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Appendix A: Table of Notations

Table 4 Summary of Notations
X : market size (total number of potential customers) c2 : unit production cost of 1st-generation product
F (·) : distribution function of X κ2 : unit environmental impact of 2nd-generation product
X1 : realized demand in period 1 r2: unit net revenue of remanufacturing for firm
Xn

2 : market size of new customers in period 2 ι2: unit environmental benefit of remanufacturing
Xr

2 : market size of repeat customers in period 2 e2: unit total benefit of remanufacturing, e2 = r2 + ι2
V : customer valuation for 1st-generation product p1: price for 1st-generation product
G(·): distribution function of V , Ḡ(·) = 1−G(·) Q1: production quantity in period 1
g(·): density function of V pn2 : price for new customers in period 2
h(·): hazard rate function of V , i.e., h(v) = g(v)/Ḡ(v) pr2 : price for repeat customers in period 2
α: innovation level of 2nd-generation product Qn

2 : production quantity for new customers in period 2
k : product depreciation Qr

2 : production quantity for repeat customers in period 2
c1: unit production cost of 1st-generation product δ : discount factor for firm
κ1: unit environmental impact of 1st-generation product δc : discount factor for customers

Appendix B: Auxiliary Results

In this section, we present some auxiliary results in the NTR model and the model of social optimum. These
results are building blocks of our subsequent analysis. The proofs of these results are available from the
authors upon request. To begin with, we characterize the second-period equilibrium pricing and production
strategy in the NTR model. Let Qn

u(X
n
2 ,X

r
2) and Qr

u(X
n
2 ,X

r
2) be the equilibrium production quantities for

new and repeat customers, respectively.

Lemma 2. (a) For any (Xn
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2), pu
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n
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2) = argmaxpu2≥0Π
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(b) For any (Xn
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r
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u(X
n
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r
2) = Ḡ

(
pu2 (Xn
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)
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2 , and Qr
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n
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r
2) = Ḡ

(
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)
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(c) pu

2(X
n
2 ,X

r
2) is increasing in Xn

2 and decreasing in Xr
2 . Moreover, for any (Xn

2 ,X
r
2), pr∗

2 ≤ pu
2(X

n
2 ,X

r
2)≤

pn∗
2 , where the inequalities are strict if Xn

2 ,X
r
2 > 0..

Let Πu
f (Q1|δc) (pu

1(Q1|δc)) be the expected profit (equilibrium first-period price) of the firm to produce
Q1 products in period 1 in the NTR model with customer discount factor δc. We compute Πu

f (·|·) in the
following lemma.

Lemma 3. In the NTR model, we have pu
1(Q1|δc) = µ+δc(σ

u
r (Q1)−σu

n(Q1)) and Πu
f (Q1|δc) = (mu

1(Q1|δc)−

s)E(X ∧Q1)− (c1 − s)Q1 + δRu
2(Q1), where mu

2(Q1|δc) = µ+ δ(βu
r (Q1)− βu

n(Q1)) + δc(σ
u
r (Q1)− σu

n(Q1)),
βu
n(Q1) :=E[v̂r

2(p
u
2(X

n
2 ,X

r
2))], βu

n(Q1) :=E[v̂r
2(p

u
2(X

n
2 ,X

r
2))], and Ru

2(Q1) =E[vn
2 (p

u
2(X

n
2 ,X

r
2))X] (Xn

2 = (X−

Q1)
+ and Xr

2 =X ∧Q1). Moreover, βu
r (·) is increasing, whereas σu

r (·), σu
n(·), βu

n(·) and Ru
2(·) are decreasing

in Q1, respectively.

It is clear that βu
n(Q1) and βu

r (Q1) are the expected second-period unit profit from new and repeat
customers in the NTR model, respectively, whereas mu

2(Q1|δc) is the effective first-period marginal revenue.
βu
n(·), βu

r (·), and mu
1(·|·) are the counterparts of β∗

n, β∗
r , and m1(·) in the NTR model. The following theorem

summarizes the equilibrium price and production quantity (pu∗
1 (δc),Q

u∗
1 (δc)) in the NTR model.
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Theorem 11. In the NTR model, for any customer discount factor δc, a unique RE equilibrium exists with
(a) Qu∗

1 (δc) = argmaxQ1≥0Π
u
f (Q1|δc); (b) pu∗

1 (δc) = µ+ δc(σ
u
r (Q

u∗
1 (δc))− σu

n(Q
u∗
1 (δc))); and (c) the expected

profit of the firm Πu∗
f (δc) = (mu

1(Q
u∗
1 (δc)|δc)− s)E(X ∧Qu∗

1 (δc))− (c1 − s)Qu∗
1 (δc)+ δRu

2(Q
u∗
1 (δc)).

Finally, we have the following lemma that characterizes the equilibrium second-period pricing strategy in
the model of social optimum.

Lemma 4. (a) pn
s (X

n
2 ,X

r
2)≡ pn∗

s and pr
s(X

n
2 ,X

r
2)≡ pr∗

s , where pn∗
s = c2+κ2 and pr∗

s = c2− r2+κ2− ι2.
Hence, pn∗

s > pr∗
s if and only if r2 > 0 or ι2 > 0.

(b) w2(X
n
2 ,X

r
2) = σs∗

n Xn
2 +σs∗

r Xr
2 , where σs∗

n =E((1+α)V − pn∗
s )+ and σs∗

r =E((k+α)V2 − pr∗
s )+.

Appendix C: Proofs of Statements
1Proof of Lemma 1: Part (a). Given (pn

2 , p
r
2) with pr

2 ≤ pn
2 , the ex-ante probability that a new customer

will purchase the second-generation product is Ḡ
(

pn2
1+α

)
, whereas the probability that a repeat customer

will join the trade-in program is Ḡ
(

pr2
k+α

)
. Therefore, conditioned on the realized market size (Xn

2 ,X
r
2), the

expected profit of the firm in period 2 is given by: Π2(p
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We now show that vn
2 (·) is quasiconcave in pn
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2(·) is quasiconcave in pr

2. Note that ∂pn2
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1+α
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)/Ḡ(
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2. Hence, ∂pn2
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2 (p

n
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2 and ∂pr2
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2(p
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2) = 0 has a unique
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2 . Clearly, for i= n, r, vi

2(·) is strictly increasing on [0, pi∗
2 ) and strictly decreasing on (pi∗

2 ,+∞).
Therefore, Π2(·, ·|Xn
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r
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r
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n
2 ,X
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2)) = (pn∗

2 , pr∗
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It remains to show that pn∗
2 > pr∗

2 . Note that pn∗
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(
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)
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(
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2
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(
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2
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(
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)
= 1. Since k < 1, pn∗

2 −c2+r2
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>
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2 −c2
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rate condition implies that g
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)
/Ḡ
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(
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/Ḡ

(
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2
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)
= 1, and, hence, ∂pr2

vr
2(p

n∗
2 )< 0. Since vr

2(·) is quasiconcave, pr∗
2 < pn∗

2 .
Part (b). Because all new customers with willingness-to-pay (1 + α)V greater than pn

2(X
n
2 ,X

r
2) ≡ pn∗

2

would make a purchase. Hence, Qn
2(X

n
2 ,X

r
2) =E[Xn

2 1{(1+α)V ≥pn∗
2 }|Xn

2 ] = Ḡ
(

pn∗
2

1+α

)
Xn

2 . Analogously, all repeat
customers with willingness-to-pay (k+ α)V greater than pr

2(X
n
2 ,X

r
2)≡ pr∗

2 would make a purchase. Hence,
Qr

2(X
n
2 ,X

r
2) =E[Xr

21{(k+α)V ≥pr∗2 }|Xr
2 ] = Ḡ

(
pr∗2
k+α

)
Xr

2 .
Part (c). Since π2(X

n
2 ,X

r
2) := max{Π2(p

n
2 , p

r
2|Xn

2 ,X
r
2) : 0 ≤ pr

2 ≤ pn
2}, it follows that π2(X

n
2 ,X

r
2) =

[maxvn
2 (p

n
2)]X

n
2 +[maxvr

2(p
r
2)]X

r
2 . To complete the proof, it remains to show that β∗

n = [maxvn
2 (p

n
2)]> 0 and

β∗
r = [maxvr

2(p
r
2)]> 0. It is straightforward to check that pn∗

2 − c2 > 0, Ḡ
(

pn∗
2

1+α

)
> 0, pr∗

2 − c2 + r2 > 0, and

Ḡ
(

pr∗2
k+α

)
> 0. Hence, β∗

n = (pn∗
2 − c2)Ḡ

(
pn∗
2

1+α

)
> 0 and β∗

r = (pr∗
2 − c2 + r2)Ḡ

(
pr∗2
k+α

)
> 0. Q.E.D.

Proof of Theorem 1: Part (a). This part has already been shown by the discussions before the theorem.

1 Due to the page limit requirement, we only provide a sketch of the proof. The complete proof is available from the
authors upon request.



32 Zhang and Zhang: Trade-in Remanufacturing

Part (b,c). Plugging p∗
1(·) into Πf (·|·) and, with some algebraic manipulations, we have Πf (Q1|δc) =

(m∗
1(δc) − s)E(X ∧ Q1) − (c1 − s)Q1 + δβ∗

nE(X). Therefore, Q∗
1(δc) is the solution to a newsvendor

problem with marginal revenue m∗
1(δc) − s, marginal cost c1 − s, and demand distribution F (·). Hence,

Q∗
1(δc) = F̄−1( c1−s

m∗
1(δc)−s

) and Π∗
f (δc) =Πf (Q

∗
1(δc)|δc) = (m∗

1(δc)−s)E(X∧Q∗
1(δc))− (c1−s)Q∗

1(δc)+δβ∗
nE(X).

Q.E.D.

Proof of Theorem 2: Part (a). It follows from Theorem 1(a) that p∗
1(δc) = µ + δc(σ

∗
r − σ∗

n) and
m∗

1(δc) = µ + δ(β∗
r − β∗

n) + δc(σ
∗
r − σ∗

n) are strictly increasing (decreasing) in δc if σ∗
r > σ∗

n (σ∗
r < σ∗

n). By
Theorem 1(b), Q∗

1(δc) = F̄−1( c1−s

m∗
1(δc)−s

) is increasing (decreasing) in δc if and only if σ∗
r > σ∗

n (σ∗
r < σ∗

n).
Moreover, for any Q1 and any δ̂c > δc, Πf (Q1|δ̂c)−Πf (Q1|δc) = (δ̂c − δc)(σ

∗
r − σ∗

n)E(X ∧Q1)> 0 if and only
if σ∗

r > σ∗
n. Therefore, Π∗

f (δ̂c) = maxΠf (Q1|δ̂c) >maxΠf (Q1|δc) = Π∗
f (δc) if and only if σ∗

r > σ∗
n. If, on the

other hand, σ∗
r <σ∗

n, it follows immediately from the same argument that Π∗
f (δ̂c)<Π∗

f (δc).
To show that σ∗

r > σ∗
n (resp. σ∗

r < σ∗
n) if k ∈ (k, k̄) (resp. k < k or k > k̄), it suffices to prove that if σ∗

r is
increasing in k at k= k0, it is increasing in k when k≤ k0. σ∗

r is increasing in k at k= k0 implies that, for ϵ > 0

and small enough, E[(k0 +α)V − pr∗
2 (k0)]

+ > E[(k0 − ϵ+α)V − pr∗
2 (k0 − ϵ)]+, where we use pr∗

2 (·) to denote
the dependence of pr∗

2 on the depreciation factor k. Since r2 is concavely decreasing in k, pr∗
2 (k)− pr∗

2 (k− ϵ)

is increasing in k. Therefore, for k < k0, E[(k+α)V −pr∗
2 (k)]+ >E[(k− ϵ+α)V −pr∗

2 (k− ϵ)]+ for ϵ > 0 small
enough, where the inequality follows from E[(k0+α)V −pr∗

2 (k0)]
+ >E[(k0− ϵ+α)V −pr∗

2 (k0− ϵ)]+ and that
pr∗
2 (k)−pr∗

2 (k− ϵ) is increasing in k. Therefore, σ∗
r is increasing in k for all k≤ k0. As an implication, we have

also established that σ∗
r is quasiconcave in k. Hence, there exist two thresholds k and k̄, such that σ∗

r > σ∗
n

if and only if k ∈ (k, k̄), and σ∗
r <σ∗

n if and only k < k or k > k̄.
Part (b). We first show (b-iii). By definition, σu

r (Q1)− σu
n(Q1) = E[(k + α)V − pu

2(X
n
2 ,X

r
2)]

+ − E[(1 +

α)V −pu
2(X

n
2 ,X

r
2)]

+. Since k < 1 and pu
2(X

n
2 ,X

r
2)∈ (pr∗

2 , pn∗
2 ) (Lemma 2), σu

r (Q1)−σu
n(Q1)< 0 for all Q1 ≥ 0.

By Theorem 11, pu∗
1 (δc) = µ+ δc(σ

u
r (Q

u∗
1 (δc))−σu

n(Q
u∗
1 (δc))) is continuously differentiable in δc. Since the

right derivative of pu∗
1 (·) at 0 is ∂+

δc
pu∗
1 (0) = σu

r (Q
u∗
1 (δc))− σu

n(Q
u∗
1 (δc))< 0, there exists a positive threshold

δ0 > 0 such that pu∗
1 (·) is strictly decreasing on [0, δ0].

To show that Qu∗
1 (δc) is strictly decreasing in δc, it suffices to show that Πu

f (Q1|δc) is strictly submodular on
a neighborhood of (Qu∗

1 (δc), δc). Direct computation yields ∂δcΠ
u
f (Q1(δc)|δc) = (σu

r (Q1)−σu
n(Q1))E(X ∧Q1).

Note that σu
r (Q1)− σu

n(Q1) < 0 and is decreasing in Q1, whereas E(X ∧Q1) > 0 and is strictly increasing
in Q1 in a neighborhood of Qu∗

1 (δc). It follows immediately that ∂δcΠ
u
f (Q1|δc) is strictly decreasing

in Q1 on a neighborhood of Qu∗
1 (δc). Therefore, Πu

f (Q1|δc) is strictly submodular on a neighborhood
of (Qu∗

1 (δc), δc) and, thus, Qu∗
1 (δc) is strictly decreasing in δc. By the envelope theorem, ∂δcΠ

u∗
f (δc) =

(σu
r (Q

u∗
1 (δc))−σu

n(Q
u∗
1 (δc)))E(X ∧Qu∗

1 (δc))> 0. Hence, Πu∗
f (δc) is strictly increasing in δc. Q.E.D.

Proof of Theorem 3: Part (a). By Lemma 2, pr∗
2 < pu

2(X
n
2 ,X

r
2)< pn∗

2 with probability 1. Thus, if Q1 > 0,
σ∗
r = E[(k+α)V − pr∗

2 ]+ ≥ E[(k+α)V − pu
2((X −Q1)

+,X ∧Q1)]
+ = σu

r (Q1), and σ∗
n = E[(1+α)V − pn∗

2 ]+ <

E[(1+α)V − pu
2((X −Q1)

+,X ∧Q1)]
+ = σu

n(Q1).
Part (b). By Theorem 1(b) and Theorem 11(b), for all δc > 0, p∗

1(δc) − pu∗
1 (δc) = δc[σ

∗
r − σ∗

n] −
δc[σ

u
r (Q

u∗
1 (δc))−σu

n(Q
u∗
1 (δc))] = δc[σ

∗
r −σu

r (Q
u∗
1 (δc))]+δc[σ

u
n(Q

u∗
1 (δc))−σ∗

n]> 0. Since ∂pu2
(E[(k+α)V −pu

2 ]
+−



Zhang and Zhang: Trade-in Remanufacturing 33

E[(1 + α)V − pu
2 ]

+) = P[ pu2
1+k

≤ V ≤ pu2
k+α

] > 0 and pr∗
2 < pu

2(X
n
2 ,X

r
2) < pn∗

2 with probability 1, σu
r (Q

u∗
1 (δc))−

σu
n(Q

u∗
1 (δc))<E[(k+α)V − pn∗

2 ]+ −E[(1+α)V − pn∗
2 ]+ =E[(k+α)V − pn∗

2 ]+ −σ∗
n. Hence, p∗

1(δc)− pu∗
1 (δc)>

δc[σ
∗
r −σ∗

n]−δc{E[(k+α)V −pn∗
2 ]+−σ∗

n}= δc(σ
∗
r −E[(k+α)V −pn∗

2 ]+) for all δc > 0. It is also straightforward
to check that, for any δc ∈ [0, δ] and Q1 > 0, Πf (Q1|δc)>Πu

f (Q1|δc) for all Q1 > 0 and δc ∈ [0, δ]. Therefore,
Π∗

f (δc) =maxQ1
Πf (Q1|δc)>maxQ1

Πu
f (Q1|δc) =Πu∗

f (δc).
Part (c). Note that Πf (Q1|δc) = (m∗

1(δc)− s)E[Q1∧X]− (c1− s)Q1+ δβ∗
nE[X]. By the proof of Theorem

2(a), it is easy to check that, if m∗
1(δc) = µ+δ(β∗

r −β∗
n)+δc(σ

∗
r −σ∗

n) is increasing in k at k= k0, it is increasing
in k for all k≤ k0. In other words, m∗

1(δc) is quasiconcave in k. Furthermore, since c1 is convexly decreasing
in k, following the same argument as the proof of Theorem 2(a), direct computation yields that the critical
fractile c1−s

m∗
1(δc)−s

is decreasing in k at k0, so it is decreasing in k for all k≤ k0. Thus, c1−s

m∗
1(δc)−s

is quasiconvex in
k, and, therefore, there exists a K such that Q∗

1(δc) is increasing in k if k≤K, and decreasing in k if k≥K.
Next we show that Π∗

f (δc) is also increasing in k when k ≤K and decreasing in k when k ≥K. It is clear
that K = argmink

[
c1−s

m∗
1(δc)−s

]
. Since c1 is convexly decreasing in k, for any realization of X and production

quantity Q1 = Q∗
1(δc) = F̄−1

(
c1−s

m∗
1(δc)−s

)
, (m∗

1(δc) − s)(Q1 ∧X) − (c1 − s)Q1 is increasing in k for k ≤ K,
and decreasing in k for k ≥K. Therefore, Π∗

f (δc) = E[(m∗
1(δc)− s)(Q∗

1(δc)∧X)− (c1 − s)Q∗
1(δc) + δβ∗

nX] is
increasing in k when k≤K, and it is decreasing in k when k≥K.

Part (d). Since p∗
1(δc) = µ+ δc(σ

∗
r −σ∗

n), |∂kp
∗
1(δc)|= δc|∂kσ

∗
r |, which is clearly increasing in δc. Q.E.D.

Before showing Theorem 4, we first prove Theorem 5 and Theorem 6.

Proof of Theorem 5: Part (a). Since Q∗
1(·) and Qu∗

1 (·) are continuous in δc, it suffices to show
that Q∗

1(δ) > Qu∗
1 (δ). We first show that mu

1(Q1|δ) is decreasing in Q1. Observe that mu
1(Q1|δ) =

µ+ δ[Ur(Q1)−Un(Q1)], where Ur(Q1) :=E
[
(pu

2(X
n
2 ,X

r
2)− c2)Ḡ

(
pu2 (Xn

2 ,Xr
2 )

k+α

)]
+E((k+α)V −pu

2(X
n
2 ,X

r
2))

+,

and Un(Q1) := E
[
(pu

2(X
n
2 ,X

r
2)− c2)Ḡ

(
pu2 (Xn

2 ,Xr
2 )

1+α

)]
+ E((1 + α)V − pu

2(X
n
2 ,X

r
2))

+. Let ur(p) := (p −

c2)Ḡ( p

k+α
) + E((k + α)V − p)+ = E[(k + α)V − c2]1{(k+α)V ≥p} and un(p) := (p − c2)Ḡ( p

1+α
) + E((1 +

α)V − p)+ = E[(1 + α)V − c2]1{(1+α)V ≥p}. It’s clear that ur(·) and un(·) are continuously decreasing in
p. Moreover, Ur(Q1) = E[ur(p

u
2(X

n
2 ,X

r
2))] and Un(Q1) = E[un(p

u
2(X

n
2 ,X

r
2))], where Xn

2 = (X − Q1)
+ and

Xr
2 = X ∧Q1. Since pu

2(X
n
2 ,X

r
2) is increasing in Xn

2 and decreasing in Xr
2 , it is stochastically decreasing

in Q1. Hence, it suffices to show that ur(p) − un(p) is increasing in p. Observe that ur(p) − un(p) =

−[
∫ v̄

p/(1+α)
((1 + α)V − max(p, (k + α)V ))g(V )dV ], which is continuously increasing in p. Therefore,

mu
1(Q1|δ) = µ+δ(Ur(Q1)−Un(Q1)) = µ+δ{E[un(p

u
2(X

n
2 ,X

r
2))−ur(p

u
2(X

n
2 ,X

r
2))]} is continuously decreasing

in Q1.
We now show that mu

1(Q1|δ)<m∗
1(δ) for all Q1. Observe that mu

1(Q1|δ)−m∗
1(δ) = δE[ur(p

u
2(X

n
2 ,X

r
2))−

ur(p
r∗
2 )]−δE[un(p

u
2(X

n
2 ,X

r
2))−un(p

n∗
2 )]. Because pr∗

2 ≤ pu
2(X

n
2 ,X

r
2)≤ pn∗

2 and ur(·) and un(·) are decreasing in
p, δE[ur(p

u
2(X

n
2 ,X

r
2))− ur(p

r∗
2 )]≤ 0 and δE[un(p

u
2(X

n
2 ,X

r
2))− un(p

n∗
2 )]≥ 0. Hence, mu

1(Q1|δ)≤m∗
1(δ). Since

k < 1, pr∗
2 < pn∗

2 , one of the inequalities E[ur(p
u
2(X

n
2 ,X

r
2))−ur(p

r∗
2 )]≤ 0 and E[un(p

u
2(X

n
2 ,X

r
2))−un(p

n∗
2 )]≥ 0

must be strict. Therefore, mu
1(Q1|δ)<m∗

1(δ) for all Q1 ≥ 0.
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Next, we show that Q∗
1(δ)>Qu∗

1 (δ). Observe that Πu
f (Q1|δ)−Πf (Q1|δ) = (mu

1(Q1|δ)−m∗
1(δ))E(X ∧Q1)+

δE
[
(pu

2(X
n
2 ,X

r
2)− c2)Ḡ

(
pu2 (Xn

2 ,Xr
2 )

1+α

)
−β∗

n

]
X. Let Π(Q1,1) = Πf (Q1|δ) and Π(Q1,0) = Πu

f (Q1|δ). Then,

Π(Q1,1) − Π(Q1,0) = (m∗
1(δ) − mu

1(Q1|δ))E(X ∧ Q1) + δE[β∗
n − (pu

2(X
n
2 ,X

r
2) − c2)Ḡ

(
pu2 (Xn

2 ,Xr
2 )

1+α

)
]X. Since

m∗
1(δ)≥mu

1(Q1|δ) and mu
1(Q1|δ) is decreasing in Q1, (m∗

1(δ)−mu
1(Q1|δ))E(X ∧Q1) is increasing in Q1. Also

note that pu
2(X

n
2 ,X

r
2) and thus (pu

2(X
n
2 ,X

r
2)− c2)Ḡ

(
pu2 (Xn

2 ,Xr
2 )

1+α

)
is decreasing in Q1. Therefore, Π(Q1,1)−

Π(Q1,0) is increasing in Q1. Hence, Π(·, ·) is supermodular on the lattice [0,+∞)× {0,1} and Qu∗
1 (δ) =

argmaxQ1≥0Π
u
f (Q1|δ) ≤ argmaxQ1≥0Πf (Q1|δ) = Q∗

1(δ). Since m∗
1(δ) > mu

1(Q
u∗
1 (δ)|δ), ∂Q1

Πf (Q
u∗
1 (δ)|δ) >

∂Q1
Πu

f (Q
u∗
1 (δ)|δ) = 0. Since Πf (·|δ) is concave in Q1, Q∗

1(δ) > Qu∗
1 (δ). Due to the continuity of Q∗

1(·) and
Qu∗

1 (·) in δc, there exists a threshold δ̄q ≤ δ such that Q∗
1(δc)>Qu∗

1 (δc) for all δ > δ̄q.
Part (b). We first show that mu

1(Q1|0) is increasing in Q1. Note that mu
1(Q1|0) = µ+δ(βu

r (Q1)−βu
n(Q1)).

By Lemma 3, βu
r (·) is increasing whereas βu

n(·) is decreasing in Q1. Therefore, mu
1(Q1|0) is increasing in Q1.

We then show that there exists a threshold Q̄1 such that mu
1(Q1|0)>m∗

1(0) (mu
1(Q1|0)<m∗

1(0)) if Q1 > Q̄1

(Q1 < Q̄1). Let β̂∗
r =maxp≥0 v̂

r
2(p) = limQ1→+∞ βu

r (Q1). Since k < 1, β̂∗
n := vn

2 (p̂
r∗
2 )<β∗

n. It is clear that β∗
r − β̂∗

r

is increasing in r2, with β∗
r = β̂∗

r if r2 = 0. Let r̄2 > 0 be the threshold such that β∗
r − β̂∗

r = β∗
n − β̂∗

n. Hence,
β∗
r − β̂∗

r < β∗
n − β̂∗

n for all r2 < r̄2. Moreover, by the monotone convergence theorem, limQ1→+∞mu
1(Q1|0) =

µ+ δ[vr
2(p̂

r∗
2 )− vn

2 (p̂
r∗
2 )] = µ+ δ[β̂∗

r − β̂∗
n]>µ+ δ[β∗

r − β∗
n] =m∗

1(0). Since mu
1(Q1|0) is increasing in Q1, there

exists a threshold Q̄1 such that mu
1(Q1|0)>m∗

1(0) (mu
1(Q1|0)<m∗

1(0)) if Q1 > Q̄1 (Q1 < Q̄1).
Now we show there exists a cq > 0 such that, if c1 < cq, Q∗

1(0)<Qu∗
1 (0). It is clear that Qu∗

1 (0) ↑ X̄ and
Q∗

1(0) ↑ X̄ as c1 ↓ 0, where X̄ is the upper bound of the support of X (X̄ may take the value of +∞). Hence,
there exists a threshold cq > 0 (dependent on r2) such that if c1 < cq, Qu∗

1 (0) > Q̄1 and Q∗
1(0) > Q̄1. Let

π̂2(Q1) := δE[vn
2 (p

u
2(X

n
2 ,X

r
2))X], where Xn

2 = (X −Q1)
+ and Xr

2 = X ∧Q1. It’s clear that π̂2(·) is differ-
entiable and, by the chain rule π̂′

2(Q1) = δE[∂pv
n
2 (p

u
2(X

n
2 ,X

r
2))(∂Xn

2
pu
2(X

n
2 ,X

r
2)+∂Xr

2
pu
2(X

n
2 ,X

r
2))1{X≥Q1}X].

As Q1 → X̄, for any realization of X ≤ X̄, ∂Xn
2
pu
2(X

n
2 ,X

r
2) and ∂Xr

2
pu
2(X

n
2 ,X

r
2) converges to 0. Hence, by the

dominated convergence theorem, there exits a threshold Q̂ ∈ [Q̄1, X̄), such that π̂′
2(Q1) ∈ [−ϵP(X ≥Q1),0]

for all Q1 ≥ Q̂, where ϵ := (m̃u
1(Q̂)− m̃∗

1)/2 > 0. Let c̄1(r2) ∈ (0, c̃(r2)] be the threshold such that, if c1 <

c̄1(r1), we have Qu∗
1 ,Q∗

1 > Q̂ ≥ Q̄1. Therefore, ∂Q1
Πf (Q

u∗
1 (0)|0) = (m∗

1(0)− r1)P(X ≥Qu∗
1 (0))− (c1 − r1) <

(mu
1(Q

u∗
1 (0)|0) − r1)P(X ≥ Qu∗

1 (0)) − ϵP(X ≥ Qu∗
1 (0)) − (c1 − r1) ≤ (mu

1(Q
u∗
1 (0)|0) − r1)P(X ≥ Qu∗

1 (0)) +

π̂′
2(Q

u∗
1 (0))−(c1−r1)≤ ∂Q1

Πu
f (Q

u∗
1 (0)|0) = 0, where the first inequality follows from mu

1(Q
u∗
1 (0)|0)−m∗

1(0)≥

(mu
1(Q̂|0)−m∗

1(0)) = 2ϵ > ϵ, the second from π̂′
2(Q

u∗
1 (0))∈ [−ϵP(X ≥Qu∗

1 (0)),0], and the last from the mono-
tonicity that mu

1(·|0) is increasing in Q1. Because Πf (·|0) is concave in Q1, Q∗
1(0) = argmaxQ1

Πf (Q1|0)<

Qu∗
1 (0) follows immediately. Since Q∗

1(δc) and Qu∗
1 (δc) are continuous in δc, there exists a threshold δq such

that Q∗
1(δc)<Qu∗

1 (δc) for all δc ∈ [0, δq).
Part (c). By Theorem 2, Q∗

1(δc) is strictly increasing in δc if σ∗
r > σ∗

n, whereas Qu∗
1 (δc) is strictly

decreasing in δc. Therefore, δq = δ̄q if σ∗
r >σ∗

n. Q.E.D.

Proof of Theorem 6: Part(a). A straightforward algebraic manipulation yields I∗
e (δc) = Ie(Q

∗
1(δc)),

where Ie(Q1) := κ1Q1 +
[
δκ2Ḡ

(
pr∗2
k+α

)
− δκ2Ḡ

(
pn∗
2

1+α

)
− δι2Ḡ

(
pr∗2
k+α

)]
E(X ∧ Q1) + δκ2Ḡ

(
pn∗
2

1+α

)
E[X]. If

κ1 ≥ δκ2Ḡ
(

pn∗
2

1+α

)
, it is easy to check that I ′

e(Q
∗
1(δc)) >

[
κ1 − δκ2Ḡ

(
pn∗
2

1+α

)
+ δ(κ2 − ι2)Ḡ

(
pr∗2
k+α

)]
P(X ≥
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Q∗
1(δc))> 0 where the first inequality follows from P(X ≥Q∗

1(δc))< 1, whereas the second inequality follows
from the assumptions that κ1 ≥ δκ2Ḡ

(
pn∗
2

1+α

)
and κ2 > ι2. Thus, by Theorem 2(a), if σ∗

r > σ∗
n, Q∗

1(δc)

is strictly increasing in δc, so is I∗
e (δc) = Ie(Q

∗
1(δc)); if σ∗

r < σ∗
n, Q∗

1(δc) is strictly decreasing in δc, so is
I∗
e (δc) = Ie(Q

∗
1(δc)). Furthermore, by Theorem 2, σ∗

r >σ∗
n if and only if k ∈ (k, k̄), and σ∗

r <σ∗
n if and only if

k < k or k > k̄.
Part (b). As shown in part(a), I∗

e (δc) is strictly increasing in Q∗
1(δc) and, by the proof of Theorem 3(c),

Q∗
1(δc) is increasing in k when k is small, and decreasing in k when k is big. Therefore, with the same

argument as Theorem 3, we know I∗
e (δc) is quasiconcave in k, and thus there exists a threshold Ke, such

that I∗
e (δc) is increasing (resp. decreasing) in k for k≤Ke (resp. k≥Ke). Q.E.D.

Proof of Theorem 4: Part (a). Since δc > δ̄q, Theorem 5(a) implies that Q∗
1(δc) > Qu∗

1 (δc). Now we
compute Iu∗

e (δc). Given the market size (Xn
2 ,X

r
2), the equilibrium total second-period production quantity,

Qu
2(X

n
2 ,X

r
2), is given by Qu

2(X
n
2 ,X

r
2) = Xn

2 Ḡ
(

pu2 (Xn
2 ,Xr

2 )

1+α

)
+ Xr

2Ḡ
(

pu2 (Xn
2 ,Xr

2 )

k+α

)
. Therefore, following the

same argument as in the proof of Theorem 6, we have Iu∗
e (δc) = E{κ1Q

u∗
1 (δc) + δκ2Q

u
2(X

n∗
2 ,Xr∗

2 )} =

κ1Q
u∗
1 (δc) + E

[(
δκ2Ḡ

(
pu2 (Xn∗

2 ,Xr∗
2 )

k+α

)
− δκ2Ḡ

(
pu2 (Xn∗

2 ,Xr∗
2 )

1+α

))
(X ∧Qu∗

1 (δc))
]

+ δκ2E
[
Ḡ
(

pu2 (Xn∗
2 ,Xr∗

2 )

1+α

)
X
]
,

where Xn∗
2 = (X −Qu∗

1 (δc))
+ and Xr∗

2 = X ∧Qu∗
1 (δc). For any δc, I∗

e (δc) is strictly linearly decreasing in
ι2. Thus, let ῑe := max{ι2 : I∗

e (δc) ≥ Iu∗
e (δc)}. We have I∗

e (δc) > Iu∗
2 (δc), if ι2 < ῑe. In particular, if ι2 = 0,

Q∗
1(δc) > Qu∗

1 (δc), pr∗
2 < pu

2(·, ·) < pn∗
2 , and κ1 ≥ δκ2Ḡ

(
pn∗
2

1+α

)
imply that κ1Q

∗
1(δc) −

[
δκ2Ḡ

(
pn∗
2

1+α

)]
E(X ∧

Q∗
1(δc))+δκ2Ḡ

(
pn∗
2

1+α

)
E[X]>κ1Q

u∗
1 (δc)−E

[
δκ2Ḡ

(
pu2 (Xn∗

2 ,Xr∗
2 )

1+α

)]
(X∧Qu∗

1 (δc))+δκ2E
[
Ḡ
(

pu2 (Xn∗
2 ,Xr∗

2 )

1+α

)
X
]
,

and δκ2Ḡ
(

pr∗2
k+α

)
E(X ∧Q∗

1(δc))>E
[
δκ2Ḡ

(
pu2 (Xn∗

2 ,Xr∗
2 )

k+α

)
(X ∧Qu∗

1 (δc))
]
. Thus, for ι2 = 0, we follow the same

argument as the proof of Theorem 6 to establish that I∗
e (δc) = κ1Q

∗
1(δc)−

[
δκ2Ḡ

(
pn∗
2

1+α

)]
E(X ∧Q∗

1(δc)) +

δκ2Ḡ
(

pn∗
2

1+α

)
E[X] + δκ2Ḡ

(
pr∗2
k+α

)
E(X ∧ Q∗

1(δc)) > κ1Q
u∗
1 (δc) − E

[
δκ2Ḡ

(
pu2 (Xn∗

2 ,Xr∗
2 )

1+α

)]
(X ∧ Qu∗

1 (δc)) +

δκ2E
[
Ḡ
(

pu2 (Xn∗
2 ,Xr∗

2 )

1+α

)
X
]
+ E

[
δκ2Ḡ

(
pu2 (Xn∗

2 ,Xr∗
2 )

k+α

)
E(X ∧Qu∗

1 (δc))
]
= Iu∗

e (δc), i.e., I∗
e (δc) > Iu∗

e (δc) for
ι2 = 0. Therefore, ῑe > 0.

Part (b). Since δc < δq, Theorem 5(b) implies that Q∗
1(δc) < Qu∗

1 (δc). Lemma 2 implies
that pr∗

2 < pu
2(·, ·) < pn∗

2 . Hence, κ1Q
∗
1(δc) + δκ2Ḡ

(
pn∗
2

1+α

)
{E[X] − E(X − Q∗

1(δc))
+} < κ1Q

u∗
1 (δc) +

δκ2E
[
Ḡ
(

pu2 (Xn∗
2 ,Xr∗

2 )

1+α

)
X − (X ∧Qu∗

1 (δc))
+
]
. Let ι̃e := (Ḡ(

pr∗2
k+α

) − Ḡ(
pn∗
2

k+α
))κ2/Ḡ(

pr∗2
k+α

) < κ2. If
ι2 > ι̃e, since Qu∗

1 (δc) > Q∗
1(δc) and pr∗

2 < pu
2(·, ·) < pn∗

2 , E
[
δκ2Ḡ

(
pu2 (Xn∗

2 ,Xr∗
2 )

k+α

)
(Qu∗

1 (δc)∧X)
]

>[
δ(κ2 − ι2)Ḡ

(
pr∗2
k+α

)]
E(Qu∗

1 (δc) ∧ X) >
[
δ(κ2 − ι2)Ḡ

(
pr∗2
k+α

)]
E(Q∗

1(δc) ∧ X). Putting everything together,
if ι2 > ι̃e, we have that Iu∗e (δc) = κ1Q

u∗
1 (δc) + δκ2E

[
Ḡ
(

pu2 (Xn∗
2 ,Xr∗

2 )

1+α

)
X − (X ∧Qu∗

1 (δc))
+
]

+

E
[
δκ2Ḡ

(
pu2 (Xn∗

2 ,Xr∗
2 )

k+α

)]
(Qu∗

1 (δc) ∧ X) > κ1Q
∗
1(δc) + δκ2Ḡ

(
pn∗
2

1+α

)
{E[X] − E(X − Q∗

1(δc))
+} +

E{
[
δ(κ2 − ι2)Ḡ

(
pr∗2
k+α

)]
(Q∗

1(δc)∧X)}= I∗e (δc). This shows part (b). Q.E.D.

Proof of Theorem 7: We first derive S∗
c (δc) and Su∗

c (δc). Let a∗
1(δc) and au∗

1 (δc) be the in-stock
probability in the base model and the NTR model, respectively. The expected surplus of a customer
with discount factor δc in the base model is given by: a∗

1(δc)(µ − p∗
1(δc) + δσ∗

r ) + (1 − a∗
1(δc))δσ

∗
n =

a∗
1(δc)(µ− µ− δc(σ

∗
r − σ∗

n) + δσ∗
r ) + (1− a∗

1(δc))δσ
∗
n = a∗

1(δc)(δ− δc)(σ
∗
r − σ∗

n) + δσ∗
n, where the first equality

follows from p∗
1(δc) = µ + δc(σ

∗
r − σ∗

n). Therefore, the equilibrium total customer surplus is given by
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S∗
c (δc) =E[(a∗

1(δc)(δ− δc)(σ
∗
r −σ∗

n)+ δσ∗
n)X]. Analogously, the expected surplus of a customer with discount

factor δc in the NTR model is given by: a∗
u(δc)(µ − pu∗

1 (δc) + δσu
r (Q

u∗
1 (δc))) + (1 − a∗

u(δc))δσ
u
n(Q

u∗
1 (δc)) =

a∗
u(δc)(δ− δc)(σ

u
r (Q

u∗
1 (δc))−σu

n(Q
u∗
1 (δc)))+ δσu

n(Q
u∗
1 (δc)). Therefore, the equilibrium total customer surplus

is given by Su∗
c (δc) =E[(a∗

u(δc)(δ− δc)(σ
u
r (Q

u∗
1 (δc))−σu

n(Q
u∗
1 (δc)))+ δσu

n(Q
u∗
1 (δc)))X].

Next, we show that S∗
c (δc) < Su∗

c (δc) for δc > δ̄s. Note that, when δc = δ, S∗
c (δc) = δE[σ∗

nX] and
Su∗

c (δc) = δE[σu
n(Q

u∗
1 (δc))X]. By Lemma 2(c), σ∗

n < σu
n(Q

u∗
1 (δc)). Hence, it follows immediately that

Su∗
c (δc) = δE[σu

n(Q
u∗
1 (δc))X] > δE[σ∗

nX] = S∗
c (δc) for δc = δ. Since S∗

c (δc) and Su∗
c (δc) are continuous in δc,

there exists a threshold δ̃s < δ such that Su∗
c (δc)>S∗

c (δc) for δc ∈ (δ̃s, δ]. Q.E.D.

Proof of Theorem 8: Part (a). It follows from the same argument as the proof of Theorem 1(a)
that, ps∗

1 (δc) = µ+ δc(σ
s∗
r − σs∗

n ). Let Ws(Q1|δc) denote the expected total social welfare with first-period
production quantity Q1 and customer discount factor δc. To compute Ws(Q1|δc), Since w2(X

n
2 ,X

r
2) =

σs∗
n Xn

2 + σs∗
r Xr

2 , we have Ws(Q1|δc) = ps∗
1 (δc)E(X ∧Q1) + (µ− ps∗

1 (δc))E(X ∧Q1)− (c1 + κ1)Q1 + sE(Q1 −

X)+ + δE{w2(X − (X ∧ Q1),X ∧ Q1)} = (ms∗
1 − s)E(X ∧ Q1) − (c1 − s + κ1)Q1 + δσs∗

n E(X). Therefore,
Qs∗

1 (δc) is the solution to a newsvendor problem with marginal revenue ms∗
1 − s, marginal cost c1 + κ1 − s,

and demand distribution F (·). Hence, Qs∗
1 (δc) = F̄−1( c1+κ1−s

ms∗
1 −s

), and the equilibrium social welfare is
W ∗

s (δc) =Ws(Q
s∗
1 (δc)|δc) = (ms∗

1 − s)E(X ∧Qs∗
1 (δc))− (c1 +κ1 − s)Qs∗

1 (δc)+ δσs∗
n E(X).

Part (b). It follows immediately from part (a) that ps∗
1 (δc) = µ+ δc(σ

s∗
r −σs∗

n ) is strictly increasing (resp.
decreasing) in δc if and only if σs∗

r > σs∗
n (resp. σs∗

r < σs∗
n ). Note that, by part (a), σs∗

r = E[(k + α)V2 −

c2 − κ2 + e2]
+, where e2 := r2 + ι2. The same argument as the proof of Theorem 2(a) implies that if σs∗

r

is increasing in k at k = k0, then σs∗
r is increasing in k for all k ≤ k0. Hence, σs∗

r is quasiconcave in k. Let
ks := argmaxk σ

s∗
r >σs∗

n and k̄s := argmaxk σ
s∗
r >σs∗

n . The quasiconcavity of σs∗
r in k suggests that σs∗

r >σs∗
n

if and only if k ∈ (ks, k̄s), and σs∗
r <σs∗

n if and only if k < ks or k > k̄s. Since ms∗
1 is independent of δc, Qs∗

1 (δc)

is independent of δc as well. As a result, W ∗
s (δc) = (ms∗

1 −s)E(X ∧Qs∗
1 (δc))− (c1+κ1−s)Qs∗

1 (δc)+ δσs∗
n E(X)

is independent of δc.
Part (c). The same argument as the proof of Theorem 3(c) demonstrates that c1+κ1−s

ms∗
1 −s

is quasiconvex in k.
Let Ks := argmink

[
c1+κ1−s

ms∗
1 −s

]
. We have Qs∗

1 is increasing in k for k≤Ks and decreasing in k otherwise. Since

c1 is convexly decreasing in k, for any realization of X and production quantity Q1 =Qs∗
1 = F̄−1

(
c1+κ1−s

ms∗
1 −s

)
,

(ms∗
1 − s)(Q1 ∧X)− (c1 + κ1 − s)Q1 is increasing in k for k ≤Ks and decreasing in k otherwise. Therefore,

W ∗
s =E[(ms∗

1 − s)(Qs∗
1 ∧X)− (c1 +κ1 − s)Qs∗

1 + δσs∗
n X] is also increasing in k if k≤Ks and decreasing in k

otherwise. Q.E.D.

Proof of Theorem 9: If s∗2(δc) is the solution to pn∗
s = argmaxpn2 ≥0(p

n
2 + s2 − c2)Ḡ

(
pn2
1+α

)
, it is clear that

the subsidy/tax scheme with s2 = s∗2(δc) can induce the equilibrium price pn∗
s for new customers. We now

show that s∗2(δc) exists. Since vn
2 (p

n
2) is quasiconcave in pn

2 for any s2, the first-order condition ∂pn2
vn
2 (p

n
2) = 0

guarantees the optimal price for new customers. Moreover, ∂pn2
vn
2 (p

n∗
s ) = Ḡ

(
pn∗
s

1+α

)
− pn∗

s +s2−c2
1+α

g
(

pn∗
s

1+α

)
,

which is strictly decreasing in s2. Hence, there exists a unique s∗2(δc), such that ∂pn2
vn
2 (p

n∗
s ) = 0, thus inducing

the socially optimal equilibrium price pn∗
s for new customers.
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If s∗r(δc) is the solution to pr∗
s = argmaxpr2≥0(p

r
2 + s∗2(δc) + sr − c2 + r2)Ḡ

(
pr2

k+α

)
, the subsidy/tax scheme

with sr = s∗r(δc) can induce the equilibrium trade-in price pr∗
s for repeat customers. We now show that s∗r(δc)

exists. Since vr
2(p

r
2) is quasiconcave in pr

2 for any (s2, sr), the first-order condition ∂pr2
vr
2(p

r
2) = 0 guarantees the

optimal price for new customers. Moreover, if s2 = s∗2(δc), ∂pr2
vr
2(p

r∗
s ) = Ḡ

(
pr∗s
k+α

)
− pr∗s +s∗2(δc)+sr−c2+r2

k+α
g
(

pr∗s
k+α

)
,

which is strictly decreasing in sr. Hence, there exists a unique s∗r(δc), such that ∂pr2
vr
2(p

r∗
s ) = 0, thus inducing

the socially optimal equilibrium trade-in price for repeat customers pr∗
s .

Given the subsidy/tax scheme (s1, s
∗
2(δc), s

∗
r(δc)), as shown above, the firm adopts the same second-period

pricing strategy as the social welfare maximizing one: (pn∗
s , pr∗

s ). Hence, the first-period price should also be
the same as the one that is socially optimal: ps∗

1 (δc) = µ+ δc(σ
s∗
r −σs∗

n ). Thus, the expected profit of the firm
in period 1 is Πs

f (Q1|δc) = (ms
1(s1|δc)− s)E(X ∧Q1)− (c1− s)Q1+ δ(pn∗

s + s∗2(δc)− c2)Ḡ
(

pn∗
s

1+α

)
E(X), where

ms
1(s1|δc) = ps∗

1 (δc)+ δ[(κ2 + s∗2(δc)+ s∗r(δc)− ι2)Ḡ(
pr∗s
k+α

)− (κ2 + s∗2(δc))Ḡ(
pn∗
s

1+α
)] + s1. Thus, Πs

f (Q1|δc) has a
unique optimizer F̄−1( c1−s

ms
1(s1|δc)−s

). Moreover, as shown in Theorem 8, Qs∗
1 (δc) = F̄−1( c1+κ1−s

ms∗
1 −s

). Therefore,
if s∗1(δc) is the unique solution to c1−s

ms
1(s1|δc)−s

= c1+κ1−s

ms∗
1 −s

, the optimal production quantity with the linear
subsidy/tax scheme s∗g(δc) = (s∗1(δc), s

∗
2(δc), s

∗
r(δc)) is Qs∗

1 (δc), which is the socially optimal first-period
production quantity. Q.E.D.

Proof of Theorem 10: Part (a). Under the optimal subsidy/tax policy s∗g(δc), the firm’s profit is
Πs∗

f (δc) = (ps∗1 (δc) + s∗1(δc) − s)E(Qs∗
1 (δc) ∧X) − (c1 − s)Qs∗

1 (δc) + δE(X ∧Qs∗
1 (δc))(k + α)J

(
c2+κ2−e2

k+α

)
+ δE(X −

Qs∗
1 (δc))

+(1+α)J
(

c2+κ2
1+α

)
=
(

c1−s
c1+κ1−s

(ms∗
1 − s)

)
E(X ∧Qs∗

1 (δc))− (c1 − s)Qs∗
1 (δc)+ δE[X](1+α)J

(
c2+κ2
1+α

)
, where

we plug in s∗1(δc) =
c1−s

c1+κ1−s
(ms∗

1 − s) + s− µ− δc(σ
r∗
s − σn∗

s ) + δ(k + α)J
(

c2+κ2−e2
k+α

)
− δ(1 + α)J

(
c2+κ2
1+α

)
, with

J(x) := Ḡ(x)/h(x). It follows immediately from its formula expression that Πs∗
f (δc) is independent of δc.

Part (b). It’s clear that δE[X](1 + α)J
(

c2+κ2

1+α

)
is independent of the depreciation factor k, whereas(

c1−s

c1+κ1−s
(ms∗

1 − s)
)
E(X ∧Qs∗

1 (δc))− (c1 − s)Qs∗
1 (δc) is a constant proportion of the optimal social welfare

that is influenced by the production decision (i.e., (ms∗
1 −s)E[X∧Qs∗

1 (δc)]−(c1−s+κ1)Q
s∗
1 (δc)). By Theorem

8(c), (ms∗
1 −s)E[X∧Qs∗

1 (δc)]−(c1−s+κ1)Q
s∗
1 (δc) is increasing in k for k≤Ks and decreasing in k for k≥Ks,

i.e., W ∗
s is maximized at k=Ks. Therefore, the firm’s profit under the subsidy/tax scheme s∗g(δc), Πs∗

f (δc), is
maximized at k=Ks as well. In other words, if the firm has the flexibility to control the depreciation factor
k (equivalently, the remanufacturing efficiency), it will set the socially optimal one Ks under the optimal
government policy s∗g(δc). Q.E.D.


