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Appendix A: Summary of Notation

Table 1 Summary of Notation
Pi : Platform i
qij : Perceived quality of Platform i (i= 1,2, ..., n) for customer segment j (j = 1,2, ...,m)
κj : Price sensitivity of segment j
qxj : Perceived quality of the new joint service for customer segment j
pi : Price of Pi without the new joint service
p̃i : Price of Pi with the new joint service
p̃x : Price of the new joint service
Λj : Total arrival rate of customer segment j
dij : Arrival rate of customer segment j to platform Pi without the new joint service
d̃ij : Arrival rate of customer segment j to platform Pi with the new joint service
d̃xj : Arrival rate of customer segment j to the new joint service
aik : Attractiveness of Platform i for worker type k (k= 1,2, ..., l)
ηk : Wage sensitivity of worker type k
axk : Attractiveness of the new joint service for worker type k
wi : Wage of Pi’s workers without the new joint service
w̃i : Wage of Pi’s workers with the new joint service
Γk: Total number of workers of type k
sik : Number of workers of type k working for Pi without the new joint service
s̃ik : Number of workers of type k working for Pi with the new joint service
γ : Fraction of profit generated by the new joint service allocated to P1

λ̃i : Total number of workers needed by Pi (with coopetition)
βi : Fixed share of the price allocated to workers under a fixed-commission rate at Pi

ñ : Number of customers per service for the new joint service

Appendix B: Proof of Statements
Auxiliary Lemma

Before presenting the proofs of our results, we state and prove an auxiliary lemma which is extensively used
throughout this appendix.

Lemma 2. Define

d̄ij :=
Λj exp(qij −κjpi)

1+
∑n

i′=1 exp(qi′j −κjpi′)
for all i, j,

and d̄i :=
m∑

j=1

d̄ij =

m∑
j=1

Λj exp(qij −κjpi)

1+
∑n

i′=1 exp(qi′j −κjpi′)
for all i.

Then, we have for i= 1,2, ..., n and i′ ̸= i, ∂pi d̄ij =−κj(1− d̄ij/Λj)d̄ij, ∂pi d̄i =
∑m

j=1 ∂pi d̄ij =−
∑m

j=1 κj(1−
d̄ij/Λj)d̄ij, ∂pi′ d̄ij = κj d̄ij d̄i′j/Λj, and ∂pi′ d̄i =

∑m

j=1 ∂pi′ d̄ij =
∑m

j=1 κj d̄ij d̄i′j/Λj.

Proof. Since d̄ij = Λj exp(qij−κijpi)

1+
∑n

i′=1
exp(qi′j−κi′jpi′ )

, we have

∂pi d̄ij =Λj

−κj exp(qij −κjpi)[1+
∑n

i′=1 exp(qi′j −κjpi′)]+κj [exp(qij −κjpi)]
2

[1+
∑n

i′=1 exp(qi′j −κjpi′)]2

=− Λjκj exp(qij −κjpi)

1+
∑n

i′=1 exp(qi′j −κjpi′)
+
κj

Λj

(
Λj exp(qij − pi)

1+
∑n

i′=1 exp(qi′j −κjpi′)

)2

=−κj d̄ij +κj/Λj(d̄ij)
2 =−κj(1− d̄ij/Λj)d̄ij .

Hence,

∂pi d̄i =

m∑
j=1

∂pi d̄ij =−
m∑

j=1

κj(1− d̄ij/Λj)d̄ij .
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Analogously,

∂pi′ d̄ij =
κjΛj exp(qi′j −κjpi′) exp(qij −κjpi)

[1+
∑n

i′′=1 exp(qi′′j −κjpi′′)]2

=
κj

Λj

· Λj exp(qij −κjpi)

1+
∑n

i′′=1 exp(qi′′j −κjpi′′)
· exp(qi′j −κjpi′)

1+
∑n

i′′=1 exp(qi′′j −κjpi′′)

=κj d̄ij d̄i′j/Λj .

Thus, for i ̸= i′,

∂pi′ d̄i =

m∑
j=1

∂pi′ d̄ij =

m∑
j=1

κj d̄ij d̄i′j/Λj . □

Proof of Lemma 1

For each i∈ 1,2, ..., n, we define the following:

fi(di, si) =

m∑
j=1

Λj exp[νj +min{1, si/di}(qij −κjpi − νj)]

1+
∑n

i′=1 exp[νj +min{1, si′/di′}(qi′j −κjpi′ − νj)]
,

and

gi(di, si) =

l∑
k=1

Γk exp[ωk +min{1, di/si}(aik + ηkwi −ωk)]

1+
∑n

i′=1 exp[ωk +min{1, di′/si′}(ai′k + ηkwi′ −ωk)]
.

It suffices to show that, for each i, there exists (di, si) such that{
di = fi(di, si)

si = gi(di, si).

We next show that, given si, there exists a unique di(si) increasing in si, such that di(si) = fi(di(si), si).

One should note that exp[νj+min{1, si/di}(qij−κjpi−νj)] is continuously decreasing in di for any si. Hence,

fi(di, si) is also continuously decreasing in di. Furthermore, fi(0+, si) > 0 and fi(+∞, si) = 0. Therefore,

there exists a unique di(si) such that di(si) = fi(di(si), si). To show that di(si) is increasing in si, we observe

that fi(di, si) is increasing in si for any di. For ŝi > si, di(si) = fi(di(si), si) ≤ fi(di(si), ŝi), which implies

that di(ŝi)≥ di(si), i.e., di(si) increasing in si. The exact same argument implies that, given di, there exists

a unique si(di) increasing in di, such that si(di) = gi(di, si(di)). Tarski’s Fixed Point Theorem (see, e.g.,

Milgrom and Roberts 1990) suggests that there exists (di, si) such that di = fi(di, si) and si = gi(di, si).

We now show that, for ŝi > si, di(ŝi)−di(si)< ŝi−si. Denote δ := ŝi−si. It is straightforward to check that

fi(di(si)+ δ, si + δ)<d(si)+ δ. Thus, d(ŝi) = d(si + δ)<di(si)+ δ, i.e., di(ŝi)− di(si)< ŝi − si. Analogously,

we have for d̂i >di, si(d̂i)− si(di)< d̂i − di.

Finally, we show the uniqueness of (di, si), such that di = fi(di, si) and si = gi(di, si). If there exist distinct

(d1i , s
1
i ) and (d2i , s

2
i ) such that dji = fi(d

j
i , s

j
i ) and sji = gi(d

j
i , s

j
i ) for j = 1,2, then we have dji = di(s

j
i ) and

sji = si(d
j
i ) for j = 1,2. Therefore,

|d1i − d2i |+ |s1i − s2i |= |di(s1i )− di(s
2
i )|+ |si(d1i )− si(d

2
i )|< |s1i − s2i |+ |d1i − d2i |,

which leads to a contradiction. Thus, we must have (d1i , s
1
i ) = (d2i , s

2
i ), so that there exists a unique (di, si)

such that di = fi(di, si) and si = gi(di, si). This completes the proof. □
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Proof of Theorem 1

We first introduce some notation that will prove useful in our analysis. Given the competitors’ strategy
(p−i,w−i), we define pi(p−i,w−i) and wi(p−i,w−i) as Pi’s best price and wage responses. We also define the
best-response mapping of the two-sided competition game as

T (p,w) :=
(
pi(p−i,w−i),wi(p−i,w−i) : 1≤ i≤ n

)
.

We then iteratively define the k-fold best-response mapping (k≥ 2) as

T (k)(p,w) =
(
p
(k)
i (p−i,w−i),w

(k)
i (p−i,w−i) : 1≤ i≤ n

)
,

where for i= 1,2, ..., n

p
(k)
i (p−i,w−i) =pi

(
p
(k−1)
1 (p−1,w−1),w

(k−1)
1 (p−1,w−1), ..., p

(k−1)
n (p−n,w−n),w

(k−1)
n (p−n,w−n)

)
,

w
(k)
i (p−i,w−i) =pi

(
p
(k−1)
1 (p−1,w−1),w

(k−1)
1 (p−1,w−1), ..., p

(k−1)
n (p−n,w−n),w

(k−1)
n (p−n,w−n)

)
.

We use || · ||1 to represent the ℓ1 norm, that is, ||x||1 =
∑n

i=1 |xi| for x∈Rn. The proof of Theorem 1 is based
on the following four steps:

• Step I. Under equilibrium, s∗i = d∗i for i= 1,2, ..., n.
• Step II. The best-response functions pi(p−i,w−i) and wi(p−i,w−i) are continuously increasing in p−i and

w−i. This will imply that an equilibrium exists.
• Step III. There exists a k∗, such that the k∗-fold best response is a contraction mapping under the ℓ1

norm, i.e., there exists a constant θ ∈ (0,1), such that

||T (k∗)(p,w)−T (k∗)(p′,w′)||1 ≤ θ||(p,w)− (p′,w′)||1.

This will imply that the equilibrium is unique.
• Step IV. For any (p,w), the sequence {T (k)(p,w) : k = 1,2, ...} converges to the unique equilibrium

(p∗,w∗) as k ↑+∞. This will imply that the equilibrium can be computed using a tatônnement scheme.
Step I is proved by contradiction (see Lemma 3 below). We show that if s∗i > d∗i , then Pi can unilaterally

decrease wi to increase its profit; and if s∗i < d∗i , then Pi can unilaterally increase pi to increase its profit.
This implies that we must have s∗i = d∗i under equilibrium.

Step II is proved by exploiting structural properties of the best-response functions pi(p−i,w−i) and
wi(p−i,w−i), and by using the fact that d∗i = s∗i under equilibrium (see Lemma 4 below). Since the feasible
region of (p−i,w−i) is a lattice, Step II immediately implies that an equilibrium exists by Tarski’s Fixed
Point Theorem.

Step III is proved by bounding the ℓ1 norm of T (p,w). We note that T (·) is not necessarily a contraction
mapping, but T (k∗)(·) for some k∗ > 1 is (see Lemma 5 below). Using the result of Step III, a standard
contradiction argument will show that the equilibrium is unique.

Step IV is proved by exploiting the contraction mapping property of T (k)(·) (see Lemma 6 below). Putting
Steps I–IV together concludes the proof of Theorem 1. □

The following lemma proves Step I in the proof of Theorem 1.
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Lemma 3. Under equilibrium, d∗i = s∗i for i= 1,2.

Proof. Assume by contradiction that s∗i <d∗i . This implies that d∗i >min{d∗i , s∗i }= s∗i ,

d∗i =

m∑
j=1

Λj exp[νj +min{1, s∗i /d∗i }(qij −κjp
∗
i − νj)]

1+
∑n

i′=1 exp[νj +min{1, s∗i′/d∗i′}(qi′j −κjp∗i′ − νj)]
,

and

s∗i =

l∑
k=1

Γk exp[ωk +min{1, d∗i /s∗i }(aik + ηkw
∗
i −ωk)]

1+
∑n

i′=1 exp[ωk +min{1, d∗i′/s∗i′}(ai′k + ηkw∗
i′ −ωk)]

.

Consequently, Pi can increase its price to p∗i (ϵ) = p∗i + ϵ (for a sufficiently small ϵ > 0) and (w∗
i , p

∗
−i,w

∗
−i)

remain unchanged, with the induced market outcome (d∗i (ϵ), s
∗
i (ϵ), d

∗
−i(ϵ), s

∗
−i(ϵ)), which satisfies

d∗i (ϵ) =

m∑
j=1

Λj exp[νj +min{1, s∗i (ϵ)/d∗i (ϵ)}(qij −κij(p
∗
i + ϵ)− νj)]

1+ exp[νj +min{1, s∗i (ϵ)/d∗i (ϵ)}(qij −κj(p∗i + ϵ)− νj)]+
∑

i′≠i exp[νj +min{1, s∗i′(ϵ)/d∗i′(ϵ)}(qi′j −κjp∗i′ − νj)]

and

s∗i (ϵ) =

l∑
k=1

Γk exp[ωk +min{1, d∗i (ϵ)/s∗i (ϵ)}(aik + ηkw
∗
i −ωk)]

1+
∑n

i′=1 exp[ωk +min{1, d∗i′(ϵ)/s∗i′(ϵ)}(ai′k + ηkw∗
i′ −ωk)]

.

One can check that, for a sufficiently small ϵ > 0, s∗i (ϵ)<d∗i (ϵ)<d∗i , s∗i (ϵ)≥ s∗i , and hence min{d∗i (ϵ), s∗i (ϵ)}=

s∗i (ϵ), where the inequality follows from the fact that di(ϵ) and si(ϵ) are continuous in ϵ. Thus, πi(ϵ) =

(p∗i + ϵ − w∗
i )min{d∗i (ϵ), s∗i (ϵ)} > (p∗i − w∗

i )s
∗
i = π∗

i , which contradicts the fact that (p∗i ,w
∗
i , p

∗
−i,w

∗
−i) is an

equilibrium. Therefore, we must have s∗i ≥ d∗i .

Assume by contradiction that s∗i > d∗i . This implies that s∗i > min{d∗i , s∗i } = d∗i . Consequently, Pi can

decrease its wage to w∗
i (ϵ) =w∗

i − ϵ (for a sufficiently small ϵ > 0) and (p∗i ,w
∗
i , p

∗
−i) remain unchanged, with

the induced market outcome (d∗i (ϵ), s
∗
i (ϵ), d

∗
−i(ϵ), s

∗
−i(ϵ)), which satisfies

d∗i (ϵ) =

m∑
j=1

Λj exp[νj +min{1, s∗i (ϵ)/d∗i (ϵ)}(qij −κjp
∗
i − νj)]

1+ exp[νj +min{1, s∗i (ϵ)/d∗i (ϵ)}(qij −κjp∗i − νj)]+
∑n

i′ ̸=i
exp[νj +min{1, s∗i′(ϵ)/d∗i′(ϵ)}(qi′j −κjp∗i′ − νj)]

,

and

s∗i (ϵ) =

l∑
k=1

Γk exp[ωk +min{1, d∗i (ϵ)/s∗i (ϵ)}(aik + ηk(w
∗
i − ϵ)−ωk)]

1+ exp[ωk +min{1, d∗i (ϵ)/s∗i (ϵ)}(ai′k + ηk(w∗
i − ϵ)−ωk)]+

∑
i′ ̸=i exp[ωk +min{1, d∗i′(ϵ)/s∗i′(ϵ)}(ai′k + ηkw∗

i′ −ωk)]
.

One check that, for a sufficiently small ϵ > 0, s∗i > s∗i (ϵ) > d∗i (ϵ) > d∗i , and hence min{d∗i (ϵ), s∗i (ϵ)} =

d∗i (ϵ) > d∗i , where the inequality follows from the fact that di(ϵ) and si(ϵ) are continuous in ϵ. Thus,

πi(ϵ) = (p∗i − w∗
i + ϵ)min{d∗i (ϵ), s∗i (ϵ)} > (p∗i − w∗

i )d
∗
i = π∗

i , contradicting that (p∗i ,w
∗
i , p

∗
−i,w

∗
−i) is an

equilibrium. Therefore, we have s∗i ≤ d∗i . Since s∗i ≥ d∗i and s∗i ≤ d∗i , we conclude that s∗i = d∗i . □

The following lemma establishes Step II in the proof of Theorem 1.

Lemma 4. pi(p−i,w−i) and wi(p−i,w−i) are continuously increasing in p−i and w−i. Hence, an equilibrium

exists in the two-sided competition model.
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Proof. Since s∗i = d∗i , we denote s= si = di as the demand/supply of Pi. Given (p−i,w−i, s), we can formulate
the price and wage optimization of Pi as follows:

max
(pi,wi,s)

πi(pi,wi, s|p−i,w−i)

where πi(pi,wi, s|p−i,w−i) = (pi −wi)s
m∑

j=1

dij = s

pi =
qij
κj

− 1

κj

log
( dij/Λj

1− dij/Λj

)
− 1

κj

log
(
1+

∑
i′ ̸=i

exp[νj +min{1, si′/di′}(qi′j −κjpi′ − νj)]
)
∀j

l∑
k=1

sik = s

wi =−aik
ηk

+
1

ηik
log

( sik/Γk

1− sik/Γk

)
+

1

ηk
log

(
1+

∑
i′ ̸=i

exp[ωk +min{1, di′/si′}(ai′k + ηkwi′ −ωk)]
)
∀k.

(4)

Since pi = qij

κj
− 1

κj
log

(
dij/Λj

1−dij/Λj

)
− 1

κj
log

(
1+

∑
i′ ̸=i exp[νj +min{1, si′/di′}(qi′j −κjpi′ − νj)]

)
for all j, then

dij is strictly decreasing in pi for all j. Together with
∑m

j=1 dij = s, it implies that given s, there exists a unique
pi and a unique associated vector (di1, di2, ..., dim) that satisfy the constraints pi = qij

κj
− 1

κj
log

(
dij/Λj

1−dij/Λj

)
−

1
κj

log
(
1+

∑
i′ ̸=i

exp[νj +min{1, si′/di′}(qi′j −κjpi′ − νj)]
)

for all j. Thus, given (p−i,w−i) and s, there exists
a unique price pi(s, p−i,w−i) that satisfies all the constraints in (4). Analogously, there exists a unique wage
wi(s, p−i,w−i) that satisfies all the constraints in (4). The corresponding demand for Pi from each segment j,
dij , and the corresponding supply for Pi from each worker type k, sik, are also uniquely determined. It is clear
by (4) that given s, pi(s, p−i,w−i) is strictly increasing in pi′ and that wi(s, p−i,w−i) is strictly increasing in wi′

for all i′ ̸= i. In addition, given (p−i,w−i), pi(s, p−i,w−i) is strictly decreasing in s, whereas wi(s, p−i,w−i) is
strictly increasing in s. By calculating the cross derivative, we can show that πi(s|p−i,w−i) := (pi(s, p−i,w−i)−

wi(s, p−i,w−i))s is supermodular in (pi′ , s) for any i′ ̸= i. Therefore, s∗ := argmaxs πi(s|p−i,w−i) is increasing
in pi′ , which implies that wi(p−i,w−i) =wi(s

∗, p−i,w−i) is also increasing in pi′ for any i′ ̸= i.
We next show that pi(p−i,w−i) = pi(s

∗, p−i,w−i) is also strictly increasing in pi′ for i′ ̸= i. We define
m(s, p−i,w−i) := pi(s, p−i,w−i)−wi(s, p−i,w−i) as Pi’s profit margin given (s, p−i,w−i). Thus,

π′
i(s|p−i,w−i) = ∂sm(s, p−i,w−i)s+m(s, p−i,w−i).

Since π′
i(s

∗|p−i,w−i) = 0, we have ∂sm(p−i,w−i, s
∗)s∗ +m(p−i,w−i, s

∗) = 0. One should note by (4) that
∂sm(p−i,w−i, s)s is strictly decreasing in s and independent of (p−i,w−i). Assume that p̂i′ > pi (i′ ̸= i),
so we have ŝ∗ > s∗. Thus, ∂sm(ŝ∗, p̂−i,w−i)ŝ

∗ < ∂sm(ŝ∗, p−i,w−i)s
∗. By the first-order condition (FOC),

π′
i(ŝ

∗|p̂−i,w−i) = π′
i(s

∗|p−i,w−i) = 0, that is, ∂sm(ŝ∗, p̂−i,w−i)ŝ
∗ + m(ŝ∗, p̂−i,w−i) = ∂sm(s∗, p−i,w−i)s

∗ +

m(s∗, p−i,w−i) = 0. Hence, we must have m(ŝ∗, p̂−i,w−i)>m(s∗, p−i,w−i). Therefore

pi(ŝ
∗, p̂−i,w−i) =wi(ŝ

∗, p̂−i,w−i)+mi(ŝ
∗, p̂−i,w−i)>wi(s

∗, p−i,w−i)+mi(s
∗, p−i,w−i) = pi(s

∗, p−i,w−i).

Thus, both pi(p−i,w−i) and wi(p−i,w−i) are increasing in pi′ (i′ ̸= i). By using a similar argument, we can
show that s∗ is decreasing in wi′ (i′ ̸= i), which further implies that pi(p−i,w−i) = pi(s

∗, p−i,w−i) is increasing
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in wi′ for i′ ̸= i. Moreover, a similar first-order argument suggests that the profit margin m(s∗, p−i,w−i) is

decreasing in wi′ for i′ ̸= i. We then conclude that

wi(p−i,w−i) =wi(s
∗, p−i,w−i) = pi(s

∗, p−i,w−i)−mi(s
∗, p−i,w−i)

is increasing in wi′ for i′ ̸= i. Thus, we have shown that both pi(p−i,w−i) and wi(p−i,w−i) are increasing in pi′

and in wi′ for i′ ̸= i. The continuity of pi(p−i,w−i) and wi(p−i,w−i) follows from the fact that πi(s|p−i,w−i)

is continuous. This completes the proof of Step II. By Tarski’s Fixed Point Theorem (see, e.g., Milgrom and
Roberts 1990), the continuity and monotonicity of pi(p−i,w−i) and wi(p−i,w−i), together with the fact that

the feasible sets of pi(·, ·) and wi(·, ·) are lattices, imply that an equilibrium exists. □
We next show that the best response mapping is a contraction mapping, so that a unique equilibrium

exists.

Lemma 5. There exists a k∗, such that the k∗-fold best response is a contraction mapping under the ℓ1
norm, that is, there exists a constant θ ∈ (0,1), such that

||T (k∗)(p,w)−T (k∗)(p′,w′)||1 ≤ θ||(p,w)− (p′,w′)||1.

Furthermore, the equilibrium is unique.

Proof. We assume that (p,w) and (p̂, ŵ) are identical except that p̂i′ = pi′ + δ for some i′. We observe that,
for any i ̸= i′ and any j

∂pi′

{
− 1

κj
log

[
1+

∑
i′′ ̸=i

exp[νj +min{1, si′′/di′′}(qi′′j −κjpi′ − νj)]
]}

≤ exp(qi′j −κjpi′)

1+
∑

i′′ ̸=i exp(qi′′j −κjpi′)
<

exp(qi′j)

1+ exp(qij)
.

By the mean-value theorem, for δ > 0 and any j,

0<
1

κj

log
[
1+

∑
i′′ ̸=i

exp[νj+min{1, ŝi′′/d̂i′′}(qi′′j−κj p̂i′′ −νj)]
]
−

1

κj

log
[
1+

∑
i′′ ̸=i

exp[νj+min{1, si′′/di′′}(qi′′j−κjpi′′ −νj)]
]
<Ci′jδ,

where Ci′j :=
exp(qi′j)

1+exp(qi′j)
< 1. Similarly, we have, for δ > 0 and i ̸= i′ and any k,

0<
1

ηk

log
[
1+

∑
i′′ ̸=i

exp[ωk+min{1, d̂i′′/ŝi′′}(ai′′k+ηkp̂i′′ −ωk)]
]
−

1

ηk

log
[
1+

∑
i′′ ̸=i

exp[ωk+min{1, di′′/si′′}(ai′′k+ηkpi′′ −ωk)]
]
<Di′kδ,

where Di′k :=
exp(ai′k)

1+exp(ai′k)
< 1. Define s∗i := argmaxs πi(s|p−i,w−i) and ŝ∗i := argmaxs πi(s|p̂−i,w−i) for i ̸= i′.

We denote the demand from each customer segment j for Pi associated with price vector p̂−i (resp. p−i) as

d̂∗ij (resp. d∗ij). The supply of worker type k for Pi associated with price vector p̂−i (resp. p−i) is denoted as

ŝ∗ik (resp. s∗ik). Thus, we have
∑m

j=1 d̂
∗
ij =

∑l

k=1 ŝ
∗
ik = ŝ∗i and

∑m

j=1 d
∗
ij =

∑l

k=1 s
∗
ik = s∗i .

We denote δ2i := maxj

[
log

(
d̂∗ij/Λj

1−d̂∗
ij

/Λj

)
− log

(
d∗ij/Λj

1−s∗
ij

/Λj

)]
> 0 and δ3i :=

maxk

[
log

(
ŝ∗ik/Γk

1−ŝ∗
ik

/Γk

)
− log

(
s∗ij/Γk

1−s∗
ik

/Γk

)]
> 0. As shown in the proof of Step II of Theorem 1, d̂∗ij > d∗ij for all

j and ŝ∗ik > s
∗
ik for all k, and mi(ŝ

∗
i , p̂−i,w−i)>mi(s

∗
i , p−i,w−i), that is, for any j,

0< [pi(p̂−i,w−i)−wi(p̂−i,w−i)]− [pi(p−i,w−i)−wi(p−i,w−i)]<
1

κj

log
[
1+

∑
i′′ ̸=i

exp[νj +min{1, ŝi′′/d̂i′′}(qi′′j −κj p̂i′′ − νj)]
]

−
1

κj

log
[
1+

∑
i′′ ̸=i

exp[νj +min{1, si′′/di′′}(qi′′j −κjpi′′ − νj)]
]
<Ci′jδ. (5)
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Inequality (5) implies that δ2i + δ3i <Ci′jδ for any j. Therefore, we obtain

pi(p̂−i,w−i)− pi(p−i,w−i) =− log
( d̂∗ij/Λj

1− d̂∗ij/Λj

)
+ log

( d∗ij/Λj

1− d∗ij/Λ

)
+

1

κj
log

[
1+

∑
i′′ ̸=i

exp[νj +min{1, ŝi′′/d̂i′′}(qi′′j −κj p̂i′′ − νj)]
]
− 1

κj
log

[
1+

∑
i′′ ̸=i

exp[νj +min{1, si′′/di′′}(qi′′j −κjpi′′ − νj)]
]

<Ci′jδ− δ2i .

Analogously, for all k, wi(p̂−i,w−i)−wi(p−i,w−i) = log
(

ŝ∗ik/Γk

1−ŝ∗
ik

/Γk

)
− log

(
s∗ik/Γk

1−s∗
ik

/Γk

)
= δ3i <Di′kδ− δ2i . As a

result, for all i ̸= i′ and any j and k,

|pi(p̂−i,w−i)− pi(p−i,w−i)|<Ci′jδ and |wi(p̂−i,w−i)−wi(p−i,w−i)|<Di′kδ.

We define p(k)i (resp. w(k)
i ) as the value of pi (resp. wi) for the k-th iteration of T operated on (p,w).

Analogously, p̂(k)i (resp. ŵ(k)
i ) as the value of pi (resp. wi) for the k-th iteration of T operated on (p̂,w).

Repeating the argument above, we have that, for any i and any k≥ 1,

|p̂(k)i − p
(k)
i |<Ck−1Ci′δ and |ŵ(k)

i −w
(k)
i |<Dk−1Di′δ,

where

C :=max

{
exp(qij)

1+ exp(qij)
: 1≤ i≤ n,1≤ j ≤m

}
< 1 and D :=max

{
exp(aik)

1+ exp(aik)
: 1≤ i≤ n,1≤ k≤ l

}
< 1.

Define (p̂(k), ŵ(k)) := (p̂
(k)
i , ŵ

(k)
i : 1≤ i≤ n) and (p(k),w(k)) := (p

(k)
i ,w

(k)
i : 1≤ i≤ n). We have, for any k≥ 1,

||(p̂(k), ŵ(k))− (p(k),w(k))||1 ≤ (Ck−1Ci′ +Dk−1Di′)δ < 2Ekδ,

where E :=max{C,D}< 1. By using the triangular inequality, we have, for any k≥ 1,

||T (k)(p,w)−T (k)(p′,w′)||1 ≤ 2Ek||(p,w)− (p′,w′)||1.

We define k∗ as the smallest integer k such that 2Ek < 1 (i.e., the smallest integer k such that k >

− log(2)/ log(E)). Therefore, we obtain

||T (k∗)(p,w)−T (k∗)(p′,w′)||1 ≤ 2Ek∗ ||(p,w)− (p′,w′)||1 < θ||(p,w)− (p′,w′)||1,

where θ := 2E(k∗) < 1. We conclude that T (k∗)(·, ·) is a contraction mapping under the ℓ1 norm.
We next show that the equilibrium is unique. Assume by contradiction that there are two distinct equilibria

(p∗,w∗) and (p̄∗, w̄∗). Then, by the equilibrium definition, we have

T (p∗,w∗) = (p∗,w∗) and T (p̄∗, w̄∗) = (p̄∗, w̄∗).

Therefore,
T (k∗)(p∗,w∗) = (p∗,w∗) and T (k∗)(p̄∗, w̄∗) = (p̄∗, w̄∗).

Hence, we have
||T (k∗)(p∗,w∗)−T (k∗)(p̄∗, w̄∗)||1 = ||(p∗,w∗)− (p̄∗, w̄∗)||1. (6)

Since T (k∗)(·, ·) is a contraction mapping, we have

||T (k∗)(p∗,w∗)−T (k∗)(p̄∗, w̄∗)||1 < θ||(p∗,w∗)− (p̄∗, w̄∗)||1,

contradicting Equation (6) if (p∗,w∗) ̸= (p̄∗, w̄∗). Thus, a unique equilibrium exists. □
The following lemma establishes Step IV in the proof of Theorem 1.
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Lemma 6. T (k)(p,w) converges to the unique equilibrium as k ↑+∞.

Proof. It suffices to show that T (k)(p,w) converges to the equilibrium (p∗,w∗) in the (p,w) space as k ↑+∞.
As shown in Step III, ||T (k)(p,w)− T (k)(p′,w′)||1 ≤ 2Ek||(p,w)− (p′,w′)||1 for any (p,w) and (p′,w′). We
define (p(k),w(k)) := T (k)(p,w) for k≥ 1. For any k and l > 0,

||(p(k),w(k))− (p(k+l),w(k+l))||1 ≤
l∑

i=1

||(p(k+i),w(k+i))− (p(k+i−1),w(k+i−1))||1

≤
l∑

i=1

2E(k+i−1)||(p(1),w(1))− (p,w)||1 ≤
+∞∑
i=1

2E(k+i−1)||(p(1),w(1))− (p,w)||1 =
2||(p(1),w(1))− (p,w)||1Ek

1−E
,

where the first inequality follows from the triangle inequality. Thus, ||(p(k),w(k))− (p(k+l),w(k+l))||1 → 0

uniformly with respect to l as k ↑+∞, that is, {(p(k),w(k)) : k≥ 1} is a Cauchy sequence, and hence (p(k),w(k))

converges to (p∗,w∗), which is a fixed point of T (·, ·), namely, T (p∗,w∗) = (p∗,w∗) so that (p∗,w∗) is the
unique equilibrium. Hence, the unique equilibrium can be obtained using a tatônnement scheme, and this
concludes the proof of Theorem 1. □

Proof of Proposition 1

Part (a). As shown in the proof of Theorem 1, the sequence {T (k)(pm∗,wm∗) : k ≥ 1} converges to the
equilibrium (p∗,w∗). In the proof of Proposition 1, we have defined:

(p(k),w(k)) := T (k)(pm∗,wm∗) for k≥ 1,

and (p(0),w(0)) := (pm∗,wm∗). We have also defined s
(k)
i as the optimal demand/supply of Pi in the k-th

iteration of the tatônnement scheme. Then, it suffices to show that p(k)i < p
(m∗)
i and w

(k)
i >w

(m∗)
i for k ≥ 1

and i= 1,2, ..., n.
Note that for a monopoly (i.e., a setting where a centralized decision maker seeks to maximize the total

profit from all n platforms), we have dm∗
i = sm∗

i for i= 1,2. Indeed, following the same argument as in the
proof of Step I of Theorem 1, if dm∗

i > sm∗
i , we can increase pi and strictly increase the profit of each platform.

Analogously, if dm∗
i < sm∗

i , we can increase wi and strictly increase the profit of each platform. As a result,
under the optimal price and wage policies, dm∗

i = sm∗
i for i= 1,2, ..., n.

We next show that p(1)i < p
(0)
i and w

(1)
i >w

(0)
i for all i. As shown in the proof of Theorem 1, (p(1)i ,w

(1)
i )

can be represented by
(
pi(s

(1)
i , p

(0)
−i ,w

(0)
−i ),wi(s

(1)
i , p

(0)
−i ,w

(0)
−i

)
, where pi(·, ·, ·) (resp. wi(·, ·, ·)) is the price (resp.

wage) policy of Pi given (s, p−i,w−i) and s(1)i is the optimal supply (which is equal to demand) obtained by
solving the following optimization problem:

max
s

πi(s|p(0)−i ,w
(0)
−i )

where πi(s|p−i,w−i) = (pi −wi)s
m∑

j=1

dij = s

pi =
qij
κj

− 1

κj

log
( dij/Λj

1− dij/Λj

)
− 1

κj

log
(
1+

∑
i′ ̸=i

exp[νj +min{1, si′/di′}(qi′j −κjpi′ − νj)]
)

for all j

l∑
k=1

sik = s

wi =−aik
ηk

− 1

ηik
log

( sik/Γk

1− sik/Γk

)
+

1

ηk
log

(
1+

∑
i′ ̸=i

exp[ωk +min{1, di′/si′}(ai′k + ηkwi′ −ωk)]
)

for all k.



Cohen and Zhang: Competition and Coopetition for Two-Sided Platforms
40

Under the optimal policy, we have sm∗
i = dm∗

i , so the optimal price and wage of a monopoly (pm∗
i ,wm∗

i ) can

be obtained by
(
pi(s

m∗
i , p

(0)
−i ,w

(0)
−i ),wi(s

m∗
i , p

(0)
−i ,w

(0)
−i )

)
, where sm∗

i is the solution to the following optimization

problem:

max
s

[
πi(s|p(0)−i ,w

(0)
−i )+

∑
i′ ̸=i

πi′(s)
]

where πi′(s) = (p
(0)

i′ −w
(0)

i′ )min{di′ , si′}, i′ ̸= i

with di′ =

m∑
j=1

Λj exp[νj +min{1, si′/di′}(qi′j −κjpi′ − νj)]

1+
∑n

i′′=1 exp[νj +min{1, si′′/di′′}(qi′′j −κjpi′′ − νj)]

si′ =

l∑
k=1

Γk exp[ωk +min{1, di′/si′}(ai′k + ηkwi′ −ωk)]

1+
∑n

i′′=1 exp[ωk +min{1, di′′/si′′}(ai′′k + ηkwi′′ −ωk)]
.

One can easily check that, for all i′ ̸= i, di′ , si′ , and πi′(·) are all strictly decreasing in s. Since s
(1)
i

is the maximizer of πi(s), we must have sm∗
i < s

(1)
i . Since, by the Proof of Lemma 4, pi(s, p(0)−i ,w

(0)
−i ) is

strictly decreasing in s, whereas wi(s, p
(0)
−i ,w

(0)
−i ) is strictly increasing in s, we have p(1)i = pi(s

(1)
i , p

(0)
−i ,w

(0)
−i )<

pi(s
(m∗)
i , p

(0)
−i ,w

(0)
−i ) and w(1)

i =wi(s
(1)
i , p

(0)
−i ,w

(0)
−i )>wi(s

(m∗)
i , p

(0)
−i ,w

(0)
−i ). Then, we have shown that p(1)i < p

(0)
i

and w
(1)
i >w

(0)
i for all i= 1,2, ..., n.

We next show that if p(k)i′ < p
(m∗)
i′ and w

(k)
i′ >w

(m∗)
i′ for any i′ ̸= i, then p

(k+1)
i < p

(m∗)
i and w

(k+1)
i >w

(m∗)
i .

Assume by contradiction that either p(k+1)
i ≥ p

(m∗)
i or w(k+1)

i ≤ w
(m∗)
i . Then, we have s

(k+1)
i < sm∗

i and

m
(k+1)
i := p

(k+1)
i −w

(k+1)
i >mm∗

i := p
(m∗)
i −w

(m∗)
i . As shown in the proof of Theorem 1, ∂sm(s, p−i,w−i)s is

independent of (p−i,w−i) and decreasing in s. Thus, we have:

∂sπi(s
(k+1)
i |p(k)−i ,w

(k)
−i ) = ∂sm

(k+1)
i s

(k+1)
i +m

(k+1)
i >∂sm

(m∗)
i s

(m∗)
i +m

(m∗)
i = ∂sπi(s

(m∗)
i |p(m∗)

−i ,w
(m∗)
−i ),

where the inequality follows from s
(k+1)
i < sm∗

i and m
(k+1)
i >mm∗

i . By the FOC of the monopoly model,

∂sπi(s
(m∗)
i |p(m∗)

−i ,w
(m∗)
−i )+

∑
i′ ̸=i

∂sπi′(s
(m∗)
i |p(m∗)

−i ,w
(m∗)
−i ) = 0,

so, we have that

∂sπi(s
(m∗)
i |p(m∗)

−i ,w
(m∗)
−i ) =−

∑
i′ ̸=i

∂sπi′(s
(m∗)
i |p(m∗)

−i ,w
(m∗)
−i )> 0,

where the inequality follows from the fact that πi′(·|p(m∗)
−i ,w

(m∗)
−i ) is strictly decreasing in s (for i′ ̸= i).

This implies that ∂sπi(s
(k+1)
i |p(k)−i ,w

(k)
−i )> 0, which contradicts the FOC ∂sπi(s

(k+1)
i |p(k)−i ,w

(k)
−i ) = 0. Thus, we

must have p(k+1)
i < p

(m∗)
i and w

(k+1)
i < w

(m∗)
i for all i. Proposition 1(a) then follows from taking the limit

p∗i = limk→+∞ p
(k)
i < p

(0)
i = pm∗

i and w∗
i = limk→+∞w

(k)
i >w

(0)
i =wm∗

i for i= 1,2, ..., n.

Part (b). We first show that the best-response functions pi(p−i,w−i) and wi(p−i,w−i) are increasing in

Λj for any j = 1,2, ...,m. Recall from the proof of Theorem 1 that pi(p−i,w−i) and wi(p−i,w−i) can be
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characterized as the solution to the following optimization problem:

max
s

πi(s|p−i,w−i,Λj)

where πi(s|p−i,w−i) = (pi −wi)s
m∑

j′=1

dij′ = s

pi =
qij′

κj′
− 1

κj′
log

( dij′/Λj′

1− dij′/Λj′

)
− 1

κj′
log

(
1+

∑
i′ ̸=i

exp[νj′ +min{1, si′/di′}(qi′j′ −κj′pi′ − νj′)]
)

for all j′

l∑
k=1

sik = s

wi =−aik
ηk

− 1

ηk
log

( sik/Γk

1− sik/Γk

)
− 1

ηk
log

(
1+

∑
i′ ̸=i

exp[ωk +min{1, di′/si′}(ai′k + ηkwi′ −ωk)]
)

for all k.

By computing the cross derivative, one can see that πi(s|p−i,w−i,Λj) is supermodular in (s,Λj) for any
j. Therefore, s∗ and

wi(s, p−i,w−i) =
aik
ηk

− 1

ηk
log

( sik/Γk

1− sik/Γk

)
− 1

ηk
log

(
1+

∑
i′ ̸=i

exp[ωk+min{1, di′/si′}(ai′k+ηkwi′−ωk)]
)

for all k

are increasing in Λj for any i and j.
We define tij′ :=

dij′/Λj′

1−dij′/Λij′
=

dij′

Λj′−dij′
. We then have dij′ =

Λj′ tij′

1−tij′
and can write the following:

s∗ =max
s

πi(s|p−i,w−i,Λj)

where πi(s|p−i,w−i) = (pi −wi)s
m∑

j′=1

Λj′tij′

1− tij′
= s

pi =
qij′

κj′
− 1

κj′
log

(
tij′

)
− 1

κj′
log

(
1+

∑
i′ ̸=i

exp[νj′ +min{1, si′/di′}(qi′j′ −κj′pi′ − νj′)]
)

for all j′

l∑
k=1

sik = s

wi =−aik
ηk

− 1

ηik
log

( sik/Γk

1− sik/Γk

)
+

1

ηk
log

(
1+

∑
i′ ̸=i

exp[ωk +min{1, di′/si′}(ai′k + ηkwi′ −ωk)]
)

for all k.

If Λj increases, it follows that t∗ij′ , which solves the above optimization problem decreases for all j′. Thus,

pi(p−i,w−i) =
qij′

κj′
− 1

κj′
log

(
t∗ij′

)
− 1

κj′
log

(
1+

∑
i′ ̸=i

exp[νj′ +min{1, si′/di′}(qi′j′ −κj′pi′ − νj′)]
)

is increasing in Λj . We then have proved that both pi(p−i,w−i) and wi(p−i,w−i) are increasing in Λj . Since
pi(p−i,w−i) and wi(p−i,w−i) are both increasing in p−i and w−i, then p

(k)
i and w

(k)
i are increasing in Λ for

any k ≥ 1. By Theorem 1, (p∗,w∗) = limk↑+∞(p(k),w(k)). Thus, p∗i = limk↑+∞ p
(k)
i and w∗

i = limk↑+∞w
(k)
i for

i= 1,2, ..., n are increasing in Λj for any j. This concludes the proof of Proposition 1(b). □

Proof of Theorem 2

As in the proof of Theorem 1, we prove Theorem 2 using the following three steps:
• Under equilibrium, sc∗i ≥ dc∗i , that is, supply dominates demand.
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• The best-response price pci (p−i) is continuously increasing in pj for any j ̸= i. By Tarski’s Fixed Point

Theorem, this monotonicity implies that an equilibrium exists.

• The best-response mapping T c(p) = (pci (p−i) : i= 1,2, ..., n) satisfies

||T c(p)−T c(p′)||1 ≤ qc||p− p′||1 for some qc ∈ (0,1).

This will imply that the equilibrium is unique and can be computed using a tatônnement scheme.

Step I. sc∗i ≥ dc∗i

If sc∗i < dc∗i , then Pi can increase its price from pc∗i to p̂c∗i = pc∗i + ϵ (for a small ϵ > 0), and accordingly its

wage from βip
c∗
i to βip

c∗
i + βiϵ, where ϵ is small enough so that ŝc∗i ≤ d̂i. With this price adjustment, Pi’s

profit increases by at least (1− βi)ϵs
c∗
i > 0, hence contradicting that (pc∗i , p

c∗
−i) is an equilibrium. Therefore,

we must have sc∗i ≥ dc∗i for i= 1,2, ..., n.

Step II. pci (p−i) is continuously increasing in pj for all j ̸= i

Since sc∗i ≥ dc∗i , the price/wage optimization of Pi can be formulated as follows:

max
pi

(1−βi)pidi

s.t. di =
m∑

j=1

Λj exp(qij −κjpi)

1+ exp(qij −κjpi)+
∑

i′ ̸=i
exp[νj +min{1, si′/di′}(qi′j −κjpi′ − νj)]

si =

l∑
k=1

Γk exp[ωj +(aik + ηjβipi −ωj) · di/si]
1+ exp[ωj +(aik + ηjβipi −ωj) · di/si] +

∑
i′ ̸=i

exp[ωj +min{1, di′/si′}(ai′k + ηjβi′pi′ −ωj)]

si ≥ di.

Note that the objective function is supermodular in (p1, p2, ..., pn) and that the feasible set is a lattice.

Thus, the best-response price pci (p−i) is continuously increasing in pi′ for all i′ ̸= i. By Tarski’s Fixed Point

Theorem, an equilibrium pc∗ exists.

Step III. T c(·) is a contraction mapping under the ℓ1 norm

As shown in the proof of Step II above,

pci (p−i) = argmax
pi

(1−βi)pidi

s.t. di =
m∑

j=1

Λj exp(qij −κjpi)

1+ exp(qij −κjpi)+
∑

i′ ̸=i
exp[νj +min{1, si′/di′}(qi′j −κjpi′ − νj)]

si =

l∑
k=1

Γk exp[ωk +(aik + ηkβipi −ωk) · di/si]
1+ exp[ωk +(aik + ηkβipi −ωk) · di/si] +

∑
i′ ̸=i exp[ωk +min{1, di′/si′}(ai′k + ηkβi′pi′ −ωk)]

si ≥ di.

We define p
i
(p−i) as the unconstrained optimizer of pidi (without the constraint si ≥ di), which is increasing

in pi′ for each i′ ̸= i, as shown in Step II. We also define p̄i(p−i) as the unique pi such that si = di, which

is also increasing in pi′ (i′ ̸= i). We have pci (p−i) = max{p
i
(p−i), p̄i(p−i)}. It suffices to show that both

p(·) := (p
1
(·), p

2
(·), ..., p

n
(·)) and p̄(·) := (p̄1(·), p̄2(·), ..., p̄n(·)) are contraction mappings under the ℓ1 norm.

We next show that there exists a constant C ∈ (0,1), such that for any p, p′ ∈Rn
+,

||p(p)− p(p′)||1 ≤C||p− p′||1 and ||p̄(p)− p̄(p′)||1 ≤C||p− p′||1.
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Since the MNL demand model satisfies the diagonal dominance condition, that is, for any j, ∂2dij

∂pi∂pi′
> 0

for any i′ ̸= i, and

∂2dij
∂(pi)2

<−
∑
i′ ̸=i

∂2dij
∂pi∂pi′

< 0,

we have that, the ℓ1 matrix norm for the Jacobian of p(·), denoted by C, is strictly below 1 (i.e., C < 1).
Thus,

||p(p)− p(p′)||1 ≤C||p− p′||1. (7)

We also note that p̄i(p−i) satisfies the following equation:
m∑

j=1

Λj exp[qij −κj p̄i(p−i)]

1+ exp[qij −κj p̄i(p−i)]+
∑

i′ ̸=i
exp[νj +min{1, si′/di′}(qi′j −κjpi′ − νj)]

=

l∑
k=1

Γk exp[ωj +(aik + ηjβip̄i(p−i)−ωj) · di/si]
1+ exp[ωj +(aik + ηjβip̄i(p−i)−ωj) · di/si] +

∑
i′ ̸=i exp[ωj +min{1, di′/si′}(ai′k + ηjβi′pi′ −ωj)]

:= s.

If p̂i′ = pi′ + δ for some i′ ̸= i and δ > 0 and p̂i′′ = pi′′ for all other i′′ ̸= i and i′′ ̸= i′, we have
m∑

j=1

Λj exp[qij −κj p̄i(p−i)]

1+ exp[qij −κj p̄i(p−i)]+
∑

i′ ̸=i exp[νj +min{1, ŝi′/d̂i′}(qi′j −κj p̂i′ − νj)]
> s, whereas

l∑
k=1

Γk exp[ωj +(aik + ηjβip̄i(p−i)−ωj) · di/si]
1+ exp[ωj +(aik + ηjβip̄i(p−i)−ωj) · di/si] +

∑
i′ ̸=i exp[ωj +min{1, d̂i′/ŝi′}(ai′k + ηjβi′ p̂i′ −ωj)]

< s.

We denote the induced supply and demand under the price vector p̂ as ŝ. Furthermore, we have
m∑

j=1

Λj exp[qij −κj p̄i(p̂−i)]

1+ exp[qij −κj p̄i(p̂−i)]+
∑

i′ ̸=i exp[νj +min{1, ŝi′/d̂i′}(qi′j −κj p̂i′ − νj)]

<

m∑
j=1

Λj exp[qij −κj p̄i(p−i)]

1+ exp[qij −κj p̄i(p−i)]+
∑

i′ ̸=i exp[νj +min{1, ŝi′/d̂i′}(qi′j −κj p̂i′ − νj)]
:= s̄, and

l∑
k=1

Γk exp[ωj +(aik + ηjβip̄i(p̂−i)−ωj) · di/si]
1+ exp[ωj +(aik + ηjβip̄i(p̂−i)−ωj) · di/si] +

∑
i′ ̸=i exp[ωj +min{1, d̂i′/ŝi′}(ai′k + ηjβi′ p̂i′ −ωj)]

>

l∑
k=1

Γk exp[ωj +(aik + ηjβip̄i(p−i)−ωj) · di/si]
1+ exp[ωj +(aik + ηjβip̄i(p−i)−ωj) · di/si] +

∑
i′ ̸=i exp[ωj +min{1, d̂i′/ŝi′}(ai′k + ηjβi′ p̂i′ −ωj)]

=: s.

Therefore,

ŝ=

m∑
j=1

Λj exp[qij −κj p̄i(p̂−i)]

1+ exp[qij −κj p̄i(p̂−i)]+
∑

i′ ̸=i exp[νj +min{1, ŝi′/d̂i′}(qi′j −κj p̂i′ − νj)]

>

l∑
k=1

Γk exp[ωj +(aik + ηjβip̄i(p̂−i)−ωj) · di/si]
1+ exp[ωj +(aik + ηjβip̄i(p̂−i)−ωj) · di/si] +

∑
i′ ̸=i exp[ωj +min{1, d̂i′/ŝi′}(ai′k + ηjβi′ p̂i′ −ωj)]

∈ (s, s̄).

If ŝ < s, define p′ as the solution to
∑l

k=1

Γk exp[ωj+(aik+ηjβip
′−ωj)·di/si]

1+exp[ωj+(aik+ηjβip̄i(p−i)−ωj)·di/si]+
∑

i′ ̸=i exp[ωj+min{1,d̂i′/ŝi′}(ai′k+ηjβi′ p̂i′−ωj)]
=

s > ŝ. Hence, p̄i(p̂−i) < p′. By the diagonal dominance property of the MNL demand model, we have
0< p̄(p̂−i)− p̄(p−i)< p

′ − p̄(p−i)< qsδ, where qs :=max{ exp(aik)βi

1+exp(aik)
: 1≤ i≤ n,1≤ k≤ l}< 1.

Analogously, if ŝ > s, assume that p′′ satisfies
∑m

j=1

Λj exp(qij−κjp
′′)

1+exp(qij−κjp′′)+
∑

i′ ̸=i exp[νj+min{1,ŝi′/d̂i′}(qi′j−κj p̂i′−νj)]
=

s < ŝ. Since ŝ > s, we have p̄(p̂−i)< p′′. By the diagonal dominance condition of the MNL model, we have
0< p̄(p̂−i)− p̄(p−i)< p

′′ − p̄(p−i)< qdδ, where qd :=max{ exp(qij)βi

1+exp(aij)
: 1≤ i≤ n,1≤ j ≤m}< 1.
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We define qc :=max{qd, qs}< 1. The above analysis implies that

||p̄(p)− p̄(p′)||1 ≤ qc||p− p′||1 (8)

By combining Equations (7) and (8), we obtain ||p̄(p)− p̄(p′)||1 ≤C||p−p′||1, where C :=max{C,qc}< 1. We
have established that under a fixed commission, the best-response is a contraction mapping over the strategy
space. Then, by using Banach’s Fixed Point Theorem, a unique equilibrium exists and can be computed
using a tatônnement scheme. This concludes the proof of Theorem 2. □

B.1. Proof of Proposition 2

In the the proof of Proposition 2, we define:

(p(k),w(k)) := T (k)(pc∗, βpc∗) for k≥ 1,

and (p(0),w(0)) = (pc∗, βpc∗). By Theorem 1, we have (p(k),w(k)) converges to (p∗,w∗), as k ↑+∞. Further-
more, by the symmetry of the model primitives, we have, if pc∗ is symmetric, p(k)1 = p

(k)
2 = ... = p(k)n and

w
(k)
1 =w

(k)
2 = ...=w(k)

n for each k≥ 0.
Part (a). By Theorems 1 and 2, there exist a unique equilibrium (p∗,w∗) in the base model and a

unique equilibrium pc∗ in the model with a fixed-commission rate. If (p∗,w∗) is not symmetric, since all
the model parameters are symmetric with respect to different platforms, customer segments, and worker
types, we can find a permutation of (p∗,w∗), which is not identical to (p∗,w∗), but still an equilibrium, thus
contradicting the uniqueness of (p∗,w∗). Therefore, (p∗,w∗) must be symmetric, i.e. p∗1 = p∗2 = ...= p∗n and
w∗

1 = w∗
2 = ... = w∗

n. Similarly, we have pc∗ is symmetric for the model with a fixed-commission rate, i.e.,
pc∗1 = pc∗2 = ...= pc∗n . This proves part (a).

Part (b). If β = w∗
i /p

∗
i , it is straightforward to check that p∗i = pc∗i and w∗

i = βp∗i = βpc∗i = wc∗
i for all i.

Therefore, d∗i = dc∗i for all i as well. π∗
i = (p∗i −w∗

i )d
∗
i = (pc∗i −wc∗

i )dc∗i = πc∗
i . If β ̸= w∗

i /p
∗
i , by the definition

of the best-response operator T (·, ·), we have that, for each k≥ 0,

(p
(k+1)
i −w

(k+1)
i )d

(k+1)
i > (p

(k)
i −w

(k)
i )d

(k)
i .

Therefore,

π∗
i = (p∗i −w∗

i )d
∗
i = lim

k↑+∞
(p

(k)
i −w

(k)
i )d

(k)
i > (p

(0)
i −w

(0)
i )d

(0)
i = (pc∗i −wc∗

i )dc∗i = πc∗
i .

This proves part (b).
Part (c). Because w(0)

i /p
(0)
i = β < w∗

i /p
∗
i , exactly the same argument as the proof of Proposition 1(a)

demonstrates that p(1)i < p
(0)
i and w

(1)
i >w

(0)
i . Furthermore, by an induction argument similar to the proof

of Proposition 1(a), we have if p(k)i < p
(0)
i and w

(k)
i > w

(0)
i then p

(k+1)
i < p

(0)
i and w

(k+1)
i > w

(0)
i for all

k ≥ 1. Putting these inequalities together and taking k to limit, we have p∗i = limk↑+∞ p
(k)
i < p

(0)
i = pc∗i and

w∗
i = limk↑+∞w

(k)
i > w

(0)
i = wc∗

i for all i. Finally, d∗i > dc∗i follows directly from p∗i < pc∗i . This proves part
(c).

Part (c). Because w(0)
i /p

(0)
i = β > w∗

i /p
∗
i , exactly the same argument as the proof of Proposition 1(a)

demonstrates that p(1)i > p
(0)
i and w

(1)
i <w

(0)
i . Furthermore, by an induction argument similar to the proof

of Proposition 1(a), we have if p(k)i > p
(0)
i and w

(k)
i < w

(0)
i then p

(k+1)
i > p

(0)
i and w

(k+1)
i < w

(0)
i for all

k ≥ 1. Putting these inequalities together and taking k to limit, we have p∗i = limk↑+∞ p
(k)
i > p

(0)
i = pc∗i and

w∗
i = limk↑+∞w

(k)
i < w

(0)
i = wc∗

i for all i. Finally, d∗i < dc∗i follows directly from p∗i > pc∗i . This proves part
(d). □
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Proof of Corollary 1

The first part follows from the same argument as in the proof of Theorem 1. If ss∗i <ds∗i , then Pi can increase

its price and strictly increase its profit. If ss∗i > ds∗i , then Pi can decrease its price and strictly increase its

profit. As a result, under equilibrium, we must have ss∗i = ds∗i for i = 1,2, ..., n. Similarly, the equilibrium

existence and uniqueness follow from the same argument as in the proof of Theorem 1. □

Proof of Theorem 3

We first observe that the same argument as in the proof of Step I of Theorem 1 implies that, in equilibrium,

the supply and demand of each platform should match. More specifically, if s̃∗i > λ̃∗
i (resp. s̃∗i < λ̃∗

i ), Pi can

decrease (resp. increase) its wage w̃i (resp. price p̃i) by a sufficiently small amount to strictly increase its

profit. Here, s̃∗i is the equilibrium supply of Pi, λ̃∗
1 = d̃∗1 + d̃∗x/ñ is the total equilibrium demand for P1’s

workers, and λ̃∗
i = d̃∗i is the total equilibrium demand for Pi’s workers (i= 2,3, ..., n). Using s̃∗i = λ̃∗

i , we can

write Pi’s profit function as follows:

π̃i(p̃, w̃) = (p̃i − w̃i)d̃i + γi

(
p̃x −

w̃1

ñ

)
d̃x.

Given P−i’s strategy, (p̃−i, w̃−i), we use p̃i(p̃−i, w̃−i) and w̃i(p̃−i, w̃−i) to denote the best-response price and

wage of Pi under coopetition. Given (p̃−i, w̃−i, p̃x), the price and wage optimization of P1 can be formulated

as follows:

max
(p̃1,w̃1,d̃1,d̃x)

(p̃1 − w̃1)d̃1 + γ1

(
p̃x −

w̃1

ñ

)
d̃x

where
m∑

j=1

d̃1j = d̃1

p̃1 =
q1j
κj

− 1

κj

log
( d̃1j/Λj

1− d̃1j/Λj

)
− 1

κj

log
(
1+

∑
i′≠1

exp[νj +min{1, s̃i′/d̃i′}(qi′j −κj p̃i′ − νj)]
)

for all j

m∑
j=1

d̃xj = d̃x

p̃x =
qxj
κj

− 1

κj

log
( d̃xj/Λj

1− d̃xj/Λj

)
− 1

κj

log
(
1+

∑
i′ ̸=x

exp[νj +min{1, s̃i′/d̃i′}(qi′j −κj p̃i′ − νj)]
)

for all j

l∑
k=1

s̃1k = d̃1 +
d̃x
ñ

w̃1 =−a1k
ηk

− 1

η1k
log

( s̃1k/Γk

1− s̃1k/Γk

)
+

1

ηk
log

(
1+

∑
i′ ̸=1

exp[ωk +min{1, d̃i′/s̃i′}(ai′k + ηkw̃i′ −ωk)]
)

for all k.

(9)
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In addition, the price and wage optimization for Pi (i = 2,3, ..., n) can be formulated as follows (we use
γ2 = 1− γ1 and γi = 0 for i= 3,4, ..., n):

max
(p̃i,w̃i,d̃i)

(p̃i − w̃i)d̃i + γi

(
p̃x −

w̃1

ñ

)
d̃x

where
m∑

j=1

d̃ij = d̃i

p̃i =
qij
κj

− 1

κj

log
( d̃ij/Λj

1− d̃ij/Λj

)
− 1

κj

log
(
1+

∑
i′ ̸=i

exp[νj +min{1, s̃i′/d̃i′}(qi′j −κj p̃i′ − νj)]
)

for all j

m∑
j=1

d̃xj = d̃x

p̃x =
qxj
κj

− 1

κj

log
( d̃xj/Λj

1− d̃xj/Λj

)
− 1

κj

log
(
1+

∑
i′ ̸=x

exp[νj +min{1, s̃i′/d̃i′}(qi′j −κj p̃i′ − νj)]
)

for all j

l∑
k=1

s̃ik = d̃i

w̃i =−aik
ηk

− 1

ηik
log

( s̃ik/Γk

1− s̃ik/Γk

)
+

1

ηk
log

(
1+

∑
i′ ̸=i

exp[ωk +min{1, d̃i′/s̃i′}(ai′k + ηkw̃i′ −ωk)]
)

for all k.

(10)

Following the same argument as in the proof of Step II of Theorem 1, we have that both p̃i(p̃−i, w̃−i) and
w̃i(p̃−i, w̃−i) are continuously increasing in p̃−i and w̃−i for i= 1,2, ..., n. Therefore, by Tarski’s Fixed Point
Theorem, an equilibrium exists for the model with coopetition.

To show that the equilibrium is unique, we follow the same argument as in the proof of Lemma 5. It
suffices to show that for some k, the k-fold best-response mapping, T̃ (k)(p̃, w̃), (defined in a similar fashion
as T (k)(·, ·), but for the model with coopetition) is a contraction mapping. The same argument as in the
proof of Lemma 5 implies that for any (p̃, w̃) and (p̃′, w̃′), we have

||T̃ (k)(p̃, w̃)− T̃ (k)(p̃′, w̃′)||1 ≤ 2Ek||(p,w)− (p̃′, w̃′)||1,

where E < 1 is defined in the proof of Lemma 5. Consequently, T̃ (k∗) is a contraction mapping under the
ℓ1 norm, where k∗ is the smallest integer satisfying 2C(k∗) < 1 (i.e., k∗ >− log(2)/ log(E)). The contraction
mapping property of T (k∗)(·, ·), as shown in the proof of Theorem 1, implies that the equilibrium is unique
in the presence of coopetition, and that it can be computed using a tatônnement scheme. This concludes the
proof of Theorem 3. □

Proof of Theorem 4

We first show that if p̃n ↑ +∞, then (p̃∗i , w̃
∗
i ) converges to (p∗i ,w

∗
i ) for i = 1,2..., n. For given (p̃, w̃) =

(p̃1, w̃1, p̃2, w̃2, ..., p̃3, w̃3), we define the two-dimensional sequence {
(
p̃i(k, j), w̃i(k, j)

)
: 1 ≤ i ≤ n,k ≥ 1, j ≥

1}, where
(
p̃(k, j), w̃(k, j)

)
= T̃ (k)(p̃, w̃) with p̃x = j. From the proof of Lemma 5, we know that

limj↑+∞
(
p̃(k, j), w̃(k, j)

)
= T (k)(p̃, w̃).

Therefore, as shown in the proof of Theorem 3, the equilibrium strategies with p̃x = j sat-
isfy

(
p̃∗(j), w̃∗(j)

)
= limk↑+∞

(
p̃(k, j), w̃(k, j)

)
. Using the proof of Theorem 3, we have ||T (k)(p̃, w̃) −

T (k)(p̃′, w̃′)||1 ≤ 2Ek||(p̃, w̃)− (p̃′, w̃′)||1 for k≥ 1. Thus,

|p̃i(k+1, j)− p̃i(k, j)| ≤ 2Ek||(p̃(1, j), w̃(1, j))− (p̃, w̃)||1,



Cohen and Zhang: Competition and Coopetition for Two-Sided Platforms
47

|w̃i(k+1, j)− w̃i(k, j)| ≤ 2Ek||(p̃(1, j), w̃(1, j))− (p̃, w̃)||1.

As a result,
∑+∞

k=1 |p̃i(k + 1, j) − p̃i(k, j)| < +∞ and
∑+∞

k=1 |w̃i(k + 1, j) − w̃i(k, j)| < +∞ for i = 1,2, ..., n.
Using the dominated convergence theorem, we obtain, for all i,

lim
j↑+∞

lim
k↑+∞

(p̃i(k, j), w̃i(k, j)) = lim
k↑+∞

lim
j↑+∞

(p̃i(k, j), w̃i(k, j))

that is,

lim
j↑+∞

(p̃∗(j), w̃∗(j)) = lim
j↑+∞

lim
k↑+∞

(p̃(k, j), w̃(k, j)) = lim
k↑+∞

lim
j↑+∞

(p̃(k, j), w̃(k, j)) = lim
k↑+∞

T (k)(p̃, w̃) = (p∗,w∗),

which states that if p̃x ↑+∞, then (p̃∗i , w̃
∗
i ) converges to (p∗i ,w

∗
i ) for i= 1,2, ..., n.

We next show that π̃(p̃x) := π̃1(p̃
∗(p̃x), w̃

∗(p̃x))+ π̃2(p̃
∗(p̃x), w̃

∗(p̃x)) is decreasing in p̃x for sufficiently large
p̃x, where (p̃∗i (p̃x), w̃

∗
i (p̃x)) is the equilibrium outcome of Pi under coopetition when the price of the new

service is p̃x.
We first show that, under a given equilibrium price and wage vector (p̃∗, w̃∗) associated with p̃x, the total

profit of P1 and P2, π̃(p̃x|p̃∗, w̃∗) is decreasing in p̃n for sufficiently large p̃x, where

π̃(p̃x|p̃∗, w̃∗) =(p̃∗1 − w̃∗
1)d̃1 +(p̃∗2 − w̃∗

2)d̃2 +
(
p̃x −

w̃∗
1

ñ

)
d̃x.

By Lemma 2, we have

∂p̃x π̃(p̃x|p̃∗, w̃∗) =(p̃∗1 − w̃∗
1)∂p̃x d̃1 +(p̃∗2 − w̃∗

2)∂p̃x d̃2 + d̃x +
(
p̃x −

w̃∗
1

ñ

)
∂p̃x d̃x

=(p̃∗1 − w̃∗
1)

m∑
j=1

κj d̄1j d̄xj/Λj +(p̃∗2 − w̃∗
2)

m∑
j=1

κj d̄2j d̄xj/Λj + d̃x

−
(
p̃x −

w̃∗
1

ñ

) m∑
j=1

κj(1− d̄xj/Λj)d̄xj .

Hence, ∂p̃x π̃(p̃∗x|p̃∗, w̃∗) = 0 implies that

p̃∗x = (p̃∗1 − w̃∗
1)

∑m

j=1 κj d̄
∗
1j d̄

∗
xj/Λj∑m

j=1 κj(1− d̄∗xj/Λj)d̄∗xj
+(p̃∗2 − w̃∗

2)

∑m

j=1 κj d̄
∗
2j d̄

∗
xj/Λj∑m

j=1 κj(1− d̄∗xj/Λj)d̄∗xj
+
w̃∗

1

ñ
, (11)

where d̄∗ij is the equilibrium demand of Pi’s service, when p̃x = p̃∗x satisfies Equation (11). We observe that
the right-hand side of Equation (11) is decreasing with respect to p̃x. Therefore, there exists a unique p̃∗x such
that Equation (11) holds. Furthermore, one can check that ∂p̃x π̃(p̃x|p̃∗, w̃∗)> 0 (resp. < 0) if p̃x < p̃∗x (resp.
p̃x > p̃

∗
x). As a result, π̃(·|p̃∗, w̃∗) is decreasing in p̃x for p̃x ≥ p̃∗x. Note that p̃∗x is uniformly bounded from above

by an upper bound on the right-hand side of Equation (11), say p̄∗ := (p∗1−w∗
1+p

∗
2−w∗

2)+w
∗
1+

1
1−d̄′0/(

∑
j Λj)

,
where d̄′0 is the market share of the new joint service with p̃x = 0. It then follows that, when p̃x ≥ p̄∗,
π̃(p̃x) = π̃(p̃x|p̃∗(p̃n), w̃∗(p̃x)) is strictly decreasing in p̃x.

We observe that as p̃x ↑ +∞, d̃x ↓ 0. Since (p̃∗(p̃x), w̃
∗(p̃x)) approaches (p∗,w∗) when p̃x ↑ +∞, then

π̃(p̃x) = π̃(p̃x|p̃∗(p̃x), w̃∗(p̃x)) approaches the equilibrium total profit of P1 and P2 without coopetition,
that is, π∗ := π1(p

∗,w∗) + π2(p
∗,w∗). Since we have shown that π̃(·) is strictly decreasing in p̃x ≥ p̄∗ and

limp̃x→+∞ π̃(p̃x) = π∗, then π̃∗ := maxp̃x π̃(p̃x) > π∗, that is, the maximum total profit of P1 and P2 with
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coopetition dominates the maximum total profit without coopetition for any γ ∈ (0,1). In other words, for
p̃x ≥ p̄∗, π̃1(p̃x|p̃∗(p̃x), w̃∗(p̃x)) + π̃2(p̃x|p̃∗(p̃x), w̃∗(p̃x))> π1(p

∗,w∗) + π2(p
∗,w∗). Thus, there exist a range of

profit sharing parameters (γ, γ̄)⊂ (0,1), such that when γ ∈ (γ, γ̄), π̃i(p̃
∗, w̃∗)>πi(p

∗,w∗) for i= 1,2.
We next show that π̃i(p̃

∗, w̃∗)< πi(p
∗,w∗) for i= 3,4, ..., n. Since limp̃x↑+∞ π̃i(p̃

∗, w̃∗) = πi(p
∗,w∗) for i=

3,4, ..., n, it suffices to show that π̃i(p̃
∗, w̃∗) is increasing in p̃x. To show this monotonicity result, we prove

that, for any k, (p̃i(k, j)− w̃i(k, j))d̃i(k, j) is increasing in j for i= 3,4, ..., n, where p̃i(k, j) and w̃i(k, j) are
defined above, and d̃i(k, j) is the associated demand (and supply) for Pi in round k of the tatônnement
scheme. By the proof of Lemma 4, for each k, both the profit margin m̃i(k, j) := p̃i(k, j)− w̃i(k, j) and the
demand d̃i(k, j) are increasing in the price of the new service p̃x = j, and so is (p̃i(k, j)− w̃i(k, j))d̃i(k, j).
Taking k to infinity, we obtain that π̃i(p̃

∗, w̃∗) = limk→∞(p̃i(k, j)− w̃i(k, j))d̃i(k, j) is increasing in p̃x = j.
This concludes the proof of Theorem 4. □

Proof of Proposition 3

By Theorem 4, we can select γ0 ∈ (γ, γ̄) and p̃∗x = argmaxp̃x
{π1(p̃

∗, w̃∗) + π2(p̃
∗, w̃∗)} that maximize the

total profit of both platforms, so that π̃i(p̃
∗, w̃∗|p̃∗x, γ0) > πi(p

∗,w∗), for i = 1,2. Thus, for any θ1 + θ2 = 1

(θi > 0), (p̃∗x, γ0) is a feasible solution to the optimization problem in (3). Therefore, an optimal solution to
(3), (p̃∗∗x , γ∗∗), exists and satisfies the following:

(π̃1(p̃
∗, w̃∗|p̃∗∗x , γ∗∗)−π1(p

∗,w∗))θ1 · (π̃2(p̃
∗, w̃∗|p̃∗∗x , γ∗∗)−π2(p

∗,w∗))θ2

≥(π̃1(p̃
∗, w̃∗|p̃∗n, γ0)−π1(p

∗,w∗))θ1 · (π̃2(p̃
∗, w̃∗|p̃∗x, γ0)−π2(p

∗,w∗))θ2 > 0.

As a result, we have π̃i(p̃
∗, w̃∗|p̃∗∗x , γ∗∗) > πi(p

∗,w∗) for i = 1,2. Finally, by the proof of Theorem 4, we
have that π̃i(p̃

∗, w̃∗) (i= 3,4, ..., n) is increasing in p̃x, which, together with limp̃x↑+∞ π̃i(p̃
∗, w̃∗) = πi(p

∗,w∗),
implies that π̃i(p̃

∗, w̃∗)<πi(p
∗,w∗) for all i= 3,4, ..., n. This concludes the proof of Proposition 3. □

Proof of Proposition 4

Part (a). Denote (p̃i(k, j), w̃i(k, j) : 1≤ i≤ n) as the price and wage of each platform’s original service under
the price of the new service p̃x = j. By Equations (9) and (10), as r ↑+∞, w̃i(k, j) ↑+∞ for all i= 1,2, ..., n,
k= 1,2, ..., and j > 0. Then, by taking k ↑+∞, we have that, for any p̃x, the equilibrium wage of P1, w̃∗

1 ↑+∞.
By (11), we must have limr↑+∞ p̃∗x =+∞. To show that limr↑+∞ p̃∗∗x ↑+∞, we note that limr↑+∞ w̃∗

1/ñ=+∞.
Under the Nash Bargaining equilibrium, we must have p̃x > w̃1/ñ, which together with limr↑+∞ w̃∗

1/ñ=+∞

leads to limr↑+∞ p̃∗∗x ↑+∞. This concludes the proof of Part (a).
Part (b). We next show that the total profit under coopetition increases when p̃x = p̄ and r is sufficiently

small. Note that, as r ↓ 0, by Equations (9) and (10), w̃i(k, j) ↓ 0 for all i= 1,2, ..., n, k = 1,2, ..., and j > 0.
Then, by taking k ↑+∞, we have that, for any p̃x, the equilibrium wage of P1, w̃∗

1 ↓ 0. Therefore, for p̃x = p̄,
the equilibrium profit from the new service (p̃x − w̃∗

1/ñ)d̃
∗
x > 0. This implies that the total profit under

coopetition increases when p̃x = p̄ and r is sufficiently small. Consequently, we can find a profit sharing
parameter γ such that π̃i(p̃

∗, w̃∗|p̄, γ)>πi(p
∗,w∗) for i= 1,2. This concludes the proof of Part (b-i).

Finally, we show Part (b-ii). Specifically, we prove that if there is a finite upper bound on the price of the
new service set by the platforms, i.e., p̃x ≤ p̄, at least one platform would be worse off under coopetition,
namely, either π̃1(p̃

∗, w̃∗)<π1(p
∗,w∗) or π̃2(p̃

∗, w̃∗)<π2(p
∗,w∗), when r is sufficiently large. By the proof of
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Part (a), as r ↑+∞, we have w̃∗
1 ↑+∞ for any p̃x. Since p̃x ≤ p̄, the profit from the new joint service is such

that (p̃x − w̃∗
1/ñ)d̃x < 0.

Furthermore, in the presence of coopetition, Pi needs to charge a lower price relative to the setting without
coopetition in order to induce the same demand assuming that its competitor offers the same price. Thus,
for any (p−i,w−i), Pi’s optimal profit from its original service is lower under coopetition. By taking the index
of the best-response mapping k to infinity, we have that Pi’s equilibrium profit from its original service is
lower under coopetition for i= 1,2. Since we have shown that for a sufficiently large r, the total profit from
the new service (p̃x − w̃∗

1/ñ)d̃x is negative, then the total profit of P1 and P2 is lower under coopetition:

π̃∗
1 + π̃∗

2 = (p̃∗1 − w̃∗
1)d̃

∗
1 +(p̃∗2 − w̃∗

2)d̃
∗
2 +(p̃x − w̃∗

1/ñ)d̃x < (p∗1 −w∗
1)d

∗
1 +(p∗2 −w∗

2)d
∗
2 = π∗

1 +π∗
2.

Consequently, when r is sufficiently large, at least one of the platforms is worse off for any γ, and this
concludes the proof of Proposition 4. □

Proof of Proposition 5

We first show that the total profit under coopetition increases when p̃x = p̄ and q3 is sufficiently large. Recall
that given (p̃i, w̃i) for i= 1,2 and (p̃x, γ), the price and wage optimization of P3 can be formulated as follows:

max
(p̃3,w̃3,d̃3)

(p̃3 − w̃3)d̃3

where
m∑

j=1

d̃3j = d̃3

p̃3 =
q3ιj
κj

− 1

κj

log
( d̃3j/Λj

1− d̃3j/Λj

)
− 1

κj

log
(
1+

∑
i′ ̸=3

exp[νj +min{1, s̃i′/d̃i′}(qi′j −κj p̃i′ − νj)]
)
∀j

m∑
j=1

d̃xj = d̃x

p̃x =
qxj
κj

− 1

κj

log
( d̃xj/Λj

1− d̃xj/Λj

)
− 1

κj

log
(
1+

∑
i′ ̸=x

exp[νj +min{1, s̃i′/d̃i′}(qi′j −κj p̃i′ − νj)]
)
∀j

l∑
k=1

s̃3k = d̃3

w̃3 =−a3ψk

ηk
+

1

η3k
log

( s̃3k/Γk

1− s̃3k/Γk

)
+

1

ηk
log

(
1+

∑
i′ ̸=3

exp[ωk +min{1, d̃i′/s̃i′}(ai′k + ηkw̃i′ −ωk)]
)
∀k.

(12)
It follows from the optimization problem in (12) that, given (p̃i, w̃i) for i = 1,2 and (p̃x, ñ), if we take
q3 ↑+∞, the best responses of P3 will satisfy p̃3 ↑+∞ and d̃3j ↑Λj for all j. Consequently, as q3 ↑+∞, d̃1j ↓ 0
and d̃2j ↓ 0 for all j. Since supply equals demand, we have s̃1k ↓ 0 and s̃2k ↓ 0 for all k, which imply that w∗

i ↓ 0
for i= 1,2. Therefore, for p̃x = p̄, the equilibrium profit from the new service is such that (p̃x − w̃∗

1/ñ)d̃
∗
x > 0.

Similarly, for the model without coopetition, as q3 ↑+∞, d∗1j ↓ 0 and d∗2j ↓ 0 for all j under equilibrium. So
d∗1 =

∑
j
d∗1j and d∗2 =

∑
j
d∗2j will both decrease to 0 as q3 ↓ 0. Therefore, the profit of Pi without coopetition,

(p∗i −w∗
i )d

∗
i will decrease to 0 as q3 ↑+∞. This implies that the total profit of P1 and P2 under coopetition

will increase when p̃x = p̄ and q3 is sufficiently large. Consequently, we can find a profit sharing parameter γ
and a price for the joint new service p̃x ≤ p̄, such that π̃i(p̃

∗, w̃∗|p̄, γ)>πi(p
∗,w∗) for i= 1,2. This concludes

the proof of the first part.
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We next show that the total profit under coopetition will decrease for all p̃x ≤ p̄ and when a3 is sufficiently
large. It follows from (12) that, given (p̃i, w̃i) for i= 1,2 and (p̃x, ñ), if we take a3 ↑+∞, w̃3 ↓ 0 and s̃3k ↑ Γk for
all k. Then, for Pi (i= 1,2), the wage w̃i satisfies w̃i =−aik

ηk
+ 1

ηik
log

(
s̃ik/Γk

1−s̃ik/Γk

)
+ 1

ηk
log

(
1+

∑
i′ ̸=i

exp[ωk +

min{1, d̃i′/s̃i′}(ai′k+ηkw̃i′ −ωk)]
)

for all k. Since a3k = a3ψk increases to +∞ as a3 ↑∞, then w̃i will increase
to +∞ as a3 ↑+∞. Thus, since p̃x ≤ p̄ <+∞, the profit margin of the new joint service is negative when a3
is sufficiently large, that is, p̃x − w̃∗

1/ñ < 0.
In the presence of coopetition, Pi needs to charge a lower price relative to the setting without coopetition

in order to induce the same demand assuming that its competitor offers the same price. As a result, for
any (p−i,w−i), Pi’s optimal profit from its original service is lower under coopetition. In particular, under
equilibrium, Pi’s profit from its original service is lower in the presence of coopetition relative to the setting
without coopetition for i= 1,2. Since we have shown that for a sufficiently large a3, the total profit from the
new service is negative, then the total profit of P1 and P2 is lower under coopetition, that is,

π̃∗
1 + π̃∗

2 = (p̃∗1 − w̃∗
1)d̃

∗
1 +(p̃∗2 − w̃∗

2)d̃
∗
2 +(p̃x − w̃∗

1/ñ)d̃x < (p∗1 −w∗
1)d

∗
1 +(p∗2 −w∗

2)d
∗
2 = π∗

1 +π∗
2.

Consequently, at least one of the platforms is worse off for any γ, when a3 is sufficiently large, and this
concludes the proof of Proposition 5. □

Proof of Proposition 6

First, since d∗i = s∗i without coopetition and λ̃∗
i = s̃∗i with coopetition for i= 1,2, ..., n, we have

RS∗ =

m∑
j=1

Λj

κj

log
(
1+

n∑
i=1

exp(qij −κjp
∗
i )
)

and
R̃S

∗
=

m∑
j=1

Λj

κj

log
(
1+ exp(qxj −κj p̃x)+

n∑
i=1

exp(qij −κj p̃
∗
i )
)
.

We observe that if p̃∗i ≤ p∗i for i= 1,2, ..., n, then we have

R̃S
∗
=

m∑
j=1

Λj

κj

log
(
1+ exp(qxj −κj p̃x)+

n∑
i=1

exp(qij −κj p̃
∗
i )
)

>

m∑
j=1

Λj

κj

log
(
1+

n∑
i=1

exp(qij −κj p̃
∗
i )
)

≥
m∑

j=1

Λj

κj

log
(
1+

n∑
i=1

exp(qij −κjp
∗
i )
)
=RS∗.

Consequently, it suffices to show that p̃∗i ≤ p∗i for i= 1,2, ..., n.
We define (p̃∗(k, p̃x), w̃∗(k, p̃x)) := T̃ (k)(p∗,w∗), where T̃ (k)(·, ·) is the k-fold best-response mapping when the

price of the new service is p̃x. Then, the corresponding price and wage for Pi are given by (p̃∗i (k, p̃x), w̃
∗
i (k, p̃x)).

On the other hand, we know that (p∗,w∗) = T (k)(p∗,w∗) for any k ≥ 1, where T (k)(·, ·) is the k-fold best-
response mapping of the model without coopetition, which can also be viewed as a special case of T̃ (k)(·, ·)

with p̃x = +∞. Comparing the best-response formulations of T̃ (1) and T (1) (see the proof of Theorems 1
and 3), one can show that given (p∗−i,w

∗
−i), the best-response price p̃∗i (1, p̃x) is increasing in p̃x. Since the

model without coopetition can be viewed as a special case of the model with coopetition when p̃x =+∞, we



Cohen and Zhang: Competition and Coopetition for Two-Sided Platforms
51

have p̃∗i (1, p̃x)< p̃∗i (1,+∞) = p∗i for all i= 1,2, ..., n. Then, by following the same argument as in the proof of
Theorem 3, we conclude that p̃∗i (k+1, p̃x) is strictly increasing in both p̃x and p̃∗i′(k) for i= 1,2, ..., n, i′ ̸= i,
and for any k. Using a standard induction argument, we obtain p̃∗i (k, p̃x) < p̃∗i (k,+∞) = p∗i for k ≥ 1 and
i= 1,2, ..., n. Thus, p̃∗i = limk↑+∞ p̃∗i (k, p̃x)< p

∗
i for i= 1,2, ..., n, and this concludes the proof of Proposition 6.

□

Proof of Proposition 7

First, we highlight that for the model without coopetition s∗i = d∗i for i= 1,2, ..., n, whereas for the model
with coopetition s̃∗i = λ̃∗

i for i= 1,2, ..., n. We have

DS∗
i =

l∑
k=1

Γk

ηk
log [1+ exp(aik + ηkw

∗
i )] , i= 1,2, ..., n,

and

D̃S
∗
i =

l∑
k=1

Γk

ηk
log [1+ exp(aik + ηkw̃

∗
i )] , i= 1,2, ..., n.

We next show the first part. Specifically, we show the following three claims: (a) if ñ= 1, then w̃∗
1 >w∗

1;
(b) if ñ is sufficiently large, then w̃∗

1 <w
∗
1; and (c) w̃∗

1 is continuously decreasing in ñ. Then, Claims (a), (b),
and (c) would imply the first part of Proposition 7.

Claim (a): If ñ= 1, from the proof of Theorem 3, we have s̃∗1 = λ̃∗
1 = d̃∗1+ d̃

∗
x/ñ= d̃∗1+ d̃

∗
x. As shown in the

proof of Proposition 6, p̃∗1 < p∗1, and hence s̃∗1 = d̃∗1 + d̃∗x > d∗1 = s∗1. This implies that w̃∗
1 >w∗

1 and concludes
the proof of Claim (a).

Claim (b): As ñ ↑+∞, we have s̃∗1 = λ̃∗
1 = d̃∗1 + d̃∗x/ñ= d̃∗1. We next show that d̃∗1 < d∗1. As in the proof

of Proposition 6, for any (p̃x, γ), we define (p̃∗(k, p̃x), w̃
∗(k, p̃x)) := T̃ (k)(p∗,w∗), where T̃ (k)(·, ·) is the k-fold

best-response mapping when the price of the new service is p̃x. Then, the corresponding price and wage
for Pi are given by (p̃∗i (k, p̃x), w̃

∗
i (k, p̃x)). On the other hand, we know that (p∗,w∗) = T (k)(p∗,w∗) for any

k≥ 1, where T (k)(·, ·) is the k-fold best-response mapping of the model without coopetition, which can also
be viewed as a special case of T̃ (k)(·, ·) with p̃x =+∞. By comparing the best-response formulations of T̃ (1)

and T (1) (see the proof of Theorems 1 and 3), one can show that given (p∗−1,w
∗
−1), the best-response demand

d̃∗1(1, p̃x) is increasing in p̃x. Since the model without coopetition can be viewed as a special case of the model
with coopetition with p̃x =+∞, we have d̃∗1(1, p̃x)< d̃∗1(1,+∞) = d∗1. Then, by following the same argument
as in the proof of Theorem 3, we conclude that d̃∗1(k + 1, p̃x) is strictly increasing in p̃x for k ≥ 1. Using
an induction argument, we obtain d̃∗1 = limk↑+∞ d̃∗1(k, p̃x) < d∗1. Thus, s̃∗1 = d̃∗1 < d∗1 = s∗1. This implies that
w̃∗

1 <w
∗
1 and concludes the proof of Claim (b).

Claim (c): We show that w̃∗
i is decreasing in ñ for any i = 1,2, ..., n. We define (p̃∗(k, ñ), w̃∗(k, ñ)) :=

T̃ (k)(p∗,w∗), where T̃ (k)(·, ·) is the k-fold best-response mapping when the price of the new service is p̃x and
the pooling parameter is ñ. By examining the best-response mapping T̃ (1) (see the proof of Theorem 4),
we obtain that given (p∗−i,w

∗
−i), w̃∗

i (1, ñ) is decreasing in ñ for i= 1,2, ..., n. Furthermore, the best-response
mapping is increasing in w̃∗

−i (see the proof of Theorem 1). Using an induction argument, we obtain that
w̃∗

i (k, ñ) is increasing in w̃∗
−i(k− 1, ñ), which is decreasing in ñ. Thus, w̃∗

i (k, ñ) is decreasing in ñ for k ≥ 1

and for i= 1,2, ..., n. As a result, the equilibrium wage under coopetition w̃∗
i = limk↑+∞ w̃∗

i (k, ñ) is decreasing
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in ñ for i = 1,2, ..., n. This concludes the proof of Claim (c). Claims (a), (b), and (c) together imply that

Proposition 7(a) holds.

We next show the second part of the proposition. The same argument as the proof of Claim (b) above

implies that w̃∗
i <w

∗
i for i= 2,3, ..., n, so we must have

D̃S
∗
i =

l∑
k=1

Γk

ηk
log [1+ exp(aik + ηkw̃

∗
i )]<

l∑
k=1

Γk

ηk
log [1+ exp(aik + ηkw

∗
i )] =DS∗

i for all i= 2,3, ..., n.

This concludes the proof of part (b). □

Proof of Proposition 8

Following the same argument as in the proof of Theorem 4, we know that if p̃x → +∞, then

limp̃x↑+∞(p̃∗1, w̃
∗
1, p̃

∗
2, w̃

∗
2) = (p∗1,w

∗
1, p

∗
2,w

∗
2), limp̃x↑+∞(d̃∗1, d̃

∗
2) = (d∗1, d

∗
2), and limp̃x↑+∞(s̃∗1, s̃

∗
2) = (s∗1, s

∗
2). There-

fore, we have limp̃n↑+∞ π̃∗
i + D̃S

∗
i = π∗

i +DS∗
i for i= 1,2.

We next show that R̃i(p̃x) := π̃∗
i + D̃S

∗
i (i = 1,2) is decreasing in p̃x for a sufficiently large p̃n, where

(p̃∗1, w̃
∗
1, p̃

∗
2,w

∗
2) is the equilibrium under coopetition with p̃x. Given the equilibrium price and wage vector

(p̃∗1, w̃
∗
1, p̃

∗
2, w̃

∗
2), we define the total platform and driver surplus of both platforms as follows:

R̃(p̃x|p̃∗1, w̃∗
1, p̃

∗
2, w̃

∗
2) =R̃1(p̃x)+ R̃2(p̃x)

=(p̃∗1 − w̃∗
1)d̃

∗
1 +(p̃∗2 − w̃∗

2)d̃
∗
2 +(p̃x − w̃∗

1/ñ)d̃x

+

l∑
k=1

Γk

ηk
log [1+ exp(a1k + ηkw̃

∗
1)]+

l∑
k=1

Γk

ηk
log [1+ exp(a2k + ηkw̃

∗
2)] ,

where s̃∗1 = d̃∗1 + d̃x/ñ and s̃∗2 = d̃∗2. Following the same argument as in the proof of Theorem 4, we

have ∂p̃xR(p̃x|p̃∗1, w̃∗
1, p̃

∗
2, w̃

∗
2) < 0 for a sufficiently large p̃x. This also shows that R(p̃x|p̃∗1, w̃∗

1, p̃
∗
2, w̃

∗
2) is

strictly decreasing in p̃x for a sufficiently large p̃x. We have also shown that limp̃x↑+∞ R̃(p̃x|p̃∗1, w̃∗
1, p̃

∗
2, w̃

∗
2) =

limp̃x↑+∞(π̃∗
1 + D̃S

∗
1+ π̃

∗
2 + D̃S

∗
2) = π∗

1 +DS
∗
1 +π

∗
2 +DS

∗
2 . Since R̃(·|p̃∗1, w̃∗

1, p̃
∗
2, w̃

∗
2) is strictly decreasing in p̃x

for a sufficiently large p̃x, one can find a value of p̃x such that R̃(p̃x|p̃∗1, w̃∗
1, p̃

∗
2, w̃

∗
2)> π∗

1 +DS∗
1 + π∗

2 +DS∗
2 .

Since R̃(p̃x|p̃∗1, w̃∗
1, p̃

∗
2, w̃

∗
2) = π̃∗

1 + D̃S
∗
1 + π̃∗

2 + D̃S
∗
2, one can find a value of γ such that, under the price of

the new service p̃x, π̃∗
i + D̃S

∗
i > π∗

i +DS∗
i for i = 1,2. By Theorem 4 and Proposition 7, for any (p̃x, γ),

π̃i(p̃
∗, w̃∗)<πi(p

∗,w∗) and D̃S∗
i <DS

∗
i for all i= 3,4, ..., n. Hence, π̃∗

i + D̃S
∗
i <π

∗
i +DS

∗
i for all i= 3,4, ..., n.

This concludes the proof of Proposition 8. □
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Proof of Theorem 5

Since κ(0+) =+∞, we must have se∗i >de∗i for i= 1,2 under equilibrium. Hence, Pi’s profit under equilibrium
can be written as [fi −κ(si − di)−wi]di. Given (p−i,w−i), we rewrite Pi’s profit as a function of di and si:

max
(fi,wi,di,si)

πe
i (fi,wi, si, di|f−i,w−i)

where πe
i (fi,wi, si, di|f−i,w−i) = (fi −κ(si − di)−wi)di
m∑

j=1

dij = di

pi =
qij
κj

− 1

κj

log
( dij/Λj

1− dij/Λj

)
− 1

κj

log
(
1+

∑
i′ ̸=i

exp(qi′j −κjpi′)
)
∀j

l∑
k=1

sik = si

wi =−aik
ηk

+
1

ηik
log

( sik/Γk

1− sik/Γk

)
+

1

ηk
log

(
1+

∑
i′ ̸=i

exp[ωk +
di′

si′
(ai′k + ηkwi′ −ωk)]

)
∀k.

(13)

Hence, given di, there exists a unique price fi such that all the constraints in (13) hold, which we denote as
fi(di). Analogously, given si, there exists a unique wage wi such that all the constraints in (13) hold, which
we denote as wi(si). Thus, given (f−i,w−i), Pi’s best response can be characterized as follows:

max
(di,si)

πe
i (fi(di),wi(si), di, si|f−i,w−i)

s.t. di < si.

Given Pi’s demand, di, the best-response supply of Pi should be argmaxs>di
[−wi(s) + κ(s − di)]. As a

result, we can reduce πe
i (fi(di),wi(si), di, si|f−i,w−i) to the single-variable function πe

i (di|f−i,w−i) = (fi(di)−

hi(di))di, where h(di) :=maxs>di [−wi(s)+κ(s− di)].
We denote by (f e

i (f−i,w−i),w
e
i (f−i,w−i)) Pi’s best-response price and wage functions given (f−i,w−i).

Following the same argument as in Step II of the proof of Theorem 1, we can show that
(f e

i (f−i,w−i),w
e
i (f−i,w−i)) is continuously increasing in f−i and w−i. Thus, an equilibrium (f e∗,we∗) exists.

To show that the equilibrium is unique, we denote by Te(·, ·) the best-response mapping of the model
with endogenous waiting times, that is, Te(f,w) =

(
f e
i (f−i,w−i),w

e
i (f−i,w−i) : 1 ≤ i ≤ n

)
. Using the same

argument as in the proof of Lemma 5, we obtain that there exists a constant C =max
{

exp(qi)

1+exp(qi)
, exp(ai)

1+exp(ai)
:

i= 1,2, ..., n
}
∈ (0,1), such that

||T (k)
e (f,w)−T (k)

e (f ′,w′)||1 ≤ 2C(k)||(f,w)− (f ′,w′)||1,

and hence the k∗-fold best-response mapping, T (k∗)
e (·, ·), is a contraction mapping, where k∗ >

− log(2)/ log(C). Consequently, using the same argument as in the proof of Lemma 5, the equilibrium is
unique and can be computed using a tatônnement scheme. This concludes the proof of Theorem 5. □


