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Abstract

Health-care systems are now facing a great many of challenges in most countries. Some suffer

from drastically high health-care expenditures while others are facing the challenges of inefficiency

and inequity. Under such circumstances, operations research/operations management (OR/OM)

scientists contribute significantly in developing analytical models that highlight trade-offs and

help government, health-care institution managers, physicians and patients identify optimal so-

lutions and inform decision making when resources are limited. This paper surveys the papers

in the frontiers of health-care operations which mainly reflect the issues of, say, health-care pol-

icy, health-care OM and treatment optimization. We review the papers from the perspective

of presenting problems, drawing a complete picture of the relevant problems that are accessible

with OR/OM methods and discussing how OR/OM methods should be applied to analyze these

health-care issues. The health-care problems are categorized into three groups: policy, institu-

tion, and individual, according to their scales. In each category, we present problem settings

and review how analytical models and methods lead us to a comprehensive understanding of and

easy-to-implement solution to these problems. Papers addressing issues in the policy category

are devoted to analyze the efficiency, social influence, and overall costs of governmental, such as

epidemics control and vaccine distribution, health-care policies. Institution papers mainly discuss

issues faced by health-care institutions, say, hospitals and clinics. They make attempt improve

their efficiency, with limited resources, in medical device management, appointment response and

operating room scheduling. In the individual section, we discuss papers that address treatment

optimization from individual patient’s perspective. Both treatment and diagnosis are discussed

in this section, with particular focus on radiation therapy and chemotherapy, as well as screening

policy. We conclude our paper with some thoughts on future research directions.
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1 Introduction

As is widely recognized, health-care systems in most countries are facing great challenges of, to name

a few, astronomical costs, low quality, inconsistency and inefficiency. An increasing proportion of

research in the area of OR/OM is devoted to developing models capable of analyzing heal-care issues

quantitatively so as to improve heal-care system performance. It is the purpose of this paper to review

this literature. Inspired by Romeijn et al. (2008) that divided issues in health-care operations into

three categories: health-care policy, treatment optimization and health-care operations management,

we review the literature in accordance with the scale of the issue it addresses.

The first part of the paper focuses on the papers that have contributed to our understanding

of optimizing governmental and public medical policies. They mainly aim to to solve macroscopic

problems that involve the action of a national organization or government. We first consider the

dynamics of epidemics and government’s optimal response to it. The next is vaccination problems,

which deals with the selection, production and composition of vaccines applied to pediatric immuniza-

tion and epidemic prevention. We then proceeds to discuss papers that study the optimal allocation

of donated organs, which requires careful analysis of patient’s choice. The final part of this section is

contributed to a few other papers not included in the groups listed above.

The paper then makes some effort to discuss the literature that addresses the issues faced by

health-care institutions. The majority of the health-care operations papers try to handle problems of

this kind. Lying in the middle of the health-care system, health-care institutions, e.g. hospitals and

clinics, must take into considerations the perspectives of both policy makers and patients. This is the

reason there is ample literature in this area. Here we try to discuss the capacity management first.

The goal is to understand how to allocate limited resources, like operating rooms and diagnostic

devices, in a hospital or clinic, efficiently. We particularly emphasize the allocation of operating

rooms. We then review papers conducting optimal appointment scheduling, which mainly deals with

no-show and last-minute cancellations. The third part of this section contributes to a brief review of

papers that embed supply chain management into health-care operations issues. Both reimbursement

policy and models with vaccine yield uncertainty are emphasized here. We conclude this section with

a few other topics at institution level, like, to name one, the revenue management for non-profit

operations.

The third part of this paper then showcases papers that analyze treatment optimization problem

from the patient’s perspective. We review papers that inform patients or physicians the optimal

treatment and diagnosis method for a disease, e.g. HIV or breast cancer, or a certain kind of therapy,

radiation therapy or chemotherapy. This section is divided into two parts: diagnosis and treatment.

For diagnosis, part of the literature contributes to our knowledge of applying statistical methods to

connect symptoms with disease and computing methods to simulate the homeostasis of body water

regulation to track disease. We also discuss the optimal screening policy of breast cancer so that to

detect the disease before it is outwardly observable. For treatment, we present papers that analyze the

optimal treatment initiation policy against some chronic disease like HIV and end-stage renal failure.

The timing policy of this kind usually face the trade-off between the side-effects of the treatment and

the risk of the possibility of irreversible damage. The end part of this section concentrates on radiation

therapy and chemotherapy which are 2 most common approaches against cancers. To optimize these

therapies, we need to both improve their efficacy of killing cancer cells and control their side effects

of overdosing on nearby healthy tissues. A new method in radiation, intensity modulated radiation

therapy (IMRT) that decomposes the beam into several beam-lets whose direction and intensity can
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be controlled individually, is extensively reviewed.

The paper ends with a few thoughts on future research directions.

We put a few words on how we choose the papers and what we are going to do with them. The

emphasis is modeling, not analysis so we present papers with modeling novelties. Within a collection

of papers, if there is no clear logical progression, we will simply review them in chronological sequence.

The mentioning of results is often brief and is meant to arouse your curiosity. We sometimes purposely

specialize a model for ease of presentation and for crystallizing the main ideas without getting trapped

in details.

2 Health-Care Policy

The perspective taken by this part of the literature is often that of a policy maker, who determines

decision rules to optimize the performance of a health-care policy at the entire society level. The

decision rules reflect the interest of the whole society who follows the rules. For example, it is the

government’s responsibility to respond to an influenza pandemic by optimizing the trade off between

the vaccination cost and the cost due to the infected population. This section reviews papers that

try to quantify the health-care policy issues at government level.

2.1 Response to Epidemics

A significant part of the literature is interested in understanding epidemic dynamics and the opti-

mized governmental policy to dampen the explosion of an epidemic disease. We first consider papers

that models different types of epidemics transmitted through contact. We then review atmospheric

release models where the disease is transmitted through air with wind. This type of model is usually

applied to the bio-terrorism case where the government needs to respond to anthrax or smallpox

attack. Coordination and competition are widely considered in almost all subareas of OR/OM, so

are they in the response to epidemics. Papers focusing on the coordination and competition are

considered at the end of this subsection.

We present the papers addressing problems involved with modeling epidemic dynamics so as to

project the number of patients at a given time. This is the most common and most widely studied

topic in epidemiology. A great many mathematical models are developed to understand the dynamics

of such diseases and the efficient methods control them. You may refer to Anderson et al. (1991) for

a complete picture of this issue. We mainly review a few recent papers that reveals modeling novelty.

Contact-transmitted epidemics

Zaric et al. (2000) studies HIV prevention by considering its connection with the methadone

maintenance treatment to heroin addiction. The analysis is based on a dynamic compartmental model

of the HIV epidemic among a population of adults, ages 18 to 44. The population is divided into nine

compartments according to infection status and risk group. Each compartment is characterized by

whether the population is not-infected, infected with HIV or infected with AIDS and by whether it

is injection drug user (IDU) with methadone maintenance treatment (MMT), IDU without MMT or

non-IDU. The model takes into account disease transmission from drug injection and sexual contacts.

The health benefits of methadone maintenance and the resulting HIV infections averted are measured

in terms of life years gained and quality-adjusted life years gained. Costs considered include health-

care costs and the cost of methadone maintenance. The dynamics of HIV epidemic is represented by a

4



Bachelor’s Degree Thesis
B.S. in Mathematics Renyu Zhang

The School of Mathematical Sciences
00701154

Figure 1: Schematic of Compartmental Model of HIV Epidemic and MMT

system of 9 non-linear differential equations that project the number of individuals in compartment i

at time t. Figure 1 illustrates the dynamics with a single scheme. The population in each compartment

is transfered to each other through getting into and out of treatment and addiction, maturation, non-

AIDS and AIDS death, as well as HIV infection caused by sexual and injection-needle contact.

The paper investigates the cost-effectiveness of expanding MMT by 10% and shows, by numerical

experiment, that the expansion is cost-effective. Consideration of quality of life makes expansion of

current MMT programs appear to be more cost-effective than when only life years are considered.

This occurs because the increase in treatment capacity not only increases the number of life years to

live, but also increases their quality. The majority of the cost savings generated by the additional

treatment slots are savings in HIV-care costs. Methadone maintenance reduces risky needle-sharing

and sexual behavior among treated IDUs, and this reduces the risk of HIV infection for IDUs and for

sex partners of IDUs.

HIV prevention and treatment is always a hot spot of health-care research. Long et al. (2008)

makes some effort to understand the co-epidemics of HIV and tuberculosis(TB) and shows that

exclusively treating HIV or TB reduces the targeted epidemic but exacerbates the other epidemic

subsequently. We now consider a model in which one disease has three states (susceptible, infected

with no symptoms, and infected with symptoms), and the second disease has three different states

(susceptible, exposed, and infected) (Figure 2). We refer to this structure as an SII × SEI model.

These particular disease states are selected to reflect the HIV-TB co-epidemics, and we label the

disease states accordingly. The first disease characterizes HIV, where the states are susceptible (S),

infected with HIV but asymptomatic (I), and AIDS (A). We assume that the disease stage AIDS
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Figure 2: Schematic Diagram of the SII SEI Model

occurs at the onset of symptoms. The second disease represents TB, where the states are susceptible

(S), latent tuberculosis (L), and active tuberculosis (T). In this model, β· indicates the HIV sufficient

contact rate, ν· is the HIV progression rate (varying according to TB status) and δ· is the TB

progression rate (varying according to HIV status). Long et al. computes the basic reproduction

ratio R0 (the average number of secondary infection caused by a newly infected individual) and

determine the conditions under which the disease free equilibrium (DFE) is locally and globally

stable. The paper determines the quasi-disease-free equilibrium (QDFE), where infected individuals

all have either HIV or TB, and illustrates, by numerical experiments, the conditions under which the

co-infection equilibrium (CIE) exists. All of these results can be found in Long et al. (2008). The

model can also be extended to co-epidemics with treatment where the treatment is identified by a

reduction in AIDS-related death rate µA, transmission probability θA, consequently sufficient contact

βA, and disease progression rates (δSL, δIL, δAL) and νIL.

Due to non-linear complexity, it is impossible to identify the population in each compartment at

a given time analytically. Therefore, the paper presents an illustrative numerical analysis of HIV-

TB co-epidemics in India by calculating the population in each compartment after 20 years. The

analyses suggest that exclusive treatment of only one disease may substantially reduce that epidemic

by decreasing disease prevalence and preventing new infections or deaths, but may exacerbate the

other epidemic. This paradoxical result occurs because people co-infected with the second disease

may live longer due to treatment, and subsequently may infect more people with the second disease.

Homogeneity in population and its behavior are naturally considered as the prerequisite assump-

tion of an epidemic model of contact-transmission disease. However, Larson (2007) models influenza

progression and its control within a heterogeneous population by difference equations. It shows that
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population heterogeneity, mainly in the frequency and intensity of daily human-to-human contacts,

and social distancing (people’s intention to reduce the frequency and intensity of mutual contacts

when influenza pandemic occurs) may affect disease progression significantly.

To discover the contributions made by a populations heterogeneity and social behavior in the

evolution of the disease, Larson utilizes difference equations to model the day-to-day progression

of the pandemic through the population. We assume that social contacts occur as a homogeneous

Poisson process, with rate parameters dependent on the level of social activity (high and low). In

particular, we define λH (λL) as contact rate of highly socially active (lowly socially active) people,

nH(0) (nL(0)) as the initial population of high-activity (low-activity) people (so nH(0)+nL(0) is the

total population which remains constant), nI
H(t) (nI

L(t)) as population of high-activity (low-activity)

infectious people at day t and nS
H(t) (nS

L(t)) as population of high-activity (low-activity) susceptible

people at day t. So we have that

nS
j (t) = nS

j (t− 1)− nI
j (t).

Define β(t) as the probability that on day t a random interaction is with an infectious person, and

we have

β(t) =
λHnI

H(t− 1) + λLn
I
L(t− 1)

λHnS
H(t− 1) + λLnS

L(t− 1)
.

Let p be the probability that a susceptible person become infected, given contact with an infectious

individual. It is derived in Lang’s paper that the probability that a susceptible person in activity

level j becomes infected on day t pSj (t) has

pSj (t) = 1− eλjβ(t)p

and pSj (t) ∼ λjβ(t)p if λjβ(t)p << 1. This indicates that social activity frequency (λj) is just as

important as a vaccine (p) in spreading or reducing the spread of the infection.

Larson also gets the basic reproductive ratio R0(t) at day t and verifies that the contribution of

high-activity and low-activity groups to R0(t) are proportional to their contact rate. Larson (2007)

also demonstrates, by numerical examples, that R0(t) is highly sensitive to t, which peaked at some-

time and plummeted down to a level below 1 afterwards due to the high-activity susceptible population

members becoming infected the being infectious and then leaving the circulating population.

To understand the role of reducing daily contacts, social distancing and hygienic factors in con-

trolling influenza pandemic, the paper varies the model by letting λi(t) dependent of the people in

the circulation and adding 0 ≤ dj(t) ≤ 1 as the social distancing and hygienic factor which is ap-

plied to multiply λj(t)pj , the primary determining factor associated with disease spread. Numerical

experiments have also shown the importance of implementing social distancing and related hygienic

controls early during the outbreak and keeping those measures in force for an extended period of

time. Early implementation can reduce the eventual proportion of the infected population in each

social-activity group significantly.

Bio-terror

Here we briefly deviate to describe a paper analyzing atmospheric release disease: anthrax. The

paper also investigated a less stepped field: the emergency response of a government to bio-terror

attack. In, Craft et al. (2005), the authors aimed to aid in understanding how best respond to a

bio-terror anthrax attack by analyzing a system of differential equations of atmospheric release model,

a spacial array of bio-sensors a dose response model, a disease progression model and a set of spatially

distributed tandem queues for distributing antibiotics and providing hospital care. The paper is the
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first to derive mathematical expressions for number of deaths resulting from an aerosol bio-terror

attack with a noncontagious agent. Interestingly, the paper derives the fraction of death to infection

analytically and illustrates that the fraction of infected people in the service zone who die is constant

and is linear in the length of antibiotics distribution time and the efficacy of the antibiotics. The

authors have also verified that the prophetic efficacy, of bio-sensors and and early symptomatics, is

three times more effective than that of treatment.

Post-traumatic stress disorder

Post-traumatic stress disorder (PTSD) is a common disease among U.S. troops in Operation Iraqi

Freedom (OIF) during each month of deployment. Atkinson et al. (2009) develops a dynamic model

for this disease. Let j = 1, 2, 3 denotes active Army, reserve Army and Marines, respectively. The

kth service member of type j has an indicator process Ckj(t), t = 1, 2, . . . that characterizes his

deployment history: Ckj(t) = 1 if service member k was deployed in month t and 0 otherwise. We

will then show how service member k of type j develops PTSD as a function of {Ckj(t)}t≥1.

Let Dkj(t) be the random cumulative stress of member k of type j at the end of month t. The

initial stress before the first month of deployment is an independent and identically distributed (i.i.d)

exponential random variable with mean α−1. Let {Ekj(t)}t≥1 be independent random variables that

represent the random stress that service member k of type j incurs during month t, if deployed that

month. Ekj(t) is assumed to be a compound Poisson variable with mean λj(t) and batch size b.

We assume there is a geometric decay at monthly rate θ ∈ [0, 1] during the months when Ckj(t) =

0. τkj(t) is the month during which the deployment started if Ckj(t) = 1, and is the month during

which the current break started if Ckj(t) = 0. Therefore, the stress dynamics are given as follows:

Dkj(t) = Dkj(τkj(t)− 1) +

t∑
s=τkj(t)

Ekj(s), if Ckj(t) = 1,

Dkj(t) = Dkj(τkj(t)− 1)θt−τkj(t)−1, if Ckj(t) = 0.

(2.1)

Denote D̄kj as the threshold of service member k of type j, i.e. he gets PTSD if maxt Dkj(t) ≥ D̄kj .

We assume that the distribution of D̄kj is exponential with mean γ−1. So, the probability that a

service member gets PTSD with cumulative stress D is:

1− e−γD.

Let m be the number of months deployed and tm be the final month that the service member deploys.

So the probability of developing PTST is:

P (max
t

Dkj(t) > D̄kj)

= P (Dkj(tm) > D̄kj)

= E[P (Dkj(tm) > D̄kj |Dkj(tm))]

= E[1− e−γDkj(tm)]

= 1− exp(−
∑

Ckj(t)=1

λj(t)

b
(1− e−γb)).

A service member with PTSD experiences a log-normal time lag to first develop symptoms after

his cumulative stress level exceeds D̄. This time highly depends on whether he is physically in the
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military or has returned to civilian life. The random variables T1 and T2 represent a military and

a civilian time lag, respectively. For i = 1, 2, Ti has pdf fi(t) and cdf Fi(t), with mean eµi and

dispersion factor esi . Let Sj(t) denote the cumulative number of service members of type j who have

developed PTSD symptoms by t and Xkj be the amount of time service member k of type j develops

PTSD and the onset of symptoms. Hence, we have:

Sj(t) =
∑
k

1{t̄kj+Xkj≤t},

where t̄kj = min{t|Dkj(t) ≥ D̄kj}. The paper simulates the PTSD process with initial state and

parameters obtained from real available data. It calculates the number of PTSD service members

with and without symptoms as well as their proportions in each of the three types. For details, please

refer to the original paper.

Coordination and competition

Coordination and competition in response to epidemics usually takes place in the distribution of

vaccines in order to control epidemics. Like coordination issues in other cases, problems related to

epidemics are also involved with the gap between local and global optimization. In other words, how

should the participants in a game cooperate efficiently so as to align their individual interest with that

of the entire system. We review 2 papers here one of which discusses supply chain coordination in

influenza vaccination and the other deals with selfish drug allocation of countries in an international

influenza pandemic.

Chick et al.(2008) makes a first attempt to relate a supply chain management model to an epidemic

dynamics. It tries to present a model of a governments decision of purchase quantities of vaccines,

which balances the public health benefits of vaccination and the cost of procuring and administering

those vaccines, and a manufacturers choice of production volume. The optimal decisions of each can

be characterized in both selfish and system-oriented play, and, thus, help us assess whether several

contracts can align their incentives. Unlike usual supply chain models, this paper considers a supply

chain where the uncertainty occurs at the production level, thus, converting the usual buy-back

contracts into pay-back ones and revenue-sharing contracts into cost-sharing ones. You may refer to

Yano et al. (1995) for a review of papers investigating yield uncertainty.

The government needs to decide the proportion of the population f to be vaccinated before the

influenza occurs in autumn, and this decision will result in T (f), determined by influenza dynamics,

infected individuals by the end of the influenza season. Knowing the number of doses of vaccine

Nfd, where N is the entire population and d is the number of doses a vaccinated person needs, the

government orders, the vaccine manufacturer, in the face of a newsvendor problem, needs to decide

the number of eggs nE , each costing c, to produce. Each egg may produce U doses of vaccine, which

is a random variable of mean µ and variance σ2. The manufacturer’s problem is characterized as

follows:

min
nE≥0

MF = E[cnE − prZ],

where Z = min{nEU, fNd}, pr is the price per dose of vaccine. And the government’s problem can

be identified as follows:

min
0≤f≤1

GF = E[bT (
W

Nd
) + paW + prZ],

where W = min{Z, f̄Nd} such that ∫ fNd/nE

0

ugU (u)du =
c

pr
.
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Here pa is the administering cost per dose and f̄ = sup{f : bT ′(f) + paNd < 0}, indicating the

maximum fraction that the administering more vaccine is profitable and the integration condition is

solution to the newsvendor problem faced by the manufacturer. The system-wide problem can be

formulated as following:

min
0≤f≤1,nE≥0

SF = E[bT (
W

Nd
) + paW + cnE ].

The uncertainty in U results in vaccine manufacturer’s risk to produce sufficient eggs and, thus, this

Stackelberg game pushes the manufacturer to produce less than the systematic-optimized quantity.

The paper discusses different coordinating contracts, like wholesale price and payback contracts, and

verifies that only the whole-unit discount/cost-sharing contract, which keeps the relationship between

the optimal production level and order quantity level linear, so as to encourage the government to

vaccinate a higher fraction of population and the manufacturer to produce enough.

Most countries now store antiviral drugs in order to slow down the spread of influenza epidemic.

Therefore, Sun et al. (2009) tries to study how each country make decisions to allocate its own

stockpile in order to protect its population. It develops a two-period multivariate Reed-Frost model

to represent the spread of the epidemic within and across countries at its onset. The model captures

three critical sources of uncertainty: the number of initial infections, the spread of the disease, and

drug efficacy. The paper analyzes the epidemic control issue where antiviral drugs or vaccines are

distributed by strategic agents who seek to protect different parts of the population.

Consider m + 1 countries 0, 1, 2, · · · ,m where country i’s population size is Ni and the trans-

mission probability from a non-treated infective in country i to a non-treated susceptible in country

j is denoted by aij ≥ 0. Access to drugs is assumed to decrease susceptibility by a factor δ, and

infectiousness if infected by a factor ξ. Let us now consider a multi-dimensional Reed-Frost epidemic

model of two periods. Let Xt
i represent the number of susceptibles in location i at time t who have

not been treated, whereas X̄t
i represents the number of susceptibles at time t who have taken the drug

previously. Similarly, Y t
i and Ȳ t

i represent the number of infectives in location i at time t who have

(Y t
i ) and have not (Ȳ t

i ) used the drug, respectively. So, we have Xt
i = Xt−1

i −Y t
i and X̄t

i = X̄t−1
i −Ȳ t

i .

Let Ki be the drug stock-pile of country i which satisfies Ki ≤ Ni and K =
∑m

j=0 Kj ≤ N0. Denote

ni
j as the number of country j’s susceptibles treated by drugs from country i and n is the decision ma-

trix {ni
j}(m+1)×(m+1) such that row vector ni represents country i’s decisions. Then country i seeks

to maximize the average number of susceptibles, thus to minimize the average number of infectives,

in its population corresponds to the following optimization problem:

max
ni

f(n) = EY 0
0
[E[X2

i + X̄2
i |{X0

j , X̄
0
j }j ≥ 0, Y 0

0 ]],

where
∑

j n
i
j = Ki and 0 ≤ ni

j ≤ Nj −
∑

k ̸=i n
k
j . We can show that for small-enough akl k ̸= l,

country i never gives drugs to country j ̸= 0, i.e. country i only contributes drugs to country 0 only

when between country transmission rates are sufficiently small. Additionally, when akl (k ̸= l) are

sufficiently small, the optimal decision for country i is either to give up everything to country 0 or

give nothing, depending on whether aii reaches a common threshold or not. In this case, the game is

super-modular and a unique Nash equilibrium exists that is Pareto optimal. In the central planner

case, the central planner allocates the world-wide drug inventory K to different countries. Suppose ni

is the amount of drugs allocated to country i and define n = (n0, n1, · · · , nm). The central planner’s

optimization problem is, thus,

max
K=

∑
j nj

f(n) = E[
m∑
i

(X2
i + X̄2

i )|{Nj − nj , nj}j≥0].
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Sun et al. (2009) have showed that when between-country transmission rates are low, the central

planner always supply country 0 as much as possible. They have also verified that when Ni are big

enough small, all countries would benefit from letting the central planner decide. We may alternatively

considers the probability of no infection and is still able to reach similar results with the condition

akl small enough replaced by a0k(k > 0) small enough.

To conclude, the papers that aim to understand the dynamics of epidemics usually utilize differen-

tial or difference equation systems and made some effort to capture the population of patient/healthy

people at a given time. Due to non-linear complexity, it is generally impossible to expect an an-

alytical expression. So, the researchers usually get the result through numerical experiment. The

treatment or policy is usually realized by changing certain transmission or infection rate parameters.

For the coordination problem in epidemics, papers usually combine an epidemic dynamics model with

a game theory model. They use the epidemic model to capture the population of patients and the

game theory model to quantify the participants’ decisions and, eventually, to provide some insights

on the connection between local and global optimization.

2.2 Vaccination Optimization

Vaccination against infectious disease is hailed as one of the greatest achievements in public health.

Proper vaccination is a powerful weapon against a huge proportion of diseases. However, there

are a few problems caused by the uncertainty in vaccine yield and the increasing complexity and

intractability due to the expansion of diseases covered. The purpose of this subsection is to take a

close look at the papers dealing with these 2 problems.

Vaccine yield uncertainty

Vaccine yield uncertainty usually arises from the 2 facts. First, the vaccine production process

usually takes place in embryonated eggs, and the number of eggs needed must be anticipated well in

advance. The actual yield nEU suffers from an inherent uncertainty regarding the quantity of vaccine

obtained per chicken egg (U) since the uncertain growth of viral strains. Second, the antigenic drift

of some viruses, such as influenza, requires the vaccines be reformulated every year. Wu el al. (2005)

analyzed this phenomena and proposed that vaccine efficacy can be enhanced by taking into account

the antigenic histories of vaccines. The annual vaccine-strains selection problem can be formulated as

a stochastic dynamic program using the theory of shape space, which maps each vaccine and epidemic

strain into a point in multidimensional space. Computational results show that a near-optimal policy

can be derived by approximating the entire antigenic history by a single reduced historical strain,

and then solving the multi-period problem myopically, as a series of single-period problems.

As as been discussed above, Chick et al. (2008) considers the supply chain coordination problem in

the face of influenza vaccine yield uncertainty and shows that a wholesale-unit discount/cost-sharing

contract can successfully align the incentives from the government and the vaccine manufacturer, thus

coordinating the supply chain. The key idea underlying this optimal contract is that it successfully

balances the manufacturer’s risk of both excessive and insufficient yield. That is to say, the side effect

of uncertainty in vaccine yield can be neutralized to the largest extent by this contract.

Deo et al. (2009) and Cho (2010) thoroughly investigates the impact of vaccine yield uncertainty

to the influenza vaccine market and government’s optimal choice of vaccine composition and defer-

ence. In Deo et al. (2009), the mismatch between demand and supply in the US influenza vaccine

market is carefully investigated with the tool in economics: a two-stage game in oligopolistic competi-

tion. The paper particularly aims to understand the interaction between yield uncertainty and firms’
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strategic behavior in production. A variation of Counot competition model enables us to see that

yield uncertainty contributes to a high degree of concentration in vaccine industry and a reduction

in vaccine output as well as the expected consumer surplus in equilibrium.

Suppose the vaccine industry consists of n firms, {1, 2, · · · , n}. q̄i is the quantity of eggs, with cost

c1 per each, produced by firm i, while its vaccine yield qi equals αiq̄i, with cost c2 per each, where

{αi} are i.i.d. random variables with expectation µ and variance σ2. During the analysis, we keep µ

constant. Therefore, we have the total production Q =
∑

i αiq̄i and price p = a− bQ. The problem

can be interpreted as a two-stage game, the first stage of which deals with the equilibrium number of

firms in the market where there occurs a fixed cost of entry, while the second stage is to pursue the

equilibrium target production quantities and profits given the number of firms. The solution of this

game relies on backward induction.

From the notation and explanation above, we obtain the expected profit of the i’th firm is:

Πi(q̄i) = E[(a− b(
∑
j

αj q̄j))αiq̄i − (c1 + αic2)q̄i].

To get the equilibrium condition q̄∗i , we simply need to take derivative with respect to q̄i and equate

it with 0. We can prove, for fixed n, that (1) both the target quantity q̄∗i and the expected production

quantity q∗i are decreasing in δ = σ/µ, and (2) each firm’s expected profit is first increasing and then

decreasing in δ if n > 3, and monotone decreasing in δ if n ≤ 3. In short, the yield uncertainty

reduces the target egg quantity and total expected vaccine quantity brought to the market, while its

impact on expected profit is a result of the trade off between this reduction and the resulted market

price increase.

On the first stage of the game, we assume there exists an f as the entry cost for a firm. Suppose

n∗ is the equilibrium number of firms in the industry, we must have Π∗
i (n

∗) ≥ f and Π∗
i (n

∗ +1) ≤ f ,

since otherwise entering firms are losing money or earning sufficient profits to attract additional

entrants. Solving this 2 equations and we get that there exists an attractiveness factor (a− c)/
√
bf

where c = c1/µ+ c2, indicating the attractiveness of the market. When the market is not attractive

enough ((a − c)/
√
bf is not big enough), uncertainty decreases the number of firms at equilibrium.

However, if the market is attractive enough, the small amount of uncertainty can result in entry

of more firms. Based on the calculation of n∗, together with that of Π∗
i , we are enabled to show

E[Q∗
u] ≤ Q∗

d; i.e. the expected quantity produced by the market under yield uncertainty is no more

than that in the deterministic case. We may also consider the decision problem of central planer who

wants to maximize the total social welfare:

max
q̄,n

E[W (Q,n)] = max
q̄,n

E[

∫ Q

0

(a− bq)dq − cQ− nf ], (2.2)

where Q, and f are defined previously. For a complete analysis of this optimization and its comparison

with the Cournot game case, please refer to the original paper. In conclusion, the analysis presented

in Deo et al. (2009) shows that the interaction between yield uncertainty and market attractiveness.

Following the settings in Deo et al. (2009), Cho (2010) attempts to analyze the trade off the

government is facing when deciding the composition of seasonal influenza vaccine. Cho mainly con-

siders two key trade-offs. First, if the government decides to retain the current vaccine composition

instead of updating to a new one, there is lower uncertainty in production yields, but the current

vaccine could be less effective if a new virus strain spreads. Second, if the government decides early

with less information, then manufacturers have more production time, but the reduced information

increases the risk of choosing a wrong strain. To, simplify, we assume there are only two types of
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virus strains. We can derive an optimal dynamic threshold policy for this decision. To explicate, the

government ’s decision on the following three options: (1) select the current vaccine strain s1; (2)

select the most prevalent new strain s2; or (3) defer selection to the next period depends on the level

of the prevalence estimate of strain 1 at each period. Because of the greater uncertainty in production

yields of new vaccines, the optimal thresholds are neither symmetric between retaining and updating

the composition nor monotonic over time. The analysis shows that the dynamic optimal policy can

significantly improve the entire social welfare.

We consider the finite-horizon discrete-time model with period t ∈ {1, 2, · · · , T}. We assume the

overall efficacy of vaccine j, by ej(θ) = ej1θ + ej2(1− θ), where θ ∈ [0, 1] is the prevalence of s1: the

proportion of s1 cases among all cases caused by either strain during the upcoming flu season, and

ejk denotes the efficacy of vaccine containing strain j against virus k. The true value of θ remains

unknown until the end of the flu season, but the government develops the initial distribution of θ̄1

based on previous information and update θ̄t with the help of new information it observes at period

t. Let θ̂ be the mean of θ̄t in period t and Θt+1(θ̂) be the pre-posterior mean in period t + 1, and

it is assumed that E[Θt+1(θ̂)] = θ̂. For vaccine yield uncertainty, we still apply the model in Deo

et al. (2009) and let q̄t,j be the quantity of eggs of strain j produced at t and yj (of mean µ and

variance σ2
j ) as the ratio of the number of vaccine doses to the number of eggs. σ1 < σ2 since the

yield is more predictable when repeating the production of the vaccines the same as the last season.

We assume the production capacity r be the maximum number of eggs the industry can produce in

each period, so r(T − t) is the total potential number of eggs at t: the early the decision on which

to produce, the greater the amount of doses the industry can produce. We still assume the pricing

function p = a − bQ and let the optimal target quantity of vaccine doses of strain j be q∗j . So, the

expected doses supplied at t, qt,j , is determined as qt,j = min{rµ(T − t), q∗j }.
To identify the government’s objective function, we denote Wt,j(θ̂) as the expected social welfare

if the government selects strain j at time t when current estimate of θ is θ̂, then:

Wt,j(θ̂) = f(qt,j , δj)ej(θ̂)− g(qt,j , δj),

where δj = σj/µ, f represents the social benefits of immunization and g denotes the social cost of

vaccines, as is given, for example, by (2.2). Now, we are able to present a dynamic programing formula-

tion of the government’s decision at t, with estimate θ̂, Vt(θ̂). Define Wt(θ̂) = max{Wt,1(θ̂),Wt,2(θ̂)}.
Then, for t = 1, 2, · · · , T − 1:

Vt(θ̂) = max{Wt(θ̂), EVt+1(Θt+1(θ̂))},

with terminal condition VT (θ̂) = 0. We are able to show that there exists θ∗t ≤ θ∗∗t for each t such

that if θ∗t < θ̂ < θ∗∗t , it is optimal to defer; if θ̂ ≥ θ∗∗t , it is optimal to select s1; and otherwise,

it is optimal to select s2. Numerical example indicates that when t is big enough, we usually have

θ∗t = θ∗∗t . To summarize, the analysis based on vaccine yield uncertainty has shown that there is an

optimal threshold policy for when to retain the current strain, change to new strain, or defer. The

greater yield uncertainty of a new strain leads to a smaller quantity of vaccines in equilibrium.

Vaccine selection

There is still a line of research that analyzes the vaccine selection and tractability problems.

Papers contributing to this line usually analyze how to optimally select a combination of vaccines so

as to minimize the full-vaccination cost and extra-immunization as well as how to ensure a child to

receive timely coverage against vaccine-preventable diseases. Here we present a few papers devoted

to this two aspects.

13



Bachelor’s Degree Thesis
B.S. in Mathematics Renyu Zhang

The School of Mathematical Sciences
00701154

Hall et al. (2008) makes some attempt to analyze the pediatric vaccine formulary selection problem

caused by the increasing complexity due to the expansion of the diseases covered. The objective of

this paper is to minimize weighted sum of the cost (economic issue) to fully immunize a child and to

minimize extra-immunization (medical issue) in pediatric immunization. Such problem is called the

General Vaccine Formulary Selection Problem (GVFSP).

Let T = {1, 2, · · · , τ} be the set of time periods for a given childhood immunization schedule,

D = {1, 2, · · · , δ} be the set of diseases, V = {1, 2, · · · , v} be the set of vaccines available. Also define

Kv as the economic (cv) or extra-immunization cost λd of vaccine v ∈ V , Ivd = 1 if v immunizes

against disease d, 0 otherwise and Xtv = 1 if v is administered in time period t, 0 otherwise. So,

Kv = cv +
∑

d γdIvd. We let mdt be the minimum number of doses required for disease d in period

t, Mdt be the maximum number and Udt be the number of doses that have been administered for

disease d at through period t. So, the optimization problem should be formulated as follows:

min
∑
t

∑
v

KvXtv,

subject to Udt ≤ Ud(t−1) + 1, Udt ≤ Ud(t−1) +
∑

v XtvIvd mdt ≤ Udt ≤ Mdt, Xtv = 0, 1 and Udt ∈ Z+.

Hall et al. (2008) has proved that this GVFSP is NP-hard and developed a dynamic programing

(DP) algorithm. The NP-hardness of GVFSP implies the need of heuristics that are sub-optimal but

executable within polynomial time. The paper presents us a heuristic of time complexity O(δτv). It

has been discussed in the paper that the DP approach might be used when there is need for exactly

choosing a vaccine formulary schedule, while the heuristic approach is helpful if we want to efficiently

analyze larger future childhood immunization schedules.

Engineer et al. (2009) aims to develop a decision support tool to help providers and caretakers in

constructing catch-up schedules for childhood immunization. The authors enable the decision support

tool to remove from the task of constructing catch-up schedules the tedious combinatorial aspects,

while maintaining a level of generality that allows easy accommodation for changes in the existing

rules and adding new vaccines to the schedule lineup. Given the current age of a child and their

vaccination history (i.e., the number and timing of doses of each vaccine already administered), the

catch-up scheduling problem is one of constructing a schedule for the remaining doses so that each

dose is scheduled within the minimum and maximum age for that vaccine and dose, and the time

separation between (not necessarily successive) doses of the same vaccine does not violate a certain

minimum gap. So, it can be viewed as a multi-processor scheduling problem where a job corresponding

to a particular dose of some vaccine to ensure that the doses are scheduled in sequence. We can state

the catch-up scheduling problem as follows: given a feasible schedule s, find its best extension s∗ with

respectable to: (1) number of completable vaccination series, (2) number of scheduled doses, and (3)

the total delay from the recommended age of administering the scheduled doses, in stated order of

priority. For a precise mathematical formulation of the problem, you may refer to the original paper.

Engineer et al. also have proved that the catch-up scheduling problem is NP-complete and identified

a DP algorithm for solving it. By observing and exploiting the fact that the required separation

between doses of the same vaccine is nondecreasing in the age some previous dose is administered,

the authors derive dominance criteria that are sufficiently tight in practice to solve practically sized

problems very quickly. An online software has also been developed to implement the decision support

tool based on their algorithm.
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2.3 Organ Transplantation

Organ transplantation is now the only treatment for several diseases at the latest level, such as

chronic renal/liver failure. However, there might not be enough organ donor to supply all patients

in need of transplantation. Therefore, how medical organizations (such as United Network of Organ

Sharing, UNOS) are continuously facing the problem of how to allocate the donated organs efficiently

and equally. Additionally, patients’ choice of acceptance and refusal is also worth considering, which

inevitably makes the related issues more intertwined. Usually, operations researchers apply dynamic

programing, Markov decision process or queueing theory to analyze the quality-adjusted life of patients

as an indicator of efficiency, but the issue of equity is much more difficult to quantify, and we will

present a few papers that innovatively model this and related issues analytically.

The operations research literature also includes several studies that address some aspects of the

organ allocation problem. One of the first papers in this area is by Ruth et al. (1985), who present

a simulation model for the waiting list in Michigan. Righter (1989) formulates the organ allocation

problem as a stochastic assignment problem (Derman et al. 1972) and develops properties of the

optimal policy. David and Yechiali (1985, 1990, 1995) and David (1995) study several sequential

decision problems that are motivated by organ transplantation, from the perspectives of both a po-

tential recipient (1985) and a centralized decision maker. In recent studies that combine analytical

and empirical research, Ahn and Hornberger (1996) and Hornberger and Ahn (1997) develop kidney

acceptance policies for potential recipients that explicitly incorporate patient preferences and demon-

strate that some patients can afford to be selective when making transplantation decisions. Pritsker

(1998) describes a large-scale simulation model for the liver allocation system that is used by UNOS

to compare alternative liver allocation policies.

Kidney allocation

Zenios et al. (2000) is one of the first to consider the kidney allocation problem from both efficiency

and equity perspectives. A dynamic resource allocation problem is provided with the tri-criteria ob-

jective of maximizing the quality-adjusted life expectancy of transplant candidates (clinical efficiency)

and minimizing two measures of inequity: a linear function of the likelihood of transplantation of the

various types of patients, and a quadratic function that quantifies the differences in mean waiting

times across patient types. The dynamic status of patients is modeled by a set of linear differential

equations, and an approximate analysis of the optimal control problem yields a dynamic index policy.

A surprising result from their simulation study is that the policy currently used by UNOS is not

appreciably more efficient (in terms of quality-adjusted life years per patient) than the FCFT(First-

Come First-Transplanted) policy; hence, if one views QALY (Quality Adjusted Life Years) as the

primary efficiency measure and adopts the relative inequity viewpoint, then FCFT is preferable to

UNOS.

Su et al. (2004) develops an M/M/1 queue model, with homogeneous patients and exponential

reneging, to examine the patient’s choice on the high rate of organ refusals in the kidney transplant

waiting systems. In addition, unlike the standard M/M/1 model, each service instance is associated

with a variable reward that reflects the quality of the transplant organ, and patients have the option

to refuse an organ (service) offer if they expect future offers to be better. Under an assumption

of perfect and complete information, it is demonstrated that the queueing discipline is a potent

instrument that can be used to maximize social welfare. In particular, first-come-first-serve (FCFS)

amplifies patients desire to refuse offers of marginal quality, and generates excessive organ wastage.

By contrast, last-come-first-serve (LCFS) contains the inefficiencies engendered by patient choice and
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achieves optimal organ utilization.

Patients in this system behave as rational economic agents and determine whether to accept or

decline each offer based on the offers quality. Similarly, the medical planner overseeing the system

determines who should be offered each organ. Each patients objective is to maximize his or her own

total expected discounted QALYs, and hence the patient solves an optimal stopping time problem:

when to accept an organ offer. On the other hand, the medical planner wishes to maximize the sum

of the rewards for all patients and has two policy levers at its disposal: organ rationing and patient

prioritization. That is, the planner can influence system outcomes by limiting access to certain organs

(rationing) and by dynamically prioritizing the candidates on the waiting list.

Let patients arrive in a time-homogeneous Poisson process with rate λ, cadaveric organs arrive,

independently, with rate µ. A patient leaves the waiting list either when he receives and accepts an

organ offer or when he dies after an exponentially distributed amount of time with mean 1/γ. We

normalize µ = 1. Let a patient be on one of the three states: dialysis (waiting list), post-transplant

and death. Patients on dialysis receive a continuous pay-off at rate h per unit time; patients who

die receive an instantaneous payoff d Further, a patient also receives a pay-off from transplantation.

There is also a random variable X, which takes values in (x, x̄) with probability density f , reflecting

the post-transplant total expected QALYs for the patient receiving the organ.

To derive the socially optimal outcome V (n) measured by the total QALYs of n people on the

wait-list, we let b(n) be an organ acceptance threshold so that only organs with quality exceeding b(n)

are offered to a transplant patient. The induction of V (n) and b(n) can be obtained trough dynamic

programing methods and the optimal threshold b∗(n) = V (n)− V (n− 1). We can also consider each

patient’s acceptance thresholds {ak(n) : n ≥ 1, n ≥ k ≥ 1} interpreted as: When the queueing length

is n, the patient in position k will only accept organs with quality no less than ak(n). Clearly we

must have,

a1(n) ≥ a2(n) ≥ · · · ≥ an(n) ≥ b(n).

For each strategy profile a, we can derive the total discounted expected pay-off for every patient in

position k of a queue with length n, V a
k (n) dynamically. Let aFk (n) be the optimal thresholds in the

FCFS queue, and we are able to show that they are independent of queueing length n, so we denote

them as {aF (k)}. We can still show that, with thresholds aF (k), the social welfare is maximized

only if λ = 0. i.e. treatment rationing is an ineffective way to control patient behavior, and that the

system is inefficient under the commonly used FCFS rule. However, we shall show in the next section

that social efficiency can be achieved if the priority rule is LCFS. For more details, please refer to

the original paper. However, the social efficiency of LCFS should be treated with caution because of

strategic difficulties associated with its implementation: without any form of monitoring, any person

in line has the motivation to balk and reenter the system at the top of the line. This, again, raises

a very complicated ethical issue. The paper also investigates a generalization of the model with

different priorities: assume a patient is granted absolute priority with probability p ∈ [0, 1], thus, its

effective arrival rate is adjusted to λp. p = 0 corresponds to the FCFS case while p = 1 corresponds

to the FCLS case. It can be shown that the patients become less selective as the priority parameter

(p) increases and, as a result, as the threat of a reduction in their priority following an organ refusal

becomes more severe.

Living and cadaveric donation

Living donors are a significant and increasing source of livers for transplantation, mainly because

of the insufficient supply of cadaveric organs. Alagoz et al. (2004) makes the first attempt to consider
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the problem of optimally timing a living-donor liver transplant to maximize the patients total reward,

such as quality-adjusted life expectancy. They aim to seek a policy describing those health states

in which the living-donor liver transplantation should occur, and those where waiting is the optimal

action. We can formulate a Markov decision process (MDP) model in which the state of the process

is described by patient health and derive structural properties of the MDP model, including a set of

intuitive conditions that ensure the existence of a control-limit optimal policy.

The model is formulated as a standard discrete-time infinite-horizon discounted MDP, whose state

space is S = {1, 2, · · · ,H + 1} (the smaller the number the healthier the patient and H + 1 means

death), consisting health states and action space consists of two actions: wait and transplant. Let

r(h, T ) and r(h,W ) be the reward of wait and transplant, respectively, at health state h and P (h′|h)
be the transition probability from state h to h′ without transplantation. The objective function V (h)

is the discounted reward at health state h. Let r(h, l) be the reward of transplanting a liver of quality

l when the patient is at health state h. So, we have:

V (h) = max{r(h, l), r(h,W ) + λ
∑
h′

P (h′|h)V (h′)}.

Under mild assumptions of increasing failure rate and reward bounds, there exists an optimal control

limit policy. i.e. there exists a state j, such that a∗(1) = a∗(2) = · · · = a∗(j − 1) = ”W” and

a∗(j) = a∗(j + 1) = · · · = a∗(H) = ”T”.

Alagoz et al. (2007a) considers the cadaveric liver issue and generalizes the previous model to

include the quality of livers S′ = {1, 2, · · · , L, L + 1} (the smaller the number the better the liver

quality and L + 1 means there is no liver available). The transition probability matrix is of the

form P (h′, l′|h), the reward function is r(h, l) and the wait pay-off is c(h). So, the objective function

becomes:

V (h, l) = max{r(h, l), c(h) + λ
∑
h′,l′

P (h′, l′|h)V (h′, l′)}.

The paper also provides the sufficient condition for the liver-quality-based and patient-health-based

optimal control-limit policy.

In Alagoz et al. (2007b), continues this line of research by combining the previous 2 issues

discussed. This study aims to inform a ESLD (end-stage liver disease) of whether to accept the

living-donor liver, the cadaveric liver or to wait. The difference between choosing a living-donor

liver and a cadaveric liver is (1) the initial reward choosing the living-donor liver is bigger than

choosing a cadaveric liver of any quality but there is a penalty (disutility) ρ(h) associated with using

living donor when the patient is in state h; and (2) there exists an arrival process cadaveric livers

which become useless after the arrival period while the living-donor can wait until your decision

is made. So the state space is still (h, l) where h means the health of the patient and l is the

quality of the cadaveric liver. The paper also gives a sufficient condition for the cases when the

optimal policy is an at-most-three-region: for a given liver of quality l, there exists a health state

j(l) so that the optimal policy is to wait if and only if the health state of the patient is no worse

than j(l) while there exists an at-most-two-region liver based policy: for a given health state h,

there exists a liver quality i(h) so that it is optimal to choose a cadaveric liver if and only if its

quality is no worse than i(h) and a∗(h, i(h) + 1) = a∗(h, i(h) + 2) = · · · = a∗(h,L + 1) = ”W” or

a∗(h, i(h) + 1) = a∗(h, i(h) + 2) = · · · = a∗(h,L+1) = ”TLD”, where ”W” means to wait and ”TLD”

means choose living-donor. We also suggest you to read the original paper for a detailed analysis.

Transplant waiting list
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Unlike the previous works which study the optimal policy of allocating and selecting donated

organs, Sandikci et al.(2008) considers the benefit of creating a more transparent waiting list of

patients eligible for cadaveric liver transplantation. The paper analyzes these benefits by modeling

patient’s accept/decline decision as a MDP where the state is described by patient health, liver

quality and the rank of the patient in the wait list. Analogous to the above reviewed papers, the

monotonicity of the value function and the sufficient condition for limit-control type of optimal policy

are derived. The price of privacy is measured by the number of expected days lost due to the lack of

complete waiting list information. Extensive numerical experiments based on clinical data indicate

that this price is typically on the order of 5% of the optimal solution value. An estimate for the

true price of privacy would be obtained by comparing a system (in which every patient has partial

rank information as in the current allocation system and behaves optimally with this information)

to a benchmark system (in which every patient has full rank information and behaves optimally).

The current model is unable to provide an exact value for the societal price of privacy because if

the waiting list were to become transparent, the organ offer probabilities would change substantially

as the allocation system moved to a new equilibrium, thus making precise parameter estimation

using existing data impossible. Rather, due to difficulties in identifying an equilibrium in either of

these systems, we focus on a special case where only one patient, who is provided the waiting list

information, is considered. As a result, the quantities we provide can be viewed as estimates for the

true values.

To summarize, organ transplantation issues are usually involved with the interplay between organ

allocation, from the organization’s perspective, and organ selection, from the patient’s point of view.

Ethical concerns like privacy and equity are also widely investigated in recent literature. Queueing

and MDP methods are typical approaches to this type of problems.

There are also a few other papers that do not fall into one of the categories above. For example,

Bersimas et al. (2008) develops an algorithm based on regression methods to predict the future health-

care costs. Keeney (2008) discusses the relationships between personal decisions and premature deaths

and suggests that more effort directed toward improving personal choices regarding life risks may be

an effective and economical way to save lives.

3 Health-Care Institutions Operations

So far, our discussion have been confined to the macro-scale policy level issues in heal-care systems, i.e.

the government/medical organization’s optimal decision. We now turn to micro-scale management

issues faced by medical institutions, like clinics, hospitals. Within our expectation, papers devoted

to optimize the strategy of an individual institution contributes to a major part of the literature in

health-care operations. Compared with policy level and individual level issues, the institution level

problems link these two extremes and are, thus, more resourceful. Further, OR/OM literature usually

analyzes the optimal decision of a firm, whose condition and behavior share some characteristics

with a medical institution. Therefore, a great many of ideas, models and methods can be borrow

from, with comparatively slight variation, the vast tradition OR/OM literature. In this section,

we mainly discuss three groups of papers in this section: (1) capacity management, which deals

with, for example, how to manage limited medical resources such as beds and operating rooms; (2)

medical appointment scheduling, which seeks to improve medical service efficiency and quality under

drastic demand uncertainty and no-shows; and (3) heal-care related manufacturing and supply chain
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problems. A few other papers not included in these two groups, such as the revenue management for

non-profit operations in hospitals, are reviewed at the end of this section.

3.1 Capacity Management

For most hospitals, capacity management is an inevitable problem. Crucial medical resources like

diagnostic devices, ICU (incentive care units) beds and operating rooms are always in intensive need

by patients in the wait list. Therefore, efficiently allocate/expand these resource is of the common

interest shared by the medical institution and patients. For a review of this type of literature, please

refer to Green (2004). In this subsection, we discuss how do fulfill this goal with the help of OR/OM

models, beginning with a few papers discussing operating room allocation problem.

Operating room allocation

Operating room is at the frontier of resource limitation in hospitals. Cardoen et al. (2010) which

briefly reviews operating room planning and scheduling problems provides a schematic picture of this

area. But we only discuss a few recent OR papers that typically and efficiently models this and

related issues. Lovejoy et al. (2002) analyzes how to expand operating room capacity efficiently. The

paper investigates the trade-offs among three performance criteria: waiting time, scheduled procedure

reliability, and hospital profits, which are of particular importance to three different constitutes of

this problem: patients, surgeons and surgical staffs and hospital administrators. The objective is

to determine how the hospital can best expand its capacity, acknowledging the key role that each

constituency plays in that objective.

We assume that the hospital has m operating rooms, whose patients arrive via a Poisson process

of rate λ. The operation procedure lengths are assumed to be i.i.d random variables with distributed

as X. The decision variables are the number of cases to schedule per OR per day (n), which is a

daily capacity decision, and the probability that a scheduled procedure begins on time (π). These

choices, along with the parameters of the regular-time day length (T ), the average margin per case

(R) generated excluding operating costs, and the average costs of regular time and overtime staffing

(Cr and Cot, respectively) in the operating rooms will determine the daily profits generated in the

operating rooms (details below). We assume that T will be chosen optimally given n and. Also, for

a given arrival rate the caseload per day, n, will uniquely determine the capacity of the system and

hence the wait (W ) to get on the schedule. Therefore, a specific choice of n and π will determine

the three performance metrics of interest to our stakeholders (π (both as a decision variable and

a performance metric), W and total profit). Suppose that there are k procedures scheduled in a

specific room. Let ti denote the scheduled start time and Si denote the (random) actual start time

for procedure i, i = 1 to k. Let Xi denote the random length of procedure i (by assumption, the

random variables Xi have a common distribution), and let Ei denote the ending time for procedure

i. The distribution of S1 is assumed given and the same for all rooms. The choice of π, and

the common distribution of procedure length (FX), the statistics of all subsequent procedures (up

through case k) are preordained. Specifically, E1 ∼ S1 + X1. Given the distribution of E1 t2 is

set so that FE1(t2) = to ensure the desired start-time reliability for Case 2. Then, the second

procedure starts either at its scheduled time or whenever the first procedure ends, that is S2 ∼ E1∧t2.
Working forward we have Ei ∼ Si +Xi and Si+1 ∼ Ei ∧ ti+1for each i. To characterize the cost and

revenue, the hospital needs to decide the regular hour T per day. Hence the expected daily cost is:

Cost(T ) = CrT + (Cr + Cot)
∑n

i=1 pi
∫ +∞
T

(x− T )dFEi(x), where pi is the stationary distribution of
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i patients per-operating-room. And the profit of the total m operating rooms will be:

Profit(T ) = Rλ−mCost(T ).

We can show that, given n (thus W ) fixed, increasing π will generally decrease overtime costs, but

these cannot decrease sufficiently to decrease total costs, and, thus, will reduce the total profit. If

we fix π, instead, assigning more operating rooms will, intuitively, reduce W , but its impact on total

profit is more complicated. For the detailed analysis and numerical approximations, please refer to

the original paper.

Olivares et al. (2008) optimizes a hospital that balances the costs of reserving too much versus

too little operating room capacity to cardiac surgery cases. The problem is of newsvendor type with

heterogeneity in uncertainty and cost parameters. Their results reveal that the hospital places more

emphasis on the tangible costs of having idle capacity than on the costs of schedule overrun and long

working hours for the staff. The paper develops statistical methods that give consistent estimates

of the model primitives, and derive their asymptotic distribution, which is useful to do hypothesis

testing.

Deton et al. (2010) makes some effort to address the issue of optimal allocation of surgery

blocks to operating rooms uncertainty. This is a challenging combinatorial optimization problem

with additional complication in the uncertainty of surgical procedure duration. In this paper, we

present stochastic optimization models for the assignment of surgeries to operating rooms on a given

day of surgery. The objective includes a fixed cost of opening operating rooms and a variable cost of

overtime relative to a fixed length-of-day.

There are two (1) how many ORs to open on a given day and (2) which OR to assign to each

surgery in a daily listing. We assume that there are n blocks of surgeries i = 1, 2, cdots, n and m

operating rooms: j = 1, 2, cdots,m. di(ω) (as a random variable) is the duration of surgery block

i, xj is a binary decision variable indicating whether operation room j, yij is the binary decision

variable representing overtime for operating room j and oj(ω) is the overtime for operating room j.

Let T be the time session considered in the problem, cf be the fixed cost to open an operating room

and cv is the variable cost per unit time of overtime. Then the expected time can be formulated as

follows:

E[(
n∑

i=1

yijdi − T )+].

As a result, the two-stage stochastic recourse problem can be formulated as following:

Z∗
S = min{

m∑
j=1

(cfxj + E[cvoj ])},

where yij ≤ xj ,
∑m

j=1 = 1,
∑n

i=1 di(ω)yij − oj(ω) ≤ Txj a.s., xj , yi,j ∈ {0, 1} and oj(ω) ≥ 0.

The decisions whether to open a given operation room (xj) and which surgery block to allocate to

each operating room (yij) are first-stage optimization decisions. The second-stage recourse decisions,

overtime oj(ω) for each operating room j are simple recourse decisions, which are easily solved given

the random out come (dj(ω)) and the first-stage decisions xi, yij . Both L-shape decomposition method

in integer programing and a heuristic inspired by the newsvendor setting can solve this problem and

we leave the details for the readers to refer to the original paper.

Like operating rooms, many intensive care units (ICU) face overcrowding. One response to such

overcrowding is to bump ICU patients to other alternative departments to make room for new arrival.

Dobson et al.(2008) develops a Markov chain model to help planners predict performance under
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different arriving patterns. The state space S of this Markov chain consists of n−dimensional vectors

(s1, s2, · · · , sC) (the components are ordered in decreasing order, and s1 ≤ D), indicating the length

of stay (LOS) of the patient on each bed in the ICU, where C represents the number of beds. On

each day i, Ni (Ni ≤ M) is the number of new arrival patients. If Ni = n, let Lj be the (i.i.d and

independent of Ni) LOS of patient j with Lj ≤ D. For an arrival pattern a = (a1, a2, · · · , an) ∈ A, we

assume they are in decreasing order and a1 ≤ D, where A is the space of all vectors with dimension

no greater than M . So, we have p(a) = c(a)P (Ni = n)Πn
j=1P (Lj = aj), where c(a) is the number

of unordered vectors with the same components as a. We assume that if it is necessary to bump

k patients, we remove the k patients with the least remaining days left in their stay (least time

remaining bumped first). If two patients have the same number of days left and only one must

leave, we pick arbitrarily. When bumping, we do not distinguish between newly arriving or existing

patients; rather, we distinguish patients by their remaining LOS. We are assuming that the days

remaining is a proxy for the health of the patient and that it is preferable to bump healthier patients

rather than sicker ones. Note that we do not assume that the doctors remaining stay for each person

currently in the ICU will making the bumping decisions know exactly the remaining LOS of each

patient but rather they are capable of rank ordering the patients in terms of remaining LOS. We

define pO the probability an outlier (sj = D) patient remains an outlier the next day. Define o(s)

as the number of outliers of state s. The probability of u outliers of o(s) staying as outliers can

be computed as Po(u, o(s)) =
(
n
2

)
(pO)u(1 − po)o(s)−u if u ≤ o(s) and 0 otherwise. To help track the

state transition dynamics, we define an operator fk(a, (s, u)) that simulates the bumping process with

state s and arrival pattern a. Let fk(a, (s, u)) be a k−vector obtained from concatenating the vector

a = (a1, a2, · · · , an) of length n and the vector (s1, s2 · · · , su, (su+1 − 1)+, c . . . , (sC − 1)+) of length

C into a single vector of length n + C, then sorting it in decreasing order and finally truncating it

by only taking the first k components. Therefore, given s, a and u, the next state of the system is

fC(a, (s, u)). We are now able to define the Markov chain’s transition matrix P. Let s, t ∈ S, and

define A(s,u)t = {a ∈ A : fC(a, (s, u)) = t}. The probability of making a transition from s to t is:

Pst =

o(s)∑
u=0

Po(u, o(s))
∑

a∈A(s,u),t

p(a).

We can use the aggregation-disaggregation to calculate the stationary distribution, π, of this Markov

chain, which outperforms the traditional Gauss-Seidel iterative method in efficiency and as a de-

terministic algorithm. Numerical experiments, applying this method, to evaluate the performance,

measured by bumping probability of arrival, number of remaining days for a bumped patient and the

utilization of the ICU capacity, of an ICU suggest that smoothing the surgical schedule can have a

more significant impact on bumping rates than increasing capacity.

Inpatient beds during demand surges

Many hospitals face the problem of insufficient capacity to meet demand for inpatient beds,

especially during demand surges. This results in quality degradation of patient care due to large

delays from admission time to the hospital until arrival at a floor. In addition, there is loss of revenue

because of the inability to provide service to potential patients. A solution to the problem is to

transfer patients between floors in anticipation of a demand surge. Thompson et al.(2009) poses an

optimal reallocation problem that can be modeled as a finite-horizon Markov decision process. Due

to the large number of patient categories and policy choices and the randomness of patient arrival

and departure, the problem is very challenging. The system state at any point in time is represented,

for each patient category, by the number waiting and the number being cared for on each floor.
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We consider a decision process with a finite time horizon divided into m time periods of constant

length and the transition probability is of period m, so the state process must also have time period

index t. Let cj be the maximum capacity of floor j ∈ F , Fi ⊂ F be the set of feasible floors for

patients of category i, aij be the reward from assigning a category i patient to floor j, and bijk be

the transfer cost of category i patient from floor j to floor k. Let xij be the number of category i

patients on floor j, while xi0 be the number of category i patients not on any floor. Let the arrival

variable git be the number of category i patient arrivals during period t, the departure variable dijt

be the number of category i patient departures from floor j. The decision variables are: yi0j ≥ 0,

the number of category i unassigned patients to be assigned to floor j, and yijk ≥ 0, the number of

category i patients to be transferred from floor j to floor k. Let the minimum expected n−stage cost

in state S be Vn(S). So, we have that the decision variables must satisfy: (1)
∑

j yi0j ≤ xi0 (waiting

patients), (2)
∑

i(xik+yi0k+
∑

j yijk−
∑

j yikj) ≤ ck (floor capacity), (3) yi0k = yijk = 0 if k ∈ F\Fi.

For a decision Y consists of y′i0js and y′ijks, the stage associated cost is:

C(Y ) =
∑
i

∑
k

(−aikyi0k +
∑
j

bijkyijk).

Let S = [X, t] be the current state and Ŝ be the state after arrivals and departures occur with

decision Y . So the transition probability from S to Ŝ, given decision Y is:

PSŜ(Y ) = 1{t̂=(t+1)mod m}πP [git = x̂i0−xi0+
∑
k

yi0k]ΠiΠjP [dijt = −x̂ij+xij+yi0j+
∑
k

(yikj−yijk)].

Now, we are able to give Vn(S) as follows:

V1(S) = min
Y

C(Y ),

Vn(S) = min
Y

{C(Y ) +
∑
Ŝ

PSŜ(Y )Vn−1(Ŝ)}.

To solve the above MDP problem, we may use the approximation methodology, for details, please

refer to the original paper. Chao et al. (2003) also considers a patient switching problem by modeling

it as a multi-site service systems with inter-site customer flows.

Diagnostic service management

Managing diagnostic services needs to strike a balance between accuracy of advice, callers’ waiting

time, and staffing costs by setting the appropriate capacity and service path. Hence, this is also a

widely investigated problem by researchers in the filed of OR/OM. Green et al. (2006) considers

the problem of managing patient demand for diagnostic service which consists of three parts: (1)

outpatients, who are scheduled in advance; (2) inpatients, whose demands are generated randomly

during the day; and (3) emergency patients, who must be served as soon as possible. The management

of a diagnostic facility consists of two interrelated tasks: establishing an appointment schedule for

outpatients and designing a system of dynamic priority rules for admitting patients into service in

real time. The paper models the operations of a medical diagnostic facility with several patient types

as a dynamic stochastic control problem and establishes structural properties of an optimal real-time

capacity allocation policy under an arbitrary outpatient appointment schedule.

Consider N identical service periods in each working day, some of which may be reserved through

appointment system. The schedule of accepted appoints is expressed as an N−dimensional binary

vector a: ai = 1 if the ith appointment slot has been filled and 0 otherwise. Due to the relatively

low intensity of inpatient and emergency demands, no more than one request for each type of service
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arrives during each period, and its arrival probabilities are denoted by pi and pe, respectively. There

is a positive ”no-show” probability for each out-patient schedule.

We are now at the stage to model the dynamics of the diagnostic facility as a Markov chain. The

state of the system consists of the number of (non-scheduled) inpatients and (scheduled) outpatients,

(ni, si), after the action but waiting for service. It is assumed that the number of each type waiting

during service slot i+ 1 can be higher than those waiting during slot i by at most 1.

Diagnostic facility collects rs and rn as a revenue for each outpatient and in patient, respectively.

Delaying a service request incurs a waiting cost period ws and wn for out patients and inpatients,

respectively. Finally, there is a penalty function f(n, s) associated with patients not served by the

end of the day and we can simply take πs for each outpatient and πn for each inpatient. To crack

reality, assume: (1) rs > rn, (2) ws > wn, and (3) πs < πn.

With the notations and assumptions above, we can formulate the profit maximization problem.

For a given schedule a, V a
i (n, s) is the optimal total expected profit over the (N−i)−period planning,

from i to N , when the state after period i is (n, s). Then, we have:

V a
i (n, s) = −sws − nwn + pepn[(1− psai+1)V

a
i+1(n+ 1, s) + psai+1V

a
i−1(n+ 1, s+ 1)]

+pe(1− pn)[(1− psai+1)V
a
i+1(n, s) + psai+1V

a
i+1(n, s+ 1)]

+pn(1− pe)[(1− psai+1)H
a
i+1(n+ 1, s) + psai+1H

a
i+1(n+ 1, s+ 1)]

+(1− pn)(1− pe)[(1− psai+1)H
a
i+1(n, s) + psai+1H

a
i+1(n, s+ 1)],

where Ha
i is the maximization operator: Ha

i = max[V a
i (n − 1, s) + rn, V

a
i (n, s − 1) + rs], if n ≥ 1,

s ≥ 1; V a
i (n− 1, 0) + rn, if n ≥ 1, s = 0; V a

i (0, s− 1) + rs, if n = 0, s ≥ 1; and V a
i (0, 0) if n = s = 0.

The boundary condition is given by Ha
N+1(n, s) = V a

N+1(n, s) = f(n, s). The diagnostic facility

can maximize its profit by strategically choosing a. So, the outpatient appointment problem can be

formulated as:

V ∗ = max
a

[V a
1 (0, 0)].

Green et al. (2006) establishes that for any given service slot and specified number of patients

of a given class (e.g., outpatients), it will be optimal to serve that class only if the number of the

other class (e.g., inpatients) is below a critical value. However, this critical value increases as the

number of outpatients increases. Therefore, the optimal policy assigns service priority so as to balance

the congestion due to the two patient classes. A mild condition is provided in the paper to ensure

a threshold type optimal policy, A linear approximation heuristic informs us that outpatients are

served at the beginning of the day (i ≤ i∗h) and inpatients at the end of the day (i > i∗h).

Patrick et al. (2008) presents a method to dynamically schedule patients with different priorities

to a diagnostic facility. The objective is to achieve wait-time targets in a cost-effective manner.

The problem is, again, modeled as a Markov decision process. Since the state space is too large for

direct solution, we are only able to solve the equivalent linear program through approximate dynamic

programing.

We consider a system that has the capacity to perform C1 fixed-length procedures each day. At

a specific point of time in a day, referred to as the decision epoch, the scheduler observes the number

of booked procedures on each future day over an N−day booking horizon and the number of cases

in each priority class to be scheduled. Demand arises from two sources, inpatients and outpatients.

In practice, most inpatient demand is known at the beginning of each day once morning rounds

have been completed on the wards. Outpatient demand arrives throughout the day, and thus is not

completely known and prioritized until the end of the day. We assume that all decisions are made
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once inpatient demand has been determined.

Assume s = (x,y) = (x1, x2, · · · , xN ; y1, y2, · · · , yI), where xn is the number of patients already

booked on day n, yi is the number of priority i patients waiting to be booked. Let the set of all

feasible s be S. The scheduler decides at each decision epoch which available appointment slots to

assign to each unit of waiting demand and whether to divert patients to alternative capacity (surge

capacity) at an additional cost. To capture the real case, we impose a limit C2 to the number of

patients diverted. A vector (a, z) = {ain, zi}, where ain is the number of priority i patients to book

on day n and zi is the number of diverted patients of priority i. The feasible actions must insure that

the base capacity is not exceeded, that no more than C2 patients are diverted and that the number

of bookings and diversions does not exceed the number waiting. Hence, they satisfy the following

constraints: xn +
∑I

i=1 ≤ C1,
∑I

i=1 zi ≤ C2 and
∑N

n=1 ain + zi ≤ yi. We assume demand for each

day is independent and each day’s demand is independent. Thus, for a state s, we denote As as its

feasible action set. Obviously, we have, if the number of new arrivals is represented by y′ and the

action is represented by (a, z), the probability of state transition from (x1, x2, · · · , xN ; y1, y2, · · · , yI)
to (x2 +

∑I
i=1 ai2, · · · , xN +

∑I
i=1 aiN , 0; y′1 + y1

∑N
n=1 ain − z1, · · · , y′I + yI −

∑N
n=1 aIn − zI) is

p(y′) = ΠI
i=1p(y

′
i), where p(y′i) is the probability that y′i priority i patients arrive on a given day. A

cost associated with booking a patient beyond the priority-specific wait-time target, a cost associated

with using surge capacity, and a cost associated with demand that was neither booked nor diverted

contribute to the total cost of an action. We write the costs as:

c(a, z) =
∑
i,n

b(i, n)ai,n +

I∑
i=1

d(i)zi +

I∑
i=1

f(i)(yi −
N∑

n=1

ain − zi),

where b(i, n) is the cost of booking a priority i patient on day n, d(i) is the penalty for diverting a

priority i patient, and f(i) is the cost associated with delaying a priority i patient’s booking. For a

explicit expression of b(i, n), please refer to the original paper. Clearly, the cost function explicitly

balance the cost to the patient in wait time and the cost to the system in having to resort to surge

capacity.

For a state (x,y) ∈ S, we have the value function v(x,y) satisfies the following Bellman Equation:

v(x,y) = min
(a,z)∈A(x,y)

{c(a, z) + γ
∑
y′∈D

p(y′)v(x2 +

I∑
i=1

ai2, · · · , xN +

I∑
i=1

aiN , 0;

y′1 + y1

N∑
n=1

ain − z1, · · · , y′I + yI −
N∑

n=1

aIn − zI)},

where γ is the daily discount factor and D is the all possible incoming demand stream. As discussed

above, the solution to this problem and the optimal policy can be obtained by linear value function.

For more details, please refer to the original paper.

Modeling the design of diagnostic service centers as a multiple-server queueing system, with the

servers performing a sequential testing process and the customers deciding whether or not to use

the service, Wang et al. (2010) has found the dual concerns of accuracy and congestion lead to a

counterintuitive impact of capacity: Increasing capacity might increase congestion. In addition, (1)

patient population size is an important driver in management decisions, not only in staffing but also

in accuracy of advice; (2) increasing asymmetry in error costs may not increase asymmetry in the

corresponding error rates; and (3) the error costs for the two major stakeholdersthe service manager

and the patientmay impact the optimal staffing level in different ways.
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To simplify, we assume that the pathology θ of the patient is either ”healthy”, indicated by θ = −1

or ”sick”, indicated by θ = +1 and that θ = +1 with probability π. π is assumed to be common

knowledge and identical for all patients. There are two treatment options for each patient: ”self-care”

(A) or ”visit the Emergency Department (ED)” (B). The appropriate treatment of pathology −1 is

A and +1 is B, and the right treatment selection incurs no error costs. However, if a +1 (−1) patient

wrongly selects A (B), he will incur a cost of cA (cB , respectively). Additionally, each nurse will cost

cn per unit of time. The error costs of the Health-Organization (HO) is CA and CB , analogously.

To characterize the diagnostic process, we assume that, for a patient pathology θ, the nurse

observes, through questions and answers, a Brownian motion (BM) with drift θr and variance σ2:

Yθ(t) = θrt+ σWt, where r implies the nurse skill level and Wt is the standard BM. For y ≤ 0 ≤ x,

the nurse keeps asking questions until Yθ(t) hits y or x. Let τ := inf{Yθ(t) /∈ (y, x)}, and the patient

is advised to seek treatment B (or A) if Yθ(t) = y (or x). The stopping boundary vector x = (x, y)

is referred to as the certainty threshold or the service depth set.

The enrolled members of the Health Organization (HO) fall ill according to a Poisson process of

rate Λ and their aggregate rate is λ (≤ Λ). The performance of this service center is measured by

both the probability of mis-diagnosis (error probabilities) and the patient waiting time. The error

probabilities are denoted by α (= the probability that Y+1 hits y before x) and β (= the probability

that Y+1 hits y before x). We refer to α (β) as the type I (II) error. To explicate, α is the probability

of advising self-care to a sick patient (under-referral rate) and β is the probability of advising a

healthy patient to go to the ED(under-referral rate). Clearly, α, β are functions of (x). The service

delivery process is modeled as an M/G/m queueing systems, where m is the number of nurses. Each

nurse performs the diagnostic process adopting the same threshold x with the same skill level r. We

denote the expected waiting time as W .

Without the advising nurse, the patient’s expected error cost is 1
2 [(1 − π)cB + πcA], since the

probabilities of both type I and type II errors are 0.5. For a given threshold x, the expected ”post-

call” cost is (1−π)β(x)cB +πα(x)cA. So the patient’s expected saving, with waiting costs excluded,

is:

∆P (x) = (1− π)(
1

2
− β(x)cB) + π(

1

2
− α(x))cA.

The HO’s saving is:

∆HO(x) = (1− π)(
1

2
− β(x)CB) + π(

1

2
− α(x))CA.

If we denote the expected waiting time in the queue is W (λ;x,m), so the utility of a patient

calling the nurse line is:

U(λ;x,m) = ∆P (x)− cwW (λ;x,m),

where the waiting time cost rate is cw. Each patient has a mixed strategy of calling probability p;

i.e. the patient calls the nurse line with probability p. The homogeneity of patients imply that the

equilibrium is of symmetric type. Hence, given x and m, all patients have the same calling probability

pe(x,m) and we have that λe(x,m) = pe(x,m)Λ. Wang et al.(2010) shows, (1) if U(Λ;x,m) > 0,

pe(x,m) = 1; (2) if U(0;x,m) ≥ 0 ≥ U(Λ,x,m), pe(x,m) ∈ [0, 1]; and (3) U(0;x,m) < 0, pe(x,m) =

0. The HOs profit rate generated by the nurse line is defined as the difference between the rate of

benefit (cost savings) from a nurse line and the staffing cost rate:

J(x,m) = ∆HO(x,m)λe(x,m)− cnm.

So the optimal decision (x∗,m∗) of the HO is defined to solve:

J∗ = max
x,m≥0

J(x,m).
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We can calculate the error probabilities α, β, the expected waiting time W and the equilibrium

probability pe by martingale and heavy traffic approximation methods. We can show that the optimal

staffing policy is of ”capture-all-demand” type and under the frame of this model for any unit staffing

cost (even if it is very high) and for any cost saving potential (even if it is very low), it is optimal

to invest in a nurse line. A sensitivity analysis of a symmetric case (π = 0.5, cA = cB , CA = CB)

indicates that two performance measures, waiting time and error probability, are substitutes: there

is no way to improve them both. As a matter fact, the patient does not get any positive surplus in

equilibrium. Extensive numerical results are presented in the original paper to perform sensitivity

analysis, please refer to it for your own interest.

Hospital staffing

Hospital staffing, i.e. how to allocate nurse and surgeon resource. de Vericourt et al. seeks

to determine the fixed nurse-to-patient staffing ratio policy is effective with a predictive queueing

analytic approach. It is assumed that there is a significant correlation between delays in addressing

patient needs and averse medical outcomes and we promote using the frequency of excessive delay as a

measure of staffing policy performance. By applying new many-server asymptotic results, we develop

two heuristic staffing policies that perform very well and are easy to implement. This is the first

many-server asymptotic analysis of health care issues. Among the insights gained from the heuristics

is the realization that no ratio policy can provide consistently good quality of service across medical

units of different sizes. Moreover, the optimal staffing levels for larger systems display a type of super

pooling effect in which the requisite workforce is significantly smaller than the nominal patient load.

To briefly summarize, like traditional capacity management papers, the recent literature that

optimizes the capacity management of limited resources, like operating rooms, diagnostic devices and

medical-care staffs, with the help of stochastic and/or combinatorial optimization methods.

3.2 Appointment Scheduling

This subsection is also concerned with the optimization of capacity utilization, but with particular

focus on the queueing systems with scheduled arrivals to heal-care institutions known as appointment

systems. A better-designed appointment system can reduce waiting time for customers and increase

the utilization of expensive personal and other resources. Thus, a significant part of the OR/OM

literature is devoted to appointment scheduling of outpatient services, the first of which was Bailey

(1952). For comprehensive literature reviews on appointment policies, we suggest Mondschein et al.

(2003), or Cayirli et al. (2003) and Gupta et al. (2008), for, particularly, appointment scheduling of

outpatients.

Response to appoint no-shows

An important aspect of customer behavior that influences the overall efficiency of such systems

is the phenomenon of no-shows. Hassin et al. (2008) seeks to characterize and compute the optimal

schedule with no-shows into consideration and identify whether no-shows is still costly with no-shows.

The model assumes each patient’s showing up probability p. We want to determine a schedule for a

fixed number of patients in order to minimize the sum of expected patient’s waiting costs and expected

hospital’s availability cost. Patients are served in the order of their scheduled appointments. The

scheduled arrival of the kth customer is tk, and if ti = tj , i < j, patients i and j will both show

up, with i served before j. The service times are i.i.d of exponential distribution of mean µ−1.

Thus the model can be formulated as a S(n, p)/M/1 queueing system with n scheduled independent

patients each showing up with probability p according to the schedule S(n, p). The decision variable
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x = (x1, x2 . . . , xn−1) is a vector of intervals between scheduled arrival times, so t1 = 0, ti =
∑i−1

j=1 xj .

We are now able to give the objective function:

Φ(x) = cwp
n∑

i=1

ws
i + cs(

n−1∑
i=1

xi + E[server’s time after tn])

= cwp
n∑

i=1

ws
i + cs(

n−1∑
i=1

xi + ws
n +

p

µ
),

where cw is the waiting cost cs is the service cost, and ws
i is the expected waiting time of the ith

customer (ws
i = 0). To evaluate the effect of no-shows, we only need to see the difference between

Φ(x) and total expected service cost cspn/µ. That is:

Ω(x) = Φ(x)− cspn

µ
.

We are still enabled to compute ws
i analytically by recursion method, the details of which is shown in

the original paper. Numerically experiments, provided in Hassin et al. (2008), illustrates, curiously,

that both Φ(x∗) and Ω(x∗) increase first and decrease then as the showing up probability p rises from

0 to 1.

Green et al. (2008) also analyzes the no-show problem by conceptualizing the appointment system

as a single-server queueing system in which customers who are about to enter service have a state-

dependent probability of not being served and may rejoin the queue. Stationary distributions of the

queue size are also derived, assuming both deterministic as well as exponential service times.

The model assumes that there is a finite queue length K, so that patients who arrive when

the backlog is K are lost. The service times are deterministic with time T . So, the system is an

M/D/1/K queue. The assumption of fixed service times is consistent with our goal of providing

guidance on patient panel sizes that result in short backlogs. Because physicians strive to see a fixed

number of patients each day, idle time and delays during the day due to service time variability are

inconsequential for this purpose. In reality, patients often change their plans while being on the

waiting list, generating reschedulings and no-shows. In the case of an appointment rescheduling, we

assume that a patient moves from his/her current place on the waiting list to its end and so does

not affect the total length of the backlog. On the other hand, no-shows, or equivalently, last-minute

cancellations, result in a service slot being unused. If a no-show patient does not reschedule, then

the backlog dynamics are unaffected. However, many no-shows do schedule a new appointment and

hence generate an additional demand. The probability of a no-show is a function of the length of the

backlog at the time at which the patient makes an appointment, denoted as rγ(k), where k is the

length of the queue and r is a constant. Under the above mentioned setting, Green et al. derives the

equilibrium distribution and demonstrates that the rescheduling probability have a significant impact

on system performance and on the maximum patient panel size that can be reasonably handled.

Open-access policy

As a recently developed scheduling policy, open-access policies are also studied, by a comparison

between them and traditional policies, in Robinson et al. (2010). Open-access policy, unlike the

traditional policy under which a patient makes a routine appointment months ahead of time, allows

a random number of patients call in the morning to make an appointment for that day. Both the

traditional and the open-access scheduling policies encounter substantial variability in the number

of patients seen per day: traditional because of no-shows within the fixed number of appointments

for the day, and open-access because of the varying number of patients who call in to be seen each

day. This paper makes the first attempt to compare the effects of these two types of variability
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on the operational cost of the doctors office and to identify conditions under which each policy will

be preferred. One of the major findings in Robinson et al. (2010) is that the open-access schedule

outperforms the traditional schedule in the wide majority of cases. The traditional scheduling policy

will be preferred only when the no-show probability is small (less than 5%) or the cost of patients

waiting is trivial relative to the cost of the doctors time. Moving from a traditional schedule to an

open-access schedule will allow the physician to increase the panel size (the number of patients on

his or her books) by up to 30% when patient waiting is especially costly.The paper considers two

open-access policies: (1) all patients must be seen the day they call in (the same day policy) or (2)

some patients are willing to wait to be seen the following day (the same-or-next-day policy). The

same-day policy will perform better for larger no-show probabilities, for larger workloads, and for

smaller overtime surcharges. Also, the same-or-next-day scheduling policy is substantially less costly

than the same-day policy only when the work day is approximately equal to the expected workload;

otherwise, the option of deferring service makes little difference.

We consider the traditional appointment scheduling first, in which the length of time between

appointments is the deterministic service time. Let T be the number of slots if appointments, while

the number of patients scheduled for each day is N with show-up probability p. Hence, n̄ = (1− p)N

is the expected workload of patients a day. For the final patient N , his time slot scheduled is

tmax = max{t : xt ≥ 1}. Define b(k|z, ϕ) be the probability mass function of binomial distribution(
z
k

)
(ϕ)k(1 − ϕ)k and zt be the possible of patients in the system in time t, so zt = (zt−1 − 1)+ + xt.

Clearly, there will be two parts that contribute to the probability of k patients in the system during

time t, πt(k): (1) the probability that the system was empty in the previous period and k patients

arrive this period; and (2) the probability that there are k+1−j patients in the system in the previous

periods and j arrivals in this period. Therefore, πt(k) satisfies the following recursive equation:

πt(k) = b(k|xt, 1− p)πt−1(0) +

min{xt,k}∑
j=(k+1−zt−1)+

b(j|xt, 1− p)πt−1(k + 1− j),

with boundary value: π0(0) = 1 and π0(j) = 1 for j ≥ 1.

For a traditional schedule ({xt}, denoting the number of patients scheduled for time t), its total

cost CT ({xt}) consists of three parts: the doctor s expected length of the day (D̄T ), the overtime

time ŌT and the waiting time W̄T . For the expected day length D̄, the doctor must remain through

the end of time slot tmax − 1 to ensure all the patients’ show-up. Hence,

D̄T = tmax − 1 +

ztmax∑
k=1

kπtmax(k).

The idle time is the difference between the day length and the workload, so:

ĪT = D̄T − n̄ = tmax − 1 +

ztmax∑
k=1

kπtmax(k)− n̄.

The overtime calculated as the difference between the actual server completion time (D) and the length

of the day T . As a result ŌT = ED(D−T )+ = 0 if tmax ≤ T−ztmax ; Ō
T =

∑tmax−ztmax−T−1
k=1 kπtmax(k+

T +1− tmax) if T − ztmax +1 ≤ tmax ≤ T ; and ŌT = D̄T − T otherwise. To get the expected waiting

time, we note in final period tmax, each patient j in the system must wait for an additional (j − 1)
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periods before being served. Thus, the expected waiting time is:

W̄T =

tmax−1∑
t=1

zt∑
k=1

(k − 1)πt(k) +

ztmax∑
k=1

(

k∑
j=1

(j − 1))πtmax(k)

=

tmax−1∑
t=1

zt∑
k=1

(k − 1)πt(k) +
1

2

ztmax∑
k=1

(k − 2)(k − 1)πtmax(k).

So, we have

CT ({xt}) = ĪT + αW̄T + βŌT ,

where it is assumed that the cost rate of idle time is 1, of patients’ waiting time is α and of overtime

is β. The costs are clear: (1)
∑T

t=1 = N , (2)
∑k

t=1 xt ≥ k for any k and xt is a nonnegative integer.

It is verified in the paper that the optimal policy contains no holes: if it is optimal to schedule a

patient to period t, it will then be optimal to schedule patients for every earlier time slot.

We turn to take a look at the open-access policy now. The arrival distribution of requesting

appointments is assumed to be a Poisson distribution of mean n̄, thus of variance n̄, which is bigger

than that of the traditional case Np(1 − p) = pn̄. Let the cumulative distribution of the Poisson

distribution be P (s|n̄) and P̄ (s|n̄) := 1−P (s|n̄). The model assumes the no-show rate to be zero for

open-access scheduling. Thus, the optimal patient-sequencing problem is then trivial: assign patients

sequentially to time slots, starting with the earliest in the day. This eliminates both idle time and

patient waiting time; becomes irrelevant. Thus, the randomness in the demand arrivals will affect

the system through overtime only. For a same-day scheduling, it is clear the expected overtime can

be characterized as follows:

ŌSD =
∞∑

s=T+1

(s− T )p(s|n̄) = n̄P̄ (T − 1|n̄)− T P̄ (T |n̄).

Thus, the total expected daily cost:

CSD = βŌSD.

When demand is unusually high, the hospital defers some patients appointments to the following day.

We can represent this extension as a Markov chain and a full description and analysis of it is given

in the original paper. A strong dominance of the open-access policy to the traditional policy (the

saving of expected cost is up to 40%− 90%) is demonstrated by the numerical analysis in Robinson

et al. (2010).

The no-shows and cancellations of patient appointments are also considered in Liu et al. (2010).

It models the problem from the dynamic appointment scheduling decisions perspective. Extensive

simulations were conducted to prove that the heuristics proposed outperform all other benchmark

policies, particularly when patient is higher than regular capacity and that the open access policy, i.e.

”meeting today’s demand today”, can be a reasonable choice when the patient load is low. An MDP

model is proposed, but to get an optimal solution through policy improvement or value iteration is

merely impossible due to the significantly high dimension. Hence, the paper gives a probabilistic

static policy which is very close to the optimal policy.

Dialysis appointment

Patients suffering from a chronic condition often require periodic treatment. For example, patients

with End-Stage Renal Disease (ESRD) require dialysis three times a week. These patients are also

frequently hospitalized for complications from their treatment, resulting in idle capacity at the clinic.

These temporary patient absences make overbooking at the clinic attractive. Lee et al. (2009)
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develops a semi-closed migration network to capture patient flow into the clinic and between the

clinic and hospital. The paper considers a simple class of stationary control policies for patient

admissions and provide algorithms for selecting one that maximizes long-run average earnings. Local

diffusion approximations were constructed to provide square-root loading formulas for the optimal

capacity level and patient overbooking level: as the total patient arrival rate increases, the deviation

between the optimal and fluid-limit capacity and overbooking levels scale up with the square root of

the total arrival rate. We find that high hospitalization rates and long inpatient stays allow for more

overbooking.

The stochastic facility model is a multi-class migration network with two nodes. Node 1 represents

the clinic, and node 2 reflects temporary absences due to patient hospitalization. There are J classes

of patients. The arrival process of all nodes are independent Poisson processes. If the total number

of the total number of patients in the 2 nodes of the network is less than a decision threshold, M ,

a new patient is admitted. All admitted patients join node 1 (the clinic) first and receive treatment

three times of a week. Once at that node, a class-j patient may move to node 2 (hospitalized), or

department from the system, each in an independent exponential period of time. While at node 2, the

patient may department the system, due to death, or return to the clinic, also each in an independent

exponential period of time. The number of patients at time t in class j node i is Xij(t), so the total

number of patients in node i is Xi(t) =
∑J

j=1 Xij(t). In addition to M , the maximum number of

patients admitted into the clinic, the decision variable also includes the clinic capacity C. Let r be the

margin for each patient treatment, and e be unit capacity cost per unit time and s be over treatment

penalty. So we have the average long-run earning is:

AP (C,M) = lim
t→∞

1

t
[r

∫ t

0

min{X1(s), C}ds− e

∫ t

0

Cdv − s

∫ t

0

(X1(s)− C)+ds.

This objective function can be formulated by identifying the steady-state distribution, which can be

found in details in the original paper.

For each patient threshold M , one can compute the optimal capacity limit CM . Then, we can find

the patient decision threshold that maximizes the long-run average earnings. Furthermore, because

it can be shown that the steady-state distribution is monotone in M , the search for the optimal

combination of M and C can be restricted to a finite set. Thus, the optimal control parameter C∗

and M∗ can be easily characterized. We can also reduce the capacity shortage probability by pooling

capacity between facilities. The paper also establishes the optimal control and overbooking level by

asymptotic approximation. The model is also demonstrated to be robust by the extensive numerical

results presented in the paper.

To summarize, the literature that tries to address the optimal appointment scheduling issue mainly

focuses on neutralizing the effect of no-shows and last-minute cancellations. A new dynamic policy

called open-access to solve this problem is also broadly studied in recent papers, whose key is to allow

a random number of calls with appointments scheduled each day.

3.3 Supply Chains in Health-Care

The interaction between supply management and health-care operations is widely studied in the recent

literature. Supply chains in health-care system often have special properties like they must handled

with high efficiency, their quality requirement is restrictive and the constraint and uncertainty at both

yield and demand levels, so on and so forth. As has been discussed above, papers like Chick et al.

(2008), Deo et al. (2009) and Cho (2010) all studies the influence of yield uncertainty in vaccination
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production. They help us understand the strategic behaviors of vaccine manufacturers in response

to yield uncertainty. In this subsection, we review a few latest papers that highlight supply chain

models applied to health-care issues.

Reimbursement

Tackling the steep increase in drug costs is an especially important issue among many health

care providers and insurers. To entice the clinics to become more cost efficient, the U.S. federal

government, as well as many HMOs, have developed various cost containment initiatives recently. To

formally analyze the impact of these initiatives on the patients well-being, the clinics profitability, and

the pharmaceutical firms profitability, So et al. (2000) develops a model that examines the impact of

a reimbursement policy for drug usage. This is the first few studies that emphasize the joint impact of

the reimbursement policy on the patients, the clinic, and the pharmaceutical firm. The policy studied

is an outcome oriented reimbursement which provides incentives for caregivers to offer appropriate

patient care with effective use of resources.

Consider a clinic that purchases a drug from a pharmaceutical firm and prescribes this drug to a

patient. The patient, with his well-being scored Xt at t, receives the drug treatments from the clinic

(the dosage denoted as Dt) on a regular basis over an extended period of time. The response of the

dosage follows the following linear relationship:

Xt = Xt−1 + ϵt + α(Dt −Dt−1),

where ϵi’s are i.i.d random normal variables with mean 0 and variance ϵ, representing some random

fluctuation added to the patient and α is the response rate of the drug per unit dosage. The clinic

applies the target prescription policy as follows: Based on the patients score Xt−1 at the end of period

t − 1, the clinic would specify the subsequent dosage Dt that would adjust the patient’s score Xt−1

to a target level T (in expectation, i.e. E(Xt|Xt−1) = T ). Hence, applying the expression of Xt and

T , we get:

Dt = Dt−1 +
T −Xt−1

α
,

and

Xt = T + ϵt.

To provide a drug treatment according to the target prescription policy to a patient, the clinic

has to pay cDt to the drug manufacturer at the beginning of period t. After the treatment, the clinic

files a claim with the patients insurer for reimbursement that covers the cost of the drug, various

operating costs, and a profit margin (pDt in total, p > c > 0). The insurer will accept the claim

if the score of the patient is less than or equal to some threshold level K. Under this scheme, the

clinics claim will be approved only when the patients well-being is below a certain threshold value K.

To determine the optimal target level T ∗, we just need to characterize the expected profit, Rt, for a

patient at period t.

E(Rt) = E[E(Rt|Dt)] = E[p(DtP (Xt ≤ K))− cDt]

= E(Dt)(pP (Xt ≤ K)− c)

=
T −X0

α
(pP [Xt ≤ K]− c).

Hence, T ∗ is identified by the following optimization problem:

max
L≤T≤U

E(Rt) = max
T

T −X0

α
(pP [Xt ≤ K]− c),
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where [U, T ] is the feasible range of T , and Xt, as shown above, follows the distribution N(T, σ2).

It is also demonstrated in So et al. (2000) that T ∗ is increasing in the patient initial condition

X0, decreasing in the cost revenue ratio c/p, decreasing in the fluctuation σ2 and increasing in the

reimbursement threshold K, all in accordance with our intuition.

The reimbursement policy is also studied when dealing with ubiquitous purchaser-provider relation

is also widely studied in recent literature. However, their objectives are often conflicting and there is

one party enjoying information advantage. Fuloria, et al. (2001) develops a dynamic principal-agent

model focusing on their interaction between this two parties. The model also seeks to understand

effect of reimbursement policy. In this model, patients arrive exogenously, receive periodic treatment

from the provider, suffer costly complications that require hospital care, and eventually exit the

system in death. The provider chooses the intensity of treatment in each period, incurs an associated

cost, and is reimbursed by the purchaser according to observed patient outcomes.

The dynamic principal agent model is based on the one presented in Plambeck et al. (2000). The

model consists of a patient dynamics and a cash flow dynamics. It assumes Qt−1 patients requiring

patient at the beginning of period t, and its wealth, necessary for the purposes of banking assumption,

is denoted by Wt−1. In each period, the provider chooses a treatment decision at ∈ Ω = [a, ā] and

consumes an amount ct. The cost of the provider incurs a cost g(t)Qt−1, where g(·) is convex and

increasing. The treatment intensity affects stochastically the number of patients who will suffer an

expensive complication and will require hospital treatment in that period, denoted as Ht, and the

number of death Dt. The distribution of Ht and Dt are assumed to be independent binomial variables

with trial number Qt, and probability parameter pH(at) = p̄H(at) = p̄H exp(−θHat) and pD(at) =

p̄D(at) = p̄D exp(−θDat), respectively. The one-period long hospital treatment are conducted the

next period by a third party and will return to the provider after treatment. Following that the

purchaser receives a reward κ for each surviving patient and incurs a cost VH per hospital treatment.

She then makes a payment st to the provider according to:

st = s0 + sFQt−1 + sDDt + sHHt,

where the payment coefficients are specified through contract negotiation. At the end of period t, a

Poisson arrival At with rate λ of patients occur. Thus, the state the system becomes:

Qt = Qt−1 −Dt +At,

and the provider’s wealth becomes:

Wt =
1

δ
(Wt−1 − g(at)Qt−1 − ct) + st,

where δ−1 − 1 is the interest rate.

The model assumes the purchaser to be risk neutral, so it optimizes his infinite-horizon expected

discounted social welfare, with discount factor δ:

E[
+∞∑
t=1

(κ(Qt−1 −Dt)− VHHt − s0 − sFQt−1 − sHHt − sDDt)|Q0].

On the other hand, the provider is risk averse, and he seeks to optimize the expected utility from

consumption, which exponential with constant absolute risk aversion rate r:

E[−
+∞∑
t=1

δt−1 exp(−rct)|W0, Q0].
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The provider requires his utility be no less than U . All information except for provider’s own action

and consumption are observable to two parties. The purpose of this model is to find the optimal

treatment and consumption strategy in response to payment contract (s0, sF , sD, sH), and to find

out the optimal contact. An important contribution of the analysis in Fuloria et al. (2001) is

a dichotomy of incentive payments into short term and long term: the outcome-adjusted-system

motivates the provider to deliver the desired treatment by penalizing single-period adverse outcomes

and rewarding patient longevity. For analytical details and numerical illustrations, please refer to the

original paper.

We shortly introduce a few other papers of modeling novelty but not focusing on analytical

approach. Supply limitations are very common in drug industry. As a result, forecasting supply-

constraint drug demand in markets is difficult since the supply limitation have significantly cur-

tailed sales volumes and thus reduced the usefulness of conventional sales-based forecasting methods.

Stonebraker et al. (2009) applies a decision analytical model to explicitly track variability in epi-

demiological data together with the variability in treatment modalities to estimate latent therapeutic

demand (LTD)the underlying demand that captures how physicians would prescribe treatment and

how patients would comply if ample supplies of drugs were available and affordable. THirumlai et

al. (2011) performs an econometric analysis to investigate the persistent quality and the induced

product-recall problems of medical devices. The study aims to assess the financial implications of

medical device recalls, particularly in the aspect that whether this consequence is so severe that it

defers firms from introducing potentially hazardous medical devices into the market. This empirical

research suggests that medical recalls bring significant discomfort to consumers but it causes little

capital market penalties. The paper also demonstrates that the likelihood of recalls decreases with the

cumulative recall experience of firms, i.e. there is a learning effect from improvements to firm opera-

tions induced by former recalls. Besides suffering from uncertain patient arrivals, primary-care clinics

also face the uncertainty in patient choices. Patients have different perceptions of the acuity of their

need, different time-of-day preferences, as well as different degrees of loyalty toward their designated

primary-care provider (PCP). The clinic needs to decide which appointment requests to accept to

maximize revenue. The paper develops a Markov decision process model for the appointment-booking

problem in which the patients choice behavior is modeled explicitly. When the clinic is served by a

single physician, we prove that the optimal policy is a threshold-type policy as long as the choice

probabilities satisfy a weak condition.

3.4 Other Issues not Listed

Revenue management in non-profit operations

Nonprofit firms sometimes engage in for-profit activities for the purpose of generating revenue to

subsidize their mission activities. The organization is then confronted with a consumption versus

investment trade-off, where investment corresponds to providing capacity for revenue customers,

and consumption corresponds to serving mission customers. de Vericourt et al. (2009) models this

problem as a multi-period stochastic dynamic program. In each period, the organization must decide

how much of the current assets should be invested in revenue-customer service capacity, and at what

price the service should be sold. We start with the resource allocation problem with banking. We

call R-customers the customers for generating revenues and M-customers the ones not charged of any

fee.

For a medical service institution with assets at at period t ∈ {1, 2, · · · , T}, the institution needs
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to decide how much capacity yt to provide for R-customers and how much, zt to be banked. Thus,

xt = at − yt − zt units of asset are allocated to M-customers. The demand of R-customers is θt, thus

the number of R-customers served is yt ∧ θt. So, the resources at the beginning of the next period is:

at−1 = p(yt ∧ θt) + βzt +∆t,

where p is the profit per R-customer and ∆t is the random variable denoting the donation at t. Let cR

and cM be the cost of serving a R-customer and M-customer, respectively, while their social impact

return is τ and s. We assume s/cM to be 1 and, thus, τ ≤ 1. As a result, the total social return

is (at − yt − zt) + τ(ytθt). The model considers the finite horizon, T , condition, so the maximum

social-impact-to-go function vt(a) at period t with resource a can be characterized as follows. Clearly,

at period T , all assets are allocated to serving M-customers. Hence, vT (a) = a. We have:

vt(a) = max
0≤y+z≤a

(a− y − z) + τEy(y ∧Θ) + αHvt+1(y,z),

where Hv(y, z) = E∆Ey(v(p(y ∧Θ) + βz +∆)) with ∆ following the distribution of ∆t, Θ following

the distribution of θt and α as the social discount factor for delaying service to an M-customer to

the next period. The optimal policy for this capacity allocation and banking problem is of threshold

type: capacity should only be allocated to M-customers when assets are above a threshold, and all

assets above that threshold should be allocated for this purpose.

The paper also discusses the optimal resource allocation with pricing. It considers a condition

where the demand function of R-customers Dt is with multiplicative uncertainty, i.e. Dt = γ(pt)Θt,

where γ(·) is the price response function. Intuitively, the optimal price should be decreasing in

capacity allocated to R-customers. However, a simple counterexample is provided in the paper, but

it still provides a sufficient condition for this intuition to be true. For more details about the modeling,

analysis or numerical examples, please kindly refer to the original paper.

Impact of discharge decisions

The impact of discharging decisions in the face of shortages is investigated in Berk et al. (1998).

It develops a model that elucidates the dynamics of a health care unit. To capture the essence

of discharge decisions, the model considers discharge policies that incorporate both the occupancy

level of the unit and the status of patients measured by their stage of recovery and the time they

have spent in that stage. It is found in the paper that inclusion of early discharge option improves

system accessibility significantly and does not jeopardize care equity among patients. Furthermore,

introduction of early discharge option has more pronounced effects on increasing care unit capacity

than addition of open beds with no early discharges.

Some other issues concerning the optimization of decisions conducted by institutions are also

studied in recent literature. Crama el al. (2008) analyzes the optimal design of licensing contracts with

incomplete information on the valuation of an innovation and limited control of licensee’s development

effort. The findings in this paper inform managerial practice about the advantages and disadvantages

of milestone payments and royalties and recommend the optimal composition of the contract. Kc

et al. (2009) applies an econometric model to analyze the impact of workload and service time

on patient safety. It shows that workers accelerate the service rate as load increases. It has also

been demonstrated that such acceleration may not be sustainable: long periods of increased load

(overwork) have the effect of decreasing the service rate. The paper also investigates cadiothoracic

surgery and indicates that an increase in overwork results in an increase in the likelihood of mortality.

Estimating ambulance travel times is a key step to measure the performance of medical emergency
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response. Budge. et al. (2010) applies nonparametric estimates of median and variation to this

issue and finds that the coefficient of variation decreases with distance. The resulting travel-time

distribution model can help us create probability-of-coverage maps for diagnosis and improvement of

system performance.

4 Individual Patient & Disease Treatment Optimization

In this section, we are going to present papers that contribute to the understanding of and treatment

diagnosis optimization from the perspective of patients. The diagnosis optimization literature usu-

ally aim to unearth the connection between symptoms and diseases, as well as to seek an optimal

screening policy so as to detect and prevent certain diseases, like breast cancer. As for papers devoted

to treatment optimization, they mainly consider the optimization of some particular therapies like

radiation therapy chemotherapy and dialysis.

4.1 Diagnosis Optimization

The role of diagnosis is to connect symptoms with internal diseases in order to efficiently treat or

prevent in advance. This part of literature usually applies statistical and computational tools to

classify and stimulate the symptom/disease dynamics. There are also plenty of papers contributing

to optimal screening policies.

Symptom classification and simulation

For many diseases, to determine what information to gather on symptoms and what combination

of symptoms lead to a given disease is a great challenge in diagnosis. To generate adequate statistical

data, the required number of experiments is usually unmanageably large. Hence, Saaty et al. develops

an analytical hierarchy process (AHP) model where statistical data and expert judgment can be

incorporated. Bayes theorem is utilized in this model to link posterior probabilities with experiment

outcomes.

An explosion of interest in data mining and optimization research occurs recently to quantitatively

discover and investigate the complex patterns in the vast amount of information generated by brain

functions. Chaovalitwongse, et al. (2008) proposes a new classification technique, support feature

machine (SFM), to classify abnormal brain activities. The SFM is essentially an optimization model

that maximizes classification accuracy based on nearest-neighbor classification. The performance

of this classification technique outperforms others, achieving, on average, over 90% classification

accuracy.

There is also some literature that simulates the homeostasis of human body. Karanfil et al. (2008)

builds a dynamic model to study the water regulation of human body, with concentration on the

feedback mechanisms involved in their normal and abnormal physiology. Therapeutic interventions

like intoxication and hyponatremia are also included in the simulation model. This system dynamical

approach is proved to adequately reveal typical dynamics of the body by experimental data. The

model includes a differential equation system that projects the normal and abnormal regulation of

water. This simulator also allows physicians to perform experiments to test the effects of typical set

of treatment options on a simulated patient.

Optimal screening policy

A great many of patients choose to participate in disease screening in the hopes of detecting

diseases before they are outwardly observable. The relative value and frequency of mammography
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Figure 3: Partially Observed Markov Chain Natural History Model

screening for pre-menopausal women versus post-menopausal women draws OR researchers’ atten-

tion due to the conflicting age-based dynamics of both the disease (increasing incidence, decreasing

aggression) and the accuracy of the test results (increasing sensitivity and specificity). Maillart et al.

(2008) develops a partially observable Markov chain model to optimize the screening policy measured

by a lifetime cancer mortality risk metric and an expected mammogram count. The analysis of this

model demonstrates that screening should start relatively early in life and continue relatively late in

life regardless of the screening interval(s) adopted.

The Markov chain model classifies the breast cancer progression as state 0 to state 4, according

to its severity: 0 is no cancer, 1 is early breast cancer, 2 is advanced breast cancer, 3 is breast cancer

induced death and 4 is non-breast cancer induced death, and 1,2,3 are in between. From stage j,

j = 0, 1, 2, a patient of age α transits to state j with probability pjj(α), to state j+1 with probability

pj,j+1(α) and to state 4 with p4(α) (Figure 3). Let P (α) be the corresponding one-step transition

probability matrix.
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It is assumed that even if a patient develops symptoms, the earliest she can be diagnosed is at

the time of her next screening. If the patient is in state j, then the result of a mammogram is

either ”abnormal”, with probability aj(α), or ”normal” with probability 1− aj(α). Since transitions

between states 0, 1, and 2 are not outwardly visible, and because mammogram results may be false,

the disease state is partially observed. Define the π = (π0, π1, π2) as the distribution over disease

states, where πj is the probability the patient is currently in state j. The performance of a screening

policy is measured by the probability a patient will die from breast cancer under that policy. So the

cost of state 3 is 1 and of state 4 is 0.

Let Wn(π) be the probability that a patient will eventually die from breast cancer if she starts

with occupancy distribution π, in period n at age αn. If a screening policy does not prescribe a

mammogram, the patient in the next period can either: (1) die from breast cancer with probability

π2p23(αn) and cost 1; (2) die from another cause, with cost 0; or survive, with probability 1 −
π2p23(αn) − p4(αn) and conditional distribution π′(π) which follows Bayes’ rule. Thus, under this

condition, we have:

Wn(π) = π2p23(αn) + [1− π2p23(αn)− p4(αn)]Wn+1(π
′(π)).

In the condition that the screening policy prescribes a mammogram in period n, the approach is similar

but the Bayes’ rule applies differently. The paper also conducts extensive sample path analysis of this

Markov chain and shows the robustness of optimal policies. Rauner et al. (2010) also investigates

the Pareto-optimal screening strategies against breast cancer. The model in this paper provides

policy-makers Pareto-optimal screening schedules for risk groups by considering cost and effectiveness

outcomes as well as budget constraints. Pareto ant colony optimization algorithm for multi-objective

combinatorial optimization problems is utilized to derive the meta-heuristics solution technique.

4.2 Treatment Optimization

The final part of our review will be devoted to the literature that optimizes the effect of treatment.

We discuss disease therapy initiation for HIV and end-stage renal failure first and then conclude this

section with the optimization of radiation therapy and chemotherapy.

Disease therapy

The aim of this part of literature is to determine the optimal treatment policy from the perspective

of patients. Shechter et al. (2008) investigates the optimal time to initiate HIV therapy. Benefits of

delaying therapy include avoiding the negative side effects and toxicities associated with the drugs,

delaying selective pressures that induce the development of resistant strains of the virus, and pre-

serving a limited number of treatment options. On the other hand, the risks of delayed therapy

include the possibility of irreversible damage to the immune system, development of AIDS-related

complications, and death. A Markov decision process is developed to maximize the expected lifetime

or quality adjusted lifetime of a patient.

The assumes that the patient monthly visits a physician periodically to check his disease state and

to decide when to initiate therapy. For the health state of the patient s, which ranges from 1 to N ,

there will be a reward r(s) the patient receives when waiting in state s and a expected total remaining

reward, received when the patient initiates therapy from state s. We assign r(0) = R(0) = 0. The

action taken by the patient at each period is either to wait or to initiate. If the patient chooses to

wait in state s, the probability he will transit to state j is p(j|s). Therefore, the MDP problem can
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be characterized as:

v(s) = max{r(s) +
∑
j

p(j|s)v(j), R(s)},

where v(s) is the optimal measure of the policy when the initial state is s and if we seek to optimize

the quality adjusted lifetime of the patient, r(s) = 1. It is derived in the original paper that v(s) is

non-negative and decreasing in s. The optimal policy will be to initiate immediately whenever the

reward of initiation R(s) is big enough, (R(s) ≥ r(s)+
∑

j p(j|s)R(j)). Numerical experiments based

on clinical data, contradicts the recent trend to treat it late.

The treatment initiation problem also arises from dialysis therapy, which is the most common

way for patients afflicted with chronic kidney failure. Lee et al. (2008) makes some attempt to

understand the relation ship between dialysis initiation and therapy’s cost and effectiveness. The

paper builds an approximated dynamic programing model and computationally derives the optimal

strategy. The numerical experiments in this paper show that: (1) standard early initiation strategies,

where once started on dialysis patients are kept on a fixed weekly program, have a limited potential;

and (2) dynamic strategies incorporating patient-specific characteristics to customize dosage can yield

a significant cost advantage.

Radiation and chemotherapy

Cancer is a common disease of modern people. There is a huge number of patients diagnosed

with cancer each year. Radiation therapy and chemotherapy are two of the major approaches against

cancers, especially when the tumor is too big for surgical excision alone. However, their side-effect

might be very big since both X and γ rays, for radiation therapy, and toxic drugs , for chemotherapy,

also have great damage on healthy tissues. That is the reason why this area calls for optimization

method so as to improve the efficacy and control the side effect of radiation and chemotherapy.

Recently, a huge number of cancer patients benefit from conformal radiation therapy. However,

many patients that are initially considered curable do in fact die of their disease, despite sophisticated

treatment. Others may suffer from unintended side effects from radiation therapy, severely reducing

the quality of life. This happens mainly because radiation therapy plans often deliver too little

dose to the targets but too much to health organs, or both. Intensity-modulated radiation therapy

(IMRT) is considered to be able to balance the preservation of healthy tissues and the probability of

eradication of the tumors. In IMRT, the patient is irradiated from several beams, each of which is

decomposed into hundreds of small beam-lets, the intensities of which can be controlled individually.

Romejin et al. (2006) considers the problem of designing a treatment plan for IMRT when the

orientations of the beams are given. It proposes a novel linear programing approach to this problem,

thus substantially improving the tractability of the optimization compared with the established mixed-

integer and nonlinear programing approach.

Suppose the targets s = 1, 2, · · · , S and critical structures (i.e. the nearby healthy tissues) s =

S + 1, ·, T are considered. Each structure contains several vs voxels. There are totally N beam-lets

and the dose received by voxel j in structure s from beam-let i at unit intensity is Dijs. Hence, the

dose received by each voxel as a function of beam-let intensity x = (x1, · · · , xN ) is:

Djs(x) =

N∑
i=1

Dijsxi.

The minimum prescription dose to all voxels in the target s is Ls and the maximum tolerance dose of

both target and critical voxels is Us. Hence, we haveDjs(x) ≥ Ls for s ≤ T andDjs(x) ≤ Us for s ≤ S.

Suppose there are under-dose threshold TU
s ≥ Ls and over-dose threshold TO

s ≤ Us. The penalty
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functions for under-dose and over-dose are FU
s (z) = βU

s [(TU
s −z)+]p

U
s and FO

s (z) = βO
s [(z−TO

s )+]p
O
s ,

respectively, where βU
s , βO

s ≥ 0 and pUs , p
O
s ≥ 1 to ensure convexity. The objective is to minimize:

F (x) =
S∑

s=1

1

vs

vs∑
j=1

Fs(Djs(x)).

The scaling 1/vs is to ensure the penalty is insensitive to relative sizes of the targets and critical

structures. To sum up, the optimization problem can be formulated as:

min
x

F (x) =
S∑

s=1

1

vs

vs∑
j=1

Fs(Djs(x)),

subject to, for alli, j, s

Djs(x) =

N∑
i=1

Dijsxi,

Fs(z) = FU
s (z) + FO

s (z) = βU
s [(TU

s − z)+]p
U
s + βO

s [(z − TO
s )+]p

O
s ,

Djs(x) ≤ Us,

Djs(x) ≥ Ls,

xi ≥ N.

The paper also considers the commonly employed cumulative dose-volume histogram constraint

(DVH), which specifies, for a given target or critical structure, the fraction of its volume that receives

at least a certain amount of dose. Spatial correlations of different targets and critical structures are

also investigated in it. We strongly suggest you refer to the original papers for their details.

When conducting the IMRT therapy to liver and lung cancers, the motion uncertainty induced by

breathing is a challenge to the effective and reliable deliver of the radiation. In Bortfeld. et al. (2008)

the authors build a probabilistic model of motion uncertainty and provides a robust formulation of the

IMRT optimization problem. The major extension of this model compared with the one presented in

Romejin et al. (2006) is that the radiation dose deliver intensity is Dijs no longer a constant vector,

but a random vector whose distribution changes cyclically with the breath cycle. This generalization

of nominal approach (when the motion knowledge is certain and complete) performs well in the sense

of maximum over-dose (within 11%).

In IMRT treatment, after the intensity profile is selected to both ensure targets receive sufficient

dose and functional tissues are spared, the profile must be decomposed into a collection of apertures

and corresponding intensities. Taskin et al. (2010) investigates this decomposition problem by an

integer programing approach. An intensity profile is represented as a nonnegative integer matrix; an

aperture is represented as a binary matrix whose ones appear consecutively in each row. A feasible

decomposition is one in which the original desired intensity profile is equal to the sum of a number

of feasible binary matrices multiplied by corresponding intensity values. To most efficiently treat a

patient, the objective is to minimize a measure of total treatment time, which is given as a weighted

sum of the number of apertures and the sum of the aperture intensities used in the decomposition.

The paper has described an exact decomposition algorithm based on an integer programing model

for finding multi-set of intensity values to be assigned to apertures and a backtracking algorithm that

forms apertures by finding compatible leaf positions of each row. Computational results based on

clinical data show that the method is capable of solving to optimality within a few minutes. You may

consult the original paper for a complete description of the model, method and numerical experiments

therein.
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In order to ameliorate the chemotherapy treatment, Agur et al. (2006) identifies two general cate-

gories of anticancer drug protocols: a one-intensive treatment or a series of non-intensive treatments.

Simulating the patients pharmaco-dynamics in a simple model for cell population growth, the paper

calculates the number of drug susceptible cells at every moment of therapy. The problem, shown to

be NP-hard, can be defined as an optimization problem to which the possible solutions are scheduling

plans represented by zeros (no treatment) and ones (treatment). As a result, the authors tries three

local search heuristics simulated annealing (SA), threshold acceptance (TA) and old bachelor accep-

tance (OBA) to search a desired a solution. Numerical results in this paper have demonstrated the

competitiveness of the three heuristics but the computational effort of SA is higher than the other

two.

In conclusion, papers that contribute to optimizing radiation therapy or chemotherapy usually

attempt to balance the trade off between damaging cancer cells and sparing nearby healthy ones.

Particularly, almost all recent research on radiation focuses the newly proposed IMRT optimization,

which can be reformulated as a linear programing or related optimization model.

5 Future Research

The operations research and operations management method applied to health-care issues will con-

tinue to be a fruitful research area. As in the past, research will progress in many directions. The

list below only reflects the author’s knowledge and taste, which is inevitably incomplete.

Equity in resource allocation

Equity must be taken into consideration in the allocation of limited medical resources due to

ethical concerns. As is discussed in Su et al. (2004), Su et al. (2006) and Sandikci et al. (2008), the

policy that maximizes the system-wide performance may substantially sacrifice equity. This type of

problem especially takes place in organ transplantation issues, where donated organs can only supply

a fraction of patients waiting for transplantation surgery. The trade-off between the value of the

information indicating health-condition of the patients in the waiting list and their privacy is surely

a central problem that arouses both the organization and the patients’ interest. There is still a long

way to go before we can embed equity consideration quantitatively into the objective function that

reflects the efficiency or revenue of a health-care policy.

The quantification of medical institution/policy’s performance

One possible approach is the social-impact-adjusted revenue management of a medical institute,

as is done in de Vericourt et al. (2009). However, in practice, the social impact of a policy can

hardly be estimated precisely in terms of dollars. For example, how much do you equate enabling a

cancer patient live more than 10 years with? Another related issue is that how should a government

allocate health-care resources, such as fundings and vaccines, into different regions of the country.

Like the discussion in Sun et al. (2009), the optimal transition of drugs, and other medical resources,

is a central issue in the government’s medical resource planning policy. Additionally, it is also a

challenging job to incorporate the risk-aversion property of a government into the objective function,

since the resulting function might be very hard to analyze.

Emergency response

At the institution level, emergency response should be conducted by the emergency department.

Problems like optimal allocation and scheduling of the ambulance in a city to minimize its traveling

time, as discussed in Budge et al. (2010), is very essential. To better react to emergencies, we still
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need to analyze the optimal staffing and scheduling nurses so as to both shorten the operational time

and improve the quality of emergency medical treatment. At the government level, as is analyzed

in Craft et al. (2005), the response to nation-wide disasters, such as bio-error attacks, floods and

earthquakes, that requests urgent medical services like the distribution of vaccine and drugs, the new

construction of hospitals and the reallocation of health-care workers. Still, the ethical issues under

such circumstances are also very intriguing but difficult.

Insurance

This is another research area that I think deserves our attention. Health insurance industry

is in close connection with health-care systems. There interactions have great impact on the risk

and revenue of insurance companies and hospitals as well as the cost of patients. For an insurance

company, its task is to design health insurance optimally so as to reduce its risk of medical claims

and attract as many patients as possible to buy their products. For a hospital, it, as shown in So

et al. (2000) and Fuloria et al. (2001) that considers the optimal outcome-adjusted reimbursement

policy, needs to perform treatment policies optimally in order to transfer part of the risk to insurance

companies and to ensure the treatment effect on patients. For a patient, he has to choose suitable

insurance products so that he will be able to pay for the treatment that leads him to recovery. It is

also interesting to investigate the game and information asymmetry in their interactions and how to

provide incentives so that they can coordinate to reach the system-wide optimality.
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