ after k
iterations for any k that respects:

k∗ ≥
log(f (x(0))−α∗

ϵ)

log(1
1−m/M)

.

• Basically, you need O(1/ϵ) steps to converge for convex functions. For strongly
convex functions, you need O(log(1/ϵ)) steps to converge.

Besides the original framework, there are several variants of gradient descent as
follows.

3.5.3 Momentum

The GD performs well if the function f enjoys great property as the Theorem 3.1 and
Theorem 3.2 mention. However, in reality, the function will not always be as expected.
For example, if the function is not convex, the GD usually gets trapped into the local

36

Lecture Notes AI for Business Research

minima; if the function is not smooth at some points(when f := |x|), the GD will
oscillate back and forth. Hence, modified version of GD has been proposed. one
of them is called the Gradient Descent with the Momentum(GDM), whose general
intuition is as follows,

• If successive gradient steps point in different directions, we should cancel off the
directions that disagree;

• If successive gradient steps point in similar directions, we should go faster in
that direction.

We often think of Momentum as a means of dampening oscillations and speeding up
the iterations, leading to faster convergence. But it has other interesting behavior. It
allows a larger range of step-sizes to be used, and creates its own oscillations, specif-
ically, modification is done by replacing the gradient term ∇θL(θk) with gk, and the
update rule in the Algorithm 2 is modified as θk+1 = θk − αgk. As a comparison,

• GD: gk = ∇θL(θk);

• GDM: gk = ∇θL(θk) + µgk−1.

3.5.4 Stochastic Gradient Descent

What we have mentioned above uses all data when it calculates the gradient. How-
ever, the data set is usually large when it comes to the case of deep learning. It is com-
putationally intractable to use all the data to update the gradient each time. Instead,
we sample data to update gradient, which introduces another important version of the
GD, the Stochastic Gradient Descent(SGD). Still, the modification is done by replacing
the gradient term with gk. This time, the replacement works as follows,

1. Sample B ⊂ D

2. Estimate gk ← −∇θ
1
B ∑B

i=1 log p(yi|xi, θ) ≈ ∇θL(θ)

3. θk+1 ← θk − αgk

Each iteration is called a mini-batch, wher e the batch refers to the sampling dataset B.
In practice, we shuffle data instead of randomly sampling.

3.5.5 Adaptive Gradient

The adaptive gradient has two different methods. The first method is using momen-
tum, as we have introduced. The second method normalizes the gradient using the

37

Lecture Notes AI for Business Research

previous gradient in the past periods. The update rule can be seen as follows:

θ(k) = θ(k−1) − α · ∇Lk(θ
(k−1))√

∑k
k′=1∇L(θ(k

′−1))2
.

3.5.6 Adam

Finally, we introduce the Adaptive Moment Estimation(Adam), rougly speaking, Adam
= Momentum + Adaptive Learning Rate. It is one of the most well-used algorithms
to automatically tune momentum and learning rates in practice and the default opti-
mizer tuner in many famous deep learning computational framework like pytorch and
tensorflow. The pseudocode in the Algorithm 3 explains the workflow of the Adam.

Algorithm 3 Adam
1: M0 = 0, R0 = 0
2: for t = 1, . . . , T do
3: Mt = β1Mt−1 + (1− β1)∇L(θ(t−1)) // 1st moment estimate
4: Rt = β2Rt−1 + (1− β2)∇L(θ(t−1))2 // 2nd moment estimate
5: M̂t =

Mt
1−(β1)t // 1st moment bias correction

6: R̂t =
Rt

1−(β2)t // 2nd moment bias correction

7: θ(t) = θ(t−1) − α M̂t√
R̂t+ϵ

//update

8: end for
9: return θ(T)

Adam is an algorithm for first-order gradient-based optimization of stochastic ob-
jective functions, based on adaptive estimates of lower-order moments. 3 The method
is straightforward to implement, computationally efficient, has little memory require-
ments, is invariant to diagonal rescaling of the gradients, and is well suited for prob-
lems that are large in terms of data and/or parameters. The method is also appropriate
for non-stationary objectives and problems with very noisy and/or sparse gradients.
The hyperparameters have intuitive interpretations and typically require little tuning.

3.6 The Notebooks

• The notebook Gradient Descent implements the gradient descent for linear re-
gression from scratch and compares it with the closed-form OLS estimator;

• The notebook k-Nearest Neighbors, Random Forest, Regression Tree, XGBT im-
plement the machine learning algorithms on the Boston Housing Dataset respec-

3For better references, seehttps://arxiv.org/pdf/1609.04747, https://www.zhihu.com/

question/323747423/answer/2576604040.

38

https://colab.research.google.com/drive/1bgwzNd0u2cCshELSxxg-9QMA2OMrXEui
https://colab.research.google.com/drive/1Uzi3cosnnY3NSpNmosawlNIsEkEIzO_u
https://colab.research.google.com/drive/1hYGZMVPs-kKNt-faAcwULUSdpJTRLe2K#scrollTo=BBhJFEtgXJbF
https://colab.research.google.com/drive/1rqI5LA2m_u7fxsVgCk_dQqz1nFU00iXS
https://colab.research.google.com/drive/17IiebxpvjiFXYjUkejjry1cNNrMjUJDN
https://arxiv.org/pdf/1609.04747
https://www.zhihu.com/question/323747423/answer/2576604040
https://www.zhihu.com/question/323747423/answer/2576604040

Lecture Notes AI for Business Research

tively, and specifically, they utilize the cross-validation to fine tune the hyper-
parameters in the respective algorithms, i.e., the number of neighbors parameter
k in the KNN regressor;

• The notebook Bootstrap simulates some data with the standard linear regression
as the DGP and illustrates that bootstrap is a valid method to produce the stan-
dard errors and confidence intervals comparing with the OLS estimates.

39

https://colab.research.google.com/drive/1iAGJTOYY7rtvrGDCN1sPqeMUzdfJqYK3

Lecture Notes AI for Business Research

4 Deep Neural Networks

In previous sections, we reviewed supervised learning through the lens of model defi-
nition, loss specification, and gradient-based optimization techniques. Classical mod-
els such as linear and logistic regression work well in low-dimensional settings or
when the signal-to-noise structure is relatively simple. However, as real-world ap-
plications increasingly demand the modeling of complex, high-dimensional, and un-
structured data—such as images, text, and speech—these classical models fall short.
We now turn to a class of models that have revolutionized modern machine learning:
Deep Neural Networks (DNNs).

Unlike shallow models, DNNs learn expressive, hierarchical representations through
multiple layers of transformation. The conceptual foundation of this approach can be
traced back to the connectionist school of AI, which stands in contrast to symbolic AI.

Symbolic AI vs. Connectionist AI

• Symbolic AI builds systems based on logical rules, knowledge graphs, and hand-
engineered representations. It dominated early AI research and powered expert
systems but struggles with perception and learning from raw data.

• Connectionist AI mimics the structure of biological neurons and relies on data-
driven learning. This paradigm includes neural networks and forms the theoret-
ical backbone of modern deep learning.

Despite being conceptualized decades ago, neural networks long remained a niche
technique due to limitations in computation, data availability, and training instability.
It was not until the late 2000s that a combination of large datasets, GPU computing,
and algorithmic innovations—led by pioneers such as Geoffrey Hinton, Yoshua Ben-
gio, and Yann LeCun—propelled deep learning to the forefront of AI.

We do not focus on alternative nonlinear models like Support Vector Machines
(SVMs) here because, although theoretically powerful in small to medium dimensions,
SVMs do not scale well with very large datasets or unstructured inputs. In contrast,
deep learning methods can automatically learn task-relevant representations and have
shown superior empirical performance in nearly every major benchmark.

Modern AI Relies on Big Data DNNs thrive in data-rich environments. As shown
in Figure 4.0.1, the amount of digital data generated annually has exploded in recent
years. This explosion fuels the success of large models trained on diverse sources.

• Figure 4.0.2 demonstrates the empirical relationship between data availability
and model performance across shallow, medium, and deep models. Deep archi-
tectures consistently outperform others when sufficient data are available.

40

Lecture Notes AI for Business Research

Figure 4.0.1. Annual Amount of Data Figure 4.0.2. Relation between Perfor-
mance and Amount of Data

4.1 Neural Network Structure

A deep neural network consists of a sequence of layers, each transforming the input
into a new representation. The basic computational unit is the neuron, which com-
putes a weighted sum followed by a non-linear activation:

z = ∑
i

wixi + b, a = f (z)

Here, wi are the weights, b is a bias term, and f is a non-linear activation function.

• Input Layer: Receives raw features (e.g., pixels, word embeddings).

• Hidden Layers: Extract intermediate representations through linear transforma-
tions and activations.

• Output Layer: Produces final predictions, such as class probabilities or regres-
sion targets.

Theorem 4.1 (Universal Approximation Theorem). 4A feedforward neural network with
one hidden layer containing a finite number of neurons can approximate any continuous func-
tion on a compact domain, given appropriate weights and biases.

Although this result guarantees representational power, it is non-constructive: it
does not inform us how to train such a network or how many neurons are needed. In
practice, deeper networks generalize better and are easier to optimize.

4Further details can be accessed via the wikipedia link.

41

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Lecture Notes AI for Business Research

Figure 4.1.1. Architecture of a Feedforward DNN

4.2 Activation Functions

Non-linearity is introduced via activation functions:

• ReLU (Rectified Linear Unit): f (z) = max(0, z); widely used for its simplicity
and ability to avoid vanishing gradients.

• Sigmoid: f (z) = 1
1+e−z ; historically popular but suffers from saturation.

• Tanh: f (z) = tanh(z); outputs in [−1, 1] and centers activations.

Figure 4.2.1. Sigmoid, Tanh, and ReLU Activation Functions

4.3 Training Deep Neural Networks

Training deep neural networks involves a combination of architectural design, gradient-
based optimization, and careful parameter tuning. Unlike shallow models, DNNs
require navigating high-dimensional, non-convex loss landscapes while coordinating
the interaction between multiple layers of transformations. This section outlines the
core components of training, including the forward-backward algorithm, common
layer types, gradient estimation, and challenges in optimization.

42

Lecture Notes AI for Business Research

4.3.1 Training Pipeline

The training process proceeds in three main stages:

1. Forward Pass: Input data is propagated through the network to compute pre-
dicted outputs ŷ = f (x; θ) and the loss L(y, ŷ).

2. Backward Pass: Using the chain rule, gradients of the loss with respect to each
parameter are computed. This procedure, known as backpropagation, efficiently
propagates error derivatives from the output layer to all earlier layers.

3. Parameter Update: Model parameters are updated using gradient-based opti-
mizers such as stochastic gradient descent (SGD) or Adam. These updates aim
to minimize the training loss iteratively.

4.3.2 Common Layer Types

Deep networks are composed of different types of layers, each suited to particular
input structures or tasks:

• Fully Connected (Dense) Layers: Every neuron in one layer connects to all neu-
rons in the next. These layers are general-purpose and commonly used in the
final stages of classification tasks.

• Convolutional Layers: Primarily used in computer vision, these layers apply
learned filters to local regions of the input (e.g., image patches), capturing spatial
hierarchies.

• Recurrent Layers: Useful for sequential data (e.g., language or time series), re-
current layers maintain memory over past inputs using mechanisms like RNNs,
LSTMs, or GRUs.

4.3.3 Gradient-Based Estimation and Backpropagation

The core of neural network training lies in computing gradients efficiently. For in-
stance, consider the loss function for binary classification with sigmoid output:

J(y, ŷ) = y log ŷ + (1− y) log(1− ŷ).

Using the chain rule, we compute the gradient of J with respect to a weight θj as:

∂J
∂θj

=
∂J
∂a
· ∂a

∂θj
,

43

Lecture Notes AI for Business Research

where a = ∑j θjxj is the linear pre-activation. Since ŷ = σ(a) and dJ
da = ŷ − y, we

obtain:
∂J
∂θj

= (ŷ− y)xj.

This shows that gradient descent encourages weights to shift in the direction that re-
duces the prediction error.

4.3.4 Loss Landscapes and Optimization Challenges

Unlike convex optimization problems, the loss surfaces in deep networks are non-
convex and can contain:

• Multiple local minima

• Saddle points with zero gradient but non-optimal curvature

• Flat regions that slow convergence

Yet, in practice, gradient-based methods often find solutions that generalize well.
This empirical success can be attributed to several techniques:

• Initialization: Using schemes like He or Xavier initialization ensures that acti-
vations and gradients maintain reasonable variance across layers.

• Normalization: Batch Normalization standardizes activations within mini-batches,
improving training stability and allowing higher learning rates.

• Adaptive Optimization: Algorithms like Adam adjust the learning rate for each
parameter individually, accelerating convergence in ill-conditioned landscapes.

Overall, the combination of architectural design, forward-backward computation,
and modern optimization heuristics has made deep learning tractable and scalable
across diverse domains.

4.4 Overfitting and Regularization

One of the central challenges in training deep neural networks is managing the trade-
off between model complexity and generalization performance. Deep models, by de-
sign, possess a vast number of parameters and are capable of fitting highly complex
patterns in the training data. While this expressive capacity is crucial for tasks such
as image classification or natural language understanding, it also means that neural
networks can easily overfit the training set—memorizing noise or irrelevant patterns
instead of learning generalizable structure.

44

Lecture Notes AI for Business Research

Overfitting occurs when a model achieves low training error but performs poorly
on unseen data. This is typically due to high variance in the model: it adapts too
closely to the idiosyncrasies of the training data. In statistical terms, this reflects an
imbalance in the bias-variance tradeoff. To mitigate overfitting, a variety of regular-
ization techniques are used. These methods constrain the learning process, reduce
model variance, and encourage simpler or smoother solutions.

4.4.1 Weight Penalty Methods: L1 and L2 Regularization

The most classic form of regularization penalizes the magnitude of model parameters.

• L2 Regularization (Ridge) adds a squared norm penalty to the loss function:

Lreg = L+ λ ∑
j

θ2
j

This discourages large weights by spreading influence across many small pa-
rameters. Geometrically, L2 prefers smooth solutions and helps prevent extreme
fluctuations in activations.

• L1 Regularization (Lasso) imposes a sparsity-inducing penalty:

Lreg = L+ λ ∑
j
|θj|

Unlike L2, L1 encourages many weights to become exactly zero, which can be
useful for feature selection or compressing models.

• Elastic Net combines L1 and L2 penalties, balancing sparsity and smoothness:

Lreg = L+ λ1 ∑
j
|θj|+ λ2 ∑

j
θ2

j ,

or, in the more common parametrization:

Lreg = L+ λ

[
α ∑

j
|θj|+ (1− α)∑

j
θ2

j

]
,

where λ ≥ 0 is the overall regularization strength and α ∈ [0, 1] controls the
trade-off between L1 and L2 penalties.

– When α = 1, Elastic Net reduces to Lasso (pure L1).

– When α = 0, it becomes Ridge regression (pure L2).

45

Lecture Notes AI for Business Research

These penalties can be interpreted as imposing Gaussian (L2) or Laplace (L1) priors
on parameters in a Bayesian framework.

4.4.2 Dropout: Randomized Regularization

Dropout is a simple but effective technique proposed by Srivastava et al. (2014). Dur-
ing training, each neuron is independently “dropped” (i.e., temporarily set to zero)
with probability 1− p:

h′i =

hi with probability p,

0 with probability 1− p.

This prevents neurons from co-adapting and forces the network to learn redun-
dant, distributed representations. At test time, all neurons are used, but their outputs
are scaled by the dropout probability p to maintain consistent expectations.

Dropout can be viewed as training an ensemble of subnetworks and averaging
their predictions, leading to robust generalization.

4.4.3 Early Stopping: Validation-Guided Training

Early stopping is a regularization technique that monitors model performance on a
held-out validation set during training. When the validation error stops improving
(and may begin to increase), training is halted—even if the training error continues to
decrease.

Formally, if L(t)val denotes validation loss at epoch t, we define a patience threshold
T and stop if:

L(t)val > min
s<t
L(s)val + ϵ for T consecutive steps.

This technique prevents the model from overfitting the training data while main-
taining simplicity in implementation. It is especially useful when computational cost
prohibits tuning explicit regularization hyperparameters.

4.4.4 Data Augmentation

Though not always labeled as ”regularization” in theory, data augmentation effec-
tively increases the training data size and diversity. For example, in image tasks, this
may involve:

• Horizontal/vertical flipping

• Random cropping and rotation

• Color jittering or brightness adjustment

46

Lecture Notes AI for Business Research

By exposing the model to slightly varied versions of each input, data augmentation
promotes invariance and reduces reliance on exact patterns in the training set.

4.4.5 Batch Normalization and Implicit Regularization

Batch Normalization (BatchNorm) standardizes layer inputs during training, stabiliz-
ing gradient flow. While not originally designed as a regularizer, BatchNorm often
reduces overfitting due to its smoothing effect on the optimization landscape.

Furthermore, recent work suggests that SGD itself introduces an implicit regular-
ization bias toward flatter minima—solutions with low curvature and better general-
ization—particularly in overparameterized networks.

4.4.6 Summary

Table 7. Comparison of Regularization Techniques

Method Effect

L2 (Ridge) Shrinks weights smoothly
L1 (Lasso) Induces sparsity in weights
Dropout Prevents co-adaptation via random deactivation

Early Stopping Stops training before overfitting
Data Augmentation Expands dataset diversity

BatchNorm Stabilizes and smooths training

4.5 Implementation with DL Libraries

The practical success of modern deep learning owes much to the powerful and evolv-
ing ecosystem of open-source software libraries. These frameworks abstract away
many low-level details—such as tensor algebra, gradient computation, and hardware
acceleration—allowing researchers and practitioners to rapidly prototype, train, and
deploy large-scale models.

4.5.1 Core Deep Learning Frameworks

• PyTorch: Developed by Meta AI (Facebook), PyTorch is a dynamic computation
graph library. Its key strength lies in its intuitive and Pythonic interface, which
closely resembles NumPy. PyTorch supports imperative programming (eager
execution), making it easy to debug and experiment with new model structures.
It has become the default framework for academic research and increasingly for
production use.

47

Lecture Notes AI for Business Research

• TensorFlow: Developed by Google Brain, TensorFlow provides a more static and
graph-based computation model. While early versions required defining full
computation graphs before execution, recent versions (with tf.function and ea-
ger mode) have improved flexibility. TensorFlow is widely adopted in industry,
especially when scalability, cross-platform deployment (e.g., TensorFlow Lite for
mobile), and production pipelines are priorities.

Both frameworks offer:

• Automatic Differentiation: Users define the forward computation, and the frame-
work computes gradients via backpropagation (reverse-mode autodiff).

• GPU Acceleration: Seamless usage of CUDA-enabled GPUs for high-performance
matrix and tensor operations.

• Integration with CUDA, cuDNN, and Tensor Cores: Leveraging low-level li-
braries for optimized performance.

• Serialization and Deployment APIs: Support for saving models and exporting
them for serving (e.g., ONNX, TensorFlow Serving, TorchScript).

4.5.2 High-Level Abstractions and Model Hubs

• Keras: Originally an independent project, now officially integrated with Tensor-
Flow as tf.keras. Keras provides a high-level API for defining, training, and
evaluating deep learning models. It is especially beginner-friendly, with mini-
mal boilerplate code required to build complex architectures.

• HuggingFace Transformers: A modern library for natural language processing
that provides pre-trained transformer-based models (e.g., BERT, GPT, T5). It of-
fers a unified interface to load, fine-tune, and deploy state-of-the-art models with
minimal code. HuggingFace also supports both PyTorch and TensorFlow back-
ends.

These abstractions enable rapid experimentation and fine-tuning through pre-built
modules, pretrained checkpoints, and standard training loops (via Trainer, compile(),
etc.).

4.5.3 Practical Benefits of Using DL Libraries

• Efficiency: Optimized linear algebra routines (e.g., matrix multiplication, con-
volution) implemented in C++/CUDA and exposed via Python.

48

Lecture Notes AI for Business Research

• Modularity and Reusability: Model components (layers, optimizers, losses) can
be composed as reusable modules, aiding scalability and maintainability.

• Experiment Tracking and Logging: Integration with tools like TensorBoard,
Weights & Biases, and MLflow allows real-time monitoring of training progress,
losses, and hyperparameters.

• Reproducibility: Built-in random seed control and deterministic computation
modes help ensure experimental consistency.

• Deployment: Support for exporting models to various formats (e.g., TorchScript,
ONNX, SavedModel) facilitates serving on cloud, mobile, and edge devices.

4.5.4 Which Library to Choose?

• Use PyTorch if you prioritize flexibility, readable code, and cutting-edge research
integration (most new papers are prototyped in PyTorch).

• Use TensorFlow/Keras if your workflow includes large-scale industrial deploy-
ment or mobile/embedded integration.

• Use HuggingFace Transformers if you’re working on NLP tasks and need access
to pretrained transformer models with strong community support.

4.6 The Notebooks

• The notebook Dropout implements the dropout technique, one of the famous
regularization technique in the neural network;

• The notebook He initialization implements the initialization technique proposed
by Kaiming He;

• The notebook Chain Rule implements the chain rule operation for obtaining the
gradient of a logistic regression model;

• The notebook Micrograd implements a simpler but elegant gradient symbolic
computation framework, modfied from the one implemented by Andrej Karpa-
thy. The framework enables us to obtain the gradient by imputing the mathe-
matical expression.

49

https://colab.research.google.com/drive/14VIl6_JokegSFRSUgaxX8Xi8hvZY-GRn
https://colab.research.google.com/drive/1KuZHvgAVA2nKSkVdVsWzSCKgOoRuX_hF
https://colab.research.google.com/drive/1gzYErH1tAOWaKb-sqCUgNLNQ8Ww4iV7t
https://colab.research.google.com/drive/1T_ZwQdzSpXCDR5cwt_0eH1wUvWNiMGAJ

Lecture Notes AI for Business Research

5 Computations in Deep Learning

Training deep neural networks is not only a statistical and algorithmic challenge, but
also a computationally intensive endeavor. As model architectures grow in depth,
width, and complexity, the demand for specialized hardware and scalable infrastruc-
ture becomes a dominant concern. In this section, we discuss the practical aspects
of deep learning computation, covering hardware options, GPU performance, model
training times, and the financial costs of training large-scale models.

5.1 Hardware Platforms for Deep Learning

Modern deep learning workflows typically rely on two classes of computing plat-
forms:

5.1.1 Local Workstations and Servers

Enthusiasts, research groups, and smaller labs often build self-hosted machines with
top-tier consumer GPUs. A common setup includes:

• A high-performance CPU with an NVIDIA RTX 4090 GPU (market value: ∼US$1,500,
though often hard to obtain due to demand).

• For institutional setups, such as the CUHK Business School’s DOT department,
server-grade infrastructure is deployed. For example:

– Two servers with 16 RTX 4090s are already active.

– Two to three additional servers, each equipped with 16–24 NVIDIA H100
GPUs, are planned for deployment.

5.1.2 Cloud Infrastructure

Large-scale training tasks often rely on cloud computing due to scalability and conve-
nience. Key platforms include:

• Google Cloud Platform (GCP): Approx. US$38.84/hour for 8 H100 GPUs.

• Amazon Web Services (AWS): Approx. US$39.33/hour for similar compute se-
tups.

These platforms support distributed training frameworks and enable rapid scaling
across nodes.

50

Lecture Notes AI for Business Research

5.2 GPU Benchmarking and Comparison

The choice of GPU has a profound impact on training time and throughput. Fig-
ure 5.2.1 presents benchmark comparisons across popular GPUs such as the NVIDIA
A100, H100, and RTX 4090.

Figure 5.2.1. Comparison of GPU Performance: A100 vs. H100 vs. RTX 4090

H100s significantly outperform 4090s on both FP32 and tensor core operations.
However, 4090s offer a cost-effective solution for researchers constrained by budget.

5.3 Model Size and Training Time Estimates

The training time for a neural network depends on three factors:

1. Model size (number of parameters),

2. Dataset size,

3. Compute throughput (FLOPs per second).

We provide several concrete examples:

• ResNet-50 (12M parameters on ImageNet):

– ∼30 minutes on a DGX server with 8 A100s.

– Estimated ∼6–10 hours on a workstation with 1–2 RTX 4090s.

• BERT Base (110M parameters on BooksCorpus + Wikipedia):

– Pretraining takes roughly 5 hours on a DGX system.

– Fine-tuning on a small dataset (e.g., SQuAD) takes only 3–5 minutes.

• GPT-3 (175B parameters, 300B tokens):

51

Lecture Notes AI for Business Research

– Estimated compute: 3.15× 1023 FLOPs.

– Compute throughput: 128 DGX servers (each with 8 A100s at 80 TFLOP/s).

– Estimated training duration: ∼51 to 100 days, depending on parallel effi-
ciency.

These estimates highlight the exponential growth of resource requirements with
model size.

5.4 Case Study: Compute Costs of DeepSeek-V3

Recent advancements in mixture-of-expert (MoE) architectures such as DeepSeek-V3
demonstrate the economics of large model training. DeepSeek-V3 is a 671B parameter
model trained on 14.8 trillion tokens.

• Each token activates only 37B parameters, reducing active compute per step.

• Total compute: 14.8× 1012 × 37× 109 × 6 = 3.3× 1024 FLOPs.

• Cost-efficient training was achieved with H800 GPUs, yielding:

Peak throughput =
3.3× 1024

9.6× 109 GPU-seconds
≈ 3.4× 1014 FLOPs/sec.

Training costs are summarized in Table 8.

Training Costs Pre-Training Context Extension Post-Training Total
H800 GPU Hours 2.664M 119K 5K 2.788M

Cost (USD) $5.328M $0.238M $0.01M $5.576M

Table 8. Estimated Cost Breakdown for DeepSeek-V3

5.5 Geopolitical Constraints: GPU Export Bans

The increasing strategic importance of advanced AI compute has led to export controls
on high-end GPUs. Restrictions imposed by the U.S. government in 2023–2024 ban the
sale of A100, H100, and other high-performance GPUs to certain countries.

Such constraints have led to the development of downgraded variants (e.g., A800,
H800) for restricted markets, and incentivized domestic semiconductor investment in
affected regions.

52

Lecture Notes AI for Business Research

Figure 5.5.1. Overview of U.S. GPU Export Controls

Deep learning is as much a computational discipline as it is a statistical one. Ad-
vances in model architectures must be accompanied by parallel advancements in hard-
ware efficiency and software optimization. As the scale of models continues to grow,
the financial and infrastructural burden of training them will remain a core issue for
researchers, institutions, and governments alike.

53

Lecture Notes AI for Business Research

Chapter 3: Large Language Models

Prewords

So far, we have focused on the theoretical foundations of deep learning, including the
architecture and training of deep neural networks. In this section, we apply those
principles to a domain where deep learning has had especially transformative effects:
Natural Language Processing (NLP).

NLP aims to equip machines with the ability to understand, generate, and interact
with human language. While early approaches relied on hand-crafted rules or sym-
bolic logic, modern NLP is driven by large-scale neural models and massive corpora.
The progression from symbolic systems to data-driven, transformer-based architec-
tures illustrates the broader shift in AI from reasoning to representation learning.

The development of NLP can be understood in four distinctive stages:

Stage I: Probability and Vector Representations (Pre-2010)

Early NLP approaches focused on shallow statistical models and symbolic rules. Lan-
guage was represented using handcrafted features or sparse vectors such as Bag-of-
Words and TF-IDF. Probabilistic models like Hidden Markov Models (HMMs) and
n-gram language models were employed for tasks such as speech recognition and
part-of-speech tagging (Jurafsky and Martin, 2009).

These methods, though mathematically elegant, suffered from data sparsity and
limited generalization.

Stage II: Word Embeddings and Recurrent Networks (2013–2017)

The second wave of NLP innovation was driven by the advent of distributed repre-
sentations and deep sequence models. Word embeddings such as Word2Vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014) allowed words to be represented
as dense vectors in a semantic space, capturing syntactic and semantic relationships
through vector arithmetic.

Simultaneously, Recurrent Neural Networks (RNNs) and their gated variants—Long
Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)—enabled neural
networks to model sequential dependencies in text. This architecture laid the ground-
work for end-to-end learning in tasks such as speech recognition and sentiment anal-
ysis.

A landmark development in this period was the introduction of the Sequence-to-
Sequence (Seq2Seq) model by Sutskever et al. (2014), which used an LSTM encoder-
decoder framework for neural machine translation. The model demonstrated that it

54

Lecture Notes AI for Business Research

was possible to translate variable-length input sequences to variable-length output se-
quences entirely within a neural architecture, significantly outperforming traditional
statistical methods at the time.

Stage III: Transformers and Pretrained Language Models (2018–2022)

The introduction of the transformer architecture by Vaswani et al. (2017) marked a
paradigm shift. By replacing recurrence with self-attention, transformers achieved
both superior accuracy and computational scalability.

This enabled large-scale pretraining, as exemplified by:

• BERT (Devlin et al., 2018): A deep bidirectional encoder pretrained using masked
language modeling.

• GPT series (Radford et al., 2018a, 2019; Brown et al., 2020b): Unidirectional trans-
formers trained for autoregressive language modeling.

• T5, RoBERTa, XLNet(Raffel et al., 2020; Liu et al., 2019; Yang et al., 2019), and
others that extended or refined the transformer framework.

Stage IV: Large Language Models and Instruction Tuning (2023–Present)

The current era is defined by the emergence of large language models (LLMs) such as
GPT-4, Claude, Gemini, and DeepSeek-V3. These models are characterized by:

• Instruction tuning and RLHF to align model outputs with human intent.

• In-context learning, enabling few-shot or zero-shot generalization without gra-
dient updates.

• Scalability: Hundreds of billions of parameters trained on trillions of tokens.

LLMs are capable not only of syntactic fluency but also of semantic reasoning and
multi-turn interaction—blurring the lines between language modeling and general AI.

Probability
& Vector

Representa-
tions of NLP

Word2Vec,
RNN,

Seq2Seq

Transformer-
based

Models,
BERT, GPT

Large
Language

Models
(LLM)

Before 2010 2013–2017 2018–2022 2023–Now

Figure 5.5.2. Roadmap of NLP Development

55

Lecture Notes AI for Business Research

6 From Machine Translation to Transformers: A Geneal-

ogy

Natural Language Processing (NLP) has historically treated machine translation (MT)
as one of its most prominent and ambitious tasks. From rule-based systems to statisti-
cal models, and eventually to deep neural architectures, MT has been both a proving
ground for theoretical innovation and a driver of practical breakthroughs. The emer-
gence of attention mechanisms and transformers was not sudden, but rather the cul-
mination of a lineage of ideas. In this section, we trace that evolution in several stages,
drawing on both algorithmic principles and cognitive metaphors.

6.1 Neural Machine Translation (NMT)

Neural Machine Translation (NMT) represents a significant milestone in the evolution
of machine translation systems. Unlike traditional approaches, which rely on separate
components for modeling translation rules, word alignments, and fluency (e.g., phrase
tables, alignment models, and n-gram language models), NMT reframes the entire
problem as a single learning task: mapping an input sequence in the source language
to an output sequence in the target language using a deep neural network.

Formally, NMT aims to model the conditional probability of a target sentence y =

(y1, y2, . . . , yT) given a source sentence x = (x1, x2, . . . , xS). This is typically achieved
by training a neural network to minimize the cross-entropy loss between predicted
tokens and ground truth tokens.

A key advantage of NMT is that it is trained end-to-end: the entire system is opti-
mized jointly via gradient descent, without the need for manually designed features
or heuristic alignment strategies. This unified framework has enabled rapid progress
in translation quality, scalability, and language generalization.

Yet, the performance of NMT hinges critically on how the source and target se-
quences are represented and transformed. The awkwardness of Chinese-English trans-
lation seen in the figure 6.1.1 given an intricate Spanish invasion of Mesoamerica con-
text: This leads to the architectural design that dominated early NMT research: the
sequence-to-sequence (Seq2Seq) model, which we examine next.

6.2 Sequence-to-Sequence Architecture: The Encoder-Decoder Model

Sequence-to-Sequence (Seq2Seq) modeling is a foundational neural architecture for
machine translation and other sequence transduction tasks. It enables learning map-
pings from variable-length input sequences to variable-length output sequences by
using a pair of recurrent networks: an encoder and a decoder, as can be seen in the

56

Lecture Notes AI for Business Research

Figure 6.1.1. The Outcry of Cortés

Input
Sequence Encoder

Neural
Representation

Decoder
Output

Sequence

Figure 6.2.1. Sequence-to-Sequence modeling

figure 6.2.1.
The Seq2Seq paradigm was first introduced by Sutskever et al. (2014) and has since

become a cornerstone of early neural machine translation (NMT) systems.
At its heart, Seq2Seq operates as a conditional language model. Given a source

sentence x = (x1, . . . , xS), the model generates a target sentence y = (y1, . . . , yT) by
modeling the conditional probability:

P(y | x) =
T

∏
t=1

P(yt | y<t, x)

This formulation assumes that each target token yt is generated conditioned on all
previously generated tokens y<t and the full source sentence x.

6.2.1 The Architecture

The model decomposes into two main components:

Encoder RNN. The encoder processes the input sequence one token at a time, main-
taining a hidden state that evolves according to a recurrent function (typically an

57

Lecture Notes AI for Business Research

LSTM or GRU):
ht = f (ht−1, xt)

After consuming the final input token xS, the encoder outputs a final hidden state hS,
known as the context vector. This vector is intended to summarize the entire input
sequence and is passed to the decoder as the initial condition for generation.

Decoder RNN. The decoder is also a recurrent network, initialized with the context
vector hS. At each decoding step, it uses the previously generated token yt−1 and its
own hidden state st−1 to produce a new word:

st = g(st−1, yt−1)

This state is used to generate a probability distribution over the output vocabulary for
the next word. The process begins with a special <START> token and terminates upon
generating an <END> token.

The overall Seq2Seq architecture is illustrated below using a staggered layout,
which reflects the flow of computation from input to output via a latent representation.
For example, the left part of Figure 6.2.2 shows the encoder RNN, which processes the
source sentence token-by-token (”il”, ”m’”, ”a”, ”entarté”) and produces a final hid-
den state (context vector) summarizing the entire input sequence. This context vector
serves as the initial hidden state for the decoder RNN on the right side. The decoder
RNN acts as a conditional language model, generating the target sentence (”he hit me
with a pie”) one word at a time. During inference (test time), each generated output
token is fed back into the decoder as the input for the next prediction step. This dia-
gram clearly highlights the two key stages of Seq2Seq: encoding the source sequence
into a fixed-size vector and decoding it into the output sequence conditioned on the
encoding.

6.2.2 Training of Seq2Seq

• Seq2Seq models are trained end-to-end by minimizing the loss over the entire
target sentence.

• The loss J is defined as the average over all time steps:

J =
1
T

T

∑
t=1

Jt

where Jt is the negative log-likelihood of predicting the correct target word at
time step t.

58

Lecture Notes AI for Business Research

Figure 6.2.2. Seq2Seq Architecture

• Optimization: Seq2Seq is optimized as a single system. Gradients are back-
propagated through both the encoder and decoder, fully end-to-end.

6.2.3 Applications of Seq2Seq Modeling

While Seq2Seq was originally developed for machine translation, its general frame-
work applies to a wide range of sequence transformation tasks:

• Summarization: Generating concise summaries from long-form documents.

• Dialogue Systems: Producing contextually appropriate replies in chatbots or
conversational agents.

• Parsing: Mapping raw text into structured representations like syntax trees or
logical forms.

• Code Generation: Translating natural language prompts into executable code
(e.g., Python or SQL).

6.2.4 Limitations of Seq2Seq with RNNs

While the Sequence-to-Sequence (Seq2Seq) architecture with recurrent neural networks
(RNNs) represented a major leap forward of the neural machine translation (NMT), it
also suffers from several intrinsic limitations. These challenges stem from the struc-
tural and computational constraints of RNNs and ultimately restrict the model’s abil-
ity to scale, generalize, and perform well on long or complex sequences.

59

Lecture Notes AI for Business Research

Figure 6.2.3. Seq2Seq Training and Loss Computation

Information Bottleneck. A fundamental issue in early Seq2Seq models is the infor-
mation bottleneck created by encoding the entire input sequence into a fixed-size
context vector. In practice, this means that regardless of the input length—be it a
short phrase or a multi-clause sentence—the encoder is expected to distill all relevant
information into a single vector (often the final hidden state of the encoder RNN).
This compression leads to the loss of detailed or long-range information, especially
for longer sequences.

Important semantic cues at the beginning of a sentence can be diluted or forgotten
by the time the encoder reaches the end. As a result, the decoder may struggle to
accurately reproduce key content from the source sentence, especially under complex
grammatical structures or morphological richness.

Linear Interaction Distance. RNNs process sequences in a strictly left-to-right (or
right-to-left) order. This sequential nature means that dependencies between distant
words—common in natural language—require traversing many time steps before they
can interact.

In contrast to human language processing, which often leverages hierarchical and
recursive structures (e.g., subject-verb agreement across clauses), RNNs impose a lin-
ear interaction constraint: a word at position 1 cannot directly interact with a word
at position 50 without passing through all the intermediate steps. This makes it dif-
ficult to capture long-range dependencies or syntactic structures that span clauses or
sentences.

60

Lecture Notes AI for Business Research

Non-parallelizability. From a computational perspective, RNNs are inherently se-
quential. At each time step, the current hidden state depends on the previous hid-
den state, which means that neither forward passes nor backward gradients can be
computed in parallel across time steps. This poses serious limitations for training on
modern hardware like GPUs, which are optimized for parallel computation.

In practical terms, this means that both training and inference in RNNs require
O(T) sequential steps, where T is the length of the sequence. As sequences grow
longer, training becomes slower and harder to scale, especially in large datasets or
real-time settings. Moreover, during inference, the decoder cannot generate all output
tokens simultaneously but must proceed one token at a time, which is inefficient for
applications like simultaneous translation or interactive dialogue.

Figure 6.2.4. Information bottleneck: compression
into a single context vector

Figure 6.2.5. Linear interaction: distant tokens
weakly connected

Figure 6.2.6. Non-parallelizability: time-step de-
pendencies block parallel computation

These three interlocking limitations—semantic compression, interaction rigidity,
and computational inefficiency—highlight the structural bottlenecks of RNN-based

61

Lecture Notes AI for Business Research

Seq2Seq models. In response to these challenges, researchers introduced the attention
mechanism, which allows the decoder to flexibly access different parts of the input
sequence during generation. Rather than relying on a single context vector, attention
distributes focus across all encoder hidden states, enabling both richer representations
and better long-distance dependency modeling.

In the next subsection, we explore how attention models resolve these bottlenecks
and sets the stage for transformer architectures.

6.3 Attention Mechanisms

The attention mechanism has emerged as a transformative concept in deep learning,
enabling models to selectively focus on relevant parts of their input during compu-
tation. It was initially developed to address key shortcomings of Recurrent Neural
Network (RNN)-based architectures—particularly their inability to efficiently model
long-range dependencies and the information bottleneck caused by compressing en-
tire input sequences into fixed-size vectors.

At a high level, attention enables a model to perform a form of content-based re-
trieval: it compares a query vector to a set of key vectors and retrieves associated
value vectors in a weighted manner. Formally, given a query q ∈ Rd, a set of keys
K = {k1, . . . , kn}, and corresponding values V = {v1, . . . , vn}, the attention output is
computed as:

Attention(q, K, V) =
n

∑
i=1

αivi, where αi =
exp(q⊤ki)

∑n
j=1 exp(q⊤k j)

The attention weights αi are produced by applying a softmax over the dot product
between the query and each key, quantifying the similarity (or compatibility) between
them. This produces a convex combination of the values vi, weighted by their rel-
evance to the query q. The output is thus a context vector—a dynamic and query-
specific summary of the information contained in V.

This mechanism offers several advantages:

• It removes the constraint of fixed-size encodings.

• It enables better modeling of long-distance dependencies by computing rele-
vance globally.

• It is differentiable and fully trainable within end-to-end models.

In the context of neural machine translation (NMT), attention was first introduced
by Bahdanau et al. (2015). Their model augmented the Seq2Seq encoder-decoder archi-
tecture by allowing the decoder to attend to all hidden states of the encoder, instead of

62

Lecture Notes AI for Business Research

relying solely on the final hidden state. At each decoding time step t, the decoder gen-
erates a query vector st (its own hidden state), and computes attention scores against
all encoder hidden states {h1, . . . , hS}, which serve as both keys and values. The re-
sulting context vector ct is then combined with the decoder state to predict the next
word:

ct =
S

∑
i=1

αtihi, where αti =
exp(eti)

∑S
j=1 exp(etj)

, and eti = score(st, hi)

The score function eti can take various forms (e.g., additive, dot-product, or gen-
eral), but all serve the same goal: computing how relevant each source position i is
to generating the current target word. This architecture allows the model to ”look
back” selectively at source tokens, enabling finer-grained alignment between source
and target phrases, as well as improved handling of longer and more complex input
sentences:

Figure 6.3.1. General attention mechanism

6.3.1 A Family of Attention Models

Multiple scoring functions have been proposed for computing the alignment between
queries and keys:

63

Lecture Notes AI for Business Research

Figure 6.3.2. Comparison of different attention mechanisms

6.3.2 Attention is all you Need

The Transformer model proposed by Vaswani et al. (2017) radically departs from
RNN-based sequence modeling by removing all recurrence. Instead, it relies entirely
on attention mechanisms—specifically, self-attention—to capture dependencies be-
tween tokens, regardless of their distance in the sequence. This architecture offers
substantial advantages in parallelizability, scalability, and the ability to model long-
range interactions.

The compatibility between token i and token j is measured by the scaled dot-
product between the query and key vectors:

w′ij =
q⊤i k j√

dk

where dk is the dimensionality of the key vectors. Scaling by
√

dk prevents the dot
product from becoming too large in magnitude, which can lead to vanishing gradients
after applying the softmax.5

The attention weights are then computed via a softmax over all keys:

wij = softmax(w′ij) =
exp(w′ij)

∑n
j′=1 exp(w′ij′)

These weights determine how much token i should attend to token j. The final

5FAQ in NLP interview.

64

Lecture Notes AI for Business Research

output for position i is the weighted sum of all value vectors:

yi =
n

∑
j=1

wijvj

This mechanism enables each token to gather contextual information from the en-
tire input sequence in a single step, without recursion or sequential processing. The
entire self-attention computation can be efficiently parallelized across all positions.

Figure 6.3.3. Self-attention mechanism: each token attends to all others, including
itself

Multi-Head Attention One of the core innovations of the Transformer architecture
is the use of multi-head attention. Rather than computing a single attention function
over the input, the Transformer applies multiple attention mechanisms—referred to
as “heads”—in parallel. Each head operates in its own subspace of the input and
learns to focus on different aspects of the data, such as syntax, semantics, or positional
relationships.

Concretely, given an input sequence represented by matrix X ∈ Rn×dmodel , multi-
head attention projects this input into multiple sets of queries, keys, and values:

headi = Attention(QWQ
i , KWK

i , VWV
i)

where:

• WQ
i , WK

i , WV
i ∈ Rdmodel×dk are learned projection matrices for the i-th head,

• dk = dmodel/H is the dimensionality of each head (assuming H heads).

Each attention head performs scaled dot-product attention independently. The out-
puts of all heads are then concatenated and linearly transformed:

MultiHead(Q, K, V) = Concat(head1, . . . , headH)WO

65

Lecture Notes AI for Business Research

where WO ∈ Rdmodel×dmodel is another trainable weight matrix that projects the concate-
nated output back into the original model dimension.

This structure allows the model to:

• Attend to information from multiple representation subspaces at different posi-
tions,

• Learn a richer set of transformations compared to single-head attention,

• Parallelize the computation efficiently across all heads and positions.

For example, with dmodel = 256 and H = 8, each head operates in a 32-dimensional
subspace, and their outputs are concatenated into a 256-dimensional vector.

Figure 6.3.4. Multi-head attention mechanism: different heads learn to attend to dif-
ferent parts of the input

Position Encoding Because Transformers lack recurrence, they encode position with
either fixed sinusoidal functions or learnable embeddings:

PEpos,2i = sin
(pos

100002i/dmodel

)
, PEpos,2i+1 = cos

(pos
100002i/dmodel

)

66

Lecture Notes AI for Business Research

Figure 6.3.5. Positional encoding

Auto-Regressive Masking In language generation, Transformers use masked self-
attention to prevent future information leakage:

wij =

q⊤i k j, j ≤ i

−∞, j > i

Figure 6.3.6. Masked self-attention for autoregressive decoding

Layer Normalization: It is a technique to speed up training and stabilize the net-
work. Specifically, it works as follows,

• It normalizes hidden values to have zero mean and unit variance within each
layer.

• Formulation:

– Let x ∈ Rd be an individual(word) vector in the model.

– Compute mean: µ = 1
d ∑d

i=1 xi.

– Compute std deviation: σ =
√

1
d ∑d

i=1(xi − µ)2.

67

Lecture Notes AI for Business Research

– Output:

output =
x− µ√
σ2 + ϵ

γ + β

where γ, β ∈ Rd are learned parameters.

Transformer Components To sum up, each Transformer layer includes the following
components,

• Multi-head attention

• Feed-forward networks

• Position encodings

• Layer normalization and residual connections

Figure 6.3.7. The Transformer encoder-decoder architecture

Classification Transformer Transformers can be directly applied to classification tasks.
The typical workflow involves the following steps:

1. Input Representation: The input sequence is converted into word embeddings,
which are then combined with positional embeddings to retain sequence order
information.

2. Transformer Processing: The combined embeddings are passed through mul-
tiple Transformer blocks, which capture contextual relationships within the se-
quence.

3. Output and Classification: The processed sequence is fed into a classification
head, often consisting of a linear layer followed by a softmax activation, to pro-
duce the final class predictions.

68

Lecture Notes AI for Business Research

Performance of the Transformer It outperformed previous models such as GNMT
and ConvS2S in both translation and document generation tasks (Vaswani et al., 2017).

Figure 6.3.8. BLEU scores and FLOPs: Transformer vs. other NMT models

Figure 6.3.9. Transformer performance on document generation tasks

6.4 Applications of Language Models in Economics and Social Sci-

ence

The development of deep language models—ranging from LSTM-based architectures
(e.g., ELMo/Stage II) to large-scale transformer models (e.g., BERT, RoBERTa, GPT III-
IV)—has opened up powerful new methods for analyzing unstructured text at scale.
These models capture complex patterns in language, enabling tasks such as classi-
fication, prediction, and interpretation with high accuracy and adaptability. In recent
economic and social science research, these capabilities have been leveraged for a wide
range of applications, illustrating how attention-based models contribute to empirical
inquiry and policy analysis.

Detecting Disorganized Thought (FTD) in Mental Health. Sarzynska-Wawer et al.
(2021) apply LSTM-based contextual embeddings (ELMo) to detect formal thought
disorder (FTD) in patients. Their model outperforms traditional coherence-based ap-
proaches, which rely on dictionary-based NLP rules, by learning richer semantic rep-
resentations from the language patterns of individuals. This suggests that language

69

Lecture Notes AI for Business Research

models can be used not just descriptively, but diagnostically, with implications for
cognitive science and psychiatry.

Framing in Political Discourse. Card et al. (2022) investigate how language models
can uncover ideological framing in political speech. Using a fine-tuned RoBERTa clas-
sifier, they label 140 years of U.S. congressional and presidential speeches according
to their framing of immigration—pro-immigration, anti-immigration, or neutral. This
enables a longitudinal study of how political rhetoric has evolved, demonstrating the
role of transformer-based language models in historical and sociopolitical analysis.

Monitoring Remote Work in Labor Markets. Hansen et al. (2023) use DistilBERT
to classify over one million job vacancy postings for their remote work (WFH) status.
Their model identifies trends in remote work adoption by occupation, industry, and
geography, showing dramatic growth in WFH postings since 2019. This highlights the
usefulness of transformer-based classifiers for real-time monitoring of labor market
dynamics using textual data.

Methodological Foundations: Text as Data. Gentzkow et al. (2019) provide a foun-
dational review of text-as-data methods in economics. They discuss traditional bag-
of-words models, topic modeling, and early machine learning approaches, laying the
groundwork for newer embedding-based and attention-based models.

Current Challenges and Future Directions. Ash and Hansen (2023) propose a frame-
work for how text algorithms are used in economics across four problem domains:
measuring document similarity, detecting and relating concepts, and linking text with
structured metadata. They identify two major challenges—validation and interpretabil-
ity—and point to large language models as the next frontier in empirical research,
particularly for tasks requiring semantic understanding and nuanced reasoning.

These applications illustrate the growing role of deep language models in trans-
forming how economists and social scientists process and interpret language, policy,
and discourse at scale.

6.5 The Notebooks

• The notebook Attention Mechanism implements the attention mechanism and
illustrates its connection to the classic non-parametric method(Nadaraya-Watson
kernel regression);

• The notebook Transformer implements the transformer architecture.

70

https://colab.research.google.com/drive/11Lx075g2elZa1Vbcbbcx1YfGuQdXLXws
https://colab.research.google.com/drive/1LKHCItyYk94UfZMMWWcoD81CVqEWMY5a

Lecture Notes AI for Business Research

7 Pretrained Transformers: BERT, GPT, and the Rise of

Foundation Models

The development of pretrained transformer-based language models has redefined the
landscape of modern natural language processing. Among these, BERT and GPT
stand as foundational architectures that exemplify two contrasting yet complemen-
tary paradigms: masked language modeling (BERT) and generative pretrained trans-
former (GPT). Both models are built on the self-attention mechanisms introduced by
the Transformer, but they differ in how they are trained, how they represent context,
and how they are applied to downstream tasks:

• BERT (Bidirectional Encoder Representations from Transformers) uses a masked
input to learn deep, bidirectional representations, making it particularly power-
ful for sentence-level understanding tasks such as question answering, natural
language inference, and entity recognition;

• GPT (Generative Pretrained Transformer), by contrast, learns to predict the next
token in a sequence in an autoregressive manner. This unidirectional setup en-
ables fluent text generation and has proven essential for tasks like summariza-
tion, dialogue generation, and few-shot reasoning.

This section introduces both models in detail, contrasting their training objectives,
architectural choices, and application domains. We also explore how their success has
led to a broader class of foundation models—large-scale pretrained systems that can be
adapted to a wide range of tasks with minimal supervision.

7.1 Pretraining Models

The success of modern NLP models like BERT and GPT relies fundamentally on a two-
stage training strategy: pre-training followed by fine-tuning. Pre-training involves
training a model on vast quantities of unlabelled text using self-supervised learning
objectives. The aim is to compress knowledge from a massive, diverse corpus into
the model’s parameters, producing a general-purpose representation that can later
be specialized to downstream tasks. At its core, pre-training is a process of scalable
compression of linguistic and semantic information.

7.1.1 What is Pre-training?

In pre-training, the model learns to solve simple proxy tasks derived from the raw in-
put itself, such as predicting missing or next words. This allows the model to extract

71

Lecture Notes AI for Business Research

syntactic and semantic features from language without requiring any human annota-
tions.

• For encoder-based models like BERT, the objective is typically masked language
modeling (MLM): a percentage of input tokens are randomly masked, and the
model must predict them using both left and right context.

• For decoder-only models like GPT, the objective is causal language modeling
(CLM): the model predicts the next token based only on previously seen tokens
in a left-to-right fashion.

7.1.2 The Pre-training to Fine-tuning Pipeline

Pre-training produces a set of general-purpose parameters θ̂. Fine-tuning then adapts
these parameters to specific NLP tasks using small, labeled datasets. Philosophically,
pretraining can improve downstream NLP applications by serving as parameter ini-
tialization. The idea is to start from θ̂ and nudge the model toward solving a task-
specific objective by minimizing an appropriate loss.

Mathematical view:

• Pre-training:

θ̂ = arg min
θ

1
n

n

∑
i=1
Lpretrain(xi)

• Fine-tuning:
θ∗ = θ̂ − η∇θLtask(xj, yj)

Figure 7.1.1. Pre-training followed by task-specific fine-tuning

7.1.3 Architectural Variants in Pre-training

Transformer-based models adopt three broad architectural patterns during pre-training,
each suited for different goals:

72

Lecture Notes AI for Business Research

(a) Decoder-only (e.g., GPT)
(b) Encoder-decoder (e.g., T5)

(c) Encoder-only (e.g., BERT)

Figure 7.1.2. Three common pre-training architectures

(a) Decoder-only Models (e.g., GPT):

• Unidirectional: predicts next token based on previous tokens.

• Highly scalable; ideal for open-ended generation.

• Suitable for zero-shot and few-shot prompting tasks.

(b) Encoder-decoder Models (e.g., T5, BART):

• Encode input into a latent representation, then decode output.

• Supports both generation and understanding.

• Pre-trained via text-to-text transformations.

(c) Encoder-only Models (e.g., BERT):

• Bidirectional architecture: conditions on both left and right context.

• Optimized for understanding tasks: classification, NER, QA.

• Uses masked language modeling.

These architectures define not only how the model attends to input but also affect
what kinds of tasks it excels at. In the next subsection, we explore how fine-tuning
and prompting strategies adapt these pretrained models for specific applications. We
start with BERT architecture.

7.2 BERT

7.2.1 The Architecture of Understanding

Since its introduction by Devlin et al. (2018), BERT (Bidirectional Encoder Representa-
tions from Transformers) has reshaped the way we model language. Its architecture
is deceptively simple — a stack of Transformer encoders — but its impact lies in how

73

Lecture Notes AI for Business Research

it rethinks pretraining. Rather than predicting the next word in a sequence like tra-
ditional language models, BERT reads in both directions. It learns not by completing
sentences, but by recovering corrupted fragments within them and reasoning over
their coherence. This process is formalized through two interwoven training objec-
tives: Masked Language Modeling (MLM) and Next Sentence Prediction (NSP).

Together, these tasks form a dual lens through which BERT perceives language:
one lexical, the other logical.

7.2.2 Masked Language Modeling: Learning Through Obscurity

The cornerstone of BERT’s representational power is its masked language model. The
idea is simple, but profound: what if, instead of asking the model to generate the next
word, we asked it to guess randomly obscured ones using the full context? Formally,
let a sentence be tokenized into a sequence, where xCLS is a special token always at the
beginning and xSEP is another special token used to separate two segments:

X = {x[CLS], x1, x2, . . . , xn, x[SEP]}

A fixed proportion — 15% — of tokens is selected for masking. Among these se-
lected tokens:

• 80% are replaced with the special token [MASK];

• 10% are replaced with a random token from the vocabulary;

• 10% remain unchanged, though still treated as “masked” in loss computation.

Figure 7.2.1. Masking

This stochasticity prevents the model from overfitting to a predictable masking
pattern. It forces BERT to make robust inferences, even in cases where the input does

74

Lecture Notes AI for Business Research

not obviously signal corruption. To predict the masked tokens, BERT transforms each
input into contextual embeddings through its stack of self-attention layers. For a masked
token at position i, its output representation yi ∈ Rd is projected to the vocabulary
space via:

zi = softmax(AMLMyi + bMLM), AMLM ∈ RV×d

Here, zi is a probability distribution over all words in the vocabulary V, and the
softmax ensures these probabilities sum to one. The learning signal comes from the
cross-entropy loss:

LMLM,i = − log(zi[ytrue
i])

where ytrue
i is the correct word. The better the model’s prediction, the closer the loss

gets to zero.

7.2.3 Next Sentence Prediction: Modeling Coherence Across Sentences

While MLM helps BERT understand intra-sentence context, it alone cannot teach the
model how sentences connect — how ideas flow in discourse. This is the motivation
for Next Sentence Prediction (NSP). In the NSP task, the model is fed two segments: Sen-
tence A and Sentence B. It must predict whether B logically follows A in the original
corpus. Half of the time, the sentence pairs are contiguous (“IsNext”); the other half,
they are randomly sampled (“NotNext”). The sequence format is extended:

Figure 7.2.2. Next Sentence Prediction

X = {x[CLS], x1, . . . , xn, x[SEP], xn+1, . . . , xn+m, x[SEP]}

The [CLS] token is used to encode the relationship between the two segments. Its
final hidden state yCLS is passed through a sigmoid classifier:

z = σ(ANSPyCLS + bNSP), ANSP ∈ R1×d

75

Lecture Notes AI for Business Research

This output z ∈ (0, 1) is interpreted as the probability that Sentence B follows Sen-
tence A. The loss, again, is cross-entropy:

LNSP = −D log z− (1− D) log(1− z)

where D ∈ {0, 1} is the binary ground truth.

7.2.4 Joint Objective: Language at Two Scales

What makes BERT powerful is not merely the existence of these two objectives, but
their joint optimization. During pretraining, the model is taught to solve both tasks
simultaneously:

LBERT = ∑
i∈M
LMLM,i + LNSP

Figure 7.2.3. Pre-training Pipeline

Here,M is the set of masked token positions. This objective tunes BERT to under-
stand language both at the granular level of words and the holistic level of discourse.

7.2.5 Input Embeddings: Subwords, Segments, and Position

embeddings are a foundational step that allows language models to bridge the gap
between human-readable text and machine-readable numbers, while preserving the
structure and meaning needed for downstream tasks. Specifically, each input token xi

is converted into a vector via three layers of embeddings:

• Token Embeddings: Represent each word or subword (e.g., ”transformation” →
”trans”, ”##form”, ”##ation”);

76

Lecture Notes AI for Business Research

• Segment Embeddings: Distinguish between Sentence A and Sentence B;

• Position Embeddings: Preserve word order through learned position encodings.

We will explain how the embedding works with the following diagram. This di-
agram illustrates the input embedding representation in the BERT (Bidirectional En-
coder Representations from Transformers) model. Each token in the input sequence is
represented by the sum of three types of embeddings: Token Embeddings, Segment
Embeddings, and Position Embeddings.

Token Embeddings represent the semantic meaning of each word or subword unit
in the input (e.g., [CLS], my, dog, is, cute, etc.). Notice that some words like playing
are split into subword tokens such as play and ##ing.

Segment Embeddings are used to distinguish between different sentences in a pair.
In the figure, tokens from the first sentence receive the embedding EA, while tokens
from the second sentence receive EB.

Position Embeddings encode the position of each token in the sequence (e.g., E0,
E1, ..., E10), allowing the model to capture the order of words.

The final input representation for each token is obtained by summing its token,
segment, and position embeddings. This combined embedding is then fed into BERT’s
Transformer layers, enabling the model to understand both the content and structure
of the input.

Figure 7.2.4. Input Embeddings

7.2.6 Scaling and Training Regime

BERT comes in two standard sizes:

• BERT-base: 12 layers, 768 hidden units, 12 attention heads, 110M parameters

• BERT-large: 24 layers, 1024 hidden units, 16 attention heads, 340M parameters

Its training is both data- and compute-intensive:

• Pretrained on Wikipedia (2.5B words) and BookCorpus (0.8B words)

77

Lecture Notes AI for Business Research

• Sequence length: up to 512 tokens

• Batch size: scaled from 256 to 8,000 in later models like RoBERTa(Liu et al., 2019)

• Trained with 64 TPUs over 4 days

7.2.7 The Broader Picture: Understanding vs. Generating

BERT is an encoder-only model — its architecture is optimized for understanding, not
generation. While it was initially superior to early GPT models in language under-
standing tasks, it lacks the autoregressive structure necessary for fluent text genera-
tion. However, what BERT gains in interpretability and depth of context, it trades off
in output fluidity. This divide marks a philosophical split in modern NLP: do we want
models that can understand, or ones that can speak?

At its core, BERT transforms the pretraining paradigm from linear prediction to
contextual reasoning. It represents a shift from sequentially-driven models to those that
read language more like humans do — with full awareness of what lies ahead and
behind.

Its mathematical machinery — cross-entropy losses, softmax distributions, sigmoid
classifiers — serves a larger purpose: to encode the structure of language itself. Each
token prediction is not merely a classification problem; it is a window into how mean-
ing is constructed, sentence by sentence, token by token, in the mind of a machine.

78

Lecture Notes AI for Business Research

Figure 7.2.5. BERT Architecture - Encoder Only

7.2.8 Fine-tuning BERT

What follows the pretraining of the model is the fine-tuning. The idea of BERT fine-
tuning is to make the pre-trained model work better on specific tasks by adjusting the
pre-trained parameters.

BERT can be fine-tuned for two main types of tasks:

• Sentence-level tasks: where we assign a label to an entire sentence or a sentence
pair (e.g., sentiment classification, entailment detection);

• Token-level tasks: where we assign a label to each token in the input (e.g., named
entity recognition, part-of-speech tagging).

In sentence-level tasks, we typically use the output vector of the special [CLS] token
to make predictions — this mirrors how BERT was pre-trained with the Next Sentence
Prediction (NSP) objective. In token-level tasks, we use the output embeddings of
individual tokens for prediction, similar to how BERT learns in Masked Language
Modeling (MLM). After fine-tuning, BERT has achieved state-of-the-art performance
on various NLP benchmarks, surpassing previous models and setting new standards
on tasks such as:

79

Lecture Notes AI for Business Research

• MNLI (Multi-Genre Natural Language Inference): predicting the relationship be-
tween two sentences (entailment, contradiction, or neutral);

• QQP (Quora Question Pairs): determining whether two questions are semanti-
cally equivalent;

• SST-2 (Stanford Sentiment Treebank): classifying the sentiment of a sentence as
positive or negative;

• SQuAD (Stanford Question Answering Dataset): answering questions based on
a given passage.

Transfer Learning in NLP and the Role of BERT The core idea of transfer learning
is to leverage knowledge learned from solving one problem and apply it to another,
often related, task. In natural language processing (NLP), transfer learning enables
models to generalize across different datasets or objectives by transferring linguistic
knowledge captured during pretraining.

Before BERT, transfer learning in NLP was primarily limited to the feature repre-
sentation level. Models would use static word embeddings — such as those generated
by word2vec or GloVe — as fixed input features for downstream tasks. These embed-
dings captured some semantic relationships between words, but they lacked context
sensitivity and were not updated during task-specific training.

BERT fundamentally changed this paradigm. It introduced a pretraining-finetuning
framework, where a deep bidirectional Transformer model is first pretrained on large-
scale unlabeled corpora using unsupervised objectives (e.g., masked language model-
ing and next sentence prediction). Then, for each downstream task, BERT is fine-tuned
end-to-end, adjusting all parameters — not just the final layers — using a smaller, la-
beled dataset.

This approach enables contextualized word representations and task-specific adap-
tation, significantly improving performance across a wide range of NLP benchmarks.

BERT in Multi-Task Learning A multi-task learning setup with BERT typically con-
sists of two components:

• Shared layers: These are the pretrained BERT encoder layers (Transformer blocks),
which capture general language representations across all tasks.

• Task-specific layers: These are lightweight, trainable layers added on top of
BERT for each downstream task. They map the shared representation to task-
specific outputs (e.g., classification logits or token tags).

80

Lecture Notes AI for Business Research

The connection between the shared encoder and task-specific layers is often imple-
mented via a linear transformation (i.e., a fully connected layer). During fine-tuning,
both the shared encoder and task-specific layers are updated jointly or partially, de-
pending on the setup.

7.2.9 Frontiers and Applications

FinBERT FinBERT (Liu et al., 2021) is a domain-specific adaptation of the BERT-base
model. It was designed to address a critical limitation of the original BERT: its sub-
optimal performance on financial sentiment analysis tasks. While BERT was trained
on general-purpose corpora such as Wikipedia and BookCorpus, financial language
presents unique challenges — including specialized jargon, context-dependent polar-
ity, and subtle expressions of uncertainty — that require tailored representation learn-
ing.

To address this, FinBERT was pretrained on a corpus of 4.9 billion tokens drawn
from real-world financial texts:

• Corporate annual and quarterly filings from the SEC’s EDGAR database (1994–2019),

• Financial analyst reports from the Thomson Reuters Intext database (2003–2012),

• Earnings conference call transcripts sourced from the Seeking Alpha platform
(2004–2019).

The model was subsequently fine-tuned on a sentiment classification task involv-
ing 10,000 labeled sentences. These labels were distributed as follows: 36% positive,
46% neutral, and 18% negative. The goal was to predict the sentiment expressed in
each sentence toward a financial entity or event.

FinBERT achieved superior performance compared to other models benchmarked
in the same study — regardless of dataset size. Remarkably, when the training data
was reduced to only 10% of its original size, FinBERT’s accuracy only dropped from
88% to 80%, demonstrating both robustness and efficiency.

This performance illustrates a broader insight: fine-tuning general-purpose pretrained
models on domain-specific corpora can lead to significant gains in specialized tasks. FinBERT
serves as a compelling case study for this paradigm, and its success has inspired simi-
lar adaptations in fields ranging from biomedical text mining to legal document anal-
ysis.

Monetary Policy A particularly compelling application of BERT and its derivatives
can be found in The Voice of Monetary Policy (Gorodnichenko et al., 2023). This study
demonstrates how advances in NLP can be leveraged to quantify the tone and impact

81

Lecture Notes AI for Business Research

of central bank communication — a domain traditionally dominated by qualitative
and narrative analysis.

The core idea of the paper is intuitive yet powerful: the tone of the Federal Re-
serve’s monetary policy communications — particularly during Federal Open Market
Committee (FOMC) press conferences — carries measurable informational value for
financial markets. To quantify this tone, the authors first build a baseline model using
a relatively simple neural network architecture: a multi-layer perceptron (MLP) with
three hidden layers. This model is trained on manually labeled FOMC press confer-
ence transcripts, where each document is categorized based on its perceived tone (e.g.,
dovish vs. hawkish, positive vs. negative).

To evaluate the strength of more sophisticated NLP tools, the authors then compare
this baseline model to transformer-based architectures — specifically:

• BERT, pretrained on general corpora (Wikipedia + BookCorpus),

• RoBERTa(Liu et al., 2019), a more robustly trained BERT variant with dynamic
masking and more extensive pretraining data, and

• FinBERT(Liu et al., 2021), a domain-adapted BERT model fine-tuned on financial
texts.

Each of these models is used to perform sentiment analysis on the same FOMC
transcripts. The results are striking: not only do BERT-based models outperform the
MLP in classification accuracy, but they also yield more stable and interpretable senti-
ment scores across time.

Moreover, the study links these sentiment scores to real-world financial outcomes.
The authors find that a more optimistic tone — as captured by BERT and its variants —
is consistently associated with positive stock market returns in the hours immediately
following the press conference. This effect persists even after controlling for policy
actions and macroeconomic fundamentals. In short, how the Fed communicates can be
just as important as what it communicates.

The paper exemplifies several key takeaways for applied NLP in economics:

• Fine-tuned transformer models such as FinBERT can capture subtle domain-
specific sentiment better than general-purpose models or shallow classifiers.

• Pretrained language models can be deployed directly in empirical economic anal-
ysis with minimal additional training.

• The textual tone — traditionally treated as a “soft” variable — can be quantita-
tively measured and linked to asset prices using modern AI tools.

82

Lecture Notes AI for Business Research

7.3 GPT

GPT, or Generative Pretrained Transformer, refers to a family of large-scale language
models designed to perform a broad range of natural language understanding and
generation tasks. In contrast to BERT, which is based on the encoder component of the
Transformer architecture, GPT relies exclusively on the decoder stack.

The key characteristic of GPT is its autoregressive design: the model predicts the
next word in a sequence based solely on the words that came before it. During train-
ing, it is exposed only to left-context tokens — the attention mechanism is masked
such that no future tokens are visible. This setup enables GPT to naturally model text
generation tasks, where the next word is sampled sequentially.

Importantly, GPT uses a single model for all tasks. Rather than using task-specific
architectures, it leverages the same decoder stack — only scaled in depth, width, and
data — making it an elegant and general-purpose approach to language modeling.

7.3.1 History of GPTs

(a) GPT-1 (b) GPT-2 (c) GPT-3

Figure 7.3.1. The History of GPTs

GPT-1 The first version, GPT-1 (Radford et al., 2018b), introduced a decoder-only
Transformer with 12 layers, 768-dimensional hidden states, and a total of 117 million
parameters. It was trained on the BooksCorpus, a dataset consisting of over 7,000
fiction books, providing long-range, coherent text examples.

83

Lecture Notes AI for Business Research

GPT-1 was trained in a multi-task setting, where downstream tasks like classifi-
cation, entailment, semantic similarity, and multiple choice were addressed by fine-
tuning. The fine-tuning phase combined:

• Language modeling loss (predicting the next word);

• Supervised task loss (e.g., classification)

This dual-objective approach helped the model generalize better without overfitting
to specific tasks.

GPT-2 GPT-2 significantly expanded the architecture, scaling to 48 layers, each with
1,600 hidden units and 25 attention heads, resulting in 1.5 billion parameters. Al-
though architecturally similar to GPT-1, it represented an order-of-magnitude increase
in both size and data diversity.

GPT-2 was trained on a high-quality, diverse corpus of 8 million web pages, en-
abling it to handle a wide array of topics and linguistic styles. One of GPT-2’s key
breakthroughs was its emergent capability: it could perform tasks like summariza-
tion, translation, and question answering with little or no fine-tuning — capabilities
that were not explicitly trained for.

In empirical field, Reisenbichler et al. (2022) explores GPT-2’s utility in Search En-
gine Optimization (SEO). In this context, the model generated webpage content op-
timized for search engines. Field experiments showed that GPT-2-generated content
outperformed that created by human SEO experts — although the study’s scale was
limited, it underscored the practical potential of language models in marketing tasks.

GPT-3 GPT-3 (Brown et al., 2020a) represented a monumental leap in scale and ca-
pability. It increased the parameter count to 175 billion, using:

• 96 decoder layers;

• A context window of 2,048 tokens;

• Embedding dimensions of 12,288.

GPT-3 was trained on a massive 300-billion-token dataset that included Common
Crawl, WebText2, Books, and Wikipedia. This unprecedented scale enabled it to excel
at few-shot, one-shot, and even zero-shot learning. In these setups, the model could
complete tasks simply by being shown a few examples (or just task instructions) in
the input — without any gradient updates or architectural changes. This gave rise to
a new paradigm in NLP known as in-context learning.

84

Lecture Notes AI for Business Research

7.3.2 In-Context Learning: Prompting Instead of Fine-Tuning

Unlike earlier models that required retraining or parameter updates for each new task,
GPT-3 popularized a user-friendly approach: treating the model as a fixed black box
and interacting with it through carefully designed input prompts.

In-context learning allows users to simply “show” the model a few examples di-
rectly within the input. For instance:

Figure 7.3.2. In-context Learning

This approach requires no additional training, making powerful language model-
ing accessible without large-scale infrastructure or labeled data.

7.3.3 Pretraining Data for LLMs: The Hidden Engine Behind GPT

While architectural innovations and model scaling have fueled the success of GPT,
another critical — yet often less visible — ingredient is the quality and scale of pretraining
data. In autoregressive models like GPT, the ability to generate coherent, factually
grounded, and contextually appropriate text stems from exposure to an enormous
and diverse corpus of unlabeled language data.

Modern GPT-style models are trained on unlabeled data at a truly massive scale:
often in the order of trillions of tokens. In comparison, labeled datasets — used for su-
pervised fine-tuning — are several orders of magnitude smaller and more expensive
to obtain (e.g., 50 million labeled vs. 240 trillion unlabeled tokens). This gap under-
scores the value of effective pretraining: models learn to reason, summarize, translate,
and more, largely from the statistical patterns found in raw text alone.

A recent paper by Soldaini et al. (2024) sheds light on this pipeline by introducing
Dolma, a transparent, trillion-token dataset curated by Hugging Face. It serves as a
key example of how modern large-scale datasets are constructed for LLM training,
and how they could be leveraged by future open-source GPT-style models.

Where Does the Data Come From? The pretraining corpus for GPT models typically
combines several broad categories:

• Websites (e.g., Common Crawl)

85

Lecture Notes AI for Business Research

• Books (fiction and non-fiction)

• Scientific articles

• Social media and discussion forums

• Code repositories

The process usually begins with URL harvesting. However, not all internet content
is appropriate for training. Hence, the next steps involve:

• Toxicity filtering: Identifying and removing harmful, biased, or offensive con-
tent.

• Language filtering: Ensuring consistency in the language distribution across
documents.

• Deduplication: Preventing repetition, which could bias the model.

• PII redaction: Scrubbing personally identifiable information to preserve user
privacy.

While organizations like Hugging Face document and share their data pipelines
openly, not all models are as transparent. Proprietary models like GPT-3 or DeepSeek
often do not release their full training corpus. As a result, there is frequent specu-
lation about undocumented data sources — such as whether DeepSeek uses forums
like Baidu Tieba to enhance its fluency in Chinese. The lack of reproducibility creates
challenges in attribution and fairness evaluation.

Data Ablation: Understanding What Matters An important technique used in GPT
pretraining research is data ablation. The idea is to train smaller models on subsets
of curated data — varying in domain, source, or preprocessing — and evaluate their
performance on standard benchmarks, especially:

• Zero-shot and few-shot in-context prompting

• Question answering

• Knowledge recall tasks

By systematically ablating or removing certain data components, researchers can
identify which sources are most valuable. For instance, is Common Crawl still helpful
after heavy filtering? Do books add long-range coherence? Does Reddit-style dialogue
improve conversational fluency?

Once effective data sources and strategies are identified, they can be scaled to build
larger and more capable GPT-style models. This method supports the growing trend
of data-centric AI — optimizing what the model learns from, not just how it learns.

86

Lecture Notes AI for Business Research

Toward Open and Reproducible GPT Models The pretraining data pipeline plays a
foundational role in the behavior, safety, and capability of LLMs. As GPT-like models
continue to proliferate, the call for transparent data practices is growing. Initiatives
like Hugging Face’s Dolma, OpenAI’s partial disclosures, and EleutherAI’s The Pile
point toward a future where high-quality, diverse, and responsibly curated corpora
become as important as the models themselves.

In this light, the success of GPT is not merely a triumph of architecture or compute
— it is also a testament to the power of scale, diversity, and design in language data.

7.3.4 Tokenization

Tokenization is the process of splitting raw text into smaller units called tokens, which
serve as the atomic elements processed by language models. On average, one token
corresponds to approximately 0.75 words in English. For example, the sentence "I

love AI." would typically be tokenized into four tokens: ["I", "love", "A", "I"]

or similar, depending on the tokenizer used.
Most modern large language models — including GPT, BERT, and LLaMA — adopt

a technique known as Byte-Pair Encoding (BPE) or its variants. BPE is a data-driven,
subword tokenization algorithm that strikes a balance between character-level preci-
sion and word-level efficiency.

How BPE Works: The algorithm begins with a base vocabulary containing individ-
ual characters or common symbols. Then it proceeds through an iterative process:

1. Count all symbol pairs in the corpus (e.g., letter pairs or byte pairs).

2. Identify the most frequent pair (e.g., TA) and merge it into a new token.

3. Add this merged pair to the vocabulary.

4. Repeat the process until a predefined vocabulary size is reached.

To illustrate, consider the following DNA sequence. Initially, the vocabulary con-
sists of four symbols: {A, T, C, G}. If the sequence TA appears frequently, it is added
to the vocabulary as a new token. Later, other frequent subsequences such as AC or CG
may also be merged.

Figure 7.3.3. Illustration of BPE vocabulary construction using a DNA sequence

87

Lecture Notes AI for Business Research

This method is highly flexible. It captures full words (e.g., machine) and com-
mon subwords (e.g., ##ization) while breaking rare or novel words into known frag-
ments (e.g., trans||former||ify). Such granularity allows models to handle out-of-
vocabulary words and neologisms gracefully.

Trade-offs Between Efficiency and Effectiveness: Tokenization design involves a
trade-off between:

• Efficiency: Smaller vocabulary sizes lead to smaller embedding matrices and
less computational overhead.

• Effectiveness: Larger vocabularies can encode more semantically meaningful
units, reducing the number of tokens per sentence.

Character-level tokenization provides maximum flexibility but is often inefficient
and slow to train. Conversely, large vocabularies reduce sequence length but increase
memory usage and training cost. Therefore, most models strike a balance by only
merging subwords or phrases that occur frequently and have distinct meanings.

Vocabulary Sizes in Practice: Vocabulary size varies depending on the model and
its use case:

• For general-purpose monolingual models such as GPT and LLaMA, the vocab-
ulary size typically ranges between 30,000 to 50,000 tokens.

• In production-scale multilingual or domain-specific systems, the vocabulary may
expand to over 250,000 tokens to ensure coverage across diverse languages or
technical content.

Choosing an appropriate tokenization strategy is essential for building scalable
and effective language models. As computational resources grow, future models may
adopt even more adaptive tokenization schemes that better align with human lan-
guage structure and efficiency requirements.

7.3.5 Compute-Efficient Training with GPUs

Training large-scale language models such as GPT-3 and DeepSeek-V3 depends not
only on data and architecture but also on computational efficiency. The core of this
efficiency lies in the use of GPUs — massively parallel processors that significantly ac-
celerate tensor-based workloads (Wikipedia contributors, 2023). Unlike CPUs, which
feature a handful of powerful cores, GPUs offer thousands of lightweight cores opti-
mized for simultaneous execution, making them ideal for operations like matrix mul-
tiplications that dominate Transformer-based models.

88

Lecture Notes AI for Business Research

Memory Hierarchy. GPU architecture is supported by a hierarchical memory system
that governs data flow and computational throughput:

• SRAM (L1/L2 cache): Limited in capacity but extremely fast (typically 20MB, 19
TB/s), which is used for on-chip reuse.

• High Bandwidth Memory (HBM): Main GPU memory (typically 40GB, 1.5 TB/s).
It’s typically Used for storing weights, activations, gradients.

• CPU DRAM: Very large but slower(typically more than 1TB, 12.8GB/s). Used
for swapping when GPU memory overflows.

Figure 7.3.4. Hierarchy of GPU and CPU memory

Numerical Precision. To reduce computational load and memory usage, modern
LLM training pipelines utilize lower-precision formats. This transition enables higher
throughput at the cost of some precision:

• FP32: Standard 32-bit float. Accurate but compute-heavy.

• BF16 / FP16: Mixed-precision formats with reduced bit-width, commonly used
in training (Micikevicius et al., 2018).

• TF32: Used on NVIDIA A100; approximates FP32 range with FP16 mantissa.

• FP8: Ultra-low precision; DeepSeek-V3 is among the first models to use it for
training (DeepSeek, 2024).

Lower-precision formats reduce memory footprint, improve training speed, and
often act as regularization by injecting mild numerical noise. Their use has become
essential for scaling models beyond hundreds of billions of parameters.

89

Lecture Notes AI for Business Research

Figure 7.3.5. Comparison of numerical formats

Parallelism and Batch Strategy. PyTorch enables GPU-accelerated computation and
supports distributed training through modules like Distributed Data Parallel (DDP),
allowing models to scale across multiple GPUs and machines. To maximize GPU uti-
lization:

• Use large batch sizes when memory allows.

• Apply gradient accumulation to simulate larger batches under memory con-
straints.

• Scale learning rate proportionally with batch size to maintain stable convergence.

Optimizers and Schedulers. The AdamW optimizer is widely used for GPT-style
training, as it decouples weight decay from the adaptive update rule (Loshchilov and
Hutter, 2019). Learning rate warm-up and cosine decay schedules are common prac-
tices to ensure smooth optimization. Additionally, correct initialization is essential; for
instance, He initialization works well with ReLU activations and helps maintain stable
gradients during early training (He et al., 2015).

Attention Efficiency. One of the most computationally expensive components in
Transformer models is the attention mechanism, which traditionally scales quadrat-
ically in both time and memory. FlashAttention (Dao et al., 2022) addresses this
by reformulating attention as a fused, IO-aware kernel. It reduces redundant mem-
ory transfers and avoids allocating large intermediate buffers. FlashAttention is now
available in PyTorch and is particularly beneficial for models trained with long context
windows.

7.3.6 Mixture of Experts (MoE)

Mixture of Experts (MoE) is a sparse neural network architecture where only a subset
of parameters are activated for each input. Unlike dense models that apply the full

90

Lecture Notes AI for Business Research

model to every token, MoE selectively routes tokens to different expert subnetworks,
making it possible to scale the total number of parameters without increasing compute
per token (Wikipedia, 2023). This selective activation enables compute-efficient scal-
ing. For instance, DeepSeek-V3 has 671 billion total parameters, but each input token
activates only around 37 billion, significantly reducing memory and FLOPs during
training (DeepSeek, 2024).

Architectural Contrast between Dense vs. Sparse Models Dense models utilize all
weights regardless of the input. In contrast, MoE models activate only a small number
of experts, which are specialized sub-networks. This reduces redundant computation
and allows targeted processing.

Aspect Dense Model Sparse Model (MoE)

Parameter Usage All parameters used Only a subset of experts activated
Efficiency High computation cost Lower compute per forward pass
Scalability Memory-bound Efficient scaling to trillions of parameters

Table 9. Dense vs. Sparse Models: Key Differences

MoE Components. An MoE model consists of:

• A set of expert networks, typically MLPs.

• A gating network that routes input tokens to the most relevant experts.

• A mechanism to combine the outputs of the selected experts.

Figure 7.3.6. MoE Layer Architecture (adapted from (DeepSeek, 2024))

Shared vs Routed Experts. Some models, such as DeepSeek-V3, use shared experts
that are always active for every token, in addition to sparsely routed experts. This
hybrid design improves generalization while maintaining specialization.

91

Lecture Notes AI for Business Research

Mathematical Formulation. Each expert Ei performs a transformation on the input:

Ei(x) = Wix + bi

The gating network computes a relevance distribution:

G(x) = Softmax(Wgx + bg)

The top-K experts are selected based on the highest gating scores, and the final output
is:

y = ∑
i∈Top-K

Gi(x)Ei(x)

Load Balancing. To avoid expert overuse or underuse, MoE introduces a load-balancing
loss:

Lbalance = H(G(x)) + λ ∑
i

(
∑
x

Gi(x)− 1
N

)2

where H(G(x)) is the entropy of the gating distribution, and the second term encour-
ages uniform expert utilization.

Benefits of MoE

• Efficient Scaling. MoE architectures allow models to scale to trillions of parame-
ters while keeping the active computation per token constant. This enables high-
capacity models to run on existing infrastructure.

• Compute-Aware Design. By activating only a small fraction of the full model,
MoE makes more efficient use of memory, bandwidth, and compute resources.
This is crucial for cost-effective deployment at scale.

• Adoption in SOTA. MoE has been adopted by many cutting-edge models in-
cluding GPT-4, DeepSeek-V3, Qwen, Grok, Gemma, and Mistral (DeepSeek,
2024; Wikipedia, 2023). These models demonstrate that MoE not only enhances
efficiency but can improve downstream performance through expert specializa-
tion.

7.3.7 Native Sparse Attention (NSA)

Motivation. Self-attention mechanisms scale quadratically with sequence length, mak-
ing them inefficient for long-context language models. While traditional sparse atten-
tion reduces this cost, it often introduces irregular memory access patterns that are not
friendly to GPU hardware.

92

Lecture Notes AI for Business Research

NSA vs Traditional Sparse Attention. Native Sparse Attention (NSA) (Li et al., 2024)
addresses these limitations by introducing a hardware-aware sparse attention mecha-
nism. Unlike older sparse attention approaches that focus solely on reducing FLOPs,
NSA integrates sparsity into the kernel design, optimizing both memory access and
parallelism.

Feature Traditional Sparse Atten-
tion

NSA

Usage Typically used only at infer-
ence

Trainable and inference-
ready

Kernel Design Standard attention blocks Redesigned with Triton for
hardware efficiency

Efficiency Memory savings but not op-
timized for training

Fully optimized for both
training & inference

Performance Helps long-context models
but slower training

Improves training and infer-
ence speeds

Table 10. Comparison between Traditional Sparse Attention and NSA (Li et al., 2024)

Key Design: Dynamic Token Selection. Instead of computing full attention over the
entire sequence, NSA dynamically selects important key-value tokens per query. This
compression step allows the model to focus only on relevant context while reducing
compute.

Hardware-Efficient Kernel. NSA introduces a grid-aligned CUDA kernel that orga-
nizes memory accesses in a warp- and cache-friendly manner. By aligning the sparse
attention layout with GPU execution patterns, NSA significantly improves memory
throughput and utilization.

Figure 7.3.7. NSA Architecture: Token Selection + Grid-based Computation

Benefits. NSA offers three primary advantages:

93

Lecture Notes AI for Business Research

Figure 7.3.8. Grid-based Kernel Design for Memory Efficiency

• Faster Training: By avoiding dense attention computations, NSA accelerates
training and inference, especially for long sequences.

• Better Long-Context Handling: The model retains accuracy even with sparse
context windows, making it ideal for summarization and long-form QA.

• Efficient Memory Usage: Reduces memory footprint by minimizing unneces-
sary key-query interactions and intermediate activations.

7.4 The Notebooks

• The notebook BERT Hugging Face leverages the HuggingFace API for BERT to
conduct a simple sentiment classification task;

• The notebook BERT Finetuning fines a BERT Model on economic text, adapted
from the github repository.

94

https://colab.research.google.com/drive/1erSNbevWi0o7Kb6G3_6GiTqCE4VfEjbe
https://colab.research.google.com/drive/1erSNbevWi0o7Kb6G3_6GiTqCE4VfEjbe
https://github.com/sekhansen/text_algorithms_econ

Lecture Notes AI for Business Research

8 Posttraining LLMs

Posttraining refers to the critical transformation that a large language model (LLM)
undergoes after its initial pretraining phase. While pretraining equips the model with
general knowledge and linguistic fluency by exposing it to vast amounts of internet
text, it often results in behavior that is misaligned with human values or goals. This
phenomenon is known as AI misalignment. Models at this stage may hallucinate
facts, exhibit unsafe biases, or fail to follow user instructions reliably.

8.1 Motivation and Scope

8.1.1 Why Posttraining Matters

The goal of posttraining is to bridge the alignment gap between a model’s general
capabilities and the specific behaviors we want in real-world applications. Unlike
pretraining, which is unsupervised and computationally expensive, posttraining is
typically more targeted and resource-efficient. However, its effectiveness depends on
the foundation laid during pretraining.

Posttraining teaches models how to:

• Follow human instructions.

• Refuse unsafe or inappropriate requests.

• Use external tools like search engines, APIs, or calculators.

• Emulate specific personas or tones.

A well-executed posttraining process can turn a powerful base model into a reliable
assistant, coder, tutor, or researcher. Yet, excessive alignment can also lead to ”over-
correction,” making the model overly cautious or evasive, thus reducing its utility.

8.2 Core Techniques in Posttraining

8.2.1 Supervised Fine-Tuning (SFT)

Supervised Fine-Tuning (SFT) is the critical first phase of posttraining that directly
teaches an LLM how to behave in ways that are aligned with human preferences.
While pretraining endows the model with broad linguistic and factual knowledge, it
does not teach the model how to follow instructions, maintain tone, or behave safely
and consistently. SFT fills this gap through explicit behavioral cloning — training the
model on high-quality (input, output) instruction-response pairs.

95

Lecture Notes AI for Business Research

Figure 8.1.1. Core components of LLM posttraining.

Data Construction. The effectiveness of SFT heavily depends on the quality and di-
versity of the data. These datasets typically include tens of thousands to hundreds of
thousands of examples, covering a wide range of user intents and task types. Tasks
commonly include:

• Closed-form question answering (e.g., “What is the capital of France?”)

• Open-ended instruction following (e.g., “Write a short poem about hope.”)

• Text classification or extraction

• Summarization, translation, and reasoning

While some examples are manually curated by expert annotators, many instruction-
response pairs are generated using existing LLMs (e.g., GPT-4), and then cleaned, fil-
tered, or revised by humans. This process enables rapid dataset construction while
maintaining quality.

Training Objective. SFT typically uses a standard supervised cross-entropy loss.
The model is trained to predict the next token in the reference response given the full
input prompt. The goal is not to “explore” or optimize for rewards, but to faithfully
mimic high-quality demonstrations. Because of this, SFT can be understood as a form
of behavioral cloning from ideal behavior.

Initialization for Alignment. Beyond its standalone utility, SFT serves as the starting
point for more advanced alignment methods such as RLHF and DPO. Without SFT,
reinforcement learning would lack a stable and reasonable initialization and would
often fail to converge or produce chaotic behavior.

96

Lecture Notes AI for Business Research

Evaluation. SFT models are evaluated using both automatic and human-centric met-
rics. One of the most commonly used benchmarks is MMLU (Massive Multitask Lan-
guage Understanding) (Hendrycks et al., 2021), which measures zero-shot accuracy
across 57 tasks spanning law, mathematics, medicine, history, and more. High MMLU
scores indicate that the model has preserved its factual and reasoning capabilities after
alignment.

Challenges. Despite its strengths, SFT has notable limitations:

• It cannot capture open-ended preferences like creativity, humor, or nuance.

• It assumes the labeled output is the only acceptable response, discouraging di-
versity.

• It lacks the ability to distinguish between outputs that are correct but phrased
differently.

Thus, while essential, SFT is typically followed by reinforcement-based techniques
(e.g., RLHF) to further refine and personalize model behavior.

In Practice. Models like InstructGPT and early versions of ChatGPT underwent ex-
tensive SFT using proprietary instruction datasets. Open-source initiatives like Ope-
nAssistant and Alpaca have also demonstrated that with as few as 50K examples,
meaningful alignment can be achieved in smaller models. Nevertheless, performance
plateaus quickly with SFT alone, which is why it is best viewed as the first step — not
the final word — in posttraining.

8.2.2 Parameter-Efficient Fine-Tuning (PEFT)

Large language models (LLMs) often contain billions of parameters, making full fine-
tuning computationally expensive and memory-intensive. In many real-world use
cases—especially in academia, enterprise, or edge deployment—fine-tuning all pa-
rameters is neither necessary nor feasible. Parameter-Efficient Fine-Tuning (PEFT) ad-
dresses this challenge by updating only a small, targeted subset of model parameters,
enabling fast, low-resource adaptation with minimal performance degradation.

Motivation. LLMs are highly overparameterized, and much of their knowledge is
stored in shared representations. When adapting an LLM to a new task, domain, or
tone, it is often sufficient to adjust only a small part of the network to redirect these
general capabilities toward specific goals. PEFT leverages this insight to make fine-
tuning more accessible, especially for smaller institutions and open-source developers.

97

Lecture Notes AI for Business Research

LoRA (Low-Rank Adaptation). LoRA, introduced by Hu et al. (2022), is one of the
most popular and widely adopted PEFT techniques. It freezes the original model
weights and injects small trainable matrices into the attention or MLP layers. Instead
of updating the full weight matrix W ∈ Rd×d, LoRA learns a low-rank approximation
of the incremental weight matrix ∆W via two smaller matrices B and A:

∆W = αBA

,where α is the tradeoff between the pretrained knowledge and the task-specific knowl-
edge, B ∈ Rd×r, A ∈ Rr×d, r ≪ d. These matrices are added to the original projection
during training, allowing efficient adaptation without touching the backbone model.
LoRA layers can be added to a subset of Transformer blocks (e.g., only to attention
projections), which further reduces training and memory overhead.

Figure 8.2.1. LoRA: Low-Rank Adaptation in Transformer layers.

QLoRA. QLoRA (Dettmers et al., 2023) builds upon LoRA by quantizing the base
model to 4-bit precision, drastically reducing GPU memory usage while preserving
accuracy. It introduces a custom 4-bit NormalFloat (NF4) quantization scheme and
uses a double quantization technique to compress the weight matrices further.

QLoRA also applies quantization-aware memory management and gradient check-
pointing to enable fine-tuning of very large models (e.g., 65B parameters) on a single
consumer-grade GPU. Despite the aggressive compression, QLoRA achieves perfor-
mance comparable to full-precision LoRA and full fine-tuning.

Performance and Practical Benefits. Empirical studies show that LoRA and QLoRA
can match or even outperform full fine-tuning in many instruction-following or task-
specific settings, especially when compute is constrained. Their advantages include:

• Lower memory usage: Enabling fine-tuning of large models on consumer hard-
ware.

98

Lecture Notes AI for Business Research

• Faster training and inference: Due to fewer updated parameters.

• Modularity: LoRA weights can be stored and deployed separately from the base
model, enabling dynamic task switching.

• Privacy and localization: Organizations can fine-tune LLMs on private datasets
without touching sensitive base weights.

Figure 8.2.2. LoRA achieves performance comparable to full fine-tuning.

Use in the Open-Source Community. LoRA and QLoRA have become essential tools
in the open-source ecosystem. Models like Alpaca, Vicuna, and Mistral-Instruct were
built using LoRA layers on top of base checkpoints. Their simplicity, efficiency, and
strong empirical performance make them ideal for domain adaptation, task special-
ization, and local deployment in privacy-sensitive environments.

8.2.3 Reinforcement Learning from Human Feedback (RLHF)

While Supervised Fine-Tuning (SFT) provides the foundational behavior of instruc-
tion following, it is inherently limited in its ability to represent complex, nuanced,
or context-sensitive human preferences. SFT teaches a model to mimic what it sees,
but it does not prioritize preferred completions over suboptimal ones. This is where
Reinforcement Learning from Human Feedback (RLHF) plays a crucial role.

RLHF augments SFT by introducing dynamic learning signals from human judg-
ments. Rather than training on a fixed dataset of correct answers, the model learns to
optimize for outputs that humans actually prefer, even in cases where multiple rea-
sonable completions exist.

The RLHF Pipeline. The standard RLHF process, popularized by InstructGPT and
ChatGPT, involves three sequential stages:

1. Supervised Fine-Tuning (SFT): The model is first fine-tuned to follow instruc-
tions using a curated instruction-response dataset. This establishes a reason-
able initialization that avoids dangerous or incoherent completions during ex-
ploration.

99

Lecture Notes AI for Business Research

2. Reward Modeling (RM): Human annotators are presented with multiple com-
pletions from the SFT model for the same prompt. They rank or rate these com-
pletions, and this comparison data is used to train a separate reward model. This
reward model learns to approximate human preference by assigning scalar val-
ues to outputs.

3. Reinforcement Learning (PPO): Using the reward model as a proxy for hu-
man judgment, the model is further fine-tuned via Proximal Policy Optimization
(PPO) (Schulman et al., 2017). The goal is to maximize the expected reward while
preventing the model from drifting too far from the original SFT behavior. This is
done by constraining the update through a KL penalty DKL(πθ(y|x)||πSFT(y|x),
which measures the distance between the learned policy πθ(y|x) and the SFT
policy πSFT(y|x):

max
πθ

Ex∼D,y∼πθ(y|x) [r(x, y)− βDKL (πθ(y|x)∥πSFT(y|x))]

Figure 8.2.3. PPO optimizes SFT policy with RM guidance.

Advantages. RLHF improves response helpfulness, reduces unsafe or toxic outputs,
and adapts to subtler human preferences (e.g., politeness, creativity, clarity). It enables
LLMs to move beyond rigid instruction-following to more context-aware, human-
aligned behavior. Notably, InstructGPT demonstrated that a smaller model trained
with RLHF could outperform a much larger model trained only with SFT in human
preference evaluations.

Limitations and Challenges. Despite its impact, RLHF is complex and resource-
intensive. Several notable limitations include:

100

Lecture Notes AI for Business Research

• Reward hacking: The model may learn to exploit loopholes in the reward model
without truly improving quality (Weng, 2024).

• Instability: PPO fine-tuning can be unstable, especially if the reward model is
noisy or biased.

• High data cost: Reward modeling requires expensive human comparisons and
careful quality control.

• Misalignment of the proxy: The reward model may fail to capture nuanced
values like fairness, originality, or truthfulness.

Real-World Deployment. RLHF has become a cornerstone of modern AI assistant
development. OpenAI’s ChatGPT, Anthropic’s Claude, and DeepMind’s Sparrow all
employ RLHF-like pipelines. While alternatives like Direct Preference Optimization
(DPO) are gaining attention (see next subsection), RLHF remains the most widely
adopted technique for aligning LLMs with human values in production.

8.2.4 Direct Preference Optimization (DPO)

Direct Preference Optimization (DPO) (Rafailov et al., 2023) has emerged as a com-
pelling alternative to traditional RLHF pipelines. It simplifies the posttraining process
by removing the need to train a separate reward model and bypassing reinforcement
learning altogether. Instead, DPO directly optimizes the LLM’s policy using prefer-
ence data collected from human comparisons.

Core Insight. Rather than transforming human preferences into a scalar reward sig-
nal via a learned reward model (as in RLHF), DPO operates directly on pairwise pref-
erence data — information about which of two model outputs a human prefers for a
given prompt. The model is then trained to increase the likelihood of the preferred
output while decreasing the likelihood of the dispreferred one.

Training Objective. DPO formalizes the learning objective as a contrastive loss be-
tween the preferred and rejected responses. The model learns a preference-consistent
policy by directly optimizing the policy πθ(y|x) without relying on a reward model.
The objective is:

LDPO(θ) = − log σ
(

β ·
[
log πθ(ypreferred|x)− log πθ(yrejected|x)

])
where σ(z) = 1

1+e−z is the sigmoid function, and β > 0 is a temperature parameter
controlling sharpness. This loss encourages the policy to assign higher probability to
preferred completions over rejected ones.

101

Lecture Notes AI for Business Research

Derivation. The DPO loss is derived from a probabilistic model of human prefer-
ences. Given a pair (y+, y−) where y+ is preferred over y− for input x, we model the
probability of this preference using a Bradley-Terry-style model:

P(y+ ≻ y−|x) = exp(βr(y+, x))
exp(βr(y+, x)) + exp(βr(y−, x))

Here, r(y, x) represents the (unknown) reward assigned to response y. Since no
explicit reward model is used, we approximate r(y, x) by the log-probability under
the policy:

r(y, x) ≈ log πθ(y|x)

Substituting into the preference model, we obtain:

P(y+ ≻ y−|x) ≈ πθ(y+|x)β

πθ(y+|x)β + πθ(y−|x)β

Minimizing the negative log-likelihood of observing the preferred choice yields:

LDPO(θ) = − log
(

πθ(y+|x)β

πθ(y+|x)β + πθ(y−|x)β

)
= − log σ

(
β ·
[
log πθ(y+|x)− log πθ(y−|x)

])
This final form highlights the contrastive nature of DPO, which allows it to learn

from preference data in a stable and scalable way without the need to train an explicit
reward function.

Advantages. DPO offers several advantages over RLHF:

• Simplicity: Eliminates the need to separately train and maintain a reward model.

• Stability: Avoids the instability and tuning challenges associated with PPO or
other RL algorithms.

• Efficiency: Requires fewer computational resources and is easier to reproduce in
open-source workflows.

• Effectiveness: Despite its simplicity, DPO often matches or exceeds RLHF per-
formance on alignment benchmarks.

Adoption and Applications. DPO has been rapidly adopted in the open-source com-
munity due to its lightweight design and strong empirical results. It is especially suit-
able for researchers, startups, and community developers who want to align mod-
els using preference data without the engineering complexity of full RLHF pipelines.

102

Lecture Notes AI for Business Research

Projects like LLaMA-2-Chat and OpenChat have utilized DPO-based training to im-
prove alignment in smaller-scale models.

Limitations. Despite its advantages, DPO also inherits some limitations of preference-
based training:

• It still depends on high-quality preference data, which can be expensive to col-
lect.

• It cannot handle reward-based supervision (e.g., correctness in math or coding)
as naturally as RL methods can.

• It assumes that pairwise preferences are sufficient to guide policy improvement,
which may not hold in complex reasoning tasks.

Conclusion. DPO represents a step toward making alignment more accessible and
robust. By grounding learning directly in human preferences and discarding auxiliary
components, it reduces overhead without sacrificing performance — aligning closely
with the recent trend toward minimalist, high-leverage training techniques in LLM
development.

8.2.5 Test-Time Scaling and Reasoning

While most alignment techniques focus on improving model behavior through param-
eter updates during training, a complementary strategy known as test-time scaling
leverages additional computation during inference to enhance reasoning. The central
insight is that advanced reasoning abilities can often be unlocked not through retrain-
ing, but by prompting the model to “think more”—that is, to generate and evaluate
intermediate steps, multiple hypotheses, or structured plans before producing an an-
swer.

Motivation. Language models can internalize vast amounts of knowledge during
pretraining and posttraining. However, they do not always deploy this knowledge ef-
fectively when prompted naively. Especially in domains like mathematics, logic, code
synthesis, and multi-hop reasoning, naive prompting leads to brittle or shallow out-
puts. Test-time reasoning methods aim to activate latent capabilities by encouraging
step-by-step thinking, structured exploration, and validation before answering.

Core Techniques. Several strategies have been proposed to extend a model’s reason-
ing abilities through inference-time methods or lightweight posttraining:

103

Lecture Notes AI for Business Research

• Chain-of-Thought (CoT) (Wei et al., 2022): This approach instructs the model
to break down its reasoning into intermediate steps before arriving at a final
answer. For example, instead of asking “What is 23 + 45?”, a CoT prompt might
be: “Let’s solve step by step: First, add the tens...”. CoT significantly improves
performance on arithmetic, logic, and commonsense tasks in large models.

• Tree-of-Thought (ToT) (Yao et al., 2023): Building on CoT, ToT enables the model
to explore multiple reasoning paths in parallel. These paths can be evaluated and
compared using either a value function or a separate verifier model, simulating
the deliberative reasoning strategies humans often use. ToT can be viewed as a
test-time Monte Carlo Tree Search (MCTS) over language.

• Reinforcement Learning on Reasoning Tasks (OpenAI, 2023; Bi and Team, 2024):
Rather than relying on human preferences, these methods train models using
verifiable correctness signals (e.g., a math solution is correct if it passes symbolic
evaluation). This shifts the alignment signal from human judgments to objec-
tive outcomes, enabling more robust training for domains where correctness is
unambiguous.

• DeepSeek-R1 (Bi and Team, 2024): This is the first open-sourced reasoning-
focused LLM trained entirely with reinforcement learning. It introduces a novel
algorithm called Group Relative Policy Optimization (GRPO), which improves
stability compared to PPO. Notably, DeepSeek-R1 eschews reward modeling and
human preference data entirely, relying instead on rule-based rewards (e.g., so-
lution accuracy, format compliance) and verification pipelines.

• s1: Simple Test-Time Scaling (McKenzie et al., 2025): Rather than retraining
large models, s1 fine-tunes a reasoning head on a small, curated dataset (s1K)
and prompts the model to allocate “compute budget” during test time to simu-
late deeper thinking. This method achieves notable improvements in reasoning
performance at a fraction of the cost of full-scale training.

Strategic Implications. Test-time reasoning strategies are particularly valuable be-
cause they are model-agnostic: they can be applied to pretrained or posttrained mod-
els without additional parameter updates. This makes them suitable for:

• Enhancing accuracy on high-stakes domains (e.g., finance, law, education).

• Augmenting small models with structured prompting or budgeted deliberation.

• Building agentic systems that require planning, verification, or error correction.

104

Lecture Notes AI for Business Research

Application in Business and Research. Test-time reasoning has practical applica-
tions in business research, such as causal inference, simulation of consumer behavior,
automated agents for financial modeling, and productivity benchmarking. By struc-
turing reasoning paths explicitly, these methods provide greater transparency and de-
buggability, which are essential for enterprise adoption.

Figure 8.2.4. Tree-of-Thought enables structured reasoning.

8.2.6 Knowledge Distillation (KD)

Knowledge Distillation (KD) (Hinton et al., 2015) is a model compression technique
that transfers knowledge from a large, powerful model (the teacher) to a smaller, more
efficient model (the student). The goal is to retain much of the performance of the
teacher while dramatically reducing the student model’s size, latency, and memory
footprint—making it suitable for resource-constrained settings like mobile deploy-
ment, on-device inference, or enterprise-scale usage.

Motivation. Large models such as GPT-3 and DeepSeek-V3 are costly to serve and
difficult to fine-tune. KD enables deployment of lightweight variants that inherit most
of the teacher’s capability but are easier to operate and adapt. In this way, KD bridges
the gap between model performance and deployment feasibility, especially when in-
ference speed and hardware constraints are key concerns.

Training Objective. The student model is trained to mimic the output behavior of
the teacher. This is achieved not by training on hard labels (as in standard supervised
learning), but by learning to match the teacher’s soft outputs—i.e., the probability dis-
tribution over the vocabulary. These soft labels contain rich information about class
similarities and uncertainty, which can accelerate learning.

The overall objective combines two components:

105

Lecture Notes AI for Business Research

• A cross-entropy loss with ground-truth labels (LCE), to maintain task perfor-
mance.

• A KL divergence loss with the teacher’s softened outputs (LKL), to learn the
teacher’s inductive biases and response patterns.

The total loss function is a weighted combination of the loss from both the hard
labels(predicting the ground truth) and the soft labels(mimicking the teacher):

Ltotal = αLCE + (1− α)LKL

(
softmax

(
student

T

)
, softmax

(
teacher

T

))
where T is a temperature parameter (typically T > 1) used to smooth the output
distributions, and α balances the trade-off between supervised and distillation signals.

Figure 8.2.5. Knowledge distillation process from teacher to student.

Variants and Extensions. KD has evolved into several subfields:

• Task-specific KD: Student models fine-tuned for specific domains (e.g., biomed-
ical, legal, financial).

• Self-distillation: A model distills its own knowledge into smaller variants or
even into itself across training epochs.

• Offline vs. online distillation: In offline KD, the teacher is fixed and pre-trained;
in online settings, both teacher and student may evolve during training.

Application in AI-Augmented Estimation. In applied research, KD has been used to
create low-bias, low-variance estimators from LLMs. For example, Zhang et al. (2024)

106

Lecture Notes AI for Business Research

introduce AI-Augmented Estimators, where a large LLM serves as a teacher to gen-
erate pseudo-labels and intermediate reasoning chains, which are then distilled into
a smaller student model for efficient deployment in behavioral economics or market
research tasks.

Benefits.

• Efficiency: Student models are significantly smaller and faster, enabling deploy-
ment on CPUs, edge devices, or real-time systems.

• Performance retention: When properly distilled, student models often achieve
90–95% of the teacher’s accuracy on downstream tasks.

• Fine-tuning flexibility: Distilled models are easier to re-train or adapt to new
tasks due to reduced parameter count.

Limitations.

• Information bottleneck: Students may fail to fully capture the nuanced behav-
iors of their teachers, especially in low-data regimes.

• Teacher quality dependency: Poorly aligned or underperforming teachers can
produce low-quality soft labels, reducing distillation effectiveness.

• Loss of interpretability: The student may generalize differently than the teacher,
complicating debugging and attribution.

Conclusion. Knowledge distillation enables scalable deployment of high-performing
language models without the burdens of computational overhead. As foundation
models grow larger, distillation will remain essential in bridging the research-deployment
gap—empowering organizations to deliver powerful LLM-based systems with real-
world constraints in mind.

8.3 The Notebooks

• The notebook LLM FT is a demo for fine-tuning a language model using the
tatsu-lab/alpaca dataset for Supervised Fine-Tuning (SFT).

107

https://colab.research.google.com/drive/1xNB0U0_qARcNbhO-6tawBBQ-GKsSqPc2#scrollTo=E2hPqjmLmkaX
https://huggingface.co/datasets/tatsu-lab/alpaca

Lecture Notes AI for Business Research

9 Efficient LLM Inference

Large language models (LLMs) begin their journey with vast pretraining on web-scale
corpora, followed by nuanced posttraining to align them with human intent. How-
ever, the final bottleneck for real-world deployment lies not in training—but in infer-
ence. Every downstream application, from real-time customer support to embedded
agents on edge devices, hinges on the model’s ability to generate outputs quickly, cost-
effectively, and at scale.

Unlike training, which is typically performed once on large infrastructure, infer-
ence occurs millions or billions of times. Each token generated requires a forward
pass through a subset or the entirety of the model. Thus, improving inference effi-
ciency is not a marginal gain—it is a necessity for viability. This section explores the
core strategies that enable scalable, low-latency LLM inference: KV caching, quanti-
zation, optimized inference architectures (e.g., DeepSeek), and operations research
(OR) techniques for scheduling and memory-aware execution.

9.1 KV Caching: Memory as the New Compute Bottleneck

Transformer-based models generate outputs autoregressively: each token is predicted
based on all prior tokens in the sequence. This means that for every new token, the
model performs self-attention over an expanding sequence of inputs. In its raw form,
this leads to redundant computations and exponential latency growth for long con-
texts.

Key Idea: Reuse Instead of Recompute. KV caching addresses this by storing the
Key (K) and Value (V) vectors from previous tokens so that attention computations for
subsequent tokens can reuse them. Instead of recalculating self-attention from scratch,
the model:

• computes K, V for all prompt tokens once (prefill stage),

• appends new K, V for each generated token (decode stage),

• attends over the accumulated K, V cache with each new Query (Q).

Memory Trade-Off. While compute is reduced, memory becomes the bottleneck:
naively, each token in the sequence must retain its K and V vectors across all heads
and layers. As token sequences and batch sizes increase, cache memory scales lin-
early, quickly overwhelming even high-end GPUs. Thus, inference optimization often
centers around how attention is structured—and how much cache it requires.

108

Lecture Notes AI for Business Research

MLA: Latent Attention for Long-Context Models. As context windows in large lan-
guage models (LLMs) continue to grow—from 4K to 128K tokens and beyond—efficient
memory usage during inference becomes a critical bottleneck. The key contributor to
memory usage is the Key-Value (KV) cache, which stores intermediate representa-
tions for every past token in the sequence. For a standard multi-head attention (MHA)
mechanism, this cache grows linearly with both the number of heads and sequence
length, posing serious challenges for inference scalability.

To address this, DeepSeek-V3 introduces a novel attention variant called Multi-
Head Latent Attention (MLA) (DeepSeek-AI et al., 2025). The core idea behind MLA
is to use learned low-rank projections to compress the Key and Value matrices for
each token into a lower-dimensional latent space. Formally, for each token, instead of
storing the full K, V ∈ Rt2×d1 (where t2 is the number of KV heads), MLA stores:

K′ = WKK, V′ = WVV

where WK, WV ∈ Rd1×r are learned projection matrices, and r ≪ d1 is a latent di-
mension (e.g., r = 16, d1 = 128). The resulting K′, V′ ∈ Rt2×r are much smaller and
significantly reduce memory cost per token.

In addition to compressing the KV cache, MLA optionally projects the query vec-
tors Q into the same latent space:

Q′ = WQQ

This not only reduces memory storage but also reduces compute during the atten-
tion score calculation, since attention weights are now computed in the smaller latent
space:

Attention(Q, K, V) ≈ softmax

(
Q′K′⊤√

r

)
V′

Key Advantages of MLA:

• Reduced KV Cache Size: Since r ≪ d1, MLA dramatically lowers the per-
token memory footprint, enabling support for longer contexts (e.g., 128K+ to-
kens) without exhausting GPU memory.

• Multi-Head Expressiveness Retained: Unlike MQA (which shares KV across all
heads), MLA allows for per-head latent keys/values, maintaining fine-grained
attention.

• Lower Computational Cost: When Q is also projected, the attention dot-product
and value aggregation occur in a smaller space, reducing FLOPs per token.

109

Lecture Notes AI for Business Research

• Compatibility with Other Optimizations: MLA can be combined with tech-
niques like rotary embeddings, FlashAttention, and grouped experts.

In summary, MLA provides a principled and trainable compression mechanism
for attention that balances memory efficiency with expressiveness. It is particularly
well-suited for next-generation long-context LLMs that operate under strict memory
constraints during inference.

KV Cache Requirements by Attention Type. During autoregressive inference with
transformer models, each new token must attend to previous tokens via the self-
attention mechanism. To avoid recomputing attention for all past tokens at each step,
modern implementations cache the intermediate Key (K) and Value (V) tensors com-
puted for previous tokens. This cache, known as the KV cache, enables efficient infer-
ence but consumes a substantial amount of memory. The size of the KV cache depends
heavily on the specific attention mechanism used in the transformer.

To quantify KV cache memory cost, we define the following terms:

• t2: the number of distinct key/value heads. In standard multi-head attention
(MHA), this equals the number of attention heads. In shared-head mechanisms
like MQA or GQA, t2 is smaller, we denote it as t3.

• d1: the dimensionality of each key or value vector per attention head.

• f : the number of layers.

The total KV cache size of the Multi-head attention mechanism per token is propor-
tional to 2 · t2 · d1 · f , accounting for both keys and values.

The table below summarizes how different attention mechanisms impact KV cache
size and the trade-offs in terms of expressiveness and memory usage:

Attention Mechanism KV Cache per Token Capability Profile
Multi-Head Attention (MHA) 2t2d1 f Highest fidelity, largest cache
Grouped-Query Attention (GQA) 2t3d1 f Trade-off between capacity and cache
Multi-Query Attention (MQA) 2d1 f Lightweight, lower context fidelity
Multi-Head Latent Attention (MLA) ≈ 9

2 d1 f Compact and expressive (DeepSeek-V3)

Table 11. KV Cache Memory Costs across Attention Mechanisms.

Example: Suppose d1 = 128 and there are two layers (f = 2). For 16 attention heads:

• MHA: 2 · 16 · 128 · 2 = 8192 bytes ≈ 8KB per token

110

Lecture Notes AI for Business Research

• MLA: 9
2 · 128 · 2 = 1152 bytes ≈ 0.5 KB per token

This example shows that MLA requires 8× less KV cache memory per token than
standard MHA — a crucial advantage when serving long sequences or scaling up
concurrent inference requests.

In summary, the choice of attention mechanism not only affects model performance
but also has a significant impact on inference-time memory efficiency. Emerging mod-
els such as Mistral, LLaMA 3, and DeepSeek increasingly adopt MQA or MLA to bal-
ance capability and scalability in production settings.

9.2 Quantization: Shrinking the Model Without Shrinking Its Brain

Quantization refers to reducing the numerical precision of a model’s weights and acti-
vations—from 32-bit floating-point (FP32) to formats like INT8, FP16, or even 4-bit in-
tegers. Lower precision improves memory bandwidth, increases arithmetic through-
put, and allows for cheaper hardware deployment.

Linear Quantization. In linear quantization, a real-valued number r is mapped to a
discrete integer q via:

S =
rmax − rmin

qmax − qmin
, Z = round

(
qmin −

rmin

S

)
q = round

(r
S
+ Z

)
, r̂ = S(q− Z)

Where S is the scale and Z is the zero-point offset. This transformation can be per-
formed globally or per-channel.

Advanced Strategies.

• Per-group/channel quantization: Each tensor slice has its own scale/offset.

• Quantization-aware training (QAT): Simulates quantization during training to
retain accuracy.

• Double quantization: Compresses quantization tables themselves.

QLoRA: Efficient Fine-Tuning with 4-Bit Models. QLoRA (Dettmers et al., 2023)
combines 4-bit quantization (NF4 format) with Low-Rank Adaptation (LoRA). This
enables parameter-efficient fine-tuning of massive models (e.g., LLaMA-65B) on con-
sumer GPUs by freezing the base model and injecting small trainable matrices. The
method achieves near full-precision performance while drastically reducing memory
usage.

111

Lecture Notes AI for Business Research

9.3 DeepSeek Inference Architecture: High-Throughput, Low-Latency

Deployment

DeepSeek’s inference stack is designed for production-scale operation, balancing par-
allelism, caching, and network latency.

System Design.

• Hardware: 278 nodes, each with 8 NVIDIA H800 GPUs.

• Parallelism: Expert Parallelism (EP) routes tokens to distinct sub-networks (MoE)
across GPUs, reducing per-token load.

Performance Snapshot.

• Prefill (Input) throughput: ∼73.7k tokens/s

• Decode (Output) throughput: ∼14.8k tokens/s

• Daily input tokens: 6.088B (342B from KV cache)

• Daily output tokens: 1.688B

• Average KV-cache length: 4,989 tokens/output

• Cost: $87,072/day vs. Revenue: $562,027/day → 545% profit

This performance enables real-time applications—e.g., chatbots, AI copilots, or fi-
nancial agents—at economically sustainable margins.

9.4 Operations Research (OR) for KV-Aware Inference Scheduling

As inference systems grow, so does the complexity of scheduling requests and allocat-
ing memory efficiently. Operations Research (OR) provides mathematical strategies to
optimize system throughput and responsiveness.

The Core Challenge. When multiple prompts arrive simultaneously with varying
sequence lengths, naı̈vely serving them in order (First Come, First Serve) leads to cache
overflows and delayed responses.

112

Lecture Notes AI for Business Research

Cache-Aware Scheduling. We can implement an OR-based scheduling algorithm
that:

• Prioritizes prompts with the smallest expected output length.

• Preemptively clears or defers prompts that would cause KV-cache overflows.

• Outperforms FCFS and fixed-batch clearing under high concurrency.

Deployment Implications. These methods are critical in large-scale LLM deploy-
ment—ensuring that inference remains responsive under pressure and hardware is
used optimally. In edge systems or real-time pipelines, such techniques directly trans-
late into user satisfaction and operational cost reduction.

Conclusion: From Training to Serving. While model pretraining builds linguistic
competence, and posttraining aligns this capability with human goals, it is inference
that translates these abilities into real-world value. Efficient inference is not just an
implementation detail—it is the foundation for LLM accessibility, sustainability, and
commercial success. Through innovations in memory caching, numerical precision,
deployment architecture, and system-level optimization, modern LLMs are not only
smarter—but leaner, faster, and more affordable to run.

9.5 The Notebooks

• The notebook Data Precision and Quantization illustrates how data precision
and quantization impact the size of a deep learning model.

113

https://colab.research.google.com/drive/1XSeaUmIaDRDMybgNeqz-APmGBq4r8np8

Lecture Notes AI for Business Research

10 Research with LLMs

Large Language Models (LLMs) are no longer mere natural language generators—they
are research collaborators, simulation engines, knowledge assistants, and design tools.
As their capabilities scale, so too does their impact on scientific workflows. This sec-
tion articulates how LLMs can be effectively integrated into research practice, exam-
ining their methodological strengths, constraints, and design considerations across
empirical, computational, and interpretive domains.

10.1 Research Affordances of LLMs

LLMs augment research in four key areas:

• Text Synthesis and Summarization: LLMs generate human-like language, en-
abling the rapid drafting of literature reviews, reports, or teaching material. They
also excel at compressing long documents via extractive or abstractive summa-
rization, especially when guided with techniques like chain-of-thought prompt-
ing.

• Ideation and Hypothesis Generation: When prompted appropriately, LLMs can
propose novel hypotheses, methodological framings, or interpretations. This
aligns with cognitive offloading, where the model provides combinatorial ideation
support during early-stage research.

• Data Transformation: With agentic extensions, LLMs can clean, reformat, and
annotate datasets (e.g., tabular, textual, or code-based), reducing time-to-analysis.
Retrieval-Augmented Generation (RAG) enhances this by grounding responses
in structured corpora or enterprise databases:

– Indexing: External data (e.g., research papers, corporate reports, or databases)
is processed into a vector database. Documents are segmented into chunks,
and each chunk is embedded using a model like BERT or Sentence-BERT,
producing high-dimensional vectors that capture semantic meaning.

– Retrieval: When a prompt is submitted, it is embedded into the same vec-
tor space. The system retrieves the most relevant chunks based on cosine
similarity:

similarity = cos(θ) =
q · d
∥q∥∥d∥

where q is the prompt embedding and d is a document embedding. Typ-
ically, the top k chunks (e.g., k = 5) are selected to balance context and
efficiency.

114

Lecture Notes AI for Business Research

– Augmentation: Retrieved chunks are appended to the prompt, providing
context that informs the LLM’s response. For example, a prompt asking
for “recent trends in renewable energy” might be augmented with excerpts
from 2025 industry reports.

– Generation: The LLM generates a response conditioned on the augmented
prompt, leveraging both its internal knowledge and the external context.

• Simulation and Counterfactuals: Multi-agent LLM systems (e.g., OASAS, Gen-
erative Agents) simulate complex social or economic dynamics. These simu-
lations allow researchers to model emergent behavior, test counterfactuals, or
explore narrative-based evaluation beyond standard statistical tools.

10.2 From Tool to Agent: Task-Driven Control

The leap from passive language generation to active research support demands robust
controllability. Output quality is not just a function of architecture but of how the model
is prompted, constrained, and interpreted. Controllability includes:

• System prompts are foundational instructions that define an LLM’s role, tone,
and constraints, ensuring consistent and task-appropriate responses. A well-
crafted prompt acts as a contract between the user and the model, guiding its
behavior across interactions. For example, a prompt like “You are a PhD-level
economist. Provide detailed, evidence-based analyses with citations in APA format” sets
clear expectations for scholarly output.

Effective prompts typically include:

– Role Specification: Clarifies the persona (e.g., “data scientist,” “legal scholar”),
aligning the model’s knowledge and tone with the domain.

– Output Format: Specifies structure, such as “respond in bullet points,”
“write a 500-word essay,” or “generate Python code with comments.”

– Constraints: Limits undesirable behaviors, such as “avoid speculative claims,”
“do not use first-person pronouns,” or “cite only peer-reviewed sources.”

– Contextual Guidance: Provides background, such as “assume familiarity
with machine learning” or “focus on 21st-century economic trends.”

Prompt engineering is both an art and a science, as minor wording changes can
significantly alter outputs. For instance, adding “explain step-by-step” often
elicits clearer reasoning. Researchers should iteratively refine prompts, testing
variations to optimize performance for specific tasks, such as drafting research
proposals or summarizing complex datasets.

115

Lecture Notes AI for Business Research

• Sampling control: Temperature, top-k, top-p, and beam search enable calibrated
output diversity:

– Temperature (τ): This parameter adjusts the randomness of token selection
during generation. It modifies the probability distribution over the vocabu-
lary, defined as:

P(xi) =
exp(logit(xi)/τ)

∑j exp(logit(xj)/τ)

A low temperature (τ < 1, e.g., 0.2) sharpens the distribution, favoring
high-probability tokens and producing deterministic, focused outputs ideal
for technical writing or factual queries. A high temperature (τ > 1, e.g.,
1.5) flattens the distribution, encouraging diverse and creative outputs but
risking incoherence. Researchers must balance temperature settings based
on the task, often experimenting within the range [0.1, 2.0].

– Top-K Sampling: This method restricts sampling to the K most likely to-
kens at each step, reducing the chance of selecting improbable tokens that
could derail coherence. For example, setting K = 50 ensures the model sam-
ples from the top 50 candidates, maintaining quality while allowing some
variability. However, a fixed K may exclude contextually relevant but less
probable tokens, limiting expressiveness in creative tasks.

– Top-P Sampling (Nucleus Sampling): Instead of a fixed number of tokens,
Top-P sampling selects the smallest set of tokens whose cumulative proba-
bility exceeds a threshold P (e.g., P = 0.9). This dynamic approach adapts
to the probability distribution, allowing more flexibility in high-entropy sce-
narios and tighter control in low-entropy ones. It often outperforms Top-K
in tasks requiring nuanced language, such as literature reviews.

– Beam Search: This algorithm maintains B (beam width) candidate sequences,
exploring the most probable paths by maximizing the joint probability:

score =
T

∑
t=1

log P(wt|w1:t−1)

Beam search excels in tasks requiring high coherence, such as summariza-
tion, but can produce repetitive or overly conservative outputs. A typical
beam width (B = 5) balances exploration and efficiency, though larger val-
ues increase computational cost.

• Planning and Tool Use: Agent frameworks like ReAct and Reflexion integrate
reasoning steps with tool calls, enabling LLMs to function as planners and API
callers—not just speakers.

116

Lecture Notes AI for Business Research

When integrated with toolkits such as LangChain or OpenAgents, LLMs can be
embedded into end-to-end research workflows: fetching data, conducting statistical
analyses, generating graphs, and interpreting results in context.

10.3 Evaluation as a Methodological Safeguard

In high-stakes research, evaluation ensures that LLM-enabled workflows are robust,
reproducible, and reliable. A rigorous evaluation pipeline combines:

• Task-Specific Metrics: For classification, summarization, or reasoning, use pre-
cision, recall, BLEU, ROUGE, or functional correctness. In detail:

– Perplexity: Historically used to measure model uncertainty, perplexity is de-
fined as:

PPL = exp

(
− 1

N

N

∑
i=1

log P(wi|w1:i−1)

)
While useful for generative models, it is less relevant for instruction-tuned
LLMs, which prioritize task performance over raw language modeling.

– Standard Benchmarks: Benchmarks like MMLU (Massive Multitask Language
Understanding), MATH (mathematical problem-solving), and HumanEval
(code generation) assess specific skills. MMLU covers 57 tasks across STEM,
humanities, and professional fields, while HumanEval evaluates functional
correctness of code. However, these benchmarks are vulnerable to hacking,
as models can be fine-tuned to memorize answers, inflating scores without
improving generalization.

– Human Evaluation: Platforms like Chatbot Arena (LMSYS, 2023) facilitate
head-to-head comparisons, where human judges rank model responses based
on quality, relevance, or preference. While considered the gold standard,
human evaluation is subjective, costly, and time-consuming, making it im-
practical for large-scale testing.

– Domain-Specific Metrics: For fine-tuned models, custom metrics like preci-
sion, recall, or F1 score (for classification tasks) ensure alignment with re-
search objectives. For example, a medical LLM might be evaluated on diag-
nostic accuracy against a curated dataset.

• General Capability Benchmarks: Datasets like MMLU and HumanEval pro-
vide coverage across domains, but risk overfitting. Researchers should beware
of benchmark hacking.

117

Lecture Notes AI for Business Research

• Human Preference Testing: Systems like Chatbot Arena (LMSYS, 2023) capture
human judgment on response helpfulness, relevance, and style. This remains the
gold standard for subjective tasks.

• Domain-Specific Grounding: Incorporating Retrieval-Augmented Generation
or structured database integration improves factual consistency and reduces hal-
lucination. For example, business researchers may ground financial inferences
on earnings call transcripts or FRED macroeconomic databases.

Evaluation is not just about performance—it’s about alignment with research val-
ues: clarity, verifiability, fairness, and reproducibility.

10.4 Agentic Research Workflows

Agentic LLMs allow the construction of self-reflective, self-improving research work-
flows. These agents combine:

• LLM Core: The LLM provides reasoning, language understanding, and decision-
making capabilities, acting as the agent’s “brain.”

• Planning: Agents decompose complex tasks into subtasks, often using Chain-
of-Thought (CoT) prompting to articulate intermediate steps. For example, an
agent tasked with analyzing a dataset might plan to “load data, clean outliers,
compute statistics, and visualize results.”

• Tool Use: Agents integrate external tools, such as calculators, APIs, or code in-
terpreters, to perform tasks beyond language generation. For instance, a research
agent might query a statistical library to compute regression coefficients.

• Reflection: Advanced agents evaluate their actions and adjust strategies, im-
proving performance over time. Reflection often involves self-critique or com-
parison against expected outcomes.

Frameworks:

• ReAct (Yao et al., 2022): The Reason + Act (ReAct) framework was designed
to improve decision-making in language agents by combining two key compo-
nents: chain-of-thought (CoT) reasoning and tool use. Rather than treating these as
separate stages, ReAct interleaves them in a step-by-step loop: the agent first
generates a reasoning trace (e.g., ”I need to compute the total cost by multiply-
ing price and quantity”), then takes an external action (e.g., calls a calculator),
and then reflects on the output before continuing. This alternating sequence
of thought and action enables the agent to perform complex, multi-step tasks

118

Lecture Notes AI for Business Research

such as math, question answering, and web navigation. The core insight is that
reasoning supports better action selection, while actions provide grounded feed-
back to refine reasoning. ReAct significantly improves task accuracy and robust-
ness in environments where tool usage is required.

• Reflexion (Shinn et al., 2023): Building on ReAct, the Reflexion framework in-
troduces a third capability: self-reflection. After each episode or interaction, the
agent pauses to critique its own reasoning and actions using natural language.
It identifies what went wrong, summarizes lessons learned, and proposes im-
proved strategies for future trials. For instance, if the agent fails a task due to
premature decision-making, its reflection might state, ”I jumped to a conclusion
without verifying all inputs. Next time I will double-check the intermediate re-
sult.” These verbal self-critiques are stored in memory and used to guide fu-
ture behavior. Reflexion can be implemented as a form of ”verbal reinforcement
learning” — no gradient updates are required; instead, the model adapts behav-
ior based on internalized feedback. Empirically, Reflexion improves long-term
success rates, especially in trial-and-error environments like ALFWorld or Hot-
PotQA, where iterative correction is valuable.

Key Differences and Contributions:

– ReAct: Introduces a loop of reasoning→ action→ observation, which allows
agents to incorporate tool outputs directly into their decision pipeline.

– Reflexion: Adds a meta-cognitive layer, where agents reflect on prior per-
formance, self-criticize, and revise their approach — even without access to
external supervision.

Why It Matters: Both frameworks move away from treating LLMs as one-shot
black boxes. Instead, they enable more interactive and adaptive agents — capa-
ble of thinking, acting, learning from mistakes, and improving over time without
fine-tuning. This aligns closely with goals in embodied AI, tool-augmented rea-
soning, and autonomous systems.

• Multi-Agent Systems: These simulate interactions among multiple LLM agents,
modeling complex dynamics like collaboration or competition. Stanford’s Gen-
erative Agents (Park et al., 2023) create virtual societies where agents interact
based on memory and goals, while OASAS (Lin et al., 2024) simulates organiza-
tional workflows. Such systems are valuable for studying social phenomena or
optimizing team-based research processes.

In research contexts, agentic systems can:

119

Lecture Notes AI for Business Research

• Conduct reproducible experiments (e.g., comparing model variants),

• Automate ablation studies,

• Build and test econometric models, or

• Simulate qualitative dialogues in policy or sociology studies.

10.5 Pitfalls and Ethical Vigilance

Though mighty as it seems to be, LLMs are fallible collaborators. Researchers must
remain alert to:

• Hallucinations: Factual inaccuracies that persist even with grounding. Verifica-
tion remains crucial.

• Overfitting to prompts: LLMs may become prompt-sensitive, yielding brittle
results.

• Proxy bias: Output may reflect surface correlations rather than causal insight.

• Synthetic data fallacy: Using LLMs as proxies for human behavior—e.g., in fo-
cus group simulation—requires caution (Argyle et al., 2024).

• Research ethics: Data privacy, consent, and model transparency remain unre-
solved issues.

As Corrigan and Dube (Corrigan and Dube, 2024) emphasize, the promise of LLMs
must be matched with econometric rigor, ethical protocols, and epistemic humility.

10.6 Conclusion: LLMs as Research Infrastructure

LLMs are not just tools—they are shaping a new research infrastructure. They intro-
duce new ways of asking questions, gathering evidence, and generating insight. But
with this transformation comes responsibility: to design prompts with care, evaluate
outputs with rigor, and situate results in their epistemic context.

Used thoughtfully, LLMs can democratize research capacity, accelerate discovery,
and scaffold new forms of interdisciplinary scholarship. They are not a replacement
for human inquiry—but an amplifier of it.

120

Lecture Notes AI for Business Research

Chapter 4: Causal Inferences and Machine Learning
In the evolving landscape of empirical research, causal inference has become a cor-

nerstone discipline, bridging classical econometric rigor with modern machine learn-
ing innovation.

This roadmap is designed to guide a systematic study of causal inference, start-
ing from foundational theories and extending into cutting-edge methodologies that
handle complex, high-dimensional data environments.

Importantly, this roadmap introduces entirely new material incorporated into this
year’s course — emphasizing modern causal inference techniques that harness ma-
chine learning to strengthen identification, enhance robustness, and reveal richer causal
structures. Our journey unfolds across four progressive stages:

• Foundations of Classical Causal Inference

We begin with the Potential Outcomes Framework, formalizing causal questions
through unobservable counterfactuals. Using the Randomized Controlled Trial
(RCT) as the benchmark, we explore identification strategies in both experimen-
tal and observational settings. We develop Rubin’s Causal Model, having a bite
of econometricians’ taste.

Classical tools — regression adjustment, matching, propensity score weighting
(IPW), and difference-in-differences (DID) — are systematically developed, grounded
in assumptions like Conditional Independence (CIA) and Stable Unit Treatment
Value Assumption (SUTVA).

• Randomized Experiments and Linear Models

Revisiting RCTs with a sharper statistical lens, we analyze properties such as root-
n consistency and robustness under misspecified data-generating processes.

We transition from basic difference-in-means estimators to efficiency-improving
techniques that prepare for machine learning integration.

• Double Machine Learning (DML)

As datasets grow in complexity, traditional methods struggle with regularization
bias and overfitting. Double Machine Learning (DML), a new core component
of this year’s course, addresses these challenges by combining machine learning
flexibility with rigorous statistical inference.

We build estimators that remain valid even when nuisance functions are esti-
mated flexibly, using Neyman orthogonality and cross-fitting as key pillars.

• Heterogeneous Treatment Effects (HTE)

Real-world causal effects are rarely uniform.

121

Lecture Notes AI for Business Research

This new section focuses on estimating Conditional Average Treatment Effects
(CATE) using methods like Causal Trees, Causal Forests, and Generalized Ran-
dom Forests (GRF).

Machine learning tools for personalized treatment assignment — such as uplift
modeling and meta-learning approaches — are introduced, marking a significant
extension beyond average treatment effect estimation.

122

Lecture Notes AI for Business Research

11 Foundations of Rubin’s Causal Model

11.1 Causal Inference: From Philosophy to Scientific Methodology

Throughout history, the concept of causality—the fundamental question of what causes
what?—has captivated human thought. Ancient philosophers, notably Aristotle, en-
gaged with causal relationships on a philosophical level. However, it was not until the
twentieth century that causality transitioned into a formal scientific discipline, largely
shaped by the seminal contributions of:

• Neyman (1923): Who introduced the pivotal concept of potential outcomes for
the rigorous study of causal inference.

• Rubin (1974): Who further developed the Rubin Causal Model (RCM), provid-
ing a comprehensive framework for designing and analyzing causal studies.

Today, causal inference offers a systematic approach to determine the independent
and actual effect of interventions within intricate systems, spanning diverse fields
from medical treatments to the implementation of business policies.

From Prediction to Causal Understanding. The majority of empirical analyses serve
one of two primary objectives:

• Descriptive and Predictive Analysis: This involves summarizing existing rela-
tionships within data or forecasting future outcomes based on observed associa-
tions.

Example: Predicting the volume of Uber rides tomorrow based on today’s weather
patterns and traffic conditions.

• Causal Inference: This focuses on investigating how specific interventions ac-
tively lead to changes in outcomes.

Example: Estimating whether offering an Uber Ride Pass demonstrably causes an
increase in the number of trips taken by subscribers.

Key Distinction.

• Prediction hinges on identifying observed patterns and associations within data.

• Causal inference necessitates modeling the underlying processes that generate
the data and addressing counterfactual questions concerning hypothetical inter-
ventions.

123

Lecture Notes AI for Business Research

The Potential Outcomes Framework To formalize our reasoning about causes and
effects, we define for each unit i:

Yi(1) = The potential outcome if unit i receives the treatment

Yi(0) = The potential outcome if unit i does not receive the treatment

However, in reality, we only ever observe the realized outcome for each unit:

Yobs
i = WiYi(1) + (1−Wi)Yi(0)

where Wi ∈ {0, 1} is an indicator variable denoting whether unit i received the treat-
ment.
This fundamental constraint leads to the Fundamental Problem of Causal Inference:

For any given unit, we can never simultaneously observe both of its potential out-
comes.

Consequently, estimating causal effects invariably relies on making assumptions,
employing specific study designs, or utilizing modeling approaches that allow us to
infer the missing counterfactual information.

Key Identification Challenges. The pursuit of causal inference is fraught with three
primary challenges:

1. Missing Data Problem: For each unit, we only observe one of the two potential
outcomes.

2. Confounding: The assignment of treatment may be correlated with the potential
outcomes due to unobserved factors that influence both.

3. Selection Bias: Individuals or units may self-select into the treatment based on
characteristics that also affect the outcome of interest.

11.2 Randomized Controlled Trials (RCTs): The Gold Standard

Randomized Controlled Trials (RCTs) offer a powerful design-based solution to these
challenges. By randomly assigning the treatment, RCTs aim to ensure that the poten-
tial outcomes are statistically independent of the treatment assignment:

(Yi(0), Yi(1)) ⊥Wi

Under this crucial condition of randomization:

124

Lecture Notes AI for Business Research

• The treated and control groups become comparable in expectation across all
characteristics, both observed and unobserved.

• Differences in the observed outcomes between these groups provide consistent
estimates of the true causal effects.

The standard method for estimating the causal effect in an RCT is the Difference-
in-Means (DM) estimator:

τ̂DM = E[Yi |Wi = 1]−E[Yi |Wi = 0]

Why RCTs are considered the Gold Standard:

• Unbiasedness: The Difference-in-Means estimator provides an unbiased esti-
mate of the average treatment effect, even in finite samples.

• Root-n consistency: The estimator converges to the true causal effect at a rate of
√

n as the sample size increases, ensuring valid asymptotic statistical inference.

• Simplicity and Transparency: The estimation process and the interpretation of
the results are straightforward and transparent.

Despite these advantages, the practical, ethical, and logistical constraints associ-
ated with implementing RCTs, particularly in large-scale or studies involving sensitive
topics, often make them infeasible.

11.3 Independence Assumptions

As we transition from the controlled environment of randomized experiments to the
complexities of observational data, the identification of causal effects necessitates the
adoption of stronger and more carefully justified assumptions. This section formalizes
several key independence assumptions that form the bedrock of various identification
strategies in causal inference.

Full Independence Assumption (IA) The Independence Assumption (IA) posits
that the assignment of treatment is independent of both potential outcomes:

(Yi(0), Yi(1)) ⊥Wi

Under the IA, the treatment status Wi reveals no information whatsoever about the
potential outcomes Yi(0) and Yi(1). This is precisely the condition that a well-executed
Randomized Controlled Trial (RCT) is designed to guarantee through the process of
randomization.

125

Lecture Notes AI for Business Research

When the IA holds true, the Average Treatment Effect (ATE) can be identified sim-
ply by comparing the means of the outcome variable across the treated and untreated
groups:

τ = E[Yi(1)]−E[Yi(0)] = E[Yi |Wi = 1]−E[Yi |Wi = 0]

Mean Independence Assumption (MIA) A less stringent condition is the Mean In-
dependence Assumption (MIA), which requires that the treatment status is indepen-
dent of the expectations of the potential outcomes:

E[Yi(1) |Wi] = E[Yi(1)], E[Yi(0) |Wi] = E[Yi(0)]

The MIA implies that the average values of the potential outcomes do not system-
atically differ between the treatment groups, even if the overall distributions of the
potential outcomes might vary.
Note: The Full Independence Assumption (IA) logically implies the Mean Indepen-
dence Assumption (MIA) (IA ⇒ MIA). However, the reverse is not necessarily true;
the MIA does not guarantee the IA. Thus, the MIA represents a weaker assumption
than the IA.

Conditional Independence Assumption (CIA) In the realm of observational stud-
ies, where the Full Independence Assumption (IA) typically fails, researchers often
invoke the Conditional Independence Assumption (CIA):

(Yi(0), Yi(1)) ⊥Wi | Xi

where Xi represents a set of observed pre-treatment covariates (characteristics mea-
sured before the intervention).
The CIA posits that, once we account for the observed covariates Xi, the assignment
of treatment is as if it were random. In other words, conditional on these observed
characteristics, there is no systematic relationship between who receives the treatment
and their potential outcomes.

Under the CIA, coupled with the assumption of overlap (i.e., for all relevant values
of the covariates Xi, there is a positive probability of receiving both the treatment and
the control condition), the Average Treatment Effect (ATE) can be identified as:

τ = EX [E[Yi |Wi = 1, Xi]−E[Yi |Wi = 0, Xi]]

Important: The Conditional Independence Assumption (CIA) is fundamentally untestable
using the observed data alone. Its plausibility rests entirely on the researcher’s judg-
ment and the extent to which all relevant confounding factors (variables that influence

126

Lecture Notes AI for Business Research

both the treatment and the outcome) are observed and included in the set of covariates
Xi.

Conditional Mean Independence Assumption (CMIA) A slightly less restrictive
version of the CIA is the Conditional Mean Independence Assumption (CMIA),
which requires:

E[Yi(1) |Wi, Xi] = E[Yi(1) | Xi], E[Yi(0) |Wi, Xi] = E[Yi(0) | Xi]

This implies that, conditional on the observed covariates Xi, the treatment assignment
Wi does not provide any additional information about the expected potential outcomes.

Hierarchy of Assumptions:
The Full Independence Assumption (IA) implies the Mean Independence Assump-

tion (MIA):
IA⇒ MIA

Similarly, the Conditional Independence Assumption (CIA) implies the Conditional
Mean Independence Assumption (CMIA):

CIA⇒ CMIA

More generally, we have the following relationships:

IA⇒ CIA, MIA⇒ CMIA

Summary

• The Full Independence Assumption (IA) represents an ideal scenario but is
often unrealistic outside the context of carefully controlled randomized exper-
iments.

• The Conditional Independence Assumption (CIA) is a cornerstone of causal
inference in observational studies, but its validity hinges on the availability of
rich and comprehensive covariate information.

• The Mean Independence Assumption (MIA) and the Conditional Mean Inde-
pendence Assumption (CMIA) offer weaker but still potentially useful assump-
tions for achieving causal identification in specific contexts.

A thorough understanding of the subtle differences between these various inde-
pendence assumptions is absolutely critical for researchers to select appropriate esti-

127

Lecture Notes AI for Business Research

mation strategies and to interpret the resulting causal inferences in a responsible and
informed manner. The proof of the notices are left to the appendices.

11.4 The Rubin Causal Model: Formalizing Causal Inference

Transition to the Rubin Causal Model The independence assumptions introduced
in the previous section — particularly the Independence Assumption (IA) and the
Conditional Independence Assumption (CIA) — establish the conditions under which
causal effects can be identified from observed data. However, they do not, by them-
selves, provide a complete statistical framework for conceptualizing, organizing, and
estimating causal effects.

To rigorously formalize causal questions, address the missing data inherent in
counterfactual outcomes, and systematically define causal estimands such as the Indi-
vidual Treatment Effect (ITE), Average Treatment Effect (ATE), and related quantities,
we turn to the Rubin Causal Model (RCM).

The RCM situates causal inference within a missing data framework, explicitly
highlighting the assumptions required for identification and clarifying the targets of
estimation in both experimental and observational settings.

Basic Setup For each unit i:

• Wi ∈ {0, 1} denotes treatment assignment (Wi = 1 if treated, Wi = 0 otherwise).

• Yi(1) denotes the potential outcome under treatment.

• Yi(0) denotes the potential outcome under control.

The observed outcome is:

Yobs
i = WiYi(1) + (1−Wi)Yi(0)

Wi

Yi(1)

Yi(0)

Yobs
i

Wi

1−Wi

Figure 11.4.1. Switching representation of observed outcome Yobs
i based on treatment

Wi

128

Lecture Notes AI for Business Research

The Fundamental Problem of Causal Inference For each unit, only one potential
outcome is observed; the other is missing. Thus, individual-level causal effects are
unobservable:

τi = Yi(1)−Yi(0)

This missing data structure is at the heart of all causal inference challenges.

Stable Unit Treatment Value Assumption (SUTVA) RCM relies on the Stable Unit
Treatment Value Assumption (SUTVA), which comprises two components:

• No interference between units: The treatment assigned to one unit does not
affect the potential outcomes of other units.

• Consistency: The observed outcome for a unit corresponds exactly to the poten-
tial outcome under the treatment received.

SUTVA ensures that potential outcomes are well-defined and interpretable at the indi-
vidual level.

Causal Estimands Although the individual treatment effect τi is generally unobserv-
able, several population-level causal parameters are of primary interest:

• Average Treatment Effect (ATE):

τ = E[Yi(1)−Yi(0)]

• Average Treatment Effect on the Treated (ATT):

τATT = E[Yi(1)−Yi(0) |Wi = 1]

• Average Treatment Effect on the Untreated (ATU):

τATU = E[Yi(1)−Yi(0) |Wi = 0]

Each estimand answers a distinct causal question: - ATE concerns the entire pop-
ulation. - ATT focuses on those who actually received treatment. - ATU focuses on
those who did not receive treatment.

129

Lecture Notes AI for Business Research

Identification under Randomization Under the Independence Assumption (IA):

(Yi(0), Yi(1)) ⊥Wi

we can identify:

τ = E[Yi(1)]−E[Yi(0)] = E[Yi |Wi = 1]−E[Yi |Wi = 0]

Moreover, the same expression also identifies the τATT because in randomized ex-
periments, the treated and untreated units are exchangeable in expectation:

τATT = E[Yi |Wi = 1]−E[Yi |Wi = 0]

In observational settings, we generally rely on the Conditional Independence As-
sumption (CIA):

(Yi(0), Yi(1)) ⊥Wi | Xi

to identify causal parameters by conditioning on covariates.

Xi Wi

Yi(1)

Yi(0)

Yobs
i

Wi →

1−Wi →

Figure 11.4.2. Switching representation of observed outcome Yobs
i based on treatment

Wi and Confounders Xi

Summary The Rubin Causal Model shifts causal inference into a missing data frame-
work:

• Clearly defines causal quantities (ITE, ATE, ATT, ATU).

• Highlights the central role of assumptions (e.g., SUTVA, IA, CIA) for identifica-
tion.

• Provides the foundation for developing estimation methods for causal effects in
both experimental and observational settings.

130

Lecture Notes AI for Business Research

Transition to Estimation Strategies While the Rubin Causal Model (RCM) provides
a rigorous conceptual framework for defining and identifying causal effects, it does
not in itself offer concrete estimation methods. In particular, identification of param-
eters such as the Average Treatment Effect (ATE) often relies on conditional expecta-
tions of observed outcomes:

τ = EX [E[Yi |Wi = 1, Xi]−EX[Yi |Wi = 0, Xi]]

Thus, the task of estimating E[Yi |Wi, Xi] accurately and efficiently becomes central
to empirical causal analysis.

One of the most fundamental and widely used approaches for this purpose is Re-
gression Adjustment, which models conditional expectations directly as functions of
covariates. We turn next to a systematic exploration of regression-based strategies for
causal inference in observational settings.

11.5 Regression Adjustment for Causal Inference

Having established the Rubin Causal Model and the critical role of independence as-
sumptions, we now turn to practical estimation strategies for causal effects. One of the
most fundamental and widely used approaches is Regression Adjustment.

Regression adjustment leverages statistical modeling to estimate the conditional
expectations of outcomes given treatment status and observed covariates.

Basic Idea Under the Conditional Independence Assumption (CIA):

(Yi(0), Yi(1)) ⊥Wi | Xi

the average treatment effect (ATE) can be expressed as:

τ = EX [E[Yi |Wi = 1, Xi]−EX[Yi |Wi = 0, Xi]]

Thus, if we can model and estimate the conditional expectations E[Yi | Wi, Xi]

accurately, we can recover the ATE.

Linear Regression Adjustment The most straightforward approach assumes a linear
relationship between outcomes, treatment, and covariates:

Yi = α + τWi + β′Xi + ϵi

where:

• τ is the coefficient on treatment, interpreted as the causal effect;

131

Lecture Notes AI for Business Research

• β captures the effects of covariates Xi;

• ϵi is a mean-zero error term.

Ordinary Least Squares (OLS) estimation of this model provides an estimate of τ,
the treatment effect.

Key Assumptions for Valid Regression Adjustment To interpret τ causally, the fol-
lowing conditions must hold:

• Correct Model Specification: The conditional expectations E[Yi(0) | Xi] and
E[Yi(1) | Xi] are linear in Xi.

• No Omitted Variables: All confounders affecting both treatment assignment
and outcomes must be included in Xi.

• Common Support: The covariate distributions in treated and control groups
must sufficiently overlap.

Interpretation of Coefficients

• τ captures the difference in expected outcomes between treated and control units,
adjusting for covariate differences.

• The inclusion of Xi helps correct for confounding, isolating the pure treatment
effect.

Potential Issues with Regression Adjustment Despite its simplicity, regression ad-
justment has several potential pitfalls:

• Model Misspecification: If the true relationship between outcomes, treatment,
and covariates is nonlinear or more complex, linear regression may yield biased
estimates.

• Extrapolation: OLS uses a global model, which may extrapolate beyond regions
with adequate data support.

• Sensitivity to Outliers and Heteroskedasticity: Outliers or non-constant vari-
ance can distort regression-based estimates.

Summary Regression adjustment offers a simple and powerful tool for causal es-
timation under CIA. However, it relies heavily on correct model specification and
rich covariate information. As we will see, alternative approaches like matching and
weighting seek to relax some of these modeling assumptions while achieving the same
goal of adjusting for observed confounding.

132

Lecture Notes AI for Business Research

11.6 Matching and Inverse Probability Weighting (IPW)

Regression adjustment relies on modeling the relationship between covariates and
outcomes. An alternative approach is to reweight or reconstruct the treated and con-
trol groups to make them comparable on observed covariates, thereby mimicking a
randomized experiment without imposing strong parametric modeling assumptions.

This section introduces two fundamental strategies: Matching and Inverse Proba-
bility Weighting (IPW).

Matching: Basic Idea Under the Conditional Independence Assumption (CIA):

(Yi(0), Yi(1)) ⊥Wi | Xi

the causal effect can be identified by comparing treated and control units with the
same (or very similar) covariate values Xi.

Nearest Neighbor Matching (NNM) The most common matching method is Near-
est Neighbor Matching:

• For each treated unit (Wi = 1), find the control unit (Wj = 0) whose covariates
Xj are closest to Xi in terms of some distance, such as the Euclidean distance or
the Mahalanobis distance.

• Estimate the treatment effect for unit i as:

τ̂i = Yi −Yj

• Aggregate across units to estimate the average treatment effect.

Propensity Score Matching (PSM) Direct matching on high-dimensional Xi can be
infeasible. To simplify, we use the propensity score:

e(Xi) = Pr(Wi = 1 | Xi)

Under CIA, it suffices to match units based on their estimated propensity scores
e(Xi):

(Yi(0), Yi(1)) ⊥Wi | e(Xi)

Thus, Propensity Score Matching (PSM) proceeds by:

• Estimating e(Xi) (e.g., via logistic regression).

133

Lecture Notes AI for Business Research

• Matching treated and control units with similar e(Xi) values.

• Estimating treatment effects by comparing matched pairs or groups.

Inverse Probability Weighting (IPW) Rather than matching units, Inverse Proba-
bility Weighting (IPW) reweights observations to create a synthetic sample in which
treatment assignment is independent of covariates.

Each observation is weighted by the inverse of the probability of receiving the treat-
ment it actually received:

Weighti =


1

ê(Xi)
, if Wi = 1 (treated)

1
1−ê(Xi)

, if Wi = 0 (control)

The IPW estimator for the ATE is:

τ̂IPW =
1
n

n

∑
i=1

(
WiYi

ê(Xi)
− (1−Wi)Yi

1− ê(Xi)

)
Intuitively, units that are underrepresented in the treatment or control group are given
more weight, balancing the sample. We would revisit this method in the next section
featuring big data circumstances.

Comparison and Practical Considerations Both Matching and IPW rely on the Con-
ditional Independence Assumption (CIA) and the propensity score. However, they
differ in practical implementation:

• Matching emphasizes direct comparability by finding similar units.

• IPW adjusts the sample composition statistically through weighting.

Potential Issues:

• Matching can suffer from poor matches if there is limited overlap (lack of com-
mon support).

• IPW can suffer from high variance if propensity scores are close to 0 or 1, leading
to extreme weights.

Summary Matching and IPW provide flexible, nonparametric approaches to causal
inference under CIA, offering alternatives to parametric regression adjustment. Nev-
ertheless, both require careful estimation of propensity scores and attention to overlap
between treated and control populations to yield reliable causal estimates.

134

Lecture Notes AI for Business Research

11.7 Structure of Modern Causal Inference: Continuity and Innova-

tion

Modern causal inference builds fundamentally upon the Rubin Causal Model (RCM)
and its associated identification strategies. It does not replace the classical framework;
rather, it enhances and extends it to better address the complexities of modern empir-
ical data.

Continuity: What Remains from the Classical Framework The core structure of
causal inference remains unchanged:

• Potential Outcomes Framework: We still conceptualize causal questions through
potential outcomes (Y(1), Y(0)).

• Stable Unit Treatment Value Assumption (SUTVA): No interference and consis-
tency assumptions are still necessary to define potential outcomes meaningfully.

• Target Parameters: Estimation of causal estimands such as the Average Treat-
ment Effect (ATE) and Conditional Average Treatment Effect (CATE) remains
the central goal.

• Identification via Independence Assumptions: Conditional Independence As-
sumption (CIA) continues to underlie the identification of causal effects from
observational data.

Innovation: What is New in Modern Causal Inference While the conceptual struc-
ture persists, modern causal inference introduces critical innovations to overcome
practical limitations:

• Flexible Estimation of Nuisance Functions: Instead of relying on simple lin-
ear regressions, we now use flexible machine learning algorithms to estimate
conditional means and propensity scores, allowing for rich nonlinearities and
interactions.

• Orthogonalization and Debiasing: To prevent overfitting biases from contami-
nating causal effect estimates, modern methods (e.g., Double Machine Learning)
introduce orthogonal moment conditions and sample splitting strategies.

• Heterogeneous Treatment Effects: Classical methods focus primarily on aver-
age effects. Modern approaches directly model and estimate treatment effect
heterogeneity across individuals, enabling personalized causal inference.

135

Lecture Notes AI for Business Research

• Robustness to High Dimensions: Techniques such as cross-fitting and regu-
larization enable valid inference even when the number of covariates is large
relative to the sample size.

Summary Modern causal inference is best understood not as a break from the past,
but as a natural evolution: it retains the fundamental causal structure established by
the Rubin Causal Model, while augmenting estimation techniques to handle the scale,
complexity, and heterogeneity inherent in contemporary data environments.

As we proceed, we will see how these innovations are systematically incorpo-
rated into frameworks such as Double Machine Learning (DML), Augmented In-
verse Probability Weighting (AIPW), and Causal Forests for Heterogeneous Treat-
ment Effects (HTE).

In the meantime, a large portion of this section’s results are mathematically-based.
Along with the classic DID setting, we leave them to the appendices for reader’s ref-
erence.

11.8 The Notebooks

• The notebook Causal Unconfoundednessillustrates the performance of different
propensity score based estimators under the unconfoundedness assumption.

136

https://colab.research.google.com/drive/1VD4a7EotCmAzYFAfCE3VJ3vOpCNvQm5P#scrollTo=3osB6gKLQUQf

Lecture Notes AI for Business Research

12 Revisiting RCT with a Statistical and Big Data Taste

12.1 Motivation: Beyond the Gold Standard

As what we have mentioned before, Randomized Controlled Trials (RCTs) have long
been regarded as the gold standard for causal inference, primarily because randomiza-
tion ensures the independence between treatment assignment and potential outcomes,
thus enabling unbiased estimation of causal effects through simple comparisons.

However, even within RCT settings, several practical and statistical challenges re-
main:

• Finite Sample Uncertainty: Although randomization guarantees unbiasedness,
inference still relies on asymptotic properties, such as the Central Limit Theorem
(CLT), to approximate sampling distributions and justify statistical conclusions
in finite samples.

• Efficiency Considerations: The simple Difference-in-Means (DM) estimator, while
unbiased, may be statistically inefficient. Ignoring pre-treatment covariate in-
formation leads to larger variance than necessary. Incorporating covariates can
enhance precision and power.

• Nonlinearities and Heterogeneity: The relationship between outcomes and co-
variates may be nonlinear, and treatment effects may vary across individuals.
Linear models may miss important heterogeneity structures, suggesting the need
for more flexible modeling approaches.

Thus, modern causal inference does not aim to replace the RCT framework. Rather,
it seeks to enhance causal estimation strategies—achieving greater efficiency, flexibil-
ity, and robustness—while maintaining the foundational logic of randomized experi-
ments.

In what follows, we systematically explore how regression adjustment, flexible ma-
chine learning tools, and debiasing techniques can be utilized to improve causal esti-
mation, both in randomized experiments and in observational data settings.

12.2 Statistical Inferences of RCT

In this section, we study the statistical properties of the Difference-in-Means (DM)
estimator for causal effects under a randomized controlled trial (RCT) design.

Having defined the causal estimands under the potential outcomes framework,
our objective is now purely statistical: to evaluate the behavior of the estimator τ̂DM

137

Lecture Notes AI for Business Research

under randomization, quantify its variability, establish its asymptotic behavior, and
construct confidence intervals.

Throughout, randomness is solely induced by the random assignment of treat-
ment.

We proceed systematically, deriving key properties: unbiasedness, variance, root-n
consistency, and valid inference.

Unbiasedness of τ̂DM Our first goal is to establish that τ̂DM is an unbiased estimator
for the Sample Average Treatment Effect (SATE).

This property ensures that, on average across hypothetical repetitions of the ran-
dom assignment, the estimator correctly targets the causal quantity of interest without
systematic error.

Theorem 12.1 (Unbiasedness of the Difference-in-Means Estimator). 6Under SUTVA
and random treatment assignment,

E[τ̂DM] = ∆ =
1
n

n

∑
i=1

(Yi(1)−Yi(0))

where ∆ is the Sample Average Treatment Effect.

Proof. Recall that the observed outcome is:

Yi = Yi(Wi) = WiYi(1) + (1−Wi)Yi(0)

and the estimator:

τ̂DM =
1
n1

n

∑
i=1

WiYi −
1
n0

n

∑
i=1

(1−Wi)Yi

where n1 = ∑n
i=1 Wi and n0 = n− n1.

Since Wi is randomized independently of {Yi(0), Yi(1)}, we let

E[Wi] = π, E[1−Wi] = 1− π

and we have:

E[WiYi] = πE[Yi(1)], E[(1−Wi)Yi] = (1− π)E[Yi(0)].

Thus:
E[τ̂DM] = E[Yi(1)]−E[Yi(0)]

6The theorem is borrowed from the Theorem 1.1 of the great book on causal inference, whose draft
can be accessed via ”Causal Inference: A Statistical Learning Approach”

138

https://web.stanford.edu/~swager/causal_inf_book.pdf

Lecture Notes AI for Business Research

and in a finite sample:

E[τ̂DM] =
1
n

n

∑
i=1

(Yi(1)−Yi(0)) = ∆.

Thus, randomization guarantees that the DM estimator is centered correctly around
the true sample-level causal effect.

Theorem 12.2 (Asymptotic Normality of τ̂DM). 7Suppose the potential outcomes {Yi(0), Yi(1)}
are i.i.d. with bounded second moments. Then:

√
n(τ̂DM − τ)

d−→ N (0, VDM)

where:
VDM =

Var[Yi(0)]
1− π

+
Var[Yi(1)]

π
.

See Appendix B for the proof.

Theorem 12.3 (Consistency of the Plug-in Variance Estimator). 8The plug-in estimator:

V̂DM =
n
n2

1
∑

i:Wi=1
(Yi − Ȳ1)

2 +
n
n2

0
∑

i:Wi=0
(Yi − Ȳ0)

2

satisfies:
V̂DM

p−→ VDM.

See Appendix B for the proof.

Confidence Interval Construction Combining the CLT and the consistency of V̂DM,
we construct asymptotically valid confidence intervals for τ.

Specifically, a (1− α) asymptotic confidence interval is:τ̂DM ±Φ−1(1− α/2)

√
V̂DM

n


where Φ−1(·) is the quantile function of the standard normal distribution.

As the sample size grows, the coverage probability of this interval approaches 1−
α.

6The theorem is borrowed from the Theorem 1.1 of the great book on causal inference, whose draft
can be accessed via ”Causal Inference: A Statistical Learning Approach”

7The theorem is borrowed from the first part of the Theorem 1.2 of the great book on causal inference,
whose draft can be accessed via ”Causal Inference: A Statistical Learning Approach”

8The theorem is borrowed from the second part of the Theorem 1.2 of the great book on causal
inference, whose draft can be accessed via ”Causal Inference: A Statistical Learning Approach”

139

https://web.stanford.edu/~swager/causal_inf_book.pdf
https://web.stanford.edu/~swager/causal_inf_book.pdf
https://web.stanford.edu/~swager/causal_inf_book.pdf

Lecture Notes AI for Business Research

Through this sequence of results, we have established that the Difference-in-Means
estimator:

• Is finite-sample unbiased for the Sample Average Treatment Effect (SATE);

• Is root-n consistent and asymptotically normal;

• Allows valid confidence intervals via plug-in variance estimation.

These foundational statistical properties underpin the classical use of randomized
experiments in causal inference, providing both conceptual clarity and practical infer-
ential tools.

12.3 Transition to Observational Data

In many real-world scenarios where conducting randomized experiments is not pos-
sible, researchers must rely on observational data. However, in the absence of ran-
domization, the assignment of treatment is likely to be endogenous, meaning it is
correlated with factors that also influence the outcome, thereby complicating causal
interpretation.

To be specific, the elegant statistical properties derived above — unbiasedness, con-
sistency, asymptotic normality — rest on three essential assumptions that hold in the
idealized setting of a randomized controlled trial, which are dear friends we met in
the last section:

1. Independent and Identically Distributed (IID) Sampling: Each observation
(Yi(0), Yi(1), Wi) is drawn independently from the same population distribution.

2. Random Treatment Assignment: The treatment Wi is assigned independently of
the potential outcomes, i.e., (Yi(0), Yi(1)) ⊥Wi.

3. Stable Unit Treatment Value Assumption (SUTVA): The observed outcome Yi

depends only on unit i’s treatment assignment Wi; there is no interference across
units and no variation in treatment versions.

These assumptions form the backbone of classical causal inference. However, in
modern empirical applications, particularly outside of controlled experiments, one or
more of these assumptions may be violated:

• Data may exhibit dependence structures (e.g., clusters, networks), violating IID.

• Treatments may be assigned based on covariates or self-selection, undermining
random assignment.

140

Lecture Notes AI for Business Research

• Outcomes may be affected by others’ treatment status or by different implemen-
tations of the ”same” treatment, breaking SUTVA.

Rather than abandoning inference entirely when such violations occur, a core goal
of modern causal methodology is to relax these assumptions — one by one — in a
controlled and statistically principled manner.

Statistical Relaxation Strategy We will pursue a strategy of assumption-by-assumption
relaxation, in each case asking:

• What does it mean to relax this assumption?

• What new statistical structures or models are required?

• What estimators can still deliver valid inference under the relaxed setting?

This process will gradually generalize our causal inference framework, leading us
from randomized experiments to observational studies, from simple samples to com-
plex data structures, and from homogeneous treatment effects to dynamic, networked,
and heterogenous causal landscapes.

Roadmap The next three subsections each focus on relaxing one classical assump-
tion:

1. In the first, we relax the IID assumption, allowing for dependence and clustered
structures. We use regression adjustment for its sake.

2. In the second, we relax the random assignment assumption, and develop esti-
mation strategies under selection-on-observables (CIA, as noted).

3. In the third, we relax SUTVA, exploring partial interference models and sensitiv-
ity analysis.

Together, these generalizations build a bridge from the classical RCT framework to
the flexible, data-rich world of modern causal inference.

12.4 Relaxing the IID Assumption: Linear and Nonlinear Specifica-

tion Models

We now consider how the framework must evolve when the assumption of identically
distributed observations is dropped. In realistic experimental or quasi-experimental
settings, the data generating process (DGP) often exhibits heterogeneity across units:
either through unit-specific variances, nonlinear responses, or unmodeled dependence
structures. We begin by analyzing what fails under IID violations, and then seek ro-
bust inference strategies that remain valid under weaker conditions.

141

Lecture Notes AI for Business Research

12.4.1 Linear DGP with Covariates

A key insight in modern causal inference is that randomization identifies the average
treatment effect, but not all estimators are equally efficient. In particular, when po-
tential outcomes depend on observed covariates Xi, the classical Difference-in-Means
(DM) estimator may be suboptimal in terms of variance.

We now consider a more general setup where the data-generating process (DGP)
is linear in covariates, which one should have been familiarized with in the last sec-
tion.Formally, we assume that the potential outcomes are generated as

Yi(w) = α(w) + X⊤i β(w) + εi(w), E[εi(w) | Xi] = 0, Var[εi(w) | Xi] = σ2,

where w ∈ {0, 1} denotes treatment status. Treatment remains randomized indepen-
dently of covariates:

P(Wi = 1) = π, P(Wi = 0) = 1− π.

We denote X̄ as the sample mean of the covariates, and A = Var(Xi) as the population
variance-covariance matrix of covariates.

Instead of estimating treatment effects through simple group means, we propose
running separate OLS regressions within the treated and control groups:

Yi = α(0) + X⊤i β(0) + εi, for Wi = 0,

Yi = α(1) + X⊤i β(1) + εi, for Wi = 1.

The covariate-adjusted estimator for the ATE is then defined as

τ̂IREG = α̂(1)− α̂(0) + X̄⊤(β̂(1)− β̂(0)).

This estimator remains unbiased under random assignment and, crucially, achieves
lower variance compared to the raw DM estimator.

Asymptotically, under mild regularity conditions, we have

√
n(τ̂IREG − τ)

d−→ N (0, VIREG),

where the asymptotic variance is

VIREG = 4σ2 + ∥β(1)− β(0)∥2
A,

where we let ∥x∥A := x′Ax and here A = Var[X].
The term ∥β(1)− β(0)∥2

A captures gains from controlling for covariates, reflecting

142

Lecture Notes AI for Business Research

how differences in covariate effects between treatment groups contribute to increased
precision.

Without loss of generality, suppose that π = 0.5, we have

VDM =
Var[Yi(0)] + Var[Yi(1)]

0.5
= 4σ2 + ∥β(0) − β(1)∥2

A + ∥β(0) + β(1)∥2
A

Comparing the adjusted and unadjusted estimators, we find

VIREG = VDM −
(
∥β(0)∥2

A + ∥β(1)∥2
A

)
≤ VDM.

Thus, covariate adjustment via linear regression is strictly more efficient than the DM
estimator whenever covariates have predictive power.

Finally, incorporating covariates naturally relaxes the identical distribution assump-
tion: each unit is allowed to have its own conditional distribution indexed by Xi.
Rather than assuming homogeneous outcomes across units, we exploit heterogene-
ity in a structured way, achieving both robustness and efficiency without sacrificing
validity under randomized designs.

12.4.2 Nonlinear DGP: Randomization Without Linearity

In moving beyond the classical assumptions of identically distributed units, we now
consider a more general model: the data generating process (DGP) remains random-
ized, but the relationship between covariates and outcomes may be arbitrarily nonlin-
ear.

Formally, the DGP is characterized by:

µ(w, x) := E[Yi(w) | Xi = x], σ2(w, x) := V[Yi(w) | Xi = x],

where w ∈ {0, 1} denotes treatment status.
Treatment remains randomized independently of covariates:

P(Wi = 1) = π, E[Xi] = 0, A = Var(Xi).

Thus, while we retain the identification power of random assignment, we now
fully accommodate nonlinear conditional expectation functions. The additional non-
linear ingredient introduced here is largely captured in the term µ(w, x), something
new from it will be seen in the following paragraphs.

Variance of the Difference-in-Means Estimator Even under nonlinearity, the Difference-
in-Means (DM) estimator remains unbiased for the Average Treatment Effect (ATE).

143

Lecture Notes AI for Business Research

However, its asymptotic variance expands to capture additional variation driven by
heterogeneity in µ(w, Xi):

√
n(τ̂DM − τ)

d−→ N (0, VDM) ,

where
VDM = 4σ2 + 2 Var [µ0(Xi)] + 2 Var [µ1(Xi)] .

The terms Var[µw(Xi)] reflect heterogeneity in the regression functions across the
covariate space.

Best Linear Projection Coefficients Although the true µ(w, Xi) may be nonlinear, it
remains statistically advantageous to approximate it linearly.

Define the best linear projection (α∗(w), β∗(w)) as:

(α∗(w), β∗(w)) = arg min
α,β

E

[(
Yi(w)− α− X⊤i β

)2
]

.

These projection coefficients minimize the expected squared deviation between the
true conditional mean and its linear approximation.

Regression Adjustment under Nonlinear DGP We continue to use covariate-adjusted
regressions separately within treatment groups:

Yi = α(w) + X⊤i β(w) + εi, for all i with Wi = w.

The corresponding adjusted estimator for the ATE is:

τ̂IREG = α̂(1)− α̂(0) + X̄⊤(β̂(1)− β̂(0)).

Although the linear models are potentially misspecified, the estimator τ̂IREG re-
mains consistent for τ under randomization.

Asymptotic Distribution of Covariate-Adjusted Estimator Under mild regularity
conditions (specifically, invertibility of E[XiX⊤i]), we have:

√
n(τ̂IREG − τ)

d−→ N (0, VIREG) ,

144

Lecture Notes AI for Business Research

where

VIREG = Var
[
X⊤i (β∗(1)− β∗(0))

]
+ 1

π E
[(

Yi(1)− α∗(1)− X⊤i β∗(1)
)2
]

+ 1
1−π E

[(
Yi(0)− α∗(0)− X⊤i β∗(0)

)2
]

.

This variance expression captures both the systematic differences captured by the
linear projections and the residual variation around those projections.

Efficiency Comparison: DM vs. IREG Even for a model where the DGP is non-
linear but still under the random treatment assignment, the IREG is more efficient
than DM. A direct computation reveals that:

VDM −VIREG = ∥β∗(0)∥2
A + ∥β∗(1)∥2

A ≥ 0,

Thus, regression adjustment strictly improves efficiency even when the DGP is
nonlinear.

Wrap up: Power of Linear Adjustment under Nonlinearity

• Randomization protects identification of the ATE even under arbitrary nonlin-
earity.

• Simple Difference-in-Means estimators ignore predictable variation due to co-
variates, inflating variance.

• Best linear projections provide an efficient way to absorb this variation.

• Covariate adjustment remains valid and strictly more efficient than unadjusted
estimation.

This benchmark nonlinear setup paves the way for further refinements: specifi-
cally, for construction of estimators that are doubly robust and orthogonal to nuisance
parameter estimation.

12.5 Without Randomization: CIA-OC and Weighted IPW

In earlier sections, we relied on randomized treatment assignment to ensure that the
treatment status Wi is independent of the potential outcomes (Yi(0), Yi(1)). Random-
ization underpins the unbiasedness and consistency of simple estimators like DM.
However, in observational studies where randomization is absent, treatment deci-
sions are often systematically related to individual characteristics. Thus, estimating

145

Lecture Notes AI for Business Research

causal effects requires additional, more relaxed assumptions to replace randomization
at large. We come to mind of CIA to replace IA.

Together with the Overlap Condition (OC) — that 0 < P(Wi = 1 | Xi) < 1 —
CIA ensures that we can recover the Average Treatment Effect (ATE) by appropriately
adjusting for covariates.

Theorem 12.4 (Identification of ATE under CIA and OC). Under the Conditional Inde-
pendence Assumption ({Yi(0), Yi(1)} ⊥ Wi | Xi) and the Overlap Condition (0 < P(Wi =

1 | Xi) < 1 for all Xi in the support of the covariates), the Average Treatment Effect (ATE)
can be identified as:

ATE = E[E[Yi |Wi = 1, Xi]−E[Yi |Wi = 0, Xi]],

where the outer expectation is taken over the distribution of Xi.

Proof. Define the ATE as ATE = E[Yi(1)−Yi(0)]. By CIA, {Yi(0), Yi(1)} ⊥Wi | Xi, so:

E[Yi(1) |Wi = 1, Xi] = E[Yi(1) | Xi], E[Yi(0) |Wi = 0, Xi] = E[Yi(0) | Xi].

The conditional treatment effect is:

E[Yi(1)−Yi(0) | Xi] = E[Yi |Wi = 1, Xi]−E[Yi |Wi = 0, Xi].

Taking the expectation over Xi:

ATE = E[E[Yi(1)−Yi(0) | Xi]] = E[E[Yi |Wi = 1, Xi]−E[Yi |Wi = 0, Xi]].

The Overlap Condition ensures that 0 < P(Wi = 1 | Xi) < 1, so both conditional
expectations are well-defined for all Xi. Thus, the ATE is identifiable.

Without CIA, no amount of weighting, matching, or stratification can credibly es-
timate causal effects.

Corollary 12.4.1 (Failure of ATE Estimation without CIA). If the Conditional Indepen-
dence Assumption ({Yi(0), Yi(1)} ⊥Wi | Xi) does not hold, then no adjustment method (e.g.,
weighting, matching, or stratification on Xi) can consistently estimate the ATE, as there exist
unmeasured confounders that bias the treatment effect estimate.

Remark (Intuitive Explanation for CIA Violation). Imagine evaluating a job training pro-
gram’s effect on earnings, using data on age, education, and experience. If personal moti-
vation, which isn’t measured, drives both program participation and higher earnings, your
analysis might overestimate the program’s effect. Motivated people join the program and earn

146

Lecture Notes AI for Business Research

more anyway, but without data on motivation, you can’t separate its influence from the pro-
gram’s true impact. It’s like judging a chef’s dish without knowing some ingredients were
pre-seasoned—you’re misled by a hidden factor. No adjustment method can fix this without
measuring motivation.

The similar results hold for the case where the OC is violated.

Corollary 12.4.2 (Failure of ATE Estimation without OC). If the Overlap Condition (0 <

P(Wi = 1 | Xi) < 1) is violated, such that P(Wi = 1 | Xi) = 0 or P(Wi = 1 | Xi) = 1 for
some Xi, then the ATE cannot be consistently estimated for the entire population, as no data
exist for some covariate values under one of the treatment conditions.

Remark (Intuitive Explanation for OC Violation). Consider a study on a heart medica-
tion’s effect on recovery, with age as a covariate. If doctors never prescribe the drug to patients
over 80, you have no data on how it affects them. Estimating the drug’s effect across all ages
is like guessing how a car drives on an untested road—you can’t know without data. Methods
like matching or weighting fail because there’s no treated group over 80 to compare, leaving
you unable to estimate the effect for the whole population.

Stratified Estimator: Local Balancing via Grouping One intuitive approach to lever-
age the Conditional Independence Assumption (CIA) is stratification: grouping units
into discrete strata where units have similar covariate profiles or estimated propensity
scores.

Formally, partition the sample into strata s = 1, . . . , S based on Xi or ê(Xi).
Within each stratum s, compute average outcomes for treated and control units:

µ̂1(s) =
1

n1(s)
∑

i∈s,Wi=1
Yi, µ̂0(s) =

1
n0(s)

∑
i∈s,Wi=0

Yi.

Aggregating across strata yields the stratified estimator:

τ̂strat =
S

∑
s=1

n(s)
n

(µ̂1(s)− µ̂0(s)) ,

where n(s) is the number of units in stratum s.
The intuition is that within each stratum, treatment assignment is approximately

random, enabling locally unbiased comparisons.
Similarly, the stratified estimator is also root-n consistent. This result holds under

the CIA, SUTVA, OC and some technical conditions. Specifically, denote Vstrat :=
σ2

1 (x)
e(x) +

σ2
0 (x)

1−e(x) , we have

√
n(s)(τ̂strat(x)− τ(x)) d−→ N (0, Vstrat),

147

Lecture Notes AI for Business Research

where σ2
w(x) := Var[Yi(w)|Xi = x], e(x) := P[Wi = 1|Xi = x] and τ(x) = E[Yi(1)−

Yi(0)|Xi = x].

Inverse Propensity Weighting (IPW): Continuous Balancing via Reweighting Note
that stratified estimator is just propensity score estimation on a discrete set. When
the covariates are continuous, instead of grouping, we can reweight each observation
individually according to its estimated propensity score. This is commonly used in
econometrics, as noted in the introduction to PSM.

The normalized IPW estimator is given by:

τ̂nIPW =
∑n

i=1
WiYi
ê(Xi)

∑n
i=1

Wi
ê(Xi)

−
∑n

i=1
(1−Wi)Yi
1−ê(Xi)

∑n
i=1

1−Wi
1−ê(Xi)

.

Each unit’s contribution is scaled inversely by the estimated probability of receiv-
ing the treatment actually assigned. Normalization ensures that the weighted sample
size is properly scaled, controlling for instability when ê(Xi) is close to 0 or 1.

Connection between Stratification and Normalized IPW At a deeper level, stratifi-
cation and normalized IPW both aim to restore the balance that randomization would
have guaranteed.

Feature Stratified Estimator Normalized IPW

Level of balancing Group-level (coarse) Unit-level (fine-grained)
Mechanism Compare means within bins Reweight each unit individually
Dependence On stratum definition On estimated propensity score

As the number of strata increases (i.e., strata become finer), the stratified estimator
asymptotically approximates normalized IPW. Thus, normalized IPW can be inter-
preted as a form of continuous stratification — balancing covariates across the entire
support of Xi.

12.5.1 The Limitations of IPW and the Emergence of Balancing Weights

IPW provides a powerful mechanism to achieve covariate balance in observational
studies under CIA and OC. However, IPW estimators face critical limitations that mo-
tivate further methodological development:

Suppose the true propensity score e(X) were known. Then, the IPW estimator
would be semiparametrically efficient, achieving root-n consistency, specifically,

148

Lecture Notes AI for Business Research

Theorem 12.5. 9Suppose that {Xi, Yi(0), Yi(1), Wi}n
i=1

iid∼ P, that CIA, OC and SUTVA
hold, and that all moments used in the expression for VIPW∗ below are finite. Then, the oracle
IPW estimator is unbiased, E[τ̂IPW∗] = τ, and

√
n(τ̂IPW∗ − τ)→ N(0, VIPW∗).

VIPW∗ = Var[τ(Xi)] + E

[
(µ(0)(Xi) + (1− e(Xi))τ(Xi))

2

e(Xi)(1− e(Xi))

]

+E

[
σ2
(1)(Xi)

e(Xi)
+

σ2
(0)(Xi)

1− e(Xi)

]
.

Remark. Note from the theorem 12.5, VIPW∗ = Vstrat +E

[
(µ(0)(Xi)+(1−e(Xi))τ(Xi))

2

e(Xi)(1−e(Xi))

]
, which

means that the stratified estimator is more efficient than the IPW estimator. Hence, when
the covariate X is discrete with a natural but specific propensity model, one feasible IPW can
outperform the oracle IPW.

In practice, we don’t have an oracle to calculate the e(X), which must be estimated
from data, yielding an approximation ê(X). This induces additional bias and variance
in the IPW estimator.

Formally, we can decompose the estimation error:

τ̂IPW − τ = (τ̂oracle
IPW − τ)︸ ︷︷ ︸

oracle IPW error

+ (τ̂IPW − τ̂oracle
IPW)︸ ︷︷ ︸

error due to ê(X) estimation

.

Bounding the second term using Cauchy-Schwarz inequality yields:

∣∣∣τ̂IPW − τ̂oracle
IPW

∣∣∣ ≲√E[Y2
i]×

√
E
[
(ê(Xi)− e(Xi))

2
]
.

Thus, the root-mean-squared error (RMSE) of ê(X) directly impacts the perfor-
mance of IPW.

In finite samples:

• If ê(X) is estimated at parametric rates (n−1/2), the second term becomes asymp-
totically negligible.

• However, flexible machine learning models often achieve slower rates (e.g., n−1/4),
making this bias non-negligible.

9The theorem is borrowed from the Theorem 2.2 of the great book on causal inference, whose draft
can be accessed via ”Causal Inference: A Statistical Learning Approach”

149

https://web.stanford.edu/~swager/causal_inf_book.pdf

Lecture Notes AI for Business Research

That is, in finite samples, plug-in IPW estimators often have inflated bias and vari-
ance, and do not achieve semiparametric efficiency.

The Importance and Fragility of OC The performance of IPW critically depends on
the validity of the Overlap Condition:

η ≤ e(Xi) ≤ 1− η for all Xi ∈ X ,

where η > 0 is a positive constant.
When overlap is weak or fails:

• Propensity scores approach 0 or 1, leading to extreme inverse weights.

• A few observations dominate, causing instability and inflated variance.

Consequences of Poor Overlap:

• Regression adjustment becomes sensitive to extreme covariates.

• Matching may discard many units due to lack of comparable counterparts.

• Stratification suffers residual imbalance even within strata.

Practical Remedies:

• Trimming: Exclude units with estimated propensity scores outside [α, 1− α].

• Winsorization: Cap propensity scores at [α, 1− α].

• Conditional ATE Estimation: Restrict estimation to the subpopulation with suf-
ficient overlap.

Trimming trades off generalizability for improved statistical stability.

IPW as a Special Case of Balancing Weights Recognizing the fragility of simple
IPW estimators leads to a broader conceptual framework: IPW is a special case of
balancing weights.

More generally:

• Assume the observed covariates X have density f (x) with respect to some mea-
sure µ.

• Suppose we wish to reweight the sample to target a different population with
density g(x).

150

Lecture Notes AI for Business Research

Define the tilting function:

h(x) =
g(x)
f (x)

,

which reweights the observed sample to represent the target population.
The reweighted ATE is:

τh = Eg [Yi(1)−Yi(0)] =

∫
(Yi(1)−Yi(0))h(x)µ(dx)∫

h(x)µ(dx)
.

Thus:

• Standard IPW corresponds to g(x) = f (x) (i.e., targeting the observed sample
distribution).

• Trimming and other overlap adjustments modify g(x) by restricting support.

This general balancing weights framework allows:

• Tailoring the estimand to specific policy-relevant subpopulations,

• Reducing variance through optimal weighting,

• Mitigating instability from poor overlap.

Summary Finite-sample inefficiencies, fragile overlap, and rigid weighting motivate
a transition from simple IPW to more flexible, robust balancing approaches.

The balancing weights perspective generalizes IPW, providing a foundation for
robust, efficient causal effect estimation.

12.6 AIPW and Double Robustness

The limitations of plug-in IPW estimators and the instability induced by poor overlap
motivate the search for more robust causal estimators. One of the most influential de-
velopments in this direction is the Augmented Inverse Propensity Weighting (AIPW)
estimator, which combines propensity score weighting and outcome regression adjust-
ment into a unified framework.

The AIPW estimator belongs to the broader class of doubly robust estimators —
estimators that achieve consistency if either the propensity score model or the outcome
model is correctly specified, but not necessarily both.

151

Lecture Notes AI for Business Research

Definition and Intuition Given ê(Xi), the estimated propensity score and µ̂w(Xi),
the estimated conditional mean outcome for treatment w ∈ {0, 1}, the AIPW estimator
for the Average Treatment Effect (ATE) is defined as:

τ̂AIPW =
1
n

n

∑
i=1

[(
Wi

ê(Xi)
− 1−Wi

1− ê(Xi)

)
(Yi − µ̂Wi(Xi)) + µ̂1(Xi)− µ̂0(Xi)

]
.

The structure of AIPW reflects two adjustment channels:

• The first term uses inverse propensity weighting to balance residuals (outcome
deviations from model predictions).

• The second term adjusts differences in modeled potential outcomes directly.

This construction ensures that even if one model is misspecified, the other can “cor-
rect” the bias, offering a powerful layer of protection.

Double Robustness: Why It Matters The double robustness property states that if
either the outcome model µ̂w(X) is correctly specified, or the propensity score model
ê(X) is correctly specified (but not necessarily both), then τ̂AIPW remains consistent for
τ.

This offers an empirical advantage:

• Researchers often do not know which model — the treatment assignment or the
outcome process — is easier to approximate.

• Double robustness allows them to hedge against potential model misspecifica-
tion.

Moreover, if both models are correctly specified, the AIPW estimator attains the
semiparametric efficiency bound — achieving the lowest possible asymptotic vari-
ance among regular estimators.

Hidden Assumptions: Potential Violations of SUTVA While AIPW offers robust-
ness against model misspecification, it still relies fundamentally on key assumptions
from the Rubin Causal Model (RCM), particularly the Stable Unit Treatment Value
Assumption (SUTVA).

Recall that SUTVA includes two components:

• No interference: One unit’s treatment assignment does not affect another unit’s
potential outcomes.

152

Lecture Notes AI for Business Research

• Consistency: The potential outcome under treatment assignment Wi = w corre-
sponds exactly to the observed outcome when Wi = w.

In applying AIPW, violations of SUTVA may occur subtly but importantly:

• Violation of No Interference: In settings with network interactions, spillovers,
or contagion effects (e.g., social networks, public health interventions), an indi-
vidual’s outcome may depend on other individuals’ treatment statuses.

• Violation of Consistency: If treatments are not consistently defined across units
— for instance, heterogeneous implementation of ”the same” intervention —
then Yi(Wi) may not represent a stable, well-defined potential outcome.

Thus, while AIPW protects against modeling risks, it does not protect against struc-
tural violations of the causal framework itself. When SUTVA fails, even a correctly
specified propensity score or outcome model may not recover valid causal estimates.

Summary

• AIPW achieves double robustness by combining outcome regression and propen-
sity weighting.

• It remains consistent if either model is correctly specified and is semiparametri-
cally efficient if both are correct.

• However, AIPW still relies critically on foundational causal assumptions like
SUTVA.

• Empirical applications must carefully assess whether interference, heterogeneous
treatments, or other violations of SUTVA may threaten identification.

Understanding these structural assumptions is crucial before applying AIPW in
practice.

12.7 The Notebooks

• The notebook IPW vs AIPW illustrates the comparison between IPW and AIPW
to estimate the ATE under the unconfoundedness and overlapping conditions.

153

https://colab.research.google.com/drive/1FY9pPX_Rl4Lb1W7-XJNYwzbK5UT62a6u

Lecture Notes AI for Business Research

13 Double Machine Learning

13.1 From Classical Designs to Modern Data Environments

In the preceding sections, we have revisited the power of randomized controlled tri-
als (RCTs) and explored how modern causal inference builds upon this foundation
through the Rubin Causal Model (RCM), regression adjustment, inverse probability
weighting (IPW), and doubly robust estimators such as AIPW.

These tools offer considerable robustness and transparency under structured de-
signs and moderate-dimensional covariate spaces. However, contemporary data en-
vironments increasingly challenge the assumptions that underpin classical methods.
In many real-world applications:

• The covariate space X is high-dimensional or even infinite-dimensional (e.g.,
text, image, or behavioral traces),

• Treatment assignment may depend on complex, nonlinear interactions that defy
parametric modeling,

• The overlap condition(OC) may only hold in sparse or irregular regions of co-
variate support.

The intersection of machine learning (ML) and causal inference has therefore gar-
nered growing attention. Yet, applying ML tools directly to causal problems is far from
straightforward. As noted by Athey and Imbens (2016), cross-validation — a standard
technique for hyperparameter tuning — cannot be reliably applied to causal estimands
due to the fundamental unobservability of counterfactuals.

Moreover, strong predictive performance on propensity scores or potential out-
comes does not imply valid estimation of causal effects. As emphasized by Belloni
et al. (2014, 2016), regularized ML methods, such as Lasso, may introduce additional
bias if post-selection inference is not handled properly, especially in high-dimensional
settings.

These concerns are compounded by longstanding identification challenges in causal
inference, including unmeasured confounding, lack of common support, and covari-
ate imbalance. Crucially, ML cannot magically solve these problems — rather, it must
be carefully integrated within causal inference frameworks.

In response, the Double Machine Learning (DML) framework has emerged as a
principled solution. DML blends the flexibility of modern machine learning with for-
mal guarantees from semiparametric theory. Specifically, it enables valid inference on

154

Lecture Notes AI for Business Research

causal parameters in the presence of high-dimensional covariates and complex nui-
sance structures by constructing orthogonal (or “locally insensitive”) estimating equa-
tions that mitigate the impact of first-stage errors (Belloni et al., 2014, 2016).

Compared to other domains of business and social science research, this remains a
highly active and rapidly evolving area of methodological innovation.

In these high-dimensional and data-adaptive environments, two central questions
arise:

1. How can we estimate nuisance components — such as outcome regressions µw(X)

and propensity scores e(X) — flexibly using ML methods?

2. How can we ensure that causal effect estimators remain statistically valid, with
root-n consistency and valid confidence intervals, even when ML methods intro-
duce regularization bias or complex overfitting patterns?

These questions motivate a shift from traditional plug-in estimators toward frame-
works that combine flexible function estimation with statistical orthogonality and de-
biasing.

Double Machine Learning (DML) offers a general framework for estimating treat-
ment effects using machine learning methods, by leveraging the idea of Neyman or-
thogonality.

In classical causal inference, consistent estimation typically requires modeling con-
ditional expectations such as the outcome regression µw(X) = E[Y | W = w, X] and
the propensity score e(X) = P[W = 1 | X]. Traditional econometric approaches
rely on strong parametric assumptions — such as linearity or additive separability —
which, if misspecified, can lead to substantial bias.

By contrast, DML frameworks allow these functions to be learned flexibly from
data using high-capacity machine learning algorithms. In doing so, DML sidesteps
the need for strict functional form assumptions, while still enabling valid inference.

The DML approach is grounded in three key principles:

• Orthogonal Estimating Equations: The causal parameter (e.g., the ATE or the
treatment effect in a partially linear model) is defined via a moment condition
that is locally insensitive to small errors in the estimated nuisance functions. Known
as Neyman orthogonality, it ensures that errors in ê(X) or µ̂w(X) only affect the es-
timator’s variance — not its bias — to first order.

• Sample Splitting and Cross-Fitting: To avoid overfitting, DML splits the sam-
ple into folds. Nuisance parameters are estimated on one fold and then used
to construct orthogonal scores on a different fold. This procedure ensures the

155

Lecture Notes AI for Business Research

independence between the estimated nuisance functions and the target moment
equations.

• Asymptotic Validity Under Weak Rates: Unlike classical methods, which often
require n−1/2-rate convergence of all components, DML only requires the prod-
uct of nuisance function errors to converge faster than n−1/2. In particular, DML
remains valid when the nuisance functions converge at rates as slow as n−1/4 in
mean squared error (MSE) norm — a common scenario for flexible nonparamet-
ric or ML models.

Formally, DML requires:

• Satisfying some regularity conditions analogous to those in AIPW (e.g., overlap,
SUTVA).

• That the ML estimators of the nuisance functions converge in L2 or RMSE norm
at a rate of o(n−1/4), slower than the parametric o(n−1/2) rate, but sufficient to
preserve root-n consistency for the target parameter via orthogonalization.

What does DML deliver?

• Root-n consistent estimators of treatment effects — converging to the true value
at rate O(n−1/2).

• In frequentist terms, this implies that the estimator is asymptotically normal, al-
lowing us to construct valid confidence intervals and conduct inference, even
when ML-based nuisance functions are used.

This yields a powerful and generalizable approach to causal inference under com-
plex and high-dimensional data structures.

We then turn to a concrete instance of the DML framework in the main part of this
section:

- On Partial Linear Model(PLM): This is built on the seminal work of Robinson
(1988) which introduces root-n consistent estimation in semiparametric models;

- Then we have a birdview on the DML framework which formalizes this us-
ing Neyman orthogonality and sample-splitting techniques(Chernozhukov et al.,
2018);

- Lastly, we would go over a recent work(Farrell et al., 2021) which further extends
this approach using deep neural networks for inference under high complexity.

156

Lecture Notes AI for Business Research

13.2 Partial Linear Model

13.2.1 Impact of Confounders on Causal Effect Identification

To illustrate the core ideas of the Double Machine Learning (DML) framework, we
adopt the Partially Linear Model (PLM) as a canonical example. This semiparametric
model helps clarify:

• Why machine learning is essential in flexibly estimating nuisance functions;

• How statistical theory ensures valid inference even under complex data-generating
processes.

Motivation. The presence of unobserved confounding variables fundamentally compli-
cates the identification of causal effects. Without further assumptions — such as in-
strumental variables or structural modeling — causal effects cannot be point-identified
in the presence of unobserved confounding.

To circumvent this, the PLM framework assumes selection on observables: all relevant
confounders are captured by the observed covariates X. Under this condition, we can
proceed to estimate causal effects using regression-based adjustments.

Model Specification. The PLM assumes the following structural equations:

Y = Dθ0 + g0(X) + U,

D = m0(X) + V,

where:

• Y is the observed outcome;

• D is the treatment variable (binary or continuous);

• X ∈ Rp denotes a vector of observed covariates (measured confounders);

• g0(X) is a nonparametric function capturing how X affects Y;

• m0(X) captures the conditional expectation of D given X;

• U and V are mean-zero unobserved error terms;

• X can be high-dimensional, which means that dim(X) > dim(D).

157

Lecture Notes AI for Business Research

Assumptions. The key identification assumption is the conditional exogeneity of the
treatment and outcome errors:

E[U | X, D] = 0 and E[V | X] = 0.

These conditions imply:

• There is no unobserved confounding after conditioning on X;

• D is as-good-as-randomly assigned, conditional on X;

• The treatment effect θ0 can be interpreted causally under this ignorability condi-
tion.

The parameter θ0 represents the causal effect of D on Y, net of the influence of co-
variates X. Our objective is to estimate θ0 accurately and efficiently, even when g0(X)

and m0(X) are complex or high-dimensional — a challenge addressed using DML
techniques.

X

D Y

Figure 13.2.1. Partially Linear Model (PLM) Causal Diagram. The outcome Y de-
pends linearly on treatment D and nonparametrically on covariates X. Covariates X
also influence the treatment variable D. More complicated version see Chernozhukov
et al. (2024a).

13.2.2 Neyman Orthogonality: A Pillar of Double Machine Learning

A central innovation in the Double Machine Learning (DML) framework is the use
of Neyman orthogonality to mitigate the impact of regularization and overfitting bi-
ases when estimating treatment effects in the presence of high-dimensional nuisance
parameters (Chernozhukov et al., 2018; Belloni et al., 2014).

In the context of partial linear models (PLM), recall our objective is to estimate a
low-dimensional parameter θ0 in the presence of complex nuisance functions η0 =

(g0, m0), where:
Y = Dθ0 + g0(X) + U, D = m0(X) + V,

158

Lecture Notes AI for Business Research

with zero conditional mean assumptions:

E[U | X, D] = 0, E[V | X] = 0.

The Neyman Orthogonality Condition. To ensure robustness of θ̂0 to small estima-
tion errors in the nuisance components g0(X) and m0(X), DML constructs estimators
based on orthogonal (or locally insensitive) moment conditions. Specifically, define
the score function:

ψ(W; θ, η) = (D−m(X)) · (Y− g(X)− (D−m(X)) θ) ,

where W = (Y, D, X) and η = (g, m) are nuisance functions.
The Neyman orthogonality condition requires that the Gateaux derivative of the

score with respect to η vanishes at the true nuisance parameter η0:

∂ηE [ψ(W; θ0, η)]
∣∣
η=η0

= 0. (29)

This condition ensures that ψ(W; θ0, η) is locally insensitive to first-order errors in
the estimation of η0. As a result, the plug-in estimator of θ0 remains robust to small
perturbations in ĝ(X) and m̂(X).

Why Orthogonality Matters. In high-dimensional or nonparametric settings, nui-
sance estimators typically converge at slower rates (e.g., n−1/4). Without orthogonal-
ity, such convergence would contaminate the consistency and efficiency of the target
parameter θ0. Neyman orthogonality guarantees that the slower convergence of η̂

does not inflate the asymptotic bias of θ̂0.
Thus, under mild regularity conditions:

√
n(θ̂0 − θ0)

d−→ N (0, σ2),

even when ĝ(X) and m̂(X) are estimated using machine learning algorithms.
This orthogonality-based debiasing approach was first formalized in classical statis-

tics by Neyman (1959) and has been extensively developed for high-dimensional econo-
metrics in Chernozhukov et al. (2018).

Connection to Residual-on-Residual Regression. This orthogonality condition also
underlies the residual-on-residual regression representation commonly used in DML.

159

Lecture Notes AI for Business Research

In this formulation, V̂i = Di − m̂(Xi) and Ûi = Yi − ĝ(Xi) are used to estimate:

θ̂0 =

(
1
n

n

∑
i=1

V̂2
i

)−1(
1
n

n

∑
i=1

V̂iÛi

)
,

which enjoys orthogonal score construction by design.

Neyman orthogonality thus serves as the foundation for achieving valid statistical
inference in the high-dimensional ML-integrated causal inference environment. Due
to the core functionality it serves in the modern causal inference advancement, we will
frequently see the concept in the following paragraphs.

13.2.3 Why Machine Learning Alone Is Not Sufficient in PLM

Although the above specification of Partially Linear Model (PLM) assumes that all
confounders X are observed (i.e., CIA holds), this does not mean that we can naively
use machine learning (ML) to estimate the causal parameter θ0. Even if we accurately
estimate the nuisance functions g0(X) and m0(X), this alone does not guarantee valid
inference for θ0.

As noted by Chernozhukov et al. (2024a), ML-based plug-in methods encounter
two primary sources of bias:

• 1. Regularization Bias. ML models typically use regularization to avoid overfit-
ting, but this induces bias in the estimated functions ĝ0(X) and m̂0(X). If this bias
is not appropriately corrected, it will contaminate the estimation of θ0, leading
to inconsistent or asymptotically biased estimators. Even popular regularized
methods like Lasso suffer from this issue if post-selection bias is not addressed
(Belloni et al., 2016).

• 2. Overfitting Bias. ML models often overfit the data used to train them. When
the same data is used both to estimate ĝ0(X) and to compute θ̂0, residuals will
be correlated with the estimated nuisance functions. This violates orthogonality
and inflates the variance of θ̂0, undermining root-n consistency.

Naı̈ve Plug-in Estimation Fails A seemingly natural approach is to fit ĝ0(X) using
an ML method, and then plug this into a linear residual regression:

θ̂0 =

(
1
n

n

∑
i=1

D2
i

)−1(
1
n

n

∑
i=1

Di(Yi − ĝ0(Xi))

)
.

However, this estimator is generally not root-n consistent. The estimation error
from ĝ0(X) enters the score function directly, and since the moment condition is not
orthogonal, even small errors in ĝ0(X) can bias θ̂0. Formally:

160

Lecture Notes AI for Business Research

√
n(θ̂0 − θ0) ̸

d→ N (0, ·).

Double Machine Learning as a Solution Double Machine Learning (DML) ad-
dresses these issues using two key innovations:

• Neyman Orthogonality. Instead of using a standard plug-in score, DML constructs
an orthogonal moment condition—one that is locally insensitive to first-order
perturbations in the nuisance parameters. For example, the score function in an
AIPW-style estimator takes the form:

ψ(Wi; θ, η) = (Di − m̂0(Xi)) · (Yi − ĝ0(Xi)− (Di − m̂0(Xi))θ) , η = (g, m)

which satisfies:
∂

∂η
E[ψ(Wi; θ, η)]

∣∣∣∣
η=η0

= 0.

This property ensures that small estimation errors in the nuisance functions ĝ0(X)

and m̂0(X) do not affect the first-order behavior of θ̂0.

• Cross-fitting. To mitigate overfitting, DML uses sample splitting: it estimates
ĝ0(X) and m̂0(X) on one subset of the data, and then uses those estimates to
compute θ̂0 on a disjoint subset. This ensures that residuals are independent of
the nuisance function estimates, reinforcing orthogonality and stability.

We will now move to the details of these two sources of bias.

13.2.4 Regularization Bias

For the above PLM specification, a natural idea is to estimate the nuisance function
g0(X) using a machine learning method, and then regress the residual outcome Y −
ĝ0(X) on the treatment D. This yields the plug-in estimator:

θ̂0 =

(
1
n ∑

i∈I
D2

i

)−1(
1
n ∑

i∈I
Di(Yi − ĝ0(Xi))

)
, (30)

where I indexes the main estimation fold in a sample-splitting scheme.
However, as detailed by Chernozhukov et al. (2024a), this naive estimator can suf-

fer from regularization bias, which arises because the estimated nuisance function
ĝ0(X) typically converges to g0(X) only at a slow rate, say n−φg with φg < 1/2.

161

Lecture Notes AI for Business Research

This slow convergence translates into non-negligible bias in the estimation of θ0:

√
n(θ̂0 − θ0) = b + oP(1),

where the bias term b is given by:

b =
(

E[D2]
)−1 1√

n ∑
i∈I

m0(Xi) (g0(Xi)− ĝ0(Xi)) .

This expression shows that unless ĝ0(X) converges faster than n−1/4, the bias will
dominate the

√
n scaling and render the estimator inconsistent for inference.

Orthogonality as the Solution. To overcome this challenge, we exploit the concept of
Neyman orthogonality: by constructing moment equations that are locally insensitive
to small errors in the nuisance functions, we eliminate the first-order bias in θ̂0 due to
regularization.

Formally, an orthogonal score satisfies:

∂

∂η
E[ψ(W; θ, η)]

∣∣∣∣
η=η0

= 0,

ensuring that even if the nuisance estimates ĝ0, m̂0 are imperfect, as long as they con-
verge at a rate faster than n−1/4, inference on θ0 remains valid.

Frisch–Waugh–Lovell (FWL) Theorem. This idea is not new—it was already embed-
ded in the residualization structure of Robinson (1988)’s partially linear estimator and
formalized as a geometric result in the Frisch–Waugh–Lovell (FWL) Theorem. The
FWL theorem states that in a linear model:

Y = β0 + β1D + β2X + U,

the coefficient β1 can be obtained by:

1. Regressing D on X and taking residuals D̃ = D− D̂;

2. Regressing Y on X and taking residuals Ỹ = Y− Ŷ;

3. Regressing Ỹ on D̃ via OLS.

This “residual-on-residual” regression is equivalent to partialling out X before esti-
mating β1.

Robinson (1988)’s Innovation on FWL. Replace steps 1-2 with some non-parametric
regression. Specifically, he does kernel regression in steps 1-2, then do linear regression
over step 3.

162

Lecture Notes AI for Business Research

Chernozhukov et al. (2018)’s Similar Innovation. The goal is to partial out the effect
of X from both Y and D, yielding an orthogonalized estimating equation for θ0:

• Predict D using any n1/4-consistent ML method to obtain m̂0(X).

• Predict Y using another ML method to obtain ĝ0(X).

• Form residuals: Ṽi = Di − m̂0(Xi) and Ũi = Yi − ĝ0(Xi).

• Estimate θ0 by regressing Ũi on Ṽi:

θ̂0 =

(
1
n

n

∑
i=1

Ṽ2
i

)−1(
1
n

n

∑
i=1

ṼiŨi

)
. (31)

As shown in Chernozhukov et al. (2018), the
√

n-scaled estimation error admits the
decomposition: √

n(θ̂0 − θ0) = a∗ + b∗ + c∗,

where:

a∗ =
(

E[V2]
)−1 1√

n

n

∑
i=1

ViUi, (mean-zero, asymptotically normal),

b∗ =
(

E[V2]
)−1 1√

n

n

∑
i=1

(m̂0(Xi)−m0(Xi))(ĝ0(Xi)− g0(Xi)),

c∗ → 0 if we use cross-fitting.

The bias term b∗ is second-order if both ML estimators converge at rate n−1/4 or
faster. The c∗ term vanishes when the sample used to estimate the nuisance compo-
nents is disjoint from the sample used to estimate θ0—achieved through cross-fitting.

Simulation Evidence. Figure 13.2.2 from Chernozhukov et al. (2018) compares the em-
pirical distribution of θ̂0 from DML versus the naive plug-in approach:

• The non-orthogonal estimator exhibits bias and poor approximation to normal-
ity.

• The orthogonalized DML estimator is centered and asymptotically normal.

163

Lecture Notes AI for Business Research

Figure 13.2.2. DML vs Naive Plug-in: Histograms of Estimators in Simulation (from
Chernozhukov et al. (2018))

Orthogonalization as Instrumental Variable (IV). Another interpretation of orthog-
onalization is to view it as constructing an instrumental variable for treatment D
(Chernozhukov et al., 2018). Specifically, the residualized regressor V̂i = Di − m̂0(Xi)

is orthogonal to the error in the regression of Y on g0(X) but still correlated with Di.
Thus, the DML estimator:

θ̂0 =

(
1
n

n

∑
i=1

V̂iDi

)−1(
1
n

n

∑
i=1

V̂i(Yi − ĝ0(Xi))

)

can be interpreted in the spirit of a two-stage least squares estimator, analogous to the
classical IV estimator:

β̂IV = (Z⊤D)−1Z⊤Y,

with Zi = V̂i playing the role of the instrument.

13.2.5 Overfitting Bias

To further ensure statistical validity in high-dimensional or flexible ML settings, DML
applies cross-fitting — a special form of sample splitting.

Let I be the index set used to estimate ĝ0, m̂0 and Ic be the sample used to estimate
θ0. The DML estimator becomes:

θ̂0 =

(
1
n ∑

i∈Ic
V̂iDi

)−1(
1
n ∑

i∈Ic
V̂i(Yi − ĝ0(Xi))

)
.

This construction ensures that the nuisance estimates ĝ0(X) and m̂0(X) are inde-
pendent of the sample used to estimate θ0, breaking the dependency between the re-

164

Lecture Notes AI for Business Research

gression targets and the estimated nuisance functions. The bias decomposition be-
comes: √

n(θ̂0 − θ0) = a∗ + b∗ + c∗,

where:

• a∗ is asymptotically normal.

• b∗ vanishes under sufficient convergence rate of ML estimators.

• c∗, the overfitting bias, vanishes when using cross-fitting.

Formally, the problematic term is:

1√
n

n

∑
i=1

Vi(ĝ0(Xi)− g0(Xi)),

which does not converge to zero if the same data is used for both training and estima-
tion. However, under sample splitting:

1√
n ∑

i∈Ic
Vi(ĝ0(Xi)− g0(Xi))

p→ 0,

because Vi is independent of ĝ0(Xi) by construction, and 1
n ∑i(ĝ0(Xi)− g0(Xi))

2 → 0
under standard ML consistency conditions.

Figure 13.2.3 from Chernozhukov et al. (2018) contrasts full-sample and split-sample
estimation:

• The full-sample approach exhibits severe bias and deviation from asymptotic
normality due to overfitting.

• The split-sample estimator is centered and closely follows the theoretical normal
distribution.

165

Lecture Notes AI for Business Research

Figure 13.2.3. Comparison of DML Estimators: Full Sample vs Split Sample (from
Chernozhukov et al. (2018))

Cross-Fitting to Improve Sample Efficiency. While sample splitting mitigates over-
fitting bias, it also reduces the effective sample size for estimating treatment effects. To
overcome this limitation, the DML framework adopts cross-fitting, which generalizes
sample splitting in a data-efficient way (Chernozhukov et al., 2018))

Cross-fitting proceeds as follows:

1. Randomly partition the dataset into two subsets.

2. Train ML models ĝ0,1 and m̂0,1 in the first subset.

3. Compute the estimate θ̂0,1 in the second subset using those trained functions.

4. Reverse the roles: train ĝ0,2 and m̂0,2 on the second subset and estimate θ̂0,2 in the
first.

5. Average the two estimates: θ̂0 = 1
2(θ̂0,1 + θ̂0,2).

This procedure reduces bias while restoring estimation efficiency. The method is
naturally generalizable to K-fold cross-fitting, allowing the full data to be reused for
both training and estimation.

For partial linear models, standard errors can be computed using stratified estima-
tors. For general DML, robust variance estimators are derived in Chernozhukov et al.
(2018).

13.2.6 Literature

DML in Action: Practical Guidelines and Empirical Impact. Recent efforts in ap-
plied economics and information systems have introduced frameworks for applying

166

Lecture Notes AI for Business Research

DML in practice. Shi et al. (2024) provide a guide for applied researchers, illustrating
the empirical logic, assumptions, and implementation steps in an accessible format.

Their research commentary highlights:

• Promotion of DML in business and information systems research.

• Demonstrations in classical models: OLS, IV, DiD, and treatment effects mod-
els.

• Clarification of misconceptions: e.g., incorrect interpretation of machine learn-
ing predictions as causal effects.

This “empiricist’s guide” clarifies how DML retains robustness under complex co-
variate structures, especially when traditional models would suffer from omitted vari-
able bias or inefficient functional form assumptions.

Case Study: Labor Supply Elasticity with Monopsony. A powerful empirical illus-
tration of DML is given by Dubé et al. (2023), who estimate labor supply elasticity in
online gig markets.

In their partial linear model setup, wage (the treatment D) affects labor supply (the
outcome Y), controlling for high-dimensional covariates Z (e.g., geography, worker
attributes). They adopt the standard DML estimator:

(1) log(earnings) = m0(Z) + θ · log(wage)+ ε, E[ε|Z] = 0, (32)

(2) θ̂ =

(
1
n ∑ V̂2

i

)−1

·
(

1
n ∑ V̂iÛi

)
, (33)

where V̂i and Ûi are residuals from regressing D and Y on Z.
Their results, supported by follow-up experiments, validate the DML framework’s

robustness in identifying elasticities that are difficult to estimate in standard regression
settings.

Case Study: Mobile Payment Adoption and Credit Card Usage. Xu et al. (2023) in-
vestigate the causal impact of adopting Alipay, a prominent mobile payment platform,
on consumers’ credit card usage behavior. Utilizing a unique dataset from a leading
Asian bank, they analyze credit card transactions before and after customers adopt
Alipay’s mobile payment services.

Specifically, their study implements DML in the context of a partially linear model
in the aforementioned specification, where

• Yi denotes the outcome variable (e.g., credit card transaction amount),

• Di represents the treatment indicator (Alipay adoption),

167

Lecture Notes AI for Business Research

• Xi is a vector of high-dimensional covariates,

• g0(·) and m0(·) are unknown nuisance functions,

• εi and νi are error terms.

The DML procedure involves the following steps:

1. Nuisance Estimation: Employ machine learning algorithms (e.g., random forests,
boosting) to estimate the nuisance functions ĝ0(Xi) and m̂0(Xi).

2. Orthogonalization: Compute residuals;

3. Estimation: Regress Ỹi on D̃i to obtain an estimate of the treatment effect θ0.

This orthogonalization ensures that the estimation of θ0 is robust to errors in the
nuisance function estimations, provided these errors converge sufficiently fast.

They find that

• Increased Credit Card Activity: Post-adoption, customers exhibit a 9.4% in-
crease in total credit card transaction amounts and a 10.7% increase in transaction
frequency at the focal bank.

• Enhanced Customer Loyalty: The adoption of Alipay reduces customer churn,
indicating improved loyalty to the bank.

• Channel Substitution and Complementarity: Alipay serves as a substitute for
physical card payments in offline channels and complements PC-based online
payments, suggesting a shift in consumer payment behavior.

Case Study: Reputation and Persuasion in Online Debates. Manzoor et al. (2023)
examine the causal impact of reputation on the success of persuasion in large-scale on-
line deliberation. Using a seven-year panel of over one million debates from a struc-
tured argumentation platform, the authors focus on isolating the ethos effect — the
persuasive power of a speaker’s reputation, independent of the content and quality of
the argument.

To credibly identify the causal effect of reputation, the study confronts two empir-
ical challenges:

1. Unobserved confounding(A) due to latent speaker characteristics (e.g., inherent
eloquence or social status).

2. High-dimensional control variables(X) embedded in argument text, which are se-
mantically rich but unstructured.

168

Lecture Notes AI for Business Research

The authors resolve these using a two-stage estimation strategy grounded in the
Double Machine Learning (DML) framework:

• They construct an instrument(Z) for reputation based on exogenous variation
from past debate competition dynamics.

• They model the unstructured argument content using pretrained transformer-
based neural language models, extracting contextualized embeddings.

• They apply DML to estimate the treatment effect of reputation on persuasion,
orthogonalizing out high-dimensional linguistic controls.

X

Z D Y

A

Figure 13.2.4. Causal Graph for Manzoor et al. (2023), with IV

Case Study: Advertising Measurement at Scale on Facebook. Gordon et al. (2023)
explore whether double machine learning (DML) and stratified propensity score matching
(SPSM, see last section) can recover randomized controlled trial (RCT) estimates of ad
effectiveness in large-scale observational data collected on Facebook.

The authors leverage a dataset of 663 large-scale experiments conducted by Face-
book, featuring over 5,000 user-level features. They benchmark DML and SPSM against
ground-truth experimental results across advertising funnel stages.

Their results show significant limitations:

• Median RCT lift is 20%, 18%, and 5% across upper, mid, and lower funnel out-
comes.

• However, using DML (with SPSM), the median bias in recovered estimates is
83%, 58%, and 24%, respectively—indicating substantial deviations from exper-
imental benchmarks.

They conclude that even SOTA learning methods like DML cannot reliably esti-
mate causal effects in this context due to multiple failures in underlying assumptions

169

Lecture Notes AI for Business Research

(e.g., unconfoundedness, overlap). The implication is that observational methods,
even when enhanced with modern causal ML frameworks, struggle to replicate ex-
perimental results in digital advertising settings.10

This study exemplifies the limits of DML in high-stakes applied field contexts and
emphasizes the need for rigorous experimental validation.

Reliability of DML Estimators. Recent advances in DML have provided researchers
with powerful tools to perform valid causal inference in high-dimensional and com-
plex observational settings. However, as field applications grow, the credibility and
robustness of these methods require careful empirical validation.

Fuhr et al. (2024) offer such an evaluation by comparing DML with a suite of tra-
ditional and modern estimators across simulations and real-world settings, including
estimating the effect of air pollution on housing prices. Their findings reveal two key
insights:

• DML estimates are consistently larger than those from less flexible methods like
OLS, reflecting its capacity to adjust for complex, nonlinear confounding.

• Despite its flexibility, the performance of DML still hinges on standard identifi-
cation assumptions (e.g., unconfoundedness), and it is sensitive to choices like
cross-fitting, model tuning, and sample size.

Overall, while DML holds promise for empirical research in economics, market-
ing, and information systems, its application must be accompanied by transparency,
careful diagnostics, and robustness checks. The method’s strength lies in its balance
between modern ML techniques and rigorous causal identification strategies.

13.3 Generic Framework of DML

In the preceding sections, we introduced the concept of Neyman orthogonality, high-
lighting its role in addressing regularization bias by constructing score functions that
are robust to small estimation errors in high-dimensional nuisance components. This
sets the stage for moving beyond the illustrative Partial Linear Model (PLM) and to-
ward a more general and unified framework for Double Machine Learning (DML).

While the PLM provides a valuable baseline for understanding DML’s mechan-
ics, it imposes a separable structure between the treatment D and covariates X, and
assumes linear effects for the target parameter θ0. Many practical applications involve:

• More complex causal relationships not captured by linear models,

10Echoing the in-class question:Which of the assumptions for DML are violated in the FB observa-
tional data?

170

Lecture Notes AI for Business Research

• Flexible treatment or instrument functions,

• High-dimensional or non-tabular data structures (e.g., text, images).

Therefore, in this part, we introduce a more general DML framework, retaining the
same three methodological pillars:

1. Score Function Construction: Define an orthogonal score ψ(W; θ, η) that satis-
fies the Neyman orthogonality condition:

∂ηE[ψ(W; θ, η)]
∣∣
η=η0

= 0.

2. Sample Splitting and Cross-Fitting: Use disjoint subsamples for nuisance pa-
rameter estimation and target parameter estimation to remove overfitting bias.

3. Machine Learning for Nuisance Estimation: Allow η̂0 (e.g., outcome regression
µw(X) and propensity score e(X)) to be estimated using arbitrary ML methods,
subject to mild convergence rate assumptions.

13.3.1 Revisiting Neyman Orthogonality

As a general framework, we consider DML estimation and inference for some low-
dimensional target parameter θ0 based upon the empirical analog of the moment con-
dition, or its score function:

E[ψ(W; θ0; η0)] (34)

We resume from the questions:

• Why does Neyman orthogonality solve the regularization bias?

- Neyman orthogonality solves regularization bias by ensuring that small errors
in estimating nuisance functions (e.g., outcome models or propensity scores)
have only a second-order effect11 on the estimation of the target parameter θ0.
Such that, it makes the moment condition (or score function) locally insensitive
to estimation error in the nuisance parameters η. So even if η̂ is biased due to
regularization (as in Lasso or random forests), the bias does not propagate to θ̂0

at first order—preserving consistency and root-n inference.

If the score function used to estimate θ0 satisfies Neyman orthogonality—that
is, the first-order derivative of the expected score function with respect to the

11A second-order effect means the impact of an error is quadratically small—that is, if the error in
estimating the nuisance function η̂ is of order ε, then the resulting error in the target parameter θ̂ is of
order ε2.

171

Lecture Notes AI for Business Research

η̂0

η̂0

η0

Small bias o(n−1/2) Large bias o(n−1/4)

Figure 13.3.1. Neyman Orthogonality on Regularization Bias

nuisance parameter is zero at the true value—then the influence of nuisance es-
timation error enters only as a second-order effect.

This means even when η̂0 is not very close to η0 (i.e., in the ”large bias” green
region with convergence rate o(n−1/4)), the bias in θ̂0 remains small enough that
θ̂0 can still be root-n consistent and asymptotically normal.

In summary, Neyman orthogonality decouples the estimation of the treatment
effect from small errors in nuisance parameters. It makes the bias from estimat-
ing η̂ a second-order effect, which decays fast enough to preserve root-n consis-
tency.12

• How it could work to eliminate the overfitting bias?

Overfitting occurs when the same data is used to both train and evaluate the
estimator, leading to biased score functions and invalid inference. We have the
following procedure:

1. Randomly partition the sample into K equal folds {Ik}K
k=1 of size n = N/K.

2. For each fold k, estimate nuisance parameters η̂0,k using only the comple-
ment Ic

k .

3. Evaluate the score function on Ik using η̂0,k, then aggregate:

1
K

K

∑
k=1

En,k
[
ψ(W; θ̃0, η̂0,k)

]
= 0,

and solve for the final estimator θ̃0.

This ensures that:
12Full mathy version seen in appendices.

172

Lecture Notes AI for Business Research

– The nuisance parameter estimates η̂0,k are not trained on the evaluation sample.

– This separation reduces dependency between estimation errors and score
evaluation.

– It prevents overfitting bias, preserves Neyman orthogonality, and ensures
root-n consistency of θ̃0 under weak conditions.

13.3.2 Beyond PLM: Double Machine Learning in Interactive Regression Models

Having introduced the core idea of Neyman orthogonality, which ensures that the
estimation of nuisance parameters does not contaminate the target parameter estimate
at the root-n rate, we now extend our scope to more general frameworks. One such
important generalization is the Interactive Regression Model (IRM), which is capable of
capturing heterogeneous treatment effects.

Setup. In the IRM framework, the observed outcome Y depends on both treatment
D ∈ {0, 1} and covariates X, through a potentially nonlinear interaction function
g0(D, X). The treatment itself may depend on covariates through a propensity score
m0(X). Formally, the model takes the form:

Y = g0(D, X) + ε, E[ε | D, X] = 0,

D = m0(X) + D̃, E[D̃ | X] = 0.

Target parameter. The parameter of interest is the average predictive effect (APE):

θ0 = E[g0(1, X)− g0(0, X)],

which coincides with the average treatment effect (ATE) under conditional exogeneity.

Estimation challenge. Since g0 and m0 are unknown and can be high-dimensional
or nonparametric, machine learning tools are naturally suited for estimating them.
However, this introduces regularization bias and the risk of overfitting.

DML Solution. To tackle these issues, the DML approach introduces:

• Orthogonal score functions: Defined to be insensitive to small errors in the nui-
sance function estimates ĝ, m̂, ensuring second-order bias control.

• Sample splitting and cross-fitting: Training nuisance functions on one fold and
evaluating the score on another to eliminate overfitting bias.

173

Lecture Notes AI for Business Research

Score function. A typical orthogonal moment function used in IRM-based DML for
ATE is:

ψ(W; θ, η) := (g(1, X)− g(0, X)) +
D(Y− g(1, X))

m(X)
− (1− D)(Y− g(0, X))

1−m(X)
− θ

where η = (g, m), η0 = (g0, m0).

Key step. Thanks to the Neyman orthogonality condition

∂ηE[ψ(W; θ0, η)]
∣∣
η=η0

= 0,

the DML estimator of θ0 remains root-n consistent even if the nuisance components
ĝ, m̂ converge only at slower rates (e.g., n−1/4 in L2 norm).

Reference. For a detailed theoretical treatment and empirical demonstration of this
framework, see Chapter 9.3 of Chernozhukov et al. (2024b), where the IRM-DML
method is formally introduced and analyzed.

13.3.3 Bias, Variances via Neyman Orthogonality

A central insight of the Double Machine Learning (DML) framework is that causal esti-
mators constructed from Neyman orthogonal score functions are naturally equipped
with bias correction mechanisms. This idea has been formalized in both classical semi-
parametric inference and its modern ML-powered adaptations.

The key is the decomposition of the estimator into two parts:

• A naive plug-in term using estimated nuisance functions, which may be biased,

• A correction term, typically involving inverse-propensity weighting (IPW), which
offsets the bias.

Formally, for estimating the Average Treatment Effect (ATE), the Augmented In-
verse Propensity Weighting (AIPW) estimator is expressed as:

θ̂AIPW =
1
n

n

∑
i=1

[
Wi(Yi − µ̂1(Xi))

ê(Xi)
− (1−Wi)(Yi − µ̂0(Xi))

1− ê(Xi)
+ µ̂1(Xi)− µ̂0(Xi)

]
,

where ê(Xi) is the estimated propensity score, and µ̂w(Xi) are estimated outcome re-
gressions.

The last two terms constitute a *bias-correction* to the plug-in regression adjust-
ment. When the score function is orthogonal (in the Neyman sense), the impact of

174

Lecture Notes AI for Business Research

estimation errors in the nuisance functions on the treatment effect estimator is mini-
mized. This is critical because ML-based nuisance function estimators are often biased
due to regularization and overfitting.

Variance and Statistical Properties The asymptotic variance of the DML estimator
θ̂DML is given by the empirical variance of the orthogonal score:

σ̂2 =
1
n

n

∑
i=1

ψ̂2
i ,

where ψ̂i is the influence function derived from the Neyman-orthogonal moment con-
dition.

Thanks to the orthogonality, this estimator is:

• Root-n consistent,

• Asymptotically normal, under mild regularity conditions,

• Robust to slow convergence of nuisance estimates, as long as they satisfy the
o(n−1/4) convergence rate.

Connection to AIPW and General Frameworks The AIPW estimator can be inter-
preted as a special case of the DML estimator using plug-in nuisance function es-
timates combined with a bias-correction term from the IPW structure. This aligns
with results from Chernozhukov et al. (2018) and Belloni et al. (2016), who prove that
DML estimators under orthogonality and cross-fitting deliver valid inference even
with complex, high-dimensional X.

DML with Deep Learning Recent work extends this framework by integrating deep
neural networks (DNNs) for flexible estimation of nuisance components. When DNNs
achieve a convergence rate of o(n−1/4) under appropriate smoothness assumptions
(e.g., β-smoothness of the target functions), DML retains its root-n consistency (Farrell
et al., 2021).

This bias correction logic remains intact even in these nonparametric, high-dimensional
contexts, thus validating the wide applicability of DML in modern empirical research.

13.3.4 Literature

DNN and Deep Learning. Farrell et al. (2021) show that under mild smoothness
assumptions, the empirical risk minimizer for the DNN class converges uniformly
with high probability:

175

Lecture Notes AI for Business Research

Theorem 13.1 (Multilayer Perceptron Convergence). Suppose the empirical minimizer
exists, define f̂MLP ∈ arg min f∈FMLP ∑n

i=1 ℓ(f (zi)), where FMLP denotes the class of MLP

functions with ReLU activations, fixed architecture depth L, and width H ≍ n
1

2β+d log2 n.
And then, under Assumptions 1 and 2 in Farrell et al. (2021), for large n, with high prob-

ability:

∥ f̂MLP − f0∥2
L2(X) ≤ C ·

(
n−

2β
2β+d log2 n +

log n
n

)
,

where β is the smoothness of f0 and C is a constant.

Remark. The total number of parameters in such networks is W = (d+ 1)H +(L− 1)(H2 +

H) + H + 1, which can grow astronomically large.

For causal inference, the paper proposes a Neyman orthogonal score function for
the average potential outcome:

ψt(z) =
1{ti = t}

p̂t(xi)
(yi − µ̂t(xi)) + µ̂t(xi), (35)

τ̂ = En
[
ψ̂1(zi)− ψ̂0(zi)

]
, (36)

where p̂t(x) is the estimated propensity score, and µ̂t(x) the estimated outcome re-
gression (both learned via DNNs).

They prove that this estimator is root-n consistent and asymptotically normal:

√
n (τ̂ − τ)

d→ N (0, Σ),

where the variance Σ involves both outcome and propensity score estimation errors.

Semi-parametric DML with Deep Learning for Heterogeneous Effects Farrell et al.
(2020) propose a general inference framework that integrates deep learning models
into semiparametric causal estimation. Their goal is to estimate heterogeneous treat-
ment effects θ0(X) while accounting for rich, high-dimensional covariates X and main-
taining valid statistical inference.

Their setting is based on a semiparametric data-generating process (DGP) where
treatment assignment may follow complex patterns, but the structural model (e.g., the
outcome or treatment response function) is parametrically structured.

The key insight is to treat the structural parameter θ0(X) as a function-valued ob-
ject to be estimated via deep learning. The neural network is trained not to predict
outcomes directly but to minimize an orthogonalized loss associated with a moment
function that satisfies Neyman orthogonality. They organize the architecture as:

• Inputs: x1, . . . , xd representing high-dimensional covariates.

176

Lecture Notes AI for Business Research

• Hidden layers: Standard ReLU layers.

• Parameter layer: Encodes θ̂t(X) for each treatment arm t.

• Model layer: Computes outcome y from treatment t and covariates.

To ensure robust inference, they construct an orthogonal score:

ψ(w, θ, Λ) = H(x, θ(x); t∗)− H0(x, θ(x); t∗)Λ(x)−1ℓθ(y, t, θ(x)),

where
µ0 = E[H(X, θ0(X); t∗)]

and ℓθ is a smooth per-observation loss.
This score is Neyman orthogonal with respect to nuisance components Λ(x), mean-

ing small estimation errors in Λ do not affect the first-order behavior of the estimator.

• The framework automates valid inference for heterogeneous treatment effects
with DNNs.

• Achieves
√

n-consistency and asymptotic normality under minimal smoothness
assumptions.

• Integrates score-based methods (influence functions) with modern deep learning
optimizers and architectures.

Unlike standard prediction tasks, their implementation separates the parameter
layer from the loss—this allows θ0(X) to be trained via orthogonalized scores rather
than direct supervised loss minimization.

An Empiricist’s Guide to DML A recent advancement in the application of Double
Machine Learning (DML) is presented in the work of Ye et al. (2023), who propose
the DeDL (Debiased Deep Learning) framework to operationalize DML in large-scale
field experiments. Their setting addresses a practically important question: how can
we estimate the causal effect of any treatment combination when only a subset of all
possible combinations is observed?

The DeDL framework follows a four-step procedure grounded in the DML tradi-
tion but tailored for empirical scalability and treatment heterogeneity:

• Step 1: Specify the DGP. The data-generating process is modeled as

E[Y | X = x, T = t] = G(θ∗(x), t),

177

Lecture Notes AI for Business Research

where G(·, ·) is a known structural function and θ∗(x) is a high-dimensional,
individual-level parameter to be estimated. This specification allows the model
to accommodate rich heterogeneity while preserving semiparametric structure.

• Step 2: Train the DNN. The deep neural network is trained to estimate θ∗(x) by
minimizing the squared loss:

θ̂(x) := arg min
θ∈FDNN

1
n

n

∑
i=1

(yi − G(θ(xi), ti))
2 .

This approach allows for flexible treatment assignment while enforcing paramet-
ric structure on outcome modeling.

• Step 3: Derive Neyman-Orthogonal Score Functions. Using the estimated θ̂(x),
the authors construct influence functions to identify average treatment effects
(ATE) and optimal treatment rules. Let t∗ be the best treatment according to the
model, and define:

ψ(z, θ, Λ) := H(z, θ(x), t)− H0(z, θ(x); t∗)Λ(x)−1ℓθ(y, t, θ(x)),

where H is the conditional outcome model, and ℓ is the loss function. This setup
ensures orthogonality with respect to first-step estimation errors.

• Step 4: Estimation and Inference. Cross-fitting is applied to obtain a final root-n
consistent estimator:

√
n(θ̂DeDL(t)− θ(t)) d→ N (0, 1).

The DeDL procedure enables valid inference on θ(t) despite high-dimensional
nuisance estimation.

To address empirical deviations from random assignment, the authors propose
stratified sampling: the covariate space is partitioned into over 69,000 strata, with
users sampled uniformly across strata within each treatment group. This effectively
reweights the empirical design to resemble the intended randomized experiment.

Finally, DNN cross-validation error is used to monitor convergence and tuning.
In practice, the DeDL estimator significantly outperforms standard DML and semi-
debiased alternatives on measures of MSE and mean absolute percentage error (MAPE),
as demonstrated in their real-world experiments.

This framework not only operationalizes theoretical guarantees of DML but also
provides a robust empirical playbook for practitioners implementing causal inference
with deep learning.

178

Lecture Notes AI for Business Research

Figure 13.3.2. Deep Learning Architecture For DeDL

13.4 DML: Good News and Caveats

Good News. Double Machine Learning (DML) has shown particularly strong em-
pirical performance in complex settings where:

• The data generating process (DGP) G(·) is high-dimensional or nonlinear.

• There are many possible treatment combinations, as in large-scale A/B testing.

• Even with a nontrivial DNN error EX∥θ̂(X)− θ∗(X)∥2, Debiased DNN methods
like DeDL yield valid inference, provided the DGP G(·) is correctly specified.

Bad News.

• When the link function G(·) is mis-specified, DeDL can exacerbate rather than
correct the errors of the underlying DNN, leading to poor inference performance.

• Practitioners must resort to trial-and-error or cross-validation to identify a valid
DGP structure.

Recent developments generalize DeDL to nonparametric nuisance specifications, al-
lowing automated debiasing even under model ambiguity (Chernozhukov et al., 2022).
The rough idea of this work is as follows, suppose the target parameter is θ0 = E[m(W, γ)],
and . It represents the parameter of interest into one Riesz representer α0(X) andthe
conditional mean γ0(x) = E[Y|X = x] as follows,

E[α0(X)Y(X)] = θ0 for all Y such that E|Y(X)|2 < ∞,

179

Lecture Notes AI for Business Research

where α0(X) can be estimated via base functions: α̂(x) = 1
n−nt

∑i∈It [m(Wi, 1)+ b(x)ρ̂t],
where ρ̂t = arg min{−2Mtρ + ρ′Ĝtρ + 2 ∑L

j=1 |ρj|}, Mt = 1
n−nt

∑i∈It m(Wi, bi), Ĝt =
1

n−nt
∑i∈It b(xi)b(xi)

′.
With this representation, the Neyman orthogonal score function becomes:

ψ(w, θ, γ, α) = m(w, γ)− θ + α(x)[y− γ(x)].

This score delivers robustness even under complex nuisance estimation and helps
facilitate bias correction and valid standard error computation.

13.4.1 DML for Difference-in-Differences (DiD)

Recent developments apply DML to DiD frameworks(Chang, 2020), offering valid in-
ference even with high-dimensional covariates and flexible nuisance components.

Model. The data-generating process takes the form:

Yit = µ + X⊤i ζ + τ · Dit + δt + αi + εit, Dit = 1{Ti = t}

The Average Treatment Effect on the Treated (ATT) is:

θATT = E[Yit(1)−Yit(0) | Dit = 1]

The new score function for repeated cross sections data structure13 is defined as:

ψ(W, θ0, p0, λ0, η0) =
T − λ0

λ0(1− λ0)
· Y

P(D = 1 | X)
· D− P(D = 1 | X)

1− P(D = 1 | X)
− θ0 − c,

where the adjustment term c is:

c =
D− P(D = 1 | X)

λ0(1− λ0) · P(D = 1 | X) · (1− P(D = 1 | X))
× E[(T − λ0)Y | X, D = 0].

and the nuisance parameters include the unknown constants p0 = P(D = 1) and
λ0 = P(T = 1), and the unknown function:

η0 = (P(D = 1 | X), E[(T − λ)Y | X, D = 0]) = (g0, ℓ0).

13Repeated cross-sectional data consists of multiple independent cross-sections collected at different
points in time. Unlike panel data, where the same individuals are tracked over time, repeated cross-
sections draw a fresh sample in each wave, i.e., Educational Surveys which sample different groups of
students each year to assess learning outcomes. This approach allows researchers to analyze aggregate
trends over time, but it does not track individual-level changes. For further explanation, please check
the great markdown link.

180

https://bookdown.org/mike/data_analysis/sec-repeated-cross-sectional-data.html

Lecture Notes AI for Business Research

This flexible DML-DiD framework enables:

• Treatment effect estimation under panel and repeated cross-section designs.

• Robustness to flexible covariate adjustment.

• Plug-in and orthogonalized score functions for valid inference.

181

Lecture Notes AI for Business Research

13.5 The Notebooks

• The notebook FWL Theorem tests the equivalence of FWL-type regression and
the OLS regression numerically;

• The notebook DML EconML ATE implements double machine learning meth-
ods using EconML which is developed by Microsoft.

182

https://colab.research.google.com/drive/1JNTyyr2w6D74rvJRiIxLu3gEfyTQqlH4
https://colab.research.google.com/drive/1QKagJeZUgEgflTVwdM9lXVJhSiRvyhCD
https://github.com/py-why/EconML

Lecture Notes AI for Business Research

14 Heterogeneous Treatment Effects (HTE)

The study of heterogeneous treatment effects (HTE) aims to understand how and why
causal effects differ across individuals or subgroups in a population. This is in con-
trast to traditional causal inference, which focuses on estimating average treatment
effects (ATE) across an entire sample. In many real-world applications—ranging from
personalized medicine to targeted advertising to fairness-aware machine learning—it
is critical not only to know whether a treatment works on average, but for whom it
works and under what conditions. We now introduce the fundamental motivations
behind the study of HTE.

14.1 From Average Treatment Effect to Conditional Effect

14.1.1 The Classical Setup

In the Neyman–Rubin potential outcomes framework, let Y(1) and Y(0) denote the
potential outcomes under treatment and control, respectively. For each unit i, we de-
fine the individual treatment effect as:

τi = Yi(1)−Yi(0)

However, because we can never observe both Yi(1) and Yi(0) for the same unit, individual-
level causal effects are unobservable. The usual estimand becomes the average treat-
ment effect (ATE):

ATE = E[Y(1)−Y(0)]

While useful, the ATE provides only an aggregate measure. It conceals important
heterogeneity—individuals or subgroups may benefit more or less from the same in-
tervention.

14.1.2 Conditional Average Treatment Effect (CATE)

To address heterogeneity, we instead estimate the Conditional Average Treatment Ef-
fect (CATE):

τ(x) = E[Y(1)−Y(0) | X = x]

Here, X is a vector of observed covariates that capture characteristics of the unit (e.g.,
age, income, risk aversion, pre-treatment health status). The function τ(x) is known
as the heterogeneous treatment function, and estimating it lies at the heart of HTE.

183

Lecture Notes AI for Business Research

HTE for Theoretical Insight and Explanation

Moderators and Mechanisms In social science and economics, understanding why
a treatment works is often as important as whether it works. Theory frequently sug-
gests that a treatment’s effectiveness depends on observable characteristics—so-called
moderators.

For example:

• A job training program might only help low-skilled workers.

• A health campaign may be more effective for individuals with higher baseline
knowledge.

HTE analysis helps test these kinds of moderation hypotheses. It provides evidence
for causal mechanisms and refines policy targeting by identifying which subgroups
benefit most.

Empirical Goal In such settings, estimating heterogeneity is not just an auxiliary
task—it is the primary object of interest. We are concerned with identifying variables
that drive variation in treatment effects and with formally testing interactions between
treatment and covariates.

HTE estimation is an empirical route to test structural hypotheses embedded in
theoretical models.

HTE for Prescription and Personalization

Resource Allocation Under Constraints In many settings, treatments are costly, risky,
or limited in supply. Allocating them efficiently requires knowing not only the average
effect but how it varies.

Let π(x) ∈ {0, 1} be a policy function that assigns treatment based on covariates x.
Then the optimal policy (under no cost of treatment) is:

π∗(x) = I[τ(x) > 0]

This shows that estimating τ(x) accurately is crucial for optimal targeting.

Key Domains

• Personalized medicine: Should this patient receive immunotherapy based on
their genomic profile?

• Targeted marketing: Which customer segments should receive a promotion?

184

Lecture Notes AI for Business Research

• Education: Which students benefit most from a remedial program?

In all of these, heterogeneous responses are expected, and modeling them improves
outcomes.

HTE in Propensity-Score-Based Estimators

Even classical methods such as:

• Inverse Probability Weighting (IPW)

• Augmented IPW (AIPW)

• Propensity Score Matching (PSM)

• Post-stratification

implicitly condition on observed covariates. While designed for estimating the ATE,
they often produce localized estimates of CATE in areas of sufficient overlap in propen-
sity scores.

Therefore, even within conventional frameworks, HTE is already present—just not
explicitly framed or targeted.

HTE and Fairness in Machine Learning

In ML-driven decision systems, fairness has become a primary concern. If the effect of
an algorithmically assigned treatment (e.g., job offer, loan approval) varies systemati-
cally across protected groups (e.g., gender, race), then the system may amplify social
inequalities.

HTE provides tools to quantify and audit such issues:

• Are women consistently benefiting less from an online course?

• Do low-income borrowers benefit more from financial literacy interventions?

These questions fall under the broader theme of algorithmic fairness through causal
lenses.

14.2 Overview of HTE Estimation Literature

There are three major approaches to estimating heterogeneous treatment effects (HTE),
each rooted in a different academic tradition—econometrics, statistics, and computer
science. These methods differ in how directly they model heterogeneity, their assump-
tions, and their suitability for causal inference or prediction.

185

Lecture Notes AI for Business Research

14.2.1 Causal Trees and Causal Forests

The first category includes tree-based models specifically designed to detect variation
in treatment effects across subgroups:

• Causal Trees(Athey and Imbens, 2016): modifies traditional decision tree algo-
rithms (like CART) to focus on identifying subgroups with differing treatment
effects rather than maximizing predictive accuracy;

• Causal Forests(Wager and Athey, 2018), build on causal trees by aggregating
many trees (as in Random Forests) to stabilize predictions and allow for valid
inference (e.g., confidence intervals for CATEs).

These traditional methods, though be

• Flexible and nonparametric, suitable for high-dimensional covariates.
• Good for discovering interpretable subgroups.
• Valid inference with honest estimation.

but are also

• Typically limited to binary treatments.
• Confidence intervals can be wide in small samples.
• Relies on unconfoundedness and SUTVA assumptions.

We would go over them in the next sections.

14.2.2 Double Machine Learning (DML)

Double Machine Learning (DML)(Chernozhukov et al., 2018) is a framework that com-
bines orthogonalization and sample splitting to debias treatment effect estimation us-
ing machine learning models. We have studied it over the last chapter. Originally de-
veloped to estimate average treatment effects (ATE), DML can also be used for CATE
by leveraging its nuisance parameter models (e.g., propensity scores, outcome regres-
sions) and plugging them into flexible ML-based meta-learners. They are

• Robust to high-dimensional confounders.
• Compatible with many ML algorithms (Lasso, Boosting, Neural Networks).
• Theoretical guarantees (root-n consistency, asymptotic normality).

while

• Primarily designed for ATE.
• Requires careful cross-fitting and implementation.

186

Lecture Notes AI for Business Research

14.2.3 Uplift Modeling and Meta-learners

This approach, popular in industry, aims to estimate the treatment effect directly as
the difference in response probability under treatment and control.

The two-model strategy trains separate predictive models for treated and con-
trol groups. More principled versions include meta-learners such as the T-learner,
S-learner, and X-learner(Künzel et al., 2019), which formalize this approach using su-
pervised learning. They are

• Easy to implement using standard ML pipelines.
• Highly scalable for A/B testing and marketing.

while

• Often lack statistical inference (e.g., confidence intervals).
• May not respect causal assumptions (e.g., ignorability).

Table 12. Comparison of HTE Estimation Methods

Method Best Use Case Key Limitations

Causal Trees &
Forests

Subgroup discovery with in-
terpretable structure

Binary treatment only; requires
honest sample splitting for valid
inference

Double Machine
Learning

Semiparametric estimation
with theoretical robustness
and flexible ML tools

Primarily focused on ATE; imple-
mentation can be complex

Uplift & Meta-
learners

Fast deployment in real-
world business contexts such
as marketing personalization
and A/B testing

Do not yield valid confidence in-
tervals; rely on strong assumptions
for causal validity

Each method reflects a different trade-off between flexibility, causal identification,
and scalability. Choosing the right approach depends on your goal: are you testing a
theory, targeting individuals, or auditing fairness?

14.3 Causal Tree and Causal Forest Methods

Machine learning has introduced powerful nonparametric methods for estimating het-
erogeneous treatment effects (HTEs). Among them, Causal Trees and Causal Forests
represent a foundational family of algorithms that directly model treatment hetero-
geneity using recursive partitioning techniques. These models are particularly useful

187

Lecture Notes AI for Business Research

when the analyst aims to uncover interpretable subgroups of the population whose
responses to treatment differ significantly.

14.3.1 The Causal Tree Algorithm

Proposed by Athey and Imbens (2016), the causal tree framework modifies the clas-
sical CART (Classification and Regression Trees) algorithm for causal inference tasks.
Instead of minimizing prediction error, the algorithm seeks to partition the covariate
space into regions where the treatment effect varies the most. The key idea is to treat
the treatment effect itself as the quantity to be predicted and optimized.

Formally, given data {(Xi, Yi, Di)}n
i=1, where Xi ∈ Rp is a vector of covariates,

Di ∈ {0, 1} is the binary treatment indicator, and Yi ∈ R is the observed outcome, we
assume the unconfoundedness condition:

(Yi(0), Yi(1)) ⊥⊥ Di | Xi

The tree recursively partitions the space of X to create leaves L ∈ L, and within
each leaf, the treatment effect is estimated as:

τ̂L =
1

nL,1
∑

i∈L,Di=1
Yi −

1
nL,0

∑
i∈L,Di=0

Yi

where nL,1 and nL,0 denote the number of treated and control units in leaf L, respec-
tively.

Splitting Criterion: Instead of using mean squared error or Gini impurity, causal
trees split on covariates that maximize heterogeneity in estimated treatment effects
between potential child nodes.

Interpretability: The resulting tree provides an interpretable decision rule for iden-
tifying subgroups with differing treatment effects.

14.3.2 Limitations of Causal Trees

Despite their conceptual appeal, causal trees suffer from several well-known limita-
tions:

• Instability: Small changes in data can lead to large changes in tree structure.

• High variance: Single-tree methods can be noisy, especially with small sample
sizes.

• No inference: Confidence intervals and hypothesis testing for estimated effects
are not naturally supported.

188

Lecture Notes AI for Business Research

These limitations motivate the development of ensemble methods such as Causal
Forests, which we now discuss.

14.4 From Causal Trees to Causal Forests

Causal Forests (Wager and Athey, 2018) extend the causal tree framework by aggre-
gating many causal trees using a methodology inspired by Breiman’s Random Forests.
The idea is to stabilize the individual tree estimates and enable valid inference for the
conditional average treatment effect τ(x).

14.4.1 Forest Construction and Estimation

Each tree in the causal forest is trained on a bootstrap sample of the data and considers
a random subset of covariates at each split (feature bagging). For a new observation x,
the prediction proceeds as follows:

1. Each tree b defines a partition of the space and assigns x to a leaf Lb(x).

2. Within each leaf, the treatment effect τ̂(b)(x) is computed as the difference in
average outcomes for treated and control units.

3. The final forest prediction is the average over B trees:

τ̂forest(x) =
1
B

B

∑
b=1

τ̂(b)(x)

14.4.2 Honest Estimation

A key technical contribution of Athey and Imbens (2016) and Wager and Athey (2018)
is the idea of honest estimation. In traditional decision trees, the same data are used
to determine both the split structure and the predicted values. This leads to adaptive
overfitting, where the model exaggerates differences that arise purely by chance.

Honest estimation solves this by partitioning the data into two disjoint subsamples:

• A splitting sample, used to determine where to split the covariate space.

• An estimation sample, used to compute the treatment effect within each leaf.

Formal setup: Let D = Dsplit ∪ Dest. For each leaf L, the honest treatment effect
estimator is:

τ̂honest
L =

1
nest

L,1
∑

i∈L∩Dest,Di=1
Yi −

1
nest

L,0
∑

i∈L∩Dest,Di=0
Yi

189

Lecture Notes AI for Business Research

Why honesty matters:

• It prevents information leakage from the training phase into estimation, preserv-
ing statistical validity.

• It allows for unbiased treatment effect estimation, even in adaptive settings.

• It enables asymptotic inference: root-n consistency and asymptotic normality.

14.4.3 Inference and Theory

Wager and Athey (2018) show that under standard conditions, the CATE estimator
τ̂(x) produced by a causal forest satisfies:

• Consistency: τ̂(x)→ τ(x) as n→ ∞;

• Asymptotic normality: for each x,
√

n(τ̂(x)− τ(x)) d−→ N (0, σ2(x));

• Variance estimation: the variance σ2(x) can be estimated using influence func-
tions.

14.4.4 Software and Practice

Causal Forests are implemented in the open-source grf package in R, which supports:

• Honest splitting and estimation;

• Estimation of standard errors;

• Confidence intervals and policy evaluation routines.

In applied work, causal forests provide an appealing balance between flexibility,
interpretability, and inferential rigor, making them a popular choice for modern HTE
estimation.

14.5 Generalized Random Forests and the k-Nearest Neighbor Per-

spective

The Generalized Random Forest (GRF) framework, introduced by Athey et al. (2018),
provides a unifying perspective that connects tree-based ensemble methods with non-
parametric local estimation techniques such as kernel regression and k-nearest neigh-
bor (kNN) methods.

190

Lecture Notes AI for Business Research

14.5.1 GRF as Adaptive Local Estimators

GRFs estimate functions θ(x) that solve local moment equations of the form:

E[ψ(Z; θ(x)) | X = x] = 0

where ψ is a score function (e.g., residual, treatment indicator, loss gradient), and Z is
the observed data vector. For HTE, this reduces to estimating:

τ(x) = E[Y(1)−Y(0) | X = x]

GRFs construct adaptive weights αi(x) for each training example, which capture
how “close” unit i is to x in terms of feature similarity, as learned through the forest
structure. Then the estimated parameter is:

τ̂(x) =
n

∑
i=1

αi(x) · τ̂i

This formulation closely resembles k-nearest neighbors, but with:

• Adaptive neighborhoods: defined by forest leaves rather than Euclidean dis-
tance.

• Data-driven weighting: units in similar leaves contribute more to the estima-
tion.

14.5.2 Key Features of GRF

• GRF supports continuous, binary, or multivalued treatments.

• It generalizes beyond treatment effect estimation to quantile regression, instru-
mental variables, and policy evaluation.

• Provides automatic variance estimation via influence functions.

• Inherits valid inference from the honesty and subsampling structure of causal
forests.

14.5.3 GRF vs Causal Forests

While causal forests focus specifically on τ(x) for binary treatments, GRF is a broader
class of methods. Causal Forest is a special case of GRF where the score function ψ

corresponds to residualized treatment effects.
Implementation: The R package grf implements GRF for a wide range of causal

and predictive tasks.

191

Lecture Notes AI for Business Research

14.6 Evaluating HTE Estimators

Once an HTE estimator has been built, it is crucial to assess its quality. Unlike ATE esti-
mation, where performance can be judged through bias and variance, HTE estimation
involves the evaluation of functions, making the task more complex.

14.6.1 Ground Truth CATE is Rarely Observed

In practice, we cannot observe both Y(1) and Y(0) for the same individual, so the
“true” τ(x) is unobservable. This makes direct validation of CATE estimates infeasible
without simulated data or experimental benchmarks.

14.6.2 Two Key Evaluation Criteria

1. Ranking Accuracy Suppose we use τ̂(x) to rank individuals for treatment assign-
ment. We want this ranking to reflect the true ordering of treatment benefits. This
motivates evaluation via:

• Cumulative Gain Curves: plotting the total gain in outcomes when treating the
top-k percentile units by predicted CATE.

• Qini Coefficient / Uplift AUC: analogs of ROC-AUC for treatment effects.

Example for Gain Curves Consider an RCT with 100 units divided into 5 quantiles
based on predicted CATE:

• Predicted Quantiles: [90%-100%], [80%-90%], [70%-80%], [60%-70%], [50%-60%]

• Treatment Sample Sizes (NT
i): [20, 20, 20, 20, 20]

• Control Sample Sizes (NC
i): [20, 20, 20, 20, 20]

• Treatment Outcomes (YT
i): [0.9, 0.8, 0.7, 0.6, 0.5]

• Control Outcomes (YC
i): [0.3, 0.4, 0.5, 0.6, 0.7]

The formula from calculating the cumulative gain at the top-t quantiles is:

CumulativeGain(t) =

(
∑t

i=1 YT
i

∑t
i=1 NT

i
− ∑t

i=1 YC
i

∑t
i=1 NC

i

)
×
(

t

∑
i=1

NT
i +

t

∑
i=1

NC
i

)

By plugging in the data from the RCT, we can calculate the cumulative gain top-t
quantile as follows

• At t = 1:
(0.9

20 −
0.3
20

)
× 40 = 0.6× 2 = 1.2

• At t = 2:
(

0.9+0.8
40 − 0.3+0.4

40

)
× 80 =

(
1.7
40 −

0.7
40

)
× 80 = 1× 2 = 2

192

Lecture Notes AI for Business Research

2. Calibration and Fit Some methods estimate the entire function τ̂(x) over x. One
can assess:

• Calibration: are predicted effects consistent with empirical outcomes in grouped
data?

• Fit metrics: e.g., mean squared error of CATE in synthetic datasets where true
τ(x) is known.

14.6.3 Simulation-based Evaluation

In simulation studies (e.g., DGPs from Hill, 2011; Künzel et al., 2019), one can directly
compare τ̂(x) to the true τ(x):

MSE(τ̂) =
1
n

n

∑
i=1

(τ̂(xi)− τ(xi))
2

14.6.4 Empirical Validation via Policy Evaluation

In empirical settings, a common approach is to evaluate the estimated CATE indirectly
through its impact on policy decisions. For a policy function:

π(x) = I[τ̂(x) > 0]

one can estimate the average effect of assigning treatment according to π(x) and com-
pare it with baseline or random assignment.

Note: This links HTE evaluation with treatment targeting problems and personal-
ized decision-making.

14.6.5 Summary

Evaluating HTE estimators requires both:

• Functional assessment (calibration, smoothness, ranking),

• Behavioral assessment (how good are decisions based on τ̂(x)?).

Proper evaluation often involves a mixture of simulations, cross-validation, and
domain-specific diagnostics.

14.7 Meta-Learners for HTE Estimation

Meta-learners are a modular class of algorithms designed to estimate conditional av-
erage treatment effects (CATEs) using existing supervised learning models. Instead of

193

Lecture Notes AI for Business Research

directly targeting causal structure (as in causal forests or DML), meta-learners decom-
pose the estimation task into sub-problems solvable via any machine learning algo-
rithm.

Introduced and formalized by Künzel et al. (2019), meta-learners are model-agnostic
and easy to implement. They are particularly popular in practical applications and in-
dustry environments where interpretability, scalability, and ease of use are essential.

Problem Setup

Let {(Xi, Di, Yi)}n
i=1 denote i.i.d. data where:

• Xi ∈ Rp are covariates,

• Di ∈ {0, 1} is a binary treatment indicator,

• Yi is the observed outcome.

We aim to estimate:

τ(x) = E[Y(1)−Y(0) | X = x]

T-Learner

The T-learner fits two separate models:

µ1(x) = E[Y | X = x, D = 1], µ0(x) = E[Y | X = x, D = 0]

Then computes:
τ̂(x) = µ̂1(x)− µ̂0(x)

Pros: Flexible, works well when treated and control groups are well-separated.
Cons: Inefficient when data are imbalanced; fails to borrow information across groups.

S-Learner

The S-learner fits a single model using treatment D as a feature:

µ(x, d) = E[Y | X = x, D = d]

Then predicts:
τ̂(x) = µ̂(x, 1)− µ̂(x, 0)

Pros: Simple, unified model. Cons: May underfit CATE if model is not sensitive to
D.

194

Lecture Notes AI for Business Research

X-Learner

The X-learner uses imputation and weighting:

1. Estimate µ̂1(x), µ̂0(x) as in T-learner.

2. Impute individual-level effects for each group:

D̂(1)
i = Yi − µ̂0(Xi) for treated, D̂(0)

i = µ̂1(Xi)−Yi for control

3. Fit models for imputed treatment effects in each group.

4. Combine using weighting by propensity score e(x):

τ̂(x) = g(x) · τ̂1(x) + (1− g(x)) · τ̂0(x)

Pros: Very flexible; performs well under imbalance. Cons: Slightly more complex;
requires propensity estimation.

Remarks

• Meta-learners do not require strong structural assumptions.

• They work best when paired with flexible base learners (e.g., random forests,
neural nets).

• However, they lack built-in mechanisms for inference (e.g., confidence intervals).

14.8 HTE Estimation for Policy Targeting

A core application of CATE estimation is personalized decision-making: who should
be treated? In the presence of heterogeneous treatment effects, optimal resource allo-
cation requires more than knowing whether the average treatment effect is positive—it
requires knowing where treatment is most effective.

14.8.1 Policy Function Based on τ̂(x)

Suppose we have a binary treatment and a limited budget to treat only a subset of the
population. We can construct a treatment rule:

π(x) = I[τ̂(x) > θ]

where θ is a threshold determined by budget constraints, fairness criteria, or opportu-
nity cost.

195

Lecture Notes AI for Business Research

The resulting policy rule assigns treatment only to individuals expected to benefit
the most, according to the estimated CATE.

14.8.2 Optimal Treatment Assignment

Given a budget constraint E[π(x)] ≤ ρ, the optimal policy is to treat the top ρ fraction
with the highest estimated τ̂(x). This can be implemented via:

• CATE ranking

• Thresholding with estimated quantiles

• Value-based or constrained optimization

14.8.3 Evaluating Policies

The value of a treatment policy π is the expected gain from following the policy:

V(π) = E [Y(1) · π(X) + Y(0) · (1− π(X))]

Under unconfoundedness, this can be estimated using doubly robust methods such
as:

• Augmented IPW (AIPW)

• Inverse probability weighting

• Model-based plug-in with cross-fitting

14.8.4 Targeting and Fairness

HTE-based policies raise fairness concerns:

• Are disadvantaged groups disproportionately excluded?

• Does the treatment rule satisfy equal opportunity or demographic parity?

Solutions include fairness-aware CATE models or applying group constraints dur-
ing targeting.

14.9 Practical Guidelines for Choosing HTE Estimators

There is no universally optimal method for estimating heterogeneous treatment ef-
fects. The appropriate choice depends critically on the researcher’s specific goals, the
nature and quality of available data, and the desired trade-offs among interpretabil-
ity, statistical rigor, and implementation complexity. In this section, we offer practical
guidance on selecting an HTE estimation strategy under different analytical objectives.

196

Lecture Notes AI for Business Research

14.9.1 Choosing Based on Analytical Goals

When the primary goal is interpretability—for example, identifying subgroups for
policy design or exploratory analysis—then Causal Trees and related honest tree-based
models are often preferred. These methods produce human-readable partitions of the
covariate space, making them ideal for stakeholder communication or theoretical hy-
pothesis generation. However, their statistical properties are limited: they typically
lack formal inference guarantees and may be unstable in small samples.

If the analyst is instead focused on statistical precision and valid inference, es-
pecially in high-dimensional settings, then methods such as Causal Forests, Generalized
Random Forests (GRF), or Double Machine Learning (DML) are more appropriate. These
estimators are designed to deliver root-n consistent and asymptotically normal esti-
mates of the CATE. They often incorporate sample splitting (honesty or cross-fitting)
and regularization to avoid overfitting, while also allowing for construction of confi-
dence intervals. Their complexity is higher, but they provide robust estimation under
clearly defined assumptions.

Finally, when the main use case involves personalized decision-making at scale—for
instance, targeted marketing, recommendation systems, or real-time decision engines—then
meta-learners (such as the T-, S-, and X-learner families) and uplift modeling frameworks
are commonly used. These methods are model-agnostic and easily combined with
standard machine learning pipelines (e.g., neural networks, gradient boosting). While
they excel in scalability and flexibility, they often do not provide built-in tools for in-
ference, and their theoretical guarantees are weaker compared to GRF or DML.

14.9.2 Implementation Advice and Caveats

Across all methods, several practical considerations should be kept in mind. First,
it is essential to verify the overlap assumption—that is, that each unit has a positive
probability of receiving both treatment and control—and to assess covariate balance
across treatment groups. Violations of this assumption undermine identification and
may bias results, regardless of the estimator used.

Second, one should consider adopting honest estimation strategies, especially in tree-
based methods. By separating the data used for model construction from the data
used for estimation, honesty reduces overfitting and enables more reliable inference.

Third, where feasible, researchers should conduct cross-validation, simulation-based
model selection, or sensitivity analysis to validate estimator performance. This is espe-
cially important in observational settings where ground truth is unknown.

Finally, if statistical inference—such as confidence intervals or hypothesis testing—is
required, one should favor estimators with strong asymptotic properties, such as GRF
or DML, over more flexible but heuristic-based methods like meta-learners.

197

Lecture Notes AI for Business Research

In summary, the choice of HTE estimator should be driven by the research goal
and context: causal trees for interpretability, forests and DML for inference, and meta-
learners for large-scale personalization. No single method dominates in all settings,
but thoughtful selection based on strengths and limitations can substantially improve
both the credibility and utility of treatment effect estimates.

Table 13. Summary: Choosing Among HTE Estimators

Estimator Best For Caveats

Causal Tree Interpretation, subgroup
discovery

No inference; high variance
and sensitivity to small data
changes

Causal Forest / GRF Inference in high-
dimensional, flexible
settings

Requires careful implementa-
tion; assumes unconfounded-
ness and honesty

Double Machine
Learning

Theoretical rigor; bias
reduction in high-
dimensional models

Requires sample splitting;
more complex setup; often
focused on ATE

Meta-learners
(T/S/X)

Scalability; plug-and-play
with ML models

Lacks native inference; per-
formance depends on base
learner quality

14.10 The Notebooks

• This notebook DML EconML CATE estimates the conditional average treatment
effects (CATEs);

• This notebook DML EconML Forest demonstrates the estimation of HTE (HTEs);

• This notebook EconML vs DoubleML compares the EconML Package, devel-
oped by Microsoft, with the DoubleML Package, developed by the original au-
thors of (Chernozhukov et al., 2018).

198

https://colab.research.google.com/drive/1K8kFCgZuW2kaGkz6aknRQkYhLJMAmI_g
https://colab.research.google.com/drive/1LsdUtlSHLiiIInO_jVav0EaMggFBho2A
https://colab.research.google.com/drive/1V_UuXNHRd1TiTds0-Gd2BsDYLkAoB4Sw

Lecture Notes AI for Business Research

Chapter 5: Appendices

15 Appendix A: Mathematical Prerequisites for Machine

Learning

Machine learning, particularly supervised learning methods, builds heavily upon sev-
eral foundational areas of mathematics. This appendix provides a more detailed re-
view of the key concepts necessary for a full comprehension of subsequent material.

15.1 Linear Algebra

Linear algebra forms the backbone of most modern machine learning algorithms. It
provides a concise way to represent and manipulate data, and it underpins many of
the computational techniques used in ML.

15.1.1 Vectors and Matrices

• Vectors: A vector x ∈ Rd is a d-dimensional column of real numbers. It can be
represented as:

x =


x1

x2
...

xd


where xi are the elements of the vector. Vectors are fundamental for representing
data points, features, and model parameters.

• Matrices: A matrix X ∈ Rn×d is a rectangular array of numbers arranged in n
rows and d columns. It can be represented as:

X =


x11 x12 · · · x1d

x21 x22 · · · x2d
...

...
xn1 xn2 · · · xnd


where xij represents the element in the i-th row and j-th column. Matrices are
used to represent datasets, linear transformations, and relationships between
variables.

199

Lecture Notes AI for Business Research

15.1.2 Operations

• Matrix Multiplication: If X ∈ Rn×d and β ∈ Rd, then the matrix product Xβ ∈
Rn is defined as:

(Xβ)i =
d

∑
j=1

xijβ j

where (Xβ)i is the i-th element of the resulting vector. Matrix multiplication is
crucial for applying linear transformations to data and computing model predic-
tions.

• Inner Product (Dot Product): For vectors x, y ∈ Rd, the inner product (or dot
product) is a scalar value defined as:

⟨x, y⟩ = x⊤y =
d

∑
i=1

xiyi

The inner product measures the similarity or correlation between two vectors.

15.1.3 Norms

• Euclidean Norm (L2 Norm): The Euclidean norm of a vector x is its length,
calculated as:

∥x∥2 =

√√√√ d

∑
i=1

x2
i

The Euclidean norm is commonly used to measure the magnitude of a vector.

15.1.4 Important Matrix Properties

• (AB) Transpose: The transpose of the product of two matrices A and B is the
product of the transposes of B and A in reverse order:

(AB)⊤ = B⊤A⊤

• Symmetric Matrices: A matrix X is symmetric if X⊤ = X. The matrix X⊤X
is always symmetric and positive semi-definite, a property that is important in
many optimization problems in machine learning. A matrix is positive semi-
definite if for any non-zero vector z, zTXz ≥ 0.

200

Lecture Notes AI for Business Research

15.1.5 Inverse and Pseudoinverse

• Inverse: A square matrix A is invertible (or non-singular) if there exists a matrix
A−1 such that:

AA−1 = A−1A = I

where I is the identity matrix. The inverse matrix ”undoes” the transformation
of A.

• Pseudoinverse: If a matrix A is not invertible (e.g., it’s not square or it’s sin-
gular), we can use the Moore-Penrose pseudoinverse A+. The pseudoinverse
generalizes the concept of the inverse and provides a way to solve linear equa-
tions even when an exact inverse doesn’t exist. It is particularly important when
dealing with overdetermined systems (more equations than unknowns) or un-
derdetermined systems (more unknowns than equations).

15.1.6 Application in ML

• Solving Linear Regression: In linear regression, the optimal parameters β̂ that
minimize the sum of squared errors can be found using linear algebra:

β̂ = (X⊤X)−1X⊤Y

where X is the matrix of input features, and Y is the vector of target variables.

• Feature Transformations and Projections: Linear algebra is used extensively
for feature transformations (e.g., scaling, rotation) and dimensionality reduction
techniques like Principal Component Analysis (PCA), where data is projected
onto lower-dimensional subspaces.

15.2 Probability Theory and Statistics

Machine learning models often make probabilistic assumptions about the data gen-
eration process. Probability theory and statistics provide the tools to reason about
uncertainty, model data distributions, and evaluate model performance.

15.2.1 Random Variables

• A random variable X is a variable whose possible values are numerical outcomes
of a random phenomenon. It maps outcomes from a sample space to real num-
bers.

201

Lecture Notes AI for Business Research

15.2.2 Expectation and Variance

• Expectation (Expected Value): The expected value (or mean) of a random vari-
able X, denoted as E[X], is the average value of X over many trials. For a discrete
random variable X, it is calculated as:

E[X] = ∑
x

xP(X = x)

where the sum is taken over all possible values of X, and P(X = x) is the proba-
bility of X taking the value x.

• Variance: The variance of a random variable X, denoted as Var(X), measures the
spread or dispersion of its values around the mean. It is defined as:

Var(X) = E[(X−E[X])2]

A higher variance indicates that the values of X are more spread out.

15.2.3 Conditional Expectation

• Conditional Expectation: The conditional expectation of a random variable Y
given another random variable X, denoted as E[Y|X], represents the average
value of Y for a specific value of X. It is a function of X and is crucial in un-
derstanding how the expected value of one variable changes with the values of
another.

15.2.4 Law of Large Numbers

• Law of Large Numbers (LLN): The Law of Large Numbers states that as the
number of independent and identically distributed (i.i.d.) random samples n
approaches infinity (n → ∞), the sample mean converges to the true popula-
tion mean. This principle justifies using sample averages to estimate population
expectations.

15.2.5 Application in ML

• Loss Minimization: Many machine learning algorithms aim to minimize a loss
function, which often corresponds to estimating conditional expectations. For
example, minimizing the squared error loss in regression is equivalent to esti-
mating the conditional expectation of the target variable given the input features.

202

Lecture Notes AI for Business Research

• Probabilistic Models: Probabilistic models like logistic regression and Bayesian
networks rely heavily on probability theory to model the relationships between
variables and make predictions.

15.3 Optimization

Many machine learning models are trained by solving optimization problems. The
goal is to find the set of parameters that minimizes a given cost or loss function.

15.3.1 Unconstrained Optimization

• Unconstrained Optimization: The general problem is to find the value of θ ∈ Rd

that minimizes a function f (θ), where there are no constraints on the values that
θ can take.

15.3.2 First-Order Condition

• First-Order Condition: A necessary condition for a point θ∗ to be a local mini-
mizer of a differentiable function f (θ) is that the gradient of f at θ∗ is zero:

∇ f (θ∗) = 0

This condition identifies stationary points, which may be minima, maxima, or
saddle points.

15.3.3 Gradient Descent Algorithm

• Gradient Descent: Gradient descent is an iterative optimization algorithm that
updates the parameter θ in the direction opposite to the gradient of the function
f (θ) at the current point:

θ(k+1) = θ(k) − η∇ f (θ(k))

where θ(k) is the value of θ at the k-th iteration, and η > 0 is the learning rate,
which controls the step size.

15.3.4 Convex Functions

• Convex Functions: A function f is convex if for any two points x and y and any
λ ∈ [0, 1], the following inequality holds:

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y)

203

Lecture Notes AI for Business Research

Geometrically, this means that the line segment connecting any two points on
the graph of f lies above or on the graph. Convex functions are important in
optimization because any local minimum of a convex function is also a global
minimum.

15.3.5 Application in ML

• Minimizing Empirical Loss: In machine learning, model training is often for-
mulated as minimizing the empirical loss, which is the average loss over the
training data. Gradient descent and its variants are widely used to solve these
optimization problems.

• Solving Logistic Regression: Logistic regression, a common classification al-
gorithm, is typically solved using convex optimization techniques to find the
parameters that maximize the likelihood of the observed data.

15.4 Loss Functions

Loss functions quantify the discrepancy between a model’s predictions and the true
outcomes. They are essential for training machine learning models, as the goal is to
find model parameters that minimize the loss.

15.4.1 Squared Loss (Regression)

• Squared Loss: For regression problems, where the goal is to predict a continuous
output, the squared loss is commonly used:

ℓ(Y, Ŷ) = (Y− Ŷ)2

where Y is the true outcome, and Ŷ is the predicted outcome. The squared loss
penalizes large errors more heavily than small errors.

15.4.2 Logistic Loss (Classification)

• Logistic Loss (Cross-Entropy Loss): For binary classification problems, where
the goal is to predict the probability of an instance belonging to a certain class,
the logistic loss (also known as cross-entropy loss) is used:

ℓ(Y, p̂) = −Y log(p̂)− (1−Y) log(1− p̂)

where Y ∈ {0, 1} is the true class label, and p̂ is the predicted probability of
Y = 1.

204

Lecture Notes AI for Business Research

15.4.3 0-1 Loss (Classification, Theoretical)

• 0-1 Loss: The 0-1 loss is a natural loss function for classification, which simply
counts the number of misclassifications:

ℓ(Y, Ŷ) = 1{Y ̸= Ŷ}

where 1{·} is the indicator function, which equals 1 if the condition inside is
true, and 0 otherwise. While intuitive, the 0-1 loss is non-convex and discontin-
uous, making it difficult to optimize directly. It is primarily used for theoretical
analysis and evaluation.

15.4.4 Application in ML

• Model Training: Model training is formulated as minimizing an aggregate loss
function, which is the average (or sum) of the loss over the training data. The
choice of loss function is crucial for the performance of a machine learning model.

• Problem-Specific Losses: Different machine learning problems require appro-
priately chosen loss functions. For example, squared loss is suitable for regres-
sion, logistic loss for binary classification, and other losses are designed for multi-
class classification, ranking, and other specialized tasks.

16 Appendix B: Some Missing Proof

Proof of Theorem 12.2. Defining potential outcome residuals εi(w) = Yi(w)−EP[Yi(w)]

for w = 0, 1, we can express our estimation error as

τ̂DM − τ =
1
n1

∑
Wi=1

εi(1)−
1
n0

∑
Wi=0

εi(0)

=
n
n1
· 1

n

n

∑
i=1

Wiεi(1)−
n
n0
· 1

n

n

∑
i=1

(1−Wi)εi(0).

By randomization, one can verify that

E[Wiεi(1)] = P[Wi]E[εi(1) |Wi = 1] = P[Wi]E[εi(1)] = 0, and E[(1−Wi)εi(0)] = 0,

205

Lecture Notes AI for Business Research

and finally

Var

[(
Wiεi(1)

(1−Wi)εi(0)

)]
= E

((Wiεi(1)
(1−Wi)εi(0)

))⊗2


=

(
π ·Var[εi(1)] 0

0 (1− π) ·Var[εi(0)]

)
.

Thus, by the standard multivariate central limit theorem,

√
n

(
1
n ∑n

i=1 Wiεi(1)
1
n ∑n

i=1(1−Wi)εi(0)

)
⇒ N

((
0
0

)
,

(
π ·Var[εi(1)] 0

0 (1− π) ·Var[εi(0)]

))
.

Together with the fact that n1
n →p π , the result above implies that

√
n(τ̂DM − τ)

d−→
N (0, VDM), which follows directly from the Slutsky’s theorem.

Proof of Theorem 12.3. By the Law of Large Numbers applied separately to the treated
and control groups:

1
n1

∑
i:Wi=1

(Yi(1)−E[Yi(1)])2 p−→ Var[Yi(1)]

1
n0

∑
i:Wi=0

(Yi(0)−E[Yi(0)])2 p−→ Var[Yi(0)]

Thus:
V̂DM

p−→ VDM.

Proof of Corollary 12.4.1. If CIA is violated, there exists an unmeasured confounder Ui

such that {Yi(0), Yi(1)} ̸⊥Wi | Xi. Thus:

E[Yi(1) |Wi = 1, Xi] ̸= E[Yi(1) | Xi], E[Yi(0) |Wi = 0, Xi] ̸= E[Yi(0) | Xi].

Adjustment methods like stratification compute:

E[E[Yi |Wi = 1, Xi]−E[Yi |Wi = 0, Xi]],

which does not equal E[Yi(1)−Yi(0)] due to confounding. Similarly, IPW or matching
fails as they rely on CIA to balance groups. Residual confounding by Ui biases all such
estimates.

Proof of Corollary 12.4.1. If P(Wi = 1 | Xi = x) = 0, then E[Yi | Wi = 1, Xi = x] is

206

https://en.wikipedia.org/wiki/Slutsky%27s_theorem

Lecture Notes AI for Business Research

undefined, as no treated units exist for Xi = x. Similarly, if P(Wi = 1 | Xi = x) = 1,
then E[Yi |Wi = 0, Xi = x] is undefined. For adjustment:

ATE = E[E[Yi |Wi = 1, Xi]−E[Yi |Wi = 0, Xi]],

these undefined terms prevent computation over the full support of Xi. For IPW, if
e(Xi) = 0 or 1, weights become undefined. Matching and stratification fail due to lack
of comparable units. Thus, the ATE cannot be consistently estimated.

207

Lecture Notes AI for Business Research

References

Argyle, L. P. et al. (2024). Caution in using large language models as human surrogates:
Experimental evidence from the evaluation of algorithmic decision-making. arXiv
preprint arXiv:2410.19599.

Ash, E. and Hansen, S. (2023). Text algorithms in economics. Annual Review of Eco-
nomics, 15(1):659–688.

Athey, S. and Imbens, G. W. (2016). Recursive partitioning for heterogeneous causal
effects. Proceedings of the National Academy of Sciences, 113(27):7353–7360.

Athey, S., Tibshirani, J., and Wager, S. (2018). Generalized random forests.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly
learning to align and translate. In International Conference on Learning Representations
(ICLR).

Belloni, A., Chernozhukov, V., and Hansen, C. (2014). Inference on treatment effects af-
ter selection among high-dimensional controls. Review of Economic Studies, 81(2):608–
650.

Belloni, A., Chernozhukov, V., and Wei, Y. (2016). Post-selection inference for gener-
alized linear models with many controls. Journal of Business & Economic Statistics,
34(4):606–619.

Bi, M. and Team, D. (2024). Deepseek-v3 and r1: Open-source rl trained reasoning
llms. arXiv preprint arXiv:2401.06066.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., et al. (2020a). Language models are few-shot
learners. Advances in neural information processing systems, 33:1877–1901.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., et al. (2020b). Language models are few-shot
learners. Advances in neural information processing systems, 33:1877–1901.

Card, D., Chang, S., Becker, C., Mendelsohn, J., Voigt, R., Boustan, L., Abramitzky, R.,
and Jurafsky, D. (2022). Computational analysis of 140 years of us political speeches
reveals more positive but increasingly polarized framing of immigration. Proceed-
ings of the National Academy of Sciences, 119(31):e2120510119.

208

Lecture Notes AI for Business Research

Chang, N.-c. (2020). Double/debiased machine learning for difference-in-differences
models. Econometrics Journal, 23(2):177–191.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. K.,
and Robins, J. M. (2018). Double/debiased machine learning for treatment and
structural parameters. The Econometrics Journal, 21(1):C1–C68.

Chernozhukov, V., Hansen, C., Kallus, N., Spindler, M., and Syrgkanis, V. (2024a).
Causal diagrams and identification. In Applied Causal Inference: Powered by ML
and AI, chapter 12. CausalML-book.org. Available at https://causalml-book.org;
arXiv:2403.02467.

Chernozhukov, V., Hansen, C., Kallus, N., Spindler, M., and Syrgkanis, V. (2024b).
Causal diagrams and identification. In Applied Causal Inference: Powered by ML
and AI, chapter 9. CausalML-book.org. Available at https://causalml-book.org;
arXiv:2403.02467.

Chernozhukov, V., Risse, K., and Spindler, M. (2022). Automatic debiased machine
learning of causal and structural effects. Econometrica, 90(3):1567–1606.

Corrigan, G. and Dube, J.-P. (2024). An applied econometric framework for large lan-
guage models. arXiv preprint arXiv:2412.07031.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. (2022). Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information
Processing Systems (NeurIPS).

DeepSeek (2024). Deepseek-v3 technical overview. Available at https://deepseek.
com/research/v3.

DeepSeek-AI, Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao, C., Deng, C.,
Zhang, C., Ruan, C., Dai, D., Guo, D., Yang, D., Chen, D., Ji, D., Li, E., Lin, F., Dai,
F., Luo, F., Hao, G., Chen, G., Li, G., Zhang, H., Bao, H., Xu, H., Wang, H., Zhang,
H., Ding, H., Xin, H., Gao, H., Li, H., Qu, H., Cai, J. L., Liang, J., Guo, J., Ni, J., Li,
J., Wang, J., Chen, J., Chen, J., Yuan, J., Qiu, J., Li, J., Song, J., Dong, K., Hu, K., Gao,
K., Guan, K., Huang, K., Yu, K., Wang, L., Zhang, L., Xu, L., Xia, L., Zhao, L., Wang,
L., Zhang, L., Li, M., Wang, M., Zhang, M., Zhang, M., Tang, M., Li, M., Tian, N.,
Huang, P., Wang, P., Zhang, P., Wang, Q., Zhu, Q., Chen, Q., Du, Q., Chen, R. J., Jin,
R. L., Ge, R., Zhang, R., Pan, R., Wang, R., Xu, R., Zhang, R., Chen, R., Li, S. S., Lu,
S., Zhou, S., Chen, S., Wu, S., Ye, S., Ye, S., Ma, S., Wang, S., Zhou, S., Yu, S., Zhou,
S., Pan, S., Wang, T., Yun, T., Pei, T., Sun, T., Xiao, W. L., Zeng, W., Zhao, W., An,
W., Liu, W., Liang, W., Gao, W., Yu, W., Zhang, W., Li, X. Q., Jin, X., Wang, X., Bi, X.,
Liu, X., Wang, X., Shen, X., Chen, X., Zhang, X., Chen, X., Nie, X., Sun, X., Wang, X.,

209

https://causalml-book.org
https://causalml-book.org
https://deepseek.com/research/v3
https://deepseek.com/research/v3

Lecture Notes AI for Business Research

Cheng, X., Liu, X., Xie, X., Liu, X., Yu, X., Song, X., Shan, X., Zhou, X., Yang, X., Li,
X., Su, X., Lin, X., Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhu, Y. X., Zhang, Y., Xu, Y., Xu,
Y., Huang, Y., Li, Y., Zhao, Y., Sun, Y., Li, Y., Wang, Y., Yu, Y., Zheng, Y., Zhang, Y.,
Shi, Y., Xiong, Y., He, Y., Tang, Y., Piao, Y., Wang, Y., Tan, Y., Ma, Y., Liu, Y., Guo, Y.,
Wu, Y., Ou, Y., Zhu, Y., Wang, Y., Gong, Y., Zou, Y., He, Y., Zha, Y., Xiong, Y., Ma, Y.,
Yan, Y., Luo, Y., You, Y., Liu, Y., Zhou, Y., Wu, Z. F., Ren, Z. Z., Ren, Z., Sha, Z., Fu,
Z., Xu, Z., Huang, Z., Zhang, Z., Xie, Z., Zhang, Z., Hao, Z., Gou, Z., Ma, Z., Yan,
Z., Shao, Z., Xu, Z., Wu, Z., Zhang, Z., Li, Z., Gu, Z., Zhu, Z., Liu, Z., Li, Z., Xie, Z.,
Song, Z., Gao, Z., and Pan, Z. (2025). Deepseek-v3 technical report.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2023). Qlora: Efficient
fine-tuning of quantized llms. arXiv preprint arXiv:2305.14314.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Dubé, A., Jacobs, J., Naidu, S., and Suri, S. (2023). Monopsony in online labor markets.
AEA Papers and Proceedings, 113:292–296.

Farrell, M. H., Liang, T., and Misra, S. (2020). Deep learning for individual heterogene-
ity: An automatic inference framework. arXiv preprint arXiv:2010.14694. University
of Chicago, Booth School of Business.

Farrell, M. H., Liang, T., and Misra, S. (2021). Deep neural networks for estimation and
inference. Econometrica, 89(1):181–213.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. In Journal of Computer and System Sciences,
volume 55, pages 119–139. Elsevier.

Fuhr, J., Berens, P., and Papies, D. (2024). Estimating causal effects with double ma-
chine learning—a method evaluation. arXiv preprint arXiv:2403.14385.

Gentzkow, M., Kelly, B., and Taddy, M. (2019). Text as data. Journal of Economic Litera-
ture, 57(3):535–574.

Gordon, B. R., Moakler, R., and Zettelmeyer, F. (2023). Close enough? a large-scale
exploration of non-experimental approaches to advertising measurement. Marketing
Science, 42(6):1064–1083.

Gorodnichenko, Y., Pham, T., and Talavera, O. (2023). The voice of monetary policy.
American Economic Review, 113(2):548–84.

210

Lecture Notes AI for Business Research

Hansen, S., Lambert, P. J., Bloom, N., Davis, S. J., Sadun, R., and Taska, B. (2023).
Remote work across jobs, companies, and space. Technical report, National Bureau
of Economic Research.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision (ICCV), pages 1026–1034.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, D., et al.
(2021). Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300.

Hill, J. L. (2011). Bayesian nonparametric modeling for causal inference. Journal of
Computational and Graphical Statistics, 20(1):217–240.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. In NIPS Deep Learning and Representation Learning Workshop.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, L., and Chen, W. (2022).
Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations (ICLR).

Jurafsky, D. and Martin, J. H. (2009). Speech and Language Processing. Pearson Prentice
Hall.

Künzel, S. R., Sekhon, J. S., Bickel, P. J., and Yu, B. (2019). Metalearners for estimating
heterogeneous treatment effects using machine learning. Proceedings of the National
Academy of Sciences, 116(10):4156–4165.

Li, Z., Wang, F., Yuan, H., Tian, X., Liu, Y., Qian, C., Sun, M., Shi, Y., and Xie, J. (2024).
Native sparse attention: Scaling efficient transformers with hardware-aware spar-
sity. arXiv preprint arXiv:2502.11089.

Lin, X. et al. (2024). Oasas: Social interaction simulations with one million agents.
arXiv preprint arXiv:2411.11581.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettle-
moyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining
approach.

Liu, Z., Huang, D., Huang, K., Li, Z., and Zhao, J. (2021). Finbert: A pre-trained
financial language representation model for financial text mining. In Proceedings
of the twenty-ninth international conference on international joint conferences on artificial
intelligence, pages 4513–4519.

211

Lecture Notes AI for Business Research

LMSYS (2023). Chatbot arena: An open platform for evaluating llms with human pref-
erences. https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization. Interna-
tional Conference on Learning Representations (ICLR).

Manzoor, E., Chen, G. H., Lee, D., and Smith, M. D. (2023). Influence via ethos:
On the persuasive power of reputation in deliberation online. Management Science,
70(3):1613–1634.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133.

McKenzie, A., Zhang, K., Lee, A., and Liu, B. (2025). Simple test-time scaling for
reasoning in large language models. arXiv preprint arXiv:2504.01234.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg, B.,
Houston, M., Kuchaiev, O., Venkatesh, G., et al. (2018). Mixed precision training. In
International Conference on Learning Representations (ICLR).

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Neyman, J. (1959). Optimal asymptotic tests of composite statistical hypotheses. Prob-
ability and Statistics: The Harald Cramér Volume, pages 213–234.

OpenAI (2023). Learning from human feedback. OpenAI Technical Report.
https://openai.com/research/learning-from-human-feedback.

Park, J. S., O’Brien, J. C., Cai, C. J., Morris, D., Liang, P., Bernstein, M. S., and Heer, J.
(2023). Generative agents: Interactive simulacra of human behavior. arXiv preprint
arXiv:2304.03442.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543.

Quinlan, J. R. (1986). Induction of decision trees. In Machine Learning, volume 1, pages
81–106. Springer.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018a). Improving lan-
guage understanding by generative pre-training. OpenAI Blog.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018b). Improving
language understanding by generative pre-training.

212

https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard

Lecture Notes AI for Business Research

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language
models are unsupervised multitask learners. OpenAI Blog.

Rafailov, R., Liu, X., Zhang, Y., Yang, Y., and Hashimoto, T. (2023). Direct prefer-
ence optimization: Your language model is secretly a reward model. arXiv preprint
arXiv:2305.18290.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,
and Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1–67.

Reisenbichler, M., Reutterer, T., Schweidel, D. A., and Dan, D. (2022). Frontiers: Sup-
porting content marketing with natural language generation. Marketing Science,
41(3):441–452.

Robinson, P. M. (1988). Root-n-consistent semiparametric regression. Econometrica:
Journal of the Econometric Society, pages 931–954.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386–408.

Sarzynska-Wawer, J., Wawer, A., Pawlak, A., Szymanik, J., and Szczepinska, M. (2021).
Detecting formal thought disorder by neural embedding of speech. NPJ Schizophre-
nia, 7(1):1–9.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. In arXiv preprint arXiv:1707.06347.

Shi, R., Tian, X., Yang, M., and Li, Z. (2024). What, why, and how: An empiricist’s
guide to double/debiased machine learning. SSRN Working Paper 4677553.

Shinn, N., Labash, E., Lee, Y., Chowdhery, A., Shachaf, I., and Zeng, A. (2023).
Reflexion: Language agents with verbal reinforcement learning. arXiv preprint
arXiv:2303.11366.

Soldaini, L., Kinney, R., Bhagia, A., Schwenk, D., Atkinson, D., Authur, R., Bogin, B.,
Chandu, K., Dumas, J., Elazar, Y., Hofmann, V., Jha, A. H., Kumar, S., Lucy, L., Lyu,
X., Lambert, N., Magnusson, I., Morrison, J., Muennighoff, N., Naik, A., Nam, C.,
Peters, M. E., Ravichander, A., Richardson, K., Shen, Z., Strubell, E., Subramani,
N., Tafjord, O., Walsh, P., Zettlemoyer, L., Smith, N. A., Hajishirzi, H., Beltagy, I.,
Groeneveld, D., Dodge, J., and Lo, K. (2024). Dolma: an open corpus of three trillion
tokens for language model pretraining research.

213

Lecture Notes AI for Business Research

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(1):1929–1958.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages 3104–
3112.

Sutton, R. S. (2019). The bitter lesson.
urlhttp://www.incompleteideas.net/IncIdeas/BitterLesson.html. Accessed: 2025-
04-28.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
and Polosukhin, I. (2017). Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008.

Wager, S. and Athey, S. (2018). Estimation and inference of heterogeneous treat-
ment effects using random forests. Journal of the American Statistical Association,
113(523):1228–1242.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., et al. (2022). Chain
of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903.

Weng, L. (2024). Reward hacking and misalignment in rlhf. https://lilianweng.

github.io/posts/2024-01-01-reward-hacking/. Accessed: 2024-05-26.

Wiener, N. (1948). Cybernetics: Or Control and Communication in the Animal and the
Machine. MIT Press.

Wikipedia (2023). Mixture of experts. https://en.wikipedia.org/wiki/Mixture_of_
experts. Accessed: 2025-05-21.

Wikipedia contributors (2023). Graphics processing unit. https://en.wikipedia.

org/wiki/Graphics_processing_unit. Accessed: 2025-05-22.

Xu, Y., Ghose, A., and Xiao, B. (2023). Mobile payment adoption: An empirical inves-
tigation of alipay. Information Systems Research. Published Online: 7 Jul 2023.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V. (2019).
Xlnet: Generalized autoregressive pretraining for language understanding. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R.,

214

https://lilianweng.github.io/posts/2024-01-01-reward-hacking/
https://lilianweng.github.io/posts/2024-01-01-reward-hacking/
https://en.wikipedia.org/wiki/Mixture_of_experts
https://en.wikipedia.org/wiki/Mixture_of_experts
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit

Lecture Notes AI for Business Research

editors, Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc.

Yao, S., Zhao, D., Yu, J., Zhao, I., Weld, D. S., et al. (2023). Tree of thoughts: Deliberate
problem solving with large language models. arXiv preprint arXiv:2305.10601.

Yao, S., Zhao, J., Yu, D., Narasimhan, K., Jiang, Y., Cao, Q., Kasai, J., Wang, Y., Bosselut,
A., and Zettlemoyer, L. (2022). React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Ye, Z., Zhang, Z., Zhang, D. J., Zhang, H., and Zhang, R. (2023). Deep-learning-based
causal inference for large-scale combinatorial experiments: Theory and empirical
evidence. arXiv preprint arXiv:2306.17559. Available at SSRN: https://papers.
ssrn.com/sol3/papers.cfm?abstract_id=4485708.

Zhang, P., Wu, A., Deng, L., and Chi, E. (2024). Ai-augmented estimation: Low-bias,
low-variance inference with llm assistance. arXiv preprint arXiv:2404.11111.

215

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4485708
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4485708

	 blue Chapter: 1 Overview
	Artificial Intelligence and Business Research
	AI and the Evolution of Human Civilization
	AI for Business Research: Conceptual Foundations
	The AI Flywheel: Scaling Effects in Research and Practice
	Key Distinctions: AI versus Traditional Statistical Methods
	Toward a Scalable Research Mindset

	Prediction Problems in Business Research
	Why Do We Care About Prediction?
	The Logic of ``Predict Then Decide"
	When Do Predictions Fail to Matter?
	Prediction Versus Estimation: A Broader Perspective

	 blue Chapter: 2 Deep Learning Basics
	ML Techniques and Gradient Descent
	Machine Learning in the Modern Scientific Landscape
	Workflow of Supervised Learning
	Model Selection and Evaluation
	Training, Validation, and Testing Splits
	Cross-Validation
	Common Evaluation Metrics

	Supervised Learning Techniques
	Linear Regression: Housing Prices
	Logistic Regression: Predicting Customer Churn
	K-Nearest Neighbors: Classifying Fruits by Weight and Color
	Decision Trees: Predicting Loan Approval
	Random Forests: Predicting Credit Scores
	Gradient Boosting: Predicting Purchase Intent
	Bagging: Reducing Variance via Resampling

	Gradient Descent
	Examples of GD
	Gradient Descent Convergence
	Momentum
	Stochastic Gradient Descent
	Adaptive Gradient
	Adam

	The Notebooks

	Deep Neural Networks
	Neural Network Structure
	Activation Functions
	Training Deep Neural Networks
	Training Pipeline
	Common Layer Types
	Gradient-Based Estimation and Backpropagation
	Loss Landscapes and Optimization Challenges

	Overfitting and Regularization
	Weight Penalty Methods: L1 and L2 Regularization
	Dropout: Randomized Regularization
	Early Stopping: Validation-Guided Training
	Data Augmentation
	Batch Normalization and Implicit Regularization
	Summary

	Implementation with DL Libraries
	Core Deep Learning Frameworks
	High-Level Abstractions and Model Hubs
	Practical Benefits of Using DL Libraries
	Which Library to Choose?

	The Notebooks

	Computations in Deep Learning
	Hardware Platforms for Deep Learning
	Local Workstations and Servers
	Cloud Infrastructure

	GPU Benchmarking and Comparison
	Model Size and Training Time Estimates
	Case Study: Compute Costs of DeepSeek-V3
	Geopolitical Constraints: GPU Export Bans

	 blue Chapter: 3 Large Language Models
	From Machine Translation to Transformers: A Genealogy
	Neural Machine Translation (NMT)
	Sequence-to-Sequence Architecture: The Encoder-Decoder Model
	The Architecture
	Training of Seq2Seq
	Applications of Seq2Seq Modeling
	Limitations of Seq2Seq with RNNs

	Attention Mechanisms
	A Family of Attention Models
	Attention is all you Need

	Applications of Language Models in Economics and Social Science
	The Notebooks

	Pretrained Transformers: BERT, GPT, and the Rise of Foundation Models
	Pretraining Models
	What is Pre-training?
	The Pre-training to Fine-tuning Pipeline
	Architectural Variants in Pre-training

	BERT
	The Architecture of Understanding
	Masked Language Modeling: Learning Through Obscurity
	Next Sentence Prediction: Modeling Coherence Across Sentences
	Joint Objective: Language at Two Scales
	Input Embeddings: Subwords, Segments, and Position
	Scaling and Training Regime
	The Broader Picture: Understanding vs. Generating
	Fine-tuning BERT
	Frontiers and Applications

	GPT
	History of GPTs
	In-Context Learning: Prompting Instead of Fine-Tuning
	Pretraining Data for LLMs: The Hidden Engine Behind GPT
	Tokenization
	Compute-Efficient Training with GPUs
	Mixture of Experts (MoE)
	Native Sparse Attention (NSA)

	The Notebooks

	Posttraining LLMs
	Motivation and Scope
	Why Posttraining Matters

	Core Techniques in Posttraining
	Supervised Fine-Tuning (SFT)
	Parameter-Efficient Fine-Tuning (PEFT)
	Reinforcement Learning from Human Feedback (RLHF)
	Direct Preference Optimization (DPO)
	Test-Time Scaling and Reasoning
	Knowledge Distillation (KD)

	The Notebooks

	Efficient LLM Inference
	KV Caching: Memory as the New Compute Bottleneck
	Quantization: Shrinking the Model Without Shrinking Its Brain
	DeepSeek Inference Architecture: High-Throughput, Low-Latency Deployment
	Operations Research (OR) for KV-Aware Inference Scheduling
	The Notebooks

	Research with LLMs
	Research Affordances of LLMs
	From Tool to Agent: Task-Driven Control
	Evaluation as a Methodological Safeguard
	Agentic Research Workflows
	Pitfalls and Ethical Vigilance
	Conclusion: LLMs as Research Infrastructure

	 blue Chapter: 4 Causal Inferences and Machine Learning
	Foundations of Rubin's Causal Model
	Causal Inference: From Philosophy to Scientific Methodology
	Randomized Controlled Trials (RCTs): The Gold Standard
	Independence Assumptions
	The Rubin Causal Model: Formalizing Causal Inference
	Regression Adjustment for Causal Inference
	Matching and Inverse Probability Weighting (IPW)
	Structure of Modern Causal Inference: Continuity and Innovation
	The Notebooks

	Revisiting RCT with a Statistical and Big Data Taste
	Motivation: Beyond the Gold Standard
	Statistical Inferences of RCT
	Transition to Observational Data
	Relaxing the IID Assumption: Linear and Nonlinear Specification Models
	Linear DGP with Covariates
	Nonlinear DGP: Randomization Without Linearity

	Without Randomization: CIA-OC and Weighted IPW
	The Limitations of IPW and the Emergence of Balancing Weights

	AIPW and Double Robustness
	The Notebooks

	Double Machine Learning
	From Classical Designs to Modern Data Environments
	Partial Linear Model
	Impact of Confounders on Causal Effect Identification
	Neyman Orthogonality: A Pillar of Double Machine Learning
	Why Machine Learning Alone Is Not Sufficient in PLM
	Regularization Bias
	Overfitting Bias
	Literature

	Generic Framework of DML
	Revisiting Neyman Orthogonality
	Beyond PLM: Double Machine Learning in Interactive Regression Models
	Bias, Variances via Neyman Orthogonality
	Literature

	DML: Good News and Caveats
	DML for Difference-in-Differences (DiD)

	The Notebooks

	Heterogeneous Treatment Effects (HTE)
	From Average Treatment Effect to Conditional Effect
	The Classical Setup
	Conditional Average Treatment Effect (CATE)

	Overview of HTE Estimation Literature
	Causal Trees and Causal Forests
	Double Machine Learning (DML)
	Uplift Modeling and Meta-learners

	Causal Tree and Causal Forest Methods
	The Causal Tree Algorithm
	Limitations of Causal Trees

	From Causal Trees to Causal Forests
	Forest Construction and Estimation
	Honest Estimation
	Inference and Theory
	Software and Practice

	Generalized Random Forests and the k-Nearest Neighbor Perspective
	GRF as Adaptive Local Estimators
	Key Features of GRF
	GRF vs Causal Forests

	Evaluating HTE Estimators
	Ground Truth CATE is Rarely Observed
	Two Key Evaluation Criteria
	Simulation-based Evaluation
	Empirical Validation via Policy Evaluation
	Summary

	Meta-Learners for HTE Estimation
	HTE Estimation for Policy Targeting
	Policy Function Based on (x)
	Optimal Treatment Assignment
	Evaluating Policies
	Targeting and Fairness

	Practical Guidelines for Choosing HTE Estimators
	Choosing Based on Analytical Goals
	Implementation Advice and Caveats

	 The Notebooks

	 blue Chapter: 5 Appendices
	Appendix A: Mathematical Prerequisites for Machine Learning
	Linear Algebra
	Vectors and Matrices
	Operations
	Norms
	Important Matrix Properties
	Inverse and Pseudoinverse
	Application in ML

	Probability Theory and Statistics
	Random Variables
	Expectation and Variance
	Conditional Expectation
	Law of Large Numbers
	Application in ML

	Optimization
	Unconstrained Optimization
	First-Order Condition
	Gradient Descent Algorithm
	Convex Functions
	Application in ML

	Loss Functions
	Squared Loss (Regression)
	Logistic Loss (Classification)
	0-1 Loss (Classification, Theoretical)
	Application in ML

	Appendix B: Some Missing Proof

