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Abstract

In this paper, we review the models of joint pricing-inventory management under

demand uncertainty. Our focus is on establishing a unified modeling framework that

incorporates both pricing and inventory decisions. It applies to different problem set-

tings in this area with proper adaptations. In particular, we employ our modeling

framework to five different key problems: (1) single period problem; (2) multi period

problem without setup costs, leadtimes and supply uncertainty; (3) multi period prob-

lem with setup costs; (4) multi period problem with positive leadtimes; and (5) multi

period problem with supply uncertainty. We characterize the structure of the optimal

policies in our key models and derive their properties. Other interesting extensions to

our key models are also discussed and the paper is concluded with a few thoughts on

promising future research opportunities.

Key words: joint pricing and inventory management; review; unified modeling frame-

work

1 Introduction

This paper reviews an important area in inventory management: the joint pricing and

inventory replenishment control in the face of uncertain demand.

Classical inventory and supply chain management models assume that the customer

demand follows exogenous distributions (see, e.g., Ziplin 2000 and Porteous 2002). Typically,

the objective of this stream of research is to understand operational efficiency and minimize

expected cost, whereas the revenues are assumed constant and known to the decision maker.
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Therefore, another assumption that the sales price of the product(s) is invariant also has to

be imposed. In practice, however, the demand process can be controlled by changing the

prevailing prices. The inventory replenishment/production strategy controls the supply side

of the system whereas the pricing policy controls the demand side. Pricing and inventory

replenishment policies complement each other to mitigate the risk of mismatch in supply and

demand and enhance the profitability of the business. We will illustrate this point through

reviewing several papers in the literature on joint pricing and inventory management under

demand uncertainty.

Dynamic pricing strategy has been widely studied along with the fast development of

revenue management in business areas like airline, hotel room, hospitality and car rental.

The dynamic pricing literature usually makes the assumption that except for the initial pro-

curement at the beginning of the planning horizon, no subsequent inventory replenishment

can occur (see, e.g., Gallego and van Ryzin 1994 and 1997). Hence, this type of model

is suitable for businesses with long production and delivery leadtimes, and relatively short

selling seasons, so that it is very costly to readjust the inventory during the selling season.

Thus, the only procurement cost is sunk during the planning horizon when the seller makes

price adjustment decisions. The models reviewed in this paper, however, assume that the

seller is capable of procuring and receiving additional inventory during the planning hori-

zon so that two series of decisions, pricing and inventory replenishment, have to be made

coordinately throughout the planning horizon to maximize the total profits.

The development of advanced information technologies facilitate the sellers to plan, im-

plement and take advantage of the dynamic pricing strategies. Thanks to the technological

breakthroughs, the cost of collecting and maintaining customer dada has dropped signifi-

cantly in the recent decade. The IT decision support applications also enable the sellers to

costless adjust and optimize sales prices based on complex optimization methods. There-

fore, we have witnessed a fast growth of the employment of dynamic pricing strategy. For

example, the sales prices of thousands of items in Amazon fluctuate everyday in order that

the seller can best control demand and maximize profit.

The purpose of this paper is to review academic research papers on joint pricing and

inventory replenishment control under demand uncertainty. Based on these papers, we

introduce an unified analytic modeling framework that encompasses these two optimization

decisions with self-contained notations. The major portion of this paper is devoted to

the single-party optimization models that highlight the strategically complementary role of

pricing and inventory decisions. We try to strike a balance between modeling and analysis:

this paper presents the models and main results under different problem scenarios but the
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methodology is only sketched so that readers interested in the detailed proofs are referred

to the original papers. The historical roots of different pricing and inventory replenishment

models are briefly discussed. Finally, we hope that the models are potentially useful for

decision support in practice.

There are several other surveys of this topic, e.g., Eliashberg and Steinberg (1991),

Elmaghraby and Keskinocak (2003), Yano and Gilbert (2003), Chan et al. (2004) and Chen

and Simchi-Levi (2012). This paper differs from these reviews in the following aspects: (a)

our focus is on introducing an unified modeling framework for the analysis of jointly pricing

and inventory replenishment control problems; (b) We include a few most recent papers

that are not reviewed in them. Despite the growing research on decentralized supply chain

systems that incorporate combined pricing and inventory control in the recent decade, this

paper only focuses on the single party optimization issues. For a summary of supply chain

competition, coordination and cooperation literature with game theoretic flavor, interested

readers are referred to the related section Chen and Simchi-Levi (2012).

The rest of the paper is organized as follows: in Section 2, we introduce and analyze

the single period model. Section 3 discusses the multi-period model with several variations.

Other extensions of the model are included in Section 4 and we conclude this paper with a

summary and thoughts on potential research opportunities in Section 5.

2 Single Period Model

In this section, we introduce the building block of our models: the single period model. As

an extension to the classical newsvendor model, the single period model assumes that an

order quantity and selling price are decided and ordering cost incurs at the beginning of the

period. During the period, the stochastic demand decreasing in the prevailing price realizes

and revenue is collected. At the end of the period, holding cost for excessive inventory or

backorder penalty for excessive demand applies. The seminal paper by Whitin (1955) is

the first to analyze the single period combined pricing and inventory control problem. Mills

(1959, 1962), Kalin and Carr (1962), Zabel (1970), and Polatoglu (1991) later reanalyze the

newsvendor model under different demand specifications. This line of research is summarized

in the comprehensive review by Petruzzi and Dada (1999) that synthesizes and extends the

results in the newsvendor problem with pricing. We introduce a unified modeling approach

for this single period model of joint pricing and inventory replenishment control.

As a price setter and inventory manager, the firm needs to jointly choose the stocking

quantity x, incurring per-unit cost c, and sales price p before the stochastic price dependent
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demand d(p, ϵ) realizes, where d(p, ϵ) is a decreasing function of p for any ϵ, with ϵ being a

random perturbation. The set of feasible price levels is confined to the finite interval: [p, p̄],

where p̄ is the maximum allowable price and p is the minimum allowable price. If the order

quantity x > d(p, ϵ), a per-unit holding cost h is charged whereas if x < d(p, ϵ), a per-unit

backorder penalty b is charged and the seller also has to pay αc (0 ≤ α ≤ 1) per-unit to

fulfill the backlogged demand. Here we use the discount factor α to maintain the consistency

with multi-period models. Without loss of generality, assume that b > (1 − α)c, i.e., the

backlogging penalty is higher than the saving from delaying an order.

We assume that the stochastic demand function is of the following additive form:

d(p, ϵ) = d(p) + ϵ,

where d(p) is the mean demand, a strictly decreasing function with p(d) as its inverse and

ϵ ∈ [ϵ, ϵ̄], with mean normalized to zero. The additive demand model has been employed

considerably since its introduction by Mills (1959) (see, e.g., Petruzzi and Dada 1999, Chen

and Simchi-Levi 2004a, Li and Zheng 2006, Huh and Janakiraman 2008 and Pang et al.

2012) mainly because of its technical convenience. Throughout this paper, we also assume

the demand is of additive form and specify whether and how the analytical results can

be generalized under other demand forms in different problem scenarios. We change the

decision variable from the sales price p to the mean demand d ∈ [d, d̄], where d = d(p̄) and

d̄ = d(p). We assume the following:

Assumption 1 The expected revenue R(d) := dp(d) is concave in expected demand d.

The concavity of R(d) implies the decreasing marginal revenue with respect to expected

demand d, which is a common assumption in the literature (see, e.g., Chen and Simchi-Levi

2004a, Li and Zheng 2006 and Pang et al. 2012). For a more comprehensive discussion on

decreasing marginal revenue assumptions, see Ziya et al.(2004). Now we can formulate the

single period joint pricing and ordering problem as follows:

π(x, d) = the expected profit of the seller if he orders x units of inventory and sets the price at p(d).

Then,

π(x, d) = E{p(d)(d+ϵ)−cx−h(x−d−ϵ)+−(b+αc)(x−d−ϵ)−} = R(d)−(b+αc)d+(b−(1−α)c)x+L(x−d),

where y+ := max{y, 0}, y− := max{−y, 0}, E{·} is the taking expectation operator, and

L(y) := E{−(h+ b+ αc)(y − ϵ)+}. The following theorem summarizes the optimal pricing

and inventory ordering policy in the single period model:

4



Renyu Zhang 5

Theorem 2.1 (a) π(x, d) is jointly concave and supermodular in (x, d).

(b) Let (x∗, d∗) := argmax(x,d)π(x, d), then x
∗ = d∗ + F−1( b−(1−α)c

h+b+αc
).

(c) If R(·) is continuously differentiable, d∗ = d, d̄, or R′(d∗) = c.

The supermodularity of π(x, d) suggests that inventory and price are strategic substi-

tutes. This is intuitive since if a higher price is set, lower demand will be induced and a

smaller order should be made to meet the demand. Part (b) of Theorem 2.1 generalizes

the well-established critical fractile solution to the newsvendor problem: d∗ is the optimal

price induced expected demand and F−1( b−(1−α)c
h+b+αc

) is the newsvendor critical fractile solu-

tion. When the demand is of more complex form, the critical fractile formula still holds

but to find the optimal sales price requires more effort due to the lack of concavity or even

quasi-concavity. Interested readers are referred to Chen and Simchi-Levi (2012) for a com-

prehensive survey of the single period models under different demand assumptions. As an

endnote to this section, we remark that replenishment and pricing strategies are traditionally

determined by separate units of a firm, the former by production/operations and the latter

by marketing. On the other hand, however, the objective of the firm is to maximize the

total expected profit. An interesting question naturally arises: how to align the incentives of

different departments. Li and Atkins (2002) addresses this question using a linear transfer

price.

3 Multi Period Model

In section, we study how to coordinate inventory replenishment and price adjustments in a

multi-period setting. Unlike the classical inventory management literature (e.g., Karlin and

Carr 1962) which assumes that the sales price remains constant, or the typical revenue man-

agement literature (e.g., Gallego and van Ryzin 1994 and 1997) that assumes the inventory

is non-replenishable throughout the planning horizon, the models introduced in this section

focus on the scenario where price and inventory can be adjusted coordinately. It has been

established in this line of research that the “base-stock/list-price” policy is optimal (see,

e.g., Zabel 1972, Thowsen 1975 and Federgruen and Heching 1999). i.e., there exists two

time dependent values (I∗t , p
∗
t ), such that seller should raise the inventory level to I∗t and

charge a sales price p∗t if the inventory is below I∗t ; and order nothing and charge a price

decreasing in the initial inventory level. We present the base multi-period model of joint

pricing and inventory replenishment policy (Federgruen and Heching 1999) as well as its
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extensions to the scenarios with fixed ordering cost (Chen and Simchi-levi 2004a), positive

leadtimes (Pang et al. 2012) and supply uncertainty (Li and Zheng 2006).

3.1 Base Model

The dynamic combined pricing and inventory strategies under uncertain demand has re-

ceived limited attention since its introduction in Zabel (1972) and Thowsen (1975) until

the influential paper by Federgruen and Heching (1999) which provides a general treatment

of this problem. Since Federgruen and Heching (1999), however, this line of literature has

grown rapidly. Interested readers are refereed to Chen and Simchi-Levi (2012) for the de-

velopment of this stream of research. In this subsection, we present a slightly simplified, yet

easily generalizable, version of the model in Federgruen and Heching (1999).

Consider a firm facing random demand and periodically makes pricing and ordering

decisions in a T−period planning horizon labeled backwards as {T, T − 1, · · · , 1}. As in the

single period model, the seller needs to jointly choose the order-up-to level xt and sales price

pt before the stochastic price dependent demand d(pt, ϵt) = dt + ϵt realizes at the beginning

of each decision epoch, with dt being the expected demand and {ϵt} being i.i.d random

perturbations with mean 0. The sales price is determined by the expected demand the seller

wants to induce: pt = p(dt). As in the traditional inventory literature, excessive inventory

incurs holding cost while excessive demand is fully backlogged and incurs backorder penalty.

We employ the same set of notations as in the single period model to denote the cost

parameters. The model parameters and demand are assumed to be stationary throughout

the that they are constant. Let α (0 ≤ α ≤ 1) be the discount factor of revenues and costs

in future periods, with b > (1− α)c. The mean demand is confined to [d, d̄].

To formulate the planning problem as a dynamic programming, let

Vt(It) = the maximum expected discounted profits in periods t, t− 1, · · · , 1, when starting

period t with a net inventory level It, where It equals the end inventory level of

period t+ 1.

The value function satisfies the following:

Vt(It) = cIt + max
xt≥It,d≤dt≤d̄

Jt(xt, dt),

where

Jt(xt, dt) =E{p(dt)(dt + ϵt)− cxt − h(xt − dt − ϵt)
+ − b(xt − dt − ϵt)

−

+ αVt−1(xt − dt − ϵt)}

=R(dt)− (b+ αc)dt + (b− (1− α)c)xt + Lt(xt − dt),
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with Lt(y) := E[−(h+b)(y−ϵt)++α(Vt−1(y−ϵt)−cy)] and V0(I0) ≡ 0. As in the single-period

model, we assume that R(·) is concave, as depicted in Assumption 1.

Theorem 3.1 (Theorem 1 and 2 in Federgruen and Heching 1999) For any t =

T, T − 1, · · · , 1,

(a) Jt(xt, dt) is jointly concave and supermodular in (xt, dt) and Vt(It) is concavely de-

creasing in It.

(b) Let (x∗t , d
∗
t ) = argmax(xt,dt)Jt(xt, dt) and d

∗
t (xt) be the maximizer of Jt(xt, dt) for any

fixed xt. The optimal policy is to order x∗t −It and set the expected demand level dt at

d∗t (x
∗
t ) if It ≤ x∗t while to order nothing and set dt = d∗t (It) otherwise, where d

∗
t (·) is an

increasing function of It. i.e., the basestock list-price policy is optimal with basestock

level x∗t and list-price p∗t = p(d∗t ).

Theorem 3.1 is a generalization of Theorem 2.1 to the multi-period model. In particular,

we show that the optimality of the basestock list-price policy in the finite-horizon model.

Similar to Theorem 2.1, Jt(xt, dt) is supermodular so that the sales price and order-up-to level

are substitutive to each other. As a result, the optimal sales price charged is decreasing in

the starting inventory level because the higher the initial inventory level, the more incentive

the firm has to set a low price to turn it over. Federgruen and Heching (1999) also consider

the model with markdowns (i.e., it is required that pt ≤ pt−1) and the infinite horizon

models with both discounted profit and long-run average profit. The basestock list-price

policy remains optimal under these problem scenarios. It has been widely observed that

the cost adjustments in a multi-period system are sometimes costly. Chen et al. (2011)

develop the general model for the model with costly price adjustments and characterize the

optimal policies for two special scenarios: (1) a model with inventory carryover and no fixed

price-change costs and (2) a model with fixed price-change costs and no inventory carryover.

An intuitive heuristic policy to tackle the general system whose optimal policy is expected

to be very complicated was also proposed in their paper.

3.2 Model with Fixed Ordering Cost

In Chen and Simchi-Levi (2004a), an important extension to the multi-period base model

is discussed: the model with fixed ordering cost. They show that, under additive demand

form, the objective function is k−concave and an (s, S, p) policy is optimal while, under a

more general demand form, the objective function is only symmetric k−concave and the

(s, S, p) policy may not be optimal. Thomas (1974) first studies the periodic review finite
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horizon model of combined pricing and inventory replenishment strategy with fixed ordering

cost postulating first, without proving the optimality of the (s, S, p) policy. Polatoglu and

Sahin (2000) identifies the sufficient condition that the (s, S, p) policy is optimal, but they

do not justify whether there exists any demand function satisfying these conditions.

The formulation of the model with fixed ordering cost is almost the same as the base

model except that the cost of ordering the inventory from It up-to xt is kδ(xt − It) + c(xt −

It), where δ(y) =

0 if xt = It;

1 if xt > It.
We use V f

t (It) to denote the the maximum expected

discounted profits in periods t, t − 1, · · · , 1, when starting period t with a net inventory

level It, where the superscript ‘f ’ refers to fixed ordering cost. V f
t (It) satisfies the following

recursive scheme:

V f
t (It) = cIt + max

xt≥It,d≤dt≤d̄
{−kδ(xt − It) + Jf

t (xt, dt)},

where

Jf
t (xt, dt) =E{p(dt)(dt + ϵt)− cxt − h(xt − dt − ϵt)

+ − b(xt − dt − ϵt)
−

+ αV f
t−1(xt − dt − ϵt)}

=R(dt)− (b+ αc)dt + (b− (1− α)c)xt + Lf
t (xt − dt),

with Lf
t (y) := E[−(h + b)(y − ϵt)

+ + α(V f
t−1(y − ϵt) − cy)] and V f

0 (I0) = −cI−0 + sI+0 . The

optimal pricing and replenishment policy is then characterized as the following Theorem:

Theorem 3.2 (Lemma 2 and Theorem 3.1 in Chen and Simchi-Levi 2004a) For any

t = T, T − 1, · · · , 1,

(a) Jf
t (xt, dt) is jointly continuous in (xt, dt). Let df∗t (xt) be the maximizer of Jf

t (xt, dt)

for any fixed xt. We have that xt − df∗t (xt) is increasing in xt.

(b) Jf
t (xt, d

f∗
t (xt)) and V

f
t (It) are k−concave.

(c) There exists (st, St) with st ≤ St such that it is optimal to order St − It and set the

expected demand level dt = df∗t (St) if It < st and not not order anything and set

dt = df∗t (It) otherwise. i.e., the (st, St, p(d
f∗
t (St))) policy is optimal.

Chen and Simchi-Levi (2004a) borrow from Scarf (1960) the idea of k−concavity to prove

the optimality of the (s, S, p) policy. Unlike the base model, however, the optimal sales

price pf∗t (It) is not necessarily decreasing in the initial inventory level It for which Chen and

Simchi-Levi (2004a) find a counter example. When the demand form is more general (e.g.,
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dtϵ
m
t + ϵat , where {(ϵat , ϵmt )}Tt=1 are i.i.d. random vectors with E{ϵat } = 0 and E{ϵmt } = 1.),

Jf
t (xt, d

f∗
t (xt)) and V f

t (It) are not necessarily k−concave and the (s, S, p) policy may not

be optimal. The counter-examples are given in Chen and Simchi-Levi (2004a). To find the

optimal policy under general demand functions, Chen and Simchi-Levi (2004a) introduced

a definition called symmetric k−convexity1 and studied the properties of a sys-k−convex

function. Theorem 4.1 in Chen and Simchi-Levi (2004a) proves that the optimal policy is

an (s, S,A, p) policy, i.e., there exist st ≤ St and a set At ⊂ [st, (st + St)/2] possibly empty,

when the initial inventory level at the beginning of period t It is less than st or It ∈ At, an

order of size St − It is made (i.e., order up-to St). Otherwise, no order is placed.

A lot of follow-up papers on the joint pricing and inventory control problem with fixed or-

dering cost emerge after Chen and Simchi-Levi (2004a). e.g., Chen and Simchi-Levi (2004b,

2006) Chen et al. (2006) and Yin and Rajaram (2007), respectively, show the optimality

of (s, S, p) policy in the infinite horizon, continuous review, periodic review with lost sales,

and Markovian modulated demand cases, respectively; Huh and Janakiraman (2008) and

Song et al. (2009) study the lost-sales system and characterize the optimal policy as (s, S)

type (slight variation of the standard (s, S, p) policy); and Feng and Chen (2011) develop an

efficient algorithm to determine the stationary (s, S, p) policy under long-run average profit

criteria.

3.3 Model with Positive Leadtimes

Most of the dynamic joint pricing-inventory control models assume that the procurement

leadtime is zero. To integrate positive leadtimes into the stochastic multi-period model is

both important and challenging. Standard technique developed in Scarf (1960) to transfer

an inventory model with positive leadtime to one with zero leadtime fails in the joint price

and inventory control model with positive leadtimes since the price and inventory decisions

in the same period will affect the performance of the system at different times. See Chen

and Simchi-Levi and Pang et al. (2012) for more discussion on this issue. To resolve the

intractable standard dynamic programming formulation, Federgruen and Heching (1999,

2002) propose a heuristic that helps reduce the dimensionality of the problem. Pang et al.

(2012), however, make the first attempt to understand the structure of optimal policies in a

multi-period joint inventory-pricing control system with positive leadtimes using analytical

approach. The model presented in this section is based on Pang et al. (2012). They show

that, under a proper transformation, the value and objective functions are L♮-concave (to

1A function f is called sym-k−convex for k ≥ 0 if for any x0, x1 and λ ∈ [0, 1], f((1 − λ)x0 + λx1) ≤
(1− λ)f(x0) + λf(x1) + max{λ, 1− λ}k. A function f is sys-k−concave if −f is sys-k−convex.
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be defined shortly) and that the optimal order quantity and sales price are decreasing in the

size of each outstanding order with limited sensitivity. We remark that positive leadtimes

can be addressed under continuous review models with exponential or Erlangian leadtimes

and Poisson demand (e.g., Chen et al. 2006 and Pang and Chen 2011).

The technical development is based on two key notions: L♮ − convcavity and multimod-

ularity, the definition of which is given as follows:

Definition 3.1 1. Assume that V ⊂ RL is a polyhedron that forms a lattice and

the set T := {(v, ζ)|v ∈ V , ζ ∈ R+,v − ζe ∈ V} is also a lattice, where e is an L

vector of all ones. A function f : V → R is L♮-concave if ψ(v, ζ) := f(v − ζe) is

supermodular on T .

2. A function f̂ : RL → R is multimodular if

ψ̂(v, ζ) := f̂(v0 − ζ, v1 − v0, . . . , vL−1 − vL−2), ζ ∈ R, z ∈ RL

is supermodular.

L♮−concavity implies the usual concavity, supermodularity, diagonal-dominance (Zipkin

2008), and, hence, a local maximum to be global maximum. It is also showed by Zipkin

(2008) that L♮ − concavity is preserved under maximization. Interested readers are referred

to Murota (2003, 2005 and 2009) for more comprehensive studies of L♮ − concavity.

Consider a generalization of the model developed in Section 3.1 where the ordering

leadtime is L (a positive integer), i.e., the order placed in period t arrives at the beginning

of period t + L. In period t, the order due in this period arrives; the firm then makes a

simultaneous ordering-pricing decision; and demand realizes in response to the list price pt.

Let qt be the order quantity in period t and It = (I0,t, I1,t, . . . , IL−1,t) be the outstanding

inventory vector in period t, where I0,t is the inventory level at the beginning of period t

after the order due in t arrives and Ii,t = qt−L+i, for i = 1, 2, . . . , L− 1.

The state of the system is given by the L−vector It and the starting state of next period

is:

I+t = (I0,t − dt − ϵt + I1,t, I2,t, . . . , IL−1,t, qt),

if the firm orders qt and controls the expected demand to dt in period t. We use V̂ l
t (It) to

denote the maximum expected discounted profit in periods t, t− 1, . . . , 1, with initial value

V̂ l
0 (I0) = sI+0,t−cI−0,t, where the superscript ‘l’ stands for leadtime. We also assume that there

is no ordering in the last L periods in the planning horizon, i.e., qt = 0 for t = L,L−1, . . . , 1.

We can formulate the problem as the following dynamic programming:

V̂ l
t (It) = max

(dt,qt)
{Ĵ l

t(It, qt, dt)},

10
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where Ĵ l
t(It, qt, dt) = R(dt)− cqt − Ll(I0,t − dt) + αE[V̂ l

t−1(I
+
t )],

with Ll(y) := E[h(y − ϵt)
+ + b(y − ϵt)

−].

To characterize the structure of the optimal pricing and ordering policy, we apply the

following state transformation: let

vj,t =

j∑
i=0

xi,t, for j = 0, 1, . . . , L− 1.

The system is then reformulated to an L−stage serial inventory system with unit transition

times between consecutive stages. Stage L − 1 is the stage that replenishes from outside

supplier and stage 0 is the stage that faces customer demand. All but stage 0 do not hold

inventory. vj,t is analogous to the echelon inventory position of stage j in period t. Suppose

the “inventory position” vector of each stage in period after receiving delivery due in period

t is vt = (v0,t, v1,t, . . . , vL−1,t), where vl,t ≤ vl+1,t. Let xt = vL−1,t + qt be the order-up-to

level of the inventory position in stage L− 1. The starting state of next period is:

v+
t = (v1,t − dt − ϵt, v2,t − dt − ϵt, . . . , vL−1,t − dt − ϵt, yt − dt − ϵt)

= (v1,t, v2,t, . . . , vL−1,t, xt)− (dt + ϵt)e.

The dynamic programming can be rewritten as follows:

V l
t (vt) = max

(dt,xt)
{J l

t(vt, xt, dt)},

where J l
t(vt, xt, dt) = R(dt)− c(xt − vL−1,t)− Ll(v0,t − dt) + αE[V l

t−1(v
+
t )].

We define the optimal decisions in period t as follows:

(dl∗t (vt), x
l∗
t (vt)) = argmax(dt,xt)J

l
t(vt, xt, dt),

and (d̂l∗t (It), q̂
l∗
t (It)) as the corresponding optimal policy in the original DP. We have the

following structural results:

Theorem 3.3 (Theorem 1, 2 and Lemma 1 in Pang et al. 2012) For any t = T, T −
1, . . . , 1 and ω > 0,

(a) V l
t (vt) and J

l
t(vt, yt, dt) are L

♮-concave.

(b) xl∗t (vt) is increasing in vt, but xl∗t (vt + ωe) ≤ xl∗t (vt) + ω, i.e., the optimal order

quantity ql∗t (vt) := yl∗t (vt)− vL−1,t is increasing in vl,t, l = 0, 1, . . . , L− 2, but

ql∗t (vt)− ω ≤ ql∗t (v + ωeL−1) ≤ ql∗t (v + ωe) ≤ ql∗t (vt),

where el is the (l + 1)−th unit vector of dimension L.

11



Renyu Zhang 12

(c) dl∗t (vt) is nondecreasing in vt, with the following inequalities:

dl∗t (vt) ≤ dl∗t (vt + ωe) ≤ dl∗t (vt) + ω.

(d) In terms of the original outstanding inventory vector It, we have the following inequal-

ities:

−ω ≤ q̂l∗t (It+ωeL−1)− q̂l∗t (It) ≤ · · · ≤ q̂l∗t (It+ωe1)− q̂l∗t (It) ≤ q̂l∗t (It+ωe0)− q̂l∗t (It) ≤ 0,

0 ≤ d̂l∗t (It+ωeL−1)− d̂l∗t (It) ≤ · · · ≤ d̂l∗t (It+ωe1)− d̂l∗t (It) ≤ d̂l∗t (It+ωe0)− d̂l∗t (It) ≤ ω.

Part (a) of Theorem 3.3 establishes the the structure of the problem: both objective and

value functions are L♮-concave. The advantage of conducting the state transformation so

that the objective functions enjoy the L♮-concave property is multi-facet: (1) L♮−concavity

guarantees that a local optimum is also a global optimum, thus greatly reducing the compu-

tational effort to solve this DP; and (2) L♮−concavity implies supermodularity and, hence,

the complementary relationships between different components of the state vector enables

us to do several sensitivity analysis, thus delivering several interesting insights from the

model. Parts (b) - (d) of Theorem 4 summarize how the optimal policies change with the

outstanding order and on-hand inventory. In particular, it shows that the optimal order

quantity is decreasing in the size of each out standing order Il,t for l = 0, 1, 2, . . . L − 1,

with limited sensitivity, and it is more sensitive to more recently placed orders than those

placed earlier and current current inventory level. However, the optimal expected demand

is increasing in the outstanding orders and on hand inventory level, and it is more sensitive

to older orders than newer ones, with limited sensitivity as well. These structural properties

can also be generalized to the multi-stage model with constant or non-crossing stochastic

leadtimes. See the Pang et al. (2012) for details.

Although the model developed in Pang et al. (2012) makes an exciting progress in the

joint pricing-inventory management problem with positive leadtimes, there are two funda-

mental challenges that need further investigation: (1) we still do not know the exact form of

the optimal policy though the well known basestock/list-price policy is no longer optimal;

and (2) the dimensionality of the problem is not reduced and, hence, the computation of

the optimal policy still suffers from the “curse of dimensionality”.

3.4 Model with Supply Uncertainty

In quite a lot of industries like in the production of, to name a few, vaccines, semi-conductor

chips and refined oil, the system planner often faces the supply uncertainty, random yield
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in particular, issues. There are a lot of papers on the periodic review inventory model with

random yield, see Lee and Yano (1995) for a comprehensive review. Li and Zheng (2006) first

addresses the joint pricing and inventory control problem in the presence of random yield.

They show that, with additive demand form, the optimal policy is of threshold type, i.e., it

is optimal to produce/procure if and only if the starting inventory level is below a threshold

and both order quantity and that both optimal price and order quantity are decreasing in

the starting inventory. In addition, their model suggests that yield uncertainty gives rise to

profit reduction and drives the firm to set a higher ordering threshold and charger a higher

price. These structural properties still hold in the infinite horizon setting.

The multi-period model with random yield is a direct extension to the base model, which

incorporates yield uncertainty. Following Li and Zheng (2006), we employ the stochastically

proportional yield model, i.e., the firm can receive qtξt units of inventory if he orders qt

units, where {ξt}Tt=1 are i.i.d. nonnegative random variables supported on [0, 1] independent

of ϵt’s. Let V r
t (It) be the maximum profit of the firm in period t, t − 1, . . . , 1 when the

starting inventory of the firm is It in period t, where the superscript ‘r’ refers to random

yield.

V r
t (It) = max

(qt,dt)
Jr
t (qt, dt, It),

where

Jr
t (qt, dt, It) = R(dt)−cqt−E{h(It+qtξt−dt−ϵt)++b(It+qtξt−dt−ϵt)−}+αE{V r

t−1(It+qtξt−dt−ϵt)},

and V r
0 (I0) = −cI−0 + sI+0 . We have the following structural results:

Theorem 3.4 (Lemma 3.1, Theorem 3.6, 3.7 and 4.5 in Li and Zheng 2006) For any

t = T, T − 1, . . . , 1,

(a) Jr
t (qt, dt, It) is jointly concave in (qt, dt, It) and V

r
t (It) is concave in It.

(b) The optimal order quantity qr∗t (It) is decreasing in It and optimal expected demand

dr∗t (It) is increasing in It, i.e., both optimal order quantity and optimal sales price is

decreasing in starting inventory level.

(c) Let Irt = inf{It : qr∗t (It) = 0}. Irt is the threshold value for replenishment: qr∗t (It) = 0

if It ≥ Irt and qr∗t (It) > 0 if It < Irt .

(d) Assume that V c
t (It), (I

c
t and d

c∗
t (It), respectively) is the optimal value function (replen-

ishment threshold and optimal expected demand, respectively) for the system without

supply uncertainty (i.e., ξt = 1 a.s.) and with procurement cost c/E[ξt], i.e., both
systems have the same expected unit procurement cost. We have:
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(i) V r
t (It) ≤ V c

t (It) for any It, i.e., the system with yield uncertainty is always less

profitable.

(ii) Irt ≥ Ict , i.e., the system with yield uncertainty has higher replenishment

threshold.

(iii) dr∗t (It) ≤ dc∗t (It), i.e., the system with yield uncertainty will charge a higher

price.

Theorem 3.4 generalizes Theorem 3.1 to the model with random yield. The comparison

between the base model and the model with random yield is also interesting, which shows

that yield uncertainty harms the system performance and the customers have to pay a

higher price and, thus, indirectly suffer from yield uncertainty. Feng (2010) studies a similar

model that captures supply uncertainty in the form of random capacity. Under capacity

uncertainty, the optimal policy is also of threshold type and this form of supply uncertainty

also results in higher replenishment threshold and sales price.

4 Other Extensions

So far we have established a unified modeling framework to address a few most important

variations of the joint pricing-inventory control problem in both single and multi period

settings. There are, however, quite a few other important extensions to our basic single/multi

period models. In this section, we briefly summarize the main results on these extensions

in the existing literature without digging into the modeling details. All of the problems

described in this section can be analyzed using our unified modeling framework with proper

adaptations.

Few papers in the literature try to study the distribution inventory systems due to their

technical intractability. Federgruen and Heching (2002) study a distribution system with

geographically dispersed retailers who face price-dependent stochastic demand. The system

planner needs to dynamically adjust retailer prices and inventories. The exact problem is

prohibitively intractable and the authors develop an approximate model in which simple

optimal policy exists.

A few papers analyze multiple product models in the stochastic setting. Zhu and Thone-

mann (2009) extends the model in Federgruen and Heching (1999) by studying two substi-

tutable products. They show that a base-stock like policy for the two products is optimal.

Aydin and Porteous (2008) investigate the optimal inventory levels and prices of multi-

ple products in a given assortment in a newsvendor model. They provide the sufficient
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conditions under which the first order condition guarantees global optimality, though the

objective function is, in general, not jointly concave. For other papers on the multi-product

joint pricing and inventory management model, we refer interested readers to Chen and

Simchi-Levi (2012) for a review.

As is discussed in the previous sections, the pricing decision is usually determined by

the marketing department of a firm (see, e.g., Federgruen and Heching 1999, Li and Atkins

2002 for more detailed discussions), it is natural to study the inventory/marketing interface,

with consumer behavior into consideration in particular, in the joint pricing-inventory con-

trol framework. Eliashberg and Steinberg (1991) review the literature on the interface of

operations and marketing with an emphasis on integrated inventory and pricing models. A

few papers incorporate reference price (see, e.g., Mazumdar et al. 2005 for a comprehensive

review of the reference price models in marketing literature)to the joint pricing-inventory

model under stochastic demand. Integrating reference in the state space significantly com-

plicates the analysis of the optimal policy, because the expected profit is not concave even

in the single period model. Gimpl-Heersink (2008) [Chen and Zhang (2009)] studies a single

[multi] period joint pricing-inventory control model with reference price, and shows that a

reference price dependent base-stock policy is optimal. Some other papers also consider the

joint pricing-inventory control model under inventory-dependent demand. The first kind of

dependence of demand on inventory is studied by Dana and Petruzzi (2001) and Blakrishnan

et al. (2008), in which the authors assume that the inventory level available to customers

has a positive impact on the demand, since the product availability usually acts as a pro-

motional factor among customers. They show that the promotional effect of inventory will

drive the firm to set a higher inventory level and charge a higher sales price in single pe-

riod models. Yang and Zhang (2013) considers the other kind of dependence of demand

on inventory: leftover inventory is a negative indicator of the freshness and popularity of

the product and, hence, negatively impacts future demand. They prove that an inventory-

dependent order-up-to/dispose-down-to list-price policy is optimal and demonstrate that

inventory dependent demand derives the firm to order less/dispose more and charge a lower

price to compensate for the demand loss caused by leftover inventory.

5 Concluding Remarks

As surveyed above, the joint pricing-inventory management under stochastic demand has

received considerable attention in the literature, with several important problems solved. In

this paper, we review the important progresses in this stream of research based on which we
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establish a unified modeling framework that encompasses pricing and inventory decisions

with the hope that it will be useful for developing decision support tools in practice. In

particular, Using our modeling framework, we in-depth analyze four key problems in the

area of joint pricing-inventory management under stochastic demand: the single period

problem (based on Petruzzi and Dada 1999), the multi period basic problem without setup

costs, leadtimes and supply uncertainty (based on Federgruen and Heching 1999), the multi

period problem with setup cost (based on Chen and Simchi-Levi 2004a), the multi-period

model with positive leadtimes (based on Pang et al. 2012), and the multi period model

with supply uncertainty (based on Li and Zheng 2006). We characterize the structure and

property of the optimal policies in all our key models and discussed the historical roots

of the papers on these problems. Finally, we review papers in the literature that discuss

other important extensions to our basic models, such as multi-location and multi-product

models as well as the interface between marketing and inventory management under joint

pricing-inventory control framework. Our survey is by no means exhaustive, yet providing a

guideline to a unified modeling approach to analyze the joint pricing-inventory management

under demand uncertainty problems.

Despite the fruitful stream of research on the joint pricing-inventory control, there are

many important problems still unsolved as promising future research directions. To avoid

repetition, we only present the potential research opportunities not adequately discussed in

other literature surveys, but refer interested readers to Chen and Simchi-Levi (2012) for a

more thorough coverage of topics that remain to be explored.

First, we believe the joint pricing-inventory control model under fluctuating procurement

costs (e.g., commodity prices, see Zhang (2012) for a review of literature on inventory

management under fluctuating costs) is worth studying. All models in the existing literature

require that the procurement cost in each decision epoch, though time-dependent, is known

to the firm throughout the planning horizon, which severely restrict their application to

the market where the firm faces sharp procurement cost fluctuations. Incorporating cost

fluctuation into the joint pricing-inventory control model involves the following interesting

issues: (1) The pricing control acts as a leverage to control demand to the most profitable

level in accordance to the current cost; (2) The firm can apply price adjustment to pass

the procurement cost risk to its customers; (3) The current procurement cost summarizes

the information regarding costs of the product in later periods so that the firm should deal

with both the trade off between understock and overstock and the risk and opportunity

of fluctuating prices. In particular, we want to understand how the interplay between the

uncertainty at the demand (stochastic demand) and supply (fluctuating costs) sides influence
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the optimal pricing and ordering policies.

Second, few words have been stated on the optimal policy of the multi-stage/multi-

echelon dynamic problem with positive leadtimes, with the only exception Pang et al. (2012).

As discussed in Chen and Simchi-Levi (2012), the echelon inventory position technique

developed in Scarf (1960) fails if we incorporate the pricing decision into the model, since

the pricing and inventory decisions come to effect in different periods when we have positive

leadtimes. To be more specific, we still do not know the answers to the following three

fundamental questions: (1) What is the structure of the optimal policy? (2) Can we reduce

the dimensionality of the state space of the DP? And (3) How can we efficiently compute

the optimal policy? Clearly, the solution to the third question is based on those to the first

two.

Last but not least, the joint pricing-inventory management under cash flow constraint

has yet been studied. As argued in Li et al. (2011), start-up and growing firms usually

face capital shortage problems and hence, the pricing and ordering policies of a firm with

cash flow constraint highly depends on the available capital it has to procure. The pricing

flexibility improves the firm’s capability to match supply with demand while the constrained

capital dampens such potential. It’s interesting to investigate how the pricing control helps

the firm mitigate the capital shortage risk.
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